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We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge

field couples directly to the inflaton, breaking conformal invariance. When the coupling between the

gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist

throughout inflation, avoiding Wald’s no-hair theorem. After discussing scenarios in which anisotropy can

persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the

primordial gravitational wave and curvature perturbation power spectra using the ‘‘in-in’’ formalism of

perturbation theory. We find that the primordial power spectra of cosmological perturbations gain

significant direction dependence and that the fractional direction dependence of the tensor power spectrum

is suppressed in comparison to that of the scalar power spectrum.
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I. INTRODUCTION

Inflation gives a compelling explanation of the flatness,
homogeneity, and isotropy of our Universe on large scales.
It also generically predicts a nearly scale-invariant spec-
trum of density perturbations, which is consistent with our
observations of the cosmic microwave background (CMB)
and of structure formation. Because of these successes, the
inflationary paradigm has dominated very early Universe
cosmology in recent years.

In this paper we focus on the prediction of isotropy from
inflation. The no-hair theorem of inflation states, roughly
speaking, that an initially expanding, homogeneous uni-
verse with positive cosmological constant, �, and matter
satisfying the dominant energy condition will become in-
distinguishable from a universe with de Sitter geometry on

a time scale of
ffiffiffiffiffiffiffiffiffi
3=�

p
[1]. Because of the no-hair theorem,

isotropy is generally taken as a prediction of inflation.
But there could be ways around the no-hair theorem. For

example, models with spacelike vector fields that get vac-
uum expectation values can lead to a preferred direction
during inflation, evading the no-hair theorem because the
vector field stress-energy tensor does not satisfy the domi-
nant (or even the weak) energy condition [2]. However,
such ‘‘aether’’ models have been shown to be unstable
[3–5].

Recently, another model has been shown to support a
persistent anisotropy during inflation [6]. In this model,
there is a nonminimal coupling between a Uð1Þ gauge field
and the inflaton, essentially leading to a time-dependent
Uð1Þ charge during inflation:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�2
� 1

2
ð@��Þð@��Þ � Vð�Þ

� f2ð�Þ
4

F��F
��

�
: (1)

Here, the Uð1Þ field strength, F��, may or may not be the

electromagnetic field strength. When the coupling, fð�Þ,
between the inflaton, �, and the Uð1Þ field takes a particu-
lar form and there exists a nonzero homogeneous Uð1Þ
seed field, an anisotropy persists throughout inflation even
though the space-time is undergoing nearly exponential
expansion. More specifically, the ‘‘electric’’ field contrib-
utes non-negligible extra negative pressure in the direction
in which it points, which causes space-time to expand more
slowly in that direction.
The model avoids the no-hair theorem by having (1) ex-

pansion that is not purely exponential and (2) a coupling
between the inflaton and other matter. The mechanism for
evasion of the no-hair theorem shows up in our results in
the following ways: (A) all modifications to power spectra
associated with the anisotropy go to zero when slow-roll
parameters vanish and (B) isotropic dynamics is quickly
restored if the inflaton-dependent coupling that breaks
conformal invariance goes to a constant (as is the case at
the end of inflation, when the inflaton field relaxes to the
minimum of its potential).
All of the standard energy conditions are satisfied in this

model, which means it should not be plagued by stability
issues as in aether models. The model does, however, suffer
from the standard fine-tuning problems of single field
inflation. Nevertheless, to our knowledge this model could
be the first consistent model of inflation that evades the no-
hair theorem and includes anisotropy at a significant level.
It is therefore interesting to investigate whether the model
is truly consistent and to investigate its potential astrophys-
ical signatures.
To that end, in this paper we consider gauge-invariant

cosmological perturbations in this anisotropic inflation
model. We consider and discuss a model generalized
from that of [6], and extend their formula for the
relation between the anisotropic expansion parameter
and the slow-roll parameter to include arbitrary forms of
the inflaton potential. We also present the dominant
effect of the anisotropy on the power spectra of tensor,
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vector, and scalar perturbation correlations at the end of
inflation.

Our main conclusions are the following:
(i) The power spectra for gravitational wave and curva-

ture perturbations can develop dramatic direction
dependence for very small values of the anisotropy
parameter1 if the parameter is nearly constant for a
large period of inflation.

(ii) The main cause of direction dependence of the
power spectra is a coupling between theUð1Þ vector
degrees of freedom to both tensor and scalar degrees
of freedom through the anisotropic background.
These interactions significantly affect the power
spectra of modes after horizon crossing.

(iii) The ratio of the fractional direction-dependent
change in the gravitational wave power spectrum
over that of the curvature perturbation power spec-
trum is nearly equal to the tensor-to-scalar ratio. In
particular, the curvature perturbation power spec-
trum has much stronger direction dependence than
the gravitational wave power spectrum.

(iv) For a given scale, the tensor and scalar power in
modes with wave vector perpendicular to the pre-
ferred direction is greater than the power in modes
with wave vector parallel to the preferred
direction.2

(v) There is no indication that the anisotropic inflation
model is unstable. (That is, there are no ghosts.) This
should be unsurprising since the stress-energy ten-
sor for matter in the model satisfies the dominant
energy condition.

Many have studied inflationary scenarios with actions
similar to (1), interpreting F�� as the standard model

electromagnetic field strength, in the context of explaining
the existence of large-scale magnetic fields in the Universe.
Initially Parker [7] and then Turner and Widrow [8]
showed that magnetic fields produced in an inflationary
Universe are ‘‘uninterestingly small’’ (i.e. too small to
possibly account for the observed large-scale magnetic
fields in the Universe) unless the conformal invariance of
the electromagnetic field is broken. The generation of seed
magnetic fields starting from the action in (1) and a par-
ticular fð�Þ was considered in [9] and more recently in
[10]. Generic predictions for magnetic fields in a large
class of models, of which the model we consider here is
an example, were presented by Bamba et. al. [11]; the
particular realization of the model we consider in this
paper is what these authors refer to as the ‘‘weak coupling
case.’’ Magnetogenesis, including the backreaction due to

electromagnetic fields, in the inflationary scenario we con-
sider here was considered in [12]. For a review of the
generation of magnetic fields during inflation in a more
general context see, for example, [13].
More recently, the effect of vector fields during inflation

has been studied in the context of their effects on the
curvature perturbation power spectrum. A ‘‘vector curva-
ton’’ scenario, in which a vector field with time-varying
mass and Maxwell-type kinetic coupling term contributes
to the curvature power spectrum, was found in [14] to
allow significant anisotropic contributions to the curvature
spectrum and bispectrum if the vector field remains light
until the end of inflation. A similar massless vector curva-
ton scenario was considered in [15] and again the possi-
bility of significant anisotropic contributions was found.3

The anisotropic contribution of vector field perturbations
to primordial curvature perturbation correlations in various
inflationary scenarios was also considered in [16–21].
Perturbations of what corresponds to our cross polarization
gravitational wave degree of freedom were studied in [22],
but in a scenario in which a second scalar field, uncoupled
to theUð1Þ field and the scalar field that couples to theUð1Þ
field, causes a transition back to isotropic expansion before
the end of inflation.
This paper is organized as follows. In Sec. II, we in-

troduce the model. In Sec. III, we discuss our philosophy
and methods for calculating and analyzing primordial per-
turbation spectra. Finally, in Secs. IV and V we calculate
the primordial perturbation spectra and briefly discuss
stability. We summarize our conclusions in Sec. VI.

II. MODEL AND BACKGROUND SOLUTION

We consider a space-time governed by the following
action [6]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

2�2
� 1

2
ð@��Þð@��Þ � Vð�Þ

� f2ð�Þ
4

F��F
��

�
; (2)

where g ¼ detðg��Þ, R is the Ricci scalar,� is the inflaton,

and F�� ¼ @�A� � @�A� is a Uð1Þ gauge field strength.

For convenience, we will refer to the Uð1Þ field as the
‘‘electromagnetic’’ (EM) field, even though it need not
be the standard model EM field. Here we have defined

�2 � 8�G ¼ 1=M2
Planck: (3)

We assume that the background is homogeneous and
that there is a nonzero homogeneous electric field.4 We

1The anisotropy parameter is basically the fractional differ-
ence between the rate of expansion in the preferred direction and
that of a perpendicular direction.

2That is, the parameter g� [see Eq. (39)], as defined in [2], that
characterizes the direction dependence of the power spectrum
due to a preferred direction is negative.

3Both studies employed the �N formalism in calculating the
curvature perturbation power spectra.

4At least we assume that the electric field was aligned in our
causal patch. We will not consider the effects of regions with
differing directions of alignment of the electric field.
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orient coordinates such that Fij ¼ F�y ¼ F�z ¼ 0 and

F�x�0. One could just as easily have chosen to consider a

homogeneous magnetic field. This choice does not change
the form of the background stress tensor, and we expect the
results of this paper to apply in the magnetic field case as
well. However, allowing for both electric and magnetic
fields of arbitrary relative alignment is beyond the scope of
this paper.

The background space-time is Bianchi I and the metric
can be written in the following form by appropriate choice
of coordinate axes:5

ds2 ¼ að�Þ2ð�d�2 þ �ijð�ÞdxidxjÞ; (4)

where6

�xx ¼ e�4	ð�Þ;

�yy ¼ �zz ¼ e2	ð�Þ; and �ij ¼ 0 for all i � j:
(5)

Since g is independent of 	, the scale factor a completely
characterizes the space-time volume. For convenience we
define 
 to be the logarithm of the scale factor, so

a ¼ e
: (6)

In parametrizing the metric, we have used the conventions
of [23]. The solution to the background electromagnetic
field equation of motion is then [6]

F�x ¼ pA

e�4	ð�Þ

f2ð ��Þ ; (7)

where pA is an integration constant of mass dimension two
and a prime indicates a derivative with respect to confor-
mal time �. In these coordinates, Einstein’s equations take
the form [6]


02 ¼ 	02 þ �2

3

�
�02

2
þ e2
Vð ��Þ þ p2

Ae
�2
�4	

2f2ð ��Þ
�
; (8)


00 ¼ �2
02 þ �2e2
Vð ��Þ þ p2
A�

2e�2
�4	

6f2ð ��Þ ; (9)

	00 ¼ �2
0	0 þ p2
A�

2e�2
�4	

3f2ð ��Þ : (10)

Given Einstein’s equations above, the equation of motion
for � is redundant.7

It was shown that inflation can occur for suitable initial
conditions such that the Universe is initially expanding,

and that the energy density of the vector field will remain
almost constant with respect to the inflaton energy density
if fð�Þ / e�2
 [6]. (Recall that if there is no inflaton-
electromagnetic coupling, the ratio of electromagnetic en-
ergy density to inflaton energy density decays as a�4.) Let
us briefly show how this can occur.
If expansion is nearly exponential (in cosmic time), then

the ‘‘slow-roll’’ parameters,

� � �@tH

H2
¼ 
02 � 
00


02 ; (11)

� � @2t H

2H@tH
; (12)

are very small compared to one and as usual, H � @ta
a .8

Higher derivatives of H must, of course, also be small if
expansion is nearly exponential.
The field equations (8)–(10) can be cast in the following

form:

�̂ A � �2p2
Ae

�4	

2a2f2ð ��Þ
02 ¼
3

2

�
3�� ��þ�0


0

�
; (14)

�̂ � � a2�2Vð ��Þ

02 ¼ 3� �� 3

2
�þ �

2
�� �0

2
0

¼ 3� �� 1

3
�̂A; (15)

�2 ��02


02 ¼ 2�� 6�þ 2��� 6�2 � 2
�0


0

¼ 2�� 4

3
�̂A � 6�2; (16)

where � � 	0=
0: (17)

The quantities �̂� and �̂A are dimensionless energy den-

sities, normalized by the Hubble scale squared times the
Planck mass squared.
In standard single field inflation with an inflaton poten-

tial V, for example, one finds from the field equations that
��0

0 � ffiffiffi

�
p

, so that if expansion is nearly exponential, then

the inflaton must be slowly rolling. Taking derivatives of
the above equations in the isotropic case, one can find
expressions for derivatives of V in terms of slow-roll
parameters—thus yielding requirements of a potential
that can give rise to inflation.

8Note that

�0


0 ¼ 2�ð�þ �Þ: (13)

5The form is chosen so that the spatial metric has unit
determinant [and therefore scaling or translating 	ð�Þ does not
affect the spatial volume element].

6An equivalent ansatz would have been ds2 ¼ �dt2 þ
akðtÞ2dx2 þ a?ðtÞ2ðdy2 þ dz2Þ.

7Recall that Einstein’s equations and the matter field equations
are related through the conservation equation r�T

�
� ¼ 0, where

T
�
� is the matter stress-energy tensor.

PRIMORDIAL POWER SPECTRA FROM ANISOTROPIC . . . PHYSICAL REVIEW D 81, 103532 (2010)

103532-3



From (15) and (14) one finds

�̂0
�

�̂�

0 ¼

@�V

�V

� ��0


0 þ 2� ¼ � �0

0 � 1

3

�̂0
A


0

3� �� 1
3 �̂A

; (18)

�̂0
A

�̂A

0 ¼ �4� 2

@�f

�f

� ��0


0 þ 2�� 4� ¼ 2 �0

0 þ � � �

3�� ��þ �0

0
;

(19)

where � � � �Oð� �0

0 ; � �0


0 ; �
00


02Þ.
We can glean a fair bit of information from Eqs. (14)–

(19) without much effort. First, what if expansion were
purely exponential so that � ¼ � ¼ 0? From (16) we can
immediately see that �̂A and � had better then also be zero

based simply on the fact that �
2 ��02

02 , �̂A, and �

2 are positive.

This could be seen as confirmation of the no-hair theorem;
anisotropy can exist only if expansion is not purely ex-
ponential.9 Similarly, if � is small, then �̂A and � had also
better be small. In particular, even in small field models of
inflation where typically � � � � 1, the anisotropy pa-
rameters � and �̂A must be order � or smaller. Second,
from (18) we see that �̂� is nearly constant with respect to

the Hubble parameter if � and � are small. Also from (18)
we see that

@�V

�V

� ��0


0 ¼ �2�þOð�0=
0Þ þ � � � : (21)

Third, from (19), if � and � are small, we see that �̂A

decreases rapidly with respect to the Hubble parameter
unless

f0

f
0 & �2 (22)

or equivalently unless

@�f

�f
& �2=

�
� ��0


0

�
: (23)

Now since�
@�V

�V

��1 ��
ffiffiffiffiffiffiffiffiffiffiffi
1=2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3�=�þ � � �

q
��

�
� ��0


0

��1
;

(24)

a ready choice for the coupling function f, if one wants the
energy density of the electromagnetic field (and thus the
anisotropy) not to decay rapidly with respect to the inflaton
energy density, is thus

fð�Þ ¼ exp

�
2c�

Z �@�V
�V

��1
d�

�
; (25)

where c is an order one constant. This is the coupling
function motivated and examined in [6]. Let us suppose
the coupling function is of this exact form, so

�̂0
A

�̂A

0 ¼ �4� 4c

�
� ��0


0

�
2
�
@�V

�V

� ��0


0

��1 þ 2�� 4�

(26)

¼ �4� 4cð2�� 6�þ � � �Þð�2�þOð�0=
0Þ þ � � �Þ�1

þ 2�� 4� (27)

¼ ðc� 1Þ4� 4ð3cÞ�
�
þ � � � : (28)

Suppose initially that � � �. If c < 1, then �̂A decreases
along with � as long as � is small. Anisotropy is wiped out
[albeit much more slowly than in the case where fð�Þ ¼
1]. If c > 1, then �̂A initially increases, as does � [see
(14)]. The derivative of the electromagnetic field energy

density will thus approach zero,
�̂0
A

�̂A

0 ! 0, and so �̂A and �

will become nearly constant for a time. If � is initially

greater than ðc�1Þ
3c �, then �̂A and�will initially decrease,�

will climb its potential, and then it will fall back down
(slowly) after � has approached a constant [6].
From (14) one can see that if � is approximately con-

stant, then � must be positive. So when the space-time
undergoes anisotropic expansion in this model (and � is
nearly constant) the preferred direction expands more
slowly than the perpendicular directions.
When (25) holds, we can find an expression for � in

terms of the slow-roll parameter during the period in which
it is nearly constant. Assuming

O ð�Þ � Oð�Þ; c� 1>Oð�Þ; � & Oð�Þ;
�0


0 & Oð��Þ;
�
�0


0

�0
=
0 & Oð�2�Þ;

(29)

we can set the two different expressions for @�V=V derived

from Eqs. (18) and (19) equal to each other. Using this
method we find

� � 	0


0 ¼
c� 1

3c
�þ 1þ c� 4c2

18c2
�2 þ 1� 2c� 4c2

18c2
��

þ � � � assuming c� 1>Oð�Þ: (30)

The authors of [6] derived this expression to first order in �
for the particular potential V ¼ 1

2m
2�2 and argued that �

generically tracks the slow-roll parameter for general po-
tentials. We find that the expression (30) actually holds for
any potential V in a slow-roll regime (�, � � 1).
As c ! 1, the story is a bit different. For example, if c ¼

1, looking back to Eqs. (26)–(28) one finds that �̂A, if it is

9A more direct confirmation of the no-hair theorem comes
from supposing �0 ¼ 0 (and, for simplicity, � � 1) so that Vð�Þ
functions as a cosmological constant. Then from (16) and (15)

d log�̂A

dt
� �4

d

dt

 � �4�

ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þ
3

s
: (20)

So �̂A, and thus by (14) also � and �, go to zero on the time scale
promised by the no-hair theorem.
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initially greater in magnitude thanOð�2Þ, decreases until it
is on the order of �2, and then stays nearly constant. From
numerical studies it appears that if �̂A is initially much
greater in magnitude than Oð�2Þ, then it will rapidly settle
to a value much smaller thanOð�2Þ. If the magnitude of �̂A

is initially on the order of �2 or less, then it will stay very
nearly constant until the end of inflation. An example with
c ¼ 1 is provided in Fig. 1.

The trick of this model is to choose fð�Þ, given Vð�Þ,
such that the electromagnetic field energy density does not
decay rapidly with respect to the inflaton energy density
during inflation. We saw above that a choice guaranteed to
work is

fð�Þ � exp

�
2�

Z �@�V
�V

��1
d�

�
: (31)

For example, if Vð�Þ / �n, then fð�Þ � exp½�2�2=n	.
What if we were to choose instead, say, fð�Þ �
exp½��	? Then we would have

�̂0
A

�̂A

0 ¼ �4� 2

� ��0


0 þ 2�� 4�: (32)

If  is order one, then the anisotropy will rapidly decay.
However, if  were large enough in magnitude, then the
anisotropy could persist for a good portion of inflation.

In our analysis, we will use only the background equa-
tions of motion, leaving fð�Þ and Vð�Þ generic. We will
then be interested in scenarios in which anisotropy can

persist over several e-folds—scenarios in which f0
f
0 ¼

�2þOð�Þ and �̂A � 9�=2 are approximately constant.
We saw that consistency of the background equations and a
slow-roll scenario dictates that �̂A must be order � or

smaller. We also discussed specific examples of functions,
fð�Þ, that can lead to such scenarios (assuming, otherwise,
a slow-roll scenario, �, � � 1). In order to calculate
primordial power spectra, we will use the ‘‘in-in’’ formal-
ism of perturbation theory, assuming
(i) � � 1, � � 1,
(ii) �̂A � 9�=2 & Oð�Þ,
(iii) �̂0

A=ð�̂A

0Þ & Oð�Þ.

III. PERTURBATIONS: SETUP AND STRATEGY

Our goal is to examine whether the background de-
scribed in the previous section (slightly generalized from
the space-time of [6]) is perturbatively stable, and to
examine its signature at the level of primordial perturbation
spectra.
We have calculated the quadratic action for dynamical

modes in terms of the gauge-invariant variables defined in
Appendix A. We calculated the action to quadratic order in
perturbations starting with the form of the second order
Einstein-Hilbert action given in Appendix B and a similar
expression for the quadratic-order matter action. We
worked in Newtonian gauge and used a differential geome-
try package in Mathematica to massage the quadratic
action into the (relatively) simple, manifestly gauge-
invariant form presented in Secs. IV and V.
Regarding perturbative stability of the background, we

find that there are no ghosts (fields with wrong-sign kinetic
terms), and no other indication of instability at the qua-
dratic level. Here, we take ‘‘perturbative stability’’ to mean
that dimensionless combinations of fields assumed to be
much less than one in the perturbative expansion of the
action remain small. We find that such small quantities do
indeed stay small.
In the remainder of this section we describe how we set

up the calculation and analysis of perturbation spectra; we
describe the physical scenario, the expression for expecta-
tion values in the ‘‘in-in’’ formalism, the definitions for the
relevant degrees of freedom, and, finally, the current bound
on a preferred direction during inflation. In Secs. IV and V
we calculate power spectra and briefly discuss stability.

A. Physical scenario

Perturbations from inflation are usually assumed to be
generated in the following way [24]:
(i) Quantum mechanical perturbative modes are in their

ground state throughout inflation. So the vacuum
expectation value of individual modes is zero,
though the variance is generally nonzero.

(ii) The normalization of the ground states is such that
when the modes are well within the horizon, the
canonically normalized10 fields � obey a simple

log10
log10

20 40 60

8

6

4

2

FIG. 1 (color online). Log plot of � and � as a function of
e-foldings (�
 ¼ 
� 
0) during inflation. The plot was gen-
erated with the potential V ¼ 1

2m
2�2 and coupling function

fð�Þ ¼ exp½�2�2

2 	. The initial conditions were �0 ¼ 17:5=�,

�0
0 ¼ 0, 
0 ¼ �75, 	0 ¼ 0, and 	0

0 ¼ 0. The constants m and

pA were chosen so that initially �A=�� � 10�6. Notice that �

very quickly settles to a value that is somewhat smaller than the
square of the slow-roll parameter �.

10In conformal time, the kinetic term for a canonically normal-
ized field � in the quadratic action takes the form 1

2�
02.
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harmonic oscillator equation and satisfy the canoni-
cal commutation relations.11

(iii) As modes cross the horizon, their correlations are
‘‘frozen in’’ and translate into classical perturba-
tions that lead to, for example, density perturba-
tions that seed the formation of structure in the
Universe and lead to temperature anisotropies of
the cosmic microwave background radiation.

We shall assume the same, with one complication. We
assume the quantity, � � 	0=
0, which characterizes the
deviation from isotropy, is nonzero so that expansion of the
background space-time is slightly anisotropic, and modes
that corresponded to scalar, vector, and tensor degrees of
freedom in the isotropic background are now coupled.
(Several scenarios in which this can occur were discussed
in sec. II.) Because of the coupling of modes, the ampli-
tudes of tensor, vector, and scalar perturbations are not
separately conserved outside the horizon. As the inflaton
decays at the end of inflation, the dynamics becomes
isotropic again, and tensor, scalar, and vector modes de-
couple. At this point, superhorizon perturbations should be
frozen in. We are therefore interested in the correlations of
perturbations at the end of inflation. Especially if the Uð1Þ
field in our model were interpreted as the electromagnetic
field, the details of the reheating process at the end of
inflation could also be important in calculating the direc-
tion dependence of CMB power spectra. In this paper,
however, we will only examine the effects of the gauge
field on curvature and gravitational wave power spectra
until just before reheating.

B. Correlations using ‘‘in-in’’ formalism

Because in the context of cosmological perturbations as
described above we know only the quantum ‘‘in’’ states and
we are interested in expectation values evaluated at a
particular time, we use the ‘‘in-in’’ formalism of perturba-
tion theory (see e.g. [25]). We separate our Hamiltonian
into a free portion H0 and an interacting portion HI. The
interaction-picture (free) fields’ evolution is determined by
the free Hamiltonian. The expectation value for a general
operator X at (conformal) time � can be written as

hXð�Þi ¼ hXIð�Þiþ i
Z �

d�0h½HIð�0Þ;XIð�Þ	i

þ ðiÞ2
Z �

d�0Z �0
d�00h½HIð�0Þ; ½HIð�00Þ;XIð�Þ		i

þ ��� ; (34)

where the ellipsis denotes terms with more powers of HI

and where XI is the interaction-picture operator.

It should be noted that corrections of quadratic (or
higher) order in the interaction Hamiltonian can lead to
ambiguities when the details of the contour integration are
not carefully considered [26]. We will work only to linear
order in HI, and therefore we need not worry about such
ambiguities.

C. Decomposition of perturbations

Since the background space-time is homogeneous, we
decompose our perturbations into Fourier modes,

�ðxi; �Þ ¼
Z d3k

ð2�Þ3 e
ikjx

j
�ðki; �Þ: (35)

We analyze perturbations about an anisotropic back-
ground. Since the background is anisotropic and thus there
is no SOð3Þ symmetry, perturbations cannot be decom-
posed into spin-0, spin-1, and spin-2 degrees of freedom
and analyzed separately. We instead decompose gauge-
invariant perturbations according to their transformation
properties in the isotropic limit. (See Appendix A.)
There are five dynamical degrees of freedom in our

model, corresponding to
(i) one scalar degree of freedom, r (spin-0 in isotropic

limit),12

(ii) two electromagnetic vector degrees of freedom,
�Aþ and �A� (spin-1 in isotropic limit),

(iii) and two metric tensor degrees of freedom, Eþ and
E
 (spin-2 in isotropic limit).

In order to analyze the relevant dynamical perturbative
degrees of freedom in our scenario, we derived the qua-
dratic action in terms of the gauge-invariant variables of
Appendix A. Then we eliminated the nondynamical de-
grees of freedom by using constraint equations derived
from the action. Finally, we canonically normalized the
degrees of freedom that correspond to the dynamical
‘‘free’’ fields in the limit as 	0=
0 ! 0. Within the ‘‘in-
in’’ formalism of perturbation theory, we take the
interaction-picture fields to be those governed by the dy-
namics in the 	0=
0 ¼ 0 limit.
The quadratic action separates into two uncoupled

pieces according to a residual symmetry under parity trans-
formations. (See Appendix A.) The ‘‘odd’’ sector has 2
degrees of freedom, E
 and �A�. The ‘‘even’’ sector has 3
degrees of freedom, Eþ, �Aþ, and r. The fields Eþ, E
,
and r correspond to fields that are conserved outside the
horizon during isotropic inflation. Here r is a Mukhanov-
Sasaki variable, equal to minus the curvature perturbation,
�� , as defined in, e.g. [27], in a gauge with spatially flat
slicing. We will therefore refer to r as the curvature
perturbation.

11Specifically,

½@��ð�; ~xÞ; �ð�; ~yÞ	 ¼ �i@�3ð ~x� ~yÞ; (33)

where � is conformal time. 12See (A22) in Appendix A.
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D. Canonically normalized variables

The canonically normalized fields in each sector (even
and odd, respectively) are given by

Âþ ¼ fð ��Þ�Aþ; ĥþ ¼ að�ÞEþ=�;

r̂ ¼ zð�Þr; and Â� ¼ fð ��Þ�A�;

ĥ
 ¼ að�ÞE
=�;

(36)

where

zð�Þ � að�Þ
��0


0 : (37)

The fields on the right-hand sides of Eqs. (36) are
defined in Appendix A. As mentioned above, in the iso-
tropic limit Eþ, E�, and r are conserved outside the
horizon. The other important fact about the fields above
is that the perturbative expansion of the action is valid
when

Eþ; E
;
j ~kj
�F�x

�Aþ;
j ~kj
�F�x

�A�; r � 1: (38)

E. Comparison with data

A formalism for finding signatures of a generic primor-
dial preferred direction in the CMB has been developed
[2,22]. In [2] a small direction-dependent contribution to
the primordial curvature power spectrum is parametrized
by g� where

Pð ~kÞ ¼ P0ðkÞð1þ g�ðn̂ � k̂Þ2Þ (39)

and where n̂ is some preferred direction in the sky. It is
postulated that g� will be approximately independent of the
scale for modes of astrophysical interest and that parity is
still conserved. Parity conservation guarantees the absence

of terms with odd powers of ðn̂ � k̂Þ. Contributions propor-
tional to higher powers of ðn̂ � k̂Þ2 are assumed to be
negligible.

Using this formalism, a nonzero value for g� was found
using 5-year WMAP data at the nine sigma level [28]. The
central value found for g� is 0:29 for a preferred direction
very close to the ecliptic pole. Since the WMAP scanning
strategy is tied to the ecliptic plane, this strongly suggests

that the nonzero value of g� is due to some systematic
effect [28,29]. Still, we may reasonably take from the
analysis in [28] an upper bound for g� of

jg�j< 0:3: (40)

In [30] it is estimated that Planck will be sensitive to values
of jg�j as small as 0.02.
Obviously, the gravitational wave power spectrum has

not yet been measured, so there is no limit on the analogous
parameter, g�grav, for the gravitational wave power

spectrum.

IV. PERTURBATIONS: ODD SECTOR

As described in Sec. III C, the quadratic action separates
into two uncoupled pieces according to a residual symme-
try under parity transformations. We will therefore analyze
the two ‘‘sectors’’—which we refer to as odd and even for
reasons discussed in Appendix A—in different sections.
We start in this section by analyzing the odd sector13

because it is less complicated than the even sector, having
only two coupled degrees of freedom (a tensor and a vector
degree of freedom) instead of 3 degrees of freedom as in
the even sector. The even sector, which includes the cur-
vature perturbation, contains the most interesting physics;
analyzing the odd sector is valuable for extracting g�grav
and as a warm-up for the analysis of the even sector.
In this section we present the action for the odd sector to

quadratic order in gauge-invariant perturbation variables.
Then we argue that the form of the action implies that the
background is classically stable. Next we diagonalize the
kinetic term in the action by defining new perturbation
variables in terms of which the kinetic term in the action
is canonically normalized. This diagonalization allows us
to identify the fields that should be quantized. The
Hamiltonian derived from the diagonal form of the action
is then separated into a free part and an ‘‘interacting’’ part,
and ‘‘in-in’’ perturbation theory is used to find the auto-
correlations (power spectra) and cross correlations of the
vector and tensor degrees of freedom [see (36)] in terms of
the preferred direction and the background quantities H
and �. The most interesting result in this section is the
tensor perturbation power spectrum, given in (80).
In the odd sector, the action takes the form

Sodd ¼
Z

d�
Z d3k

ð2�Þ3
�
1

2
ĥ
�0ĥ
0 þ 1

2
Â��0Â�0 � 1

2
ĥ
�ĥ


�
k2 � a00

a
� 4�̂A


02=3þ 1

2
� ~k


02
�
2�̂A=3þ 6�2 � 3

2
� ~k�

2

��

� 1

2
Â��Â�

�
k2 � f00

f
þ 2�
0 f

0

f
þ 
02ð2�̂A � 2�þ 2� ~k�̂A=3� �2Þ

�

þ
�
ic 0

~k
ĥ
�Â�

�
f0

f
þ 
0�þ � ~k


0�
�
� ic 0

~k
ĥ
�Â�0 þ H:c:

��
; (41)

13Our odd sector corresponds to the 2d-vector sector analyzed numerically in [22].
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where

k2 � �ijkikj ¼ k21e
4	 þ k22e

�2	; (42)

� ~k �
k20

k2	0 ¼
4k21e

4	 � 2k22e
�2	

k21e
4	 þ k22e

�2	
; (43)

c 0
~k


0 � k2e
�	ffiffiffiffiffi
k2

p ffiffiffiffiffiffi
�̂A

p
; (44)

and f0 denotes the derivative of fð ��ð�ÞÞ with respect to
conformal time. Without loss of generality we have set
k3 ¼ 0, and we have taken the preferred direction (the
direction along which the background electric field points)
to be x̂1.

By inspection we can see that ĥ
 and Â� decouple when
the wave vector is parallel to the preferred direction (so
k2 ¼ 0). This decoupling should be expected due to the
enhanced rotational symmetry about the wave vector in
this case.

A. Preliminary look at stability

By design, the kinetic terms are canonically normalized.
And in the short wavelength limit (k � aH), the action
simplifies to that of two uncoupled harmonic oscillators;
there is no indication of instability in the short wavelength
limit.

Let us consider the case where k2 ¼ 0 so the wave vector
corresponding to a mode points in the preferred direction.
In this case, c 0

~k
¼ 0 and � ~k ¼ 4. By inspection, one sees

that the cross terms vanish. More explicitly,

Sodd !
k2!0

Z
d�

Z d3k

ð2�Þ3
�
1

2
ĥ
�0ĥ
0 þ 1

2
Â��0Â�0

� 1

2
ĥ
�ĥ


�
k2 � a00

a

�
� 1

2
Â��Â�

�
k2 � f00

f

þ 2�
0 f
0

f
þ 
02ð14�̂A=3� 2�� �2Þ

��
: (45)

When k2 ! 0 the action for ĥ
 takes the same form as in

the isotropic case. Though the effective mass for ĥ
 is not
real for all time (so naively, there is a tachyon), the im-

portant point is that ĥ
=a, which we assumed to be much
less than one in our perturbative expansion of the metric
[see (38)], oscillates with decaying amplitude before hori-
zon crossing, and then remains constant or decays

after horizon crossing. In other words, ĥ
 � aE
 never
increases faster than a, which is consistent with the per-

turbative expansion. Similarly, given that 2�
0 f0
f þ


02ð14�̂A=3� 2�� �2Þ � f00
f , the long wavelength solu-

tion for Â� is approximately, Â� � C1fþ C2f
R d�

f2
. Now

given that f � a�2 � H2�2, one can see that j ~kj
�F�x

�A� �
ðC1 þ C2

H a3Þa�4 (which is decaying) in the long wave-

length limit. So clearly the perturbative expansion of the
action remains valid when k2 ¼ 0.
Now let us consider a wave vector that is antiparallel to

the preferred direction, so k1 ¼ 0. In this case, c 0
~k
¼ffiffiffiffiffiffi

�̂A

p

0 and � ~k ¼ �2. Then the effective mass squared

for ĥ
 becomes

m2
eff ¼ k2 � a00

a
� 
02ð2�̂A þ 9�2Þ:

Compared to the isotropic case, the effective mass squared

for ĥ
 receives an additional negative contribution. This

suggests that ĥ
 will grow slightly faster than a outside the
horizon. The situation is, of course, complicated by the

coupling to Â�, but all extra terms in the action when k1 ¼
0 compared to the terms present when k2 ¼ 0 are small.
This suggests that any possible growth of the perturbative
fields in this case will be very moderate and does not
represent an instability. This reasoning will be checked
by calculating the power spectra of perturbative fields;
we can check that the magnitudes of power spectra do
not grow rapidly in time.
The same situation occurs in the even sector; perturba-

tions clearly do not grow when k2 ¼ 0 and all extra terms
in the action when k1 ¼ 0 compared to the terms present
when k2 ¼ 0 are small.

B. Diagonalized action

In general, the canonical quantization of a theory can
only proceed once the kinetic interactions have been di-
agonalized. Usually the diagonalization is accomplished
by some constant field redefinition. In our case, we need a
time-dependent field redefinition because the ‘‘coeffi-
cients’’ in the kinetic portions of the action are not con-
stant. (See Appendix C.)
The kinetic terms can be diagonalized by performing a

time-dependent unitary rotation

ĥ


Â�

 !
¼ cosc ~kð�Þ �i sinc ~kð�Þ�i sinc ~kð�Þ cosc ~kð�Þ
� �

U1

U2

� �
: (46)

In terms of the rotated fields, Ui, the odd-sector action
takes the form

Sodd ¼
Z

d�
Z d3k

ð2�Þ3
�
1

2

U0
1

U0
2

� �y U0
1

U0
2

� �

� 1

2

U1

U2

� �y
M

U1

U2

� ��
; (47)

where the Hermitian matrix M is defined

TIMOTHY R. DULANEYAND MOIRA I. GRESHAM PHYSICAL REVIEW D 81, 103532 (2010)

103532-8



M �
�
k2 � 1

2

�
a00

a
þ f00

f

�
þ �
02

�
f0

f
0 � 1� 1

2
�þ 3

2
�� ~k �

3

8
��2

~k

�
þ 1

3
�̂A


02ð3þ � ~kÞ
�
I

þ ½sinð2c ~kÞ�3 � cosð2c ~kÞ�2	
�c 0

~k


0

�

02

�
1� f0

f
0 þ �� 3

2
�� ~k

�

þ ½cosð2c ~kÞ�3 þ sinð2c ~kÞ�2	
�
1

2

�
f00

f
� a00

a

�
� �
02

�
f0

f
0 � 1� 1

2
�� 3

2
�� ~k þ

3

8
��2

~k

�
� 1

3
�̂A


02
�
5þ 1

2
� ~k

��

(48)

and where I is the 2
 2 identity matrix and we have used
the following convention for the Pauli matrices

�2 ¼ 0 �i
i 0

� �
and �3 ¼ 1 0

0 �1

� �
: (49)

Physical quantities should not depend on the initial value

of c ~k. Indeed, we will see that correlations of ĥ

 and Â� at

a time �, calculated using the ‘‘in-in’’ formalism of per-
turbation theory, depend only on the change in c ~k after

horizon crossing.

C. Correlations using perturbation theory

In order to calculate correlations, we use the ‘‘in-in’’
formalism of perturbation theory, taking the small parame-
ters to be �, �, �̂A, and �. As discussed at the end of Sec. II
we take

� ¼ 
02 � 
00


02 � 1; � ¼ @2t H

2H@tH
� 1;

�̂A � 9�=2 & Oð�Þ; �̂0
A

�̂A

0 & Oð�Þ:

(50)

Given these assumptions and the background field equa-
tions (8)–(10),

f0

f
0 ¼ �2þOð�Þ; f00

f
02 ¼ 2þOð�Þ ¼ a00

a
02 ;

and 
0 � � 1

�
: (51)

We choose as our free Hamiltonian

Hodd
0 �

Z d3k

ð2�Þ3
�
1

2

U0
1

U0
2

� �y U0
1

U0
2

� �

þ 1

2

U1

U2

� �y
Mð0Þ U1

U2

� ��
; (52)

where

Mð0Þ �
�
�ijð�0Þkikj � 2

�2

�
I: (53)

The interaction-picture fields then obey the following
equations:

d2UI
i

d�2
þ
�
�ijð�0Þkikj � 2

�2

�
UI

i ¼ 0: (54)

Each of these fields can be expanded in terms of time-
independent creation and annihilation operators as

UI
i ð ~x; �Þ ¼

Z d3k

ð2�Þ3 e
ikjx

j
UI

i ð ~k; �Þ

¼
Z d3k

ð2�Þ3 ðe
ikix

i
�ð0Þðk�0

; �Þâi~k
þ e�ikix

i
�ð0Þ�ðk�0

; �Þðâi~kÞyÞ; (55)

where the canonically normalized mode functions are

�ð0Þðk; �Þ ¼ e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
(56)

and where the commutation relations of the creation and
annihilation operators are

½âi~k; ðâ
j
~qÞy	 ¼ ð2�Þ3�ij�ð ~k� ~qÞ and ½âi~k; â

j
~q	 ¼ 0:

(57)

Here,

k�0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ijð�0Þkikj

q
: (58)

If we choose 	0 ¼ 0, then �ijð�0Þ ¼ �ij. But then if 	
changes during inflation, the coordinates at the end of
inflation will not be isotropic. On the other hand, if we
choose 	0 so that 	 ¼ 0 at the end of inflation (when the
dynamics returns to being isotropic), then the coordinates
at the end of inflation will be isotropic. The latter choice is
more convenient.
Using the results of the previous section and the form of

the matrix M in (48), the interaction-picture Hamiltonian
takes the form

HIð�Þ ¼
Z d3k

ð2�Þ3
�
1

2

UI
1

UI
2

� �y
Mð1Þ UI

1

UI
2

� ��
; (59)

where

Mð1Þ ¼ M�Mð0Þ

¼ f1ð�; ~kÞIþ ½sinð2c ~kÞ�3 � cosð2c ~kÞ�2	f2ð�; k̂Þ
þ ½cosð2c ~kÞ�3 þ sinð2c ~kÞ�2	f3ð�; k̂Þ (60)
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and we have defined

f1ð�; ~kÞ � ð�ijð�Þ � �ijð�0ÞÞkikj � 1

2

�
a00

a
þ f00

f
� 4

�2

�

þ�
02
�
f0

f
0 � 1� 1

2
�þ 3

2
�� ~k �

3

8
��2

~k

�

þ 1

3
�̂A


02ð3þ � ~kÞ; (61)

f2ð�; k̂Þ �
�c 0

~k


0

�

02

�
1� f0

f
0 þ �� 3

2
�� ~k

�
; (62)

f3ð�; k̂Þ �
�
1

2

�
f00

f
� a00

a

�
��
02

�
f0

f
0 � 1� 1

2
�

� 3

2
�� ~k þ

3

8
��2

~k

�
� 1

3
�̂A


02
�
5þ 1

2
� ~k

��
:

(63)

Our convention for the correlations of the fields will be

hUið ~k; �ÞUjð ~q; �Þi ¼ Cijð ~k; �Þð2�Þ3�ð ~kþ ~qÞ; (64)

where the power spectra are the diagonal entries of the
matrix Cij. Using (34), the correlations can be written as

hUið ~p; �ÞUjð ~q; �Þi
¼ hUI

i ð ~p; �ÞUI
jð ~q; �Þi

þ i
Z �

d�0h½HIð�0Þ; UI
i ð ~p; �ÞUI

jð ~q; �Þ	i þ � � � : (65)

More explicitly, the correlations take the form

Cijð ~p; �Þ ¼ j�ð0Þðp�0
; �Þj2�ij

þ i
Z �

d�0Mð1Þ
ij ð ~p; �0ÞIp�0

ð�0; �Þ þ � � � ;
(66)

where

Ipð�0; �Þ ¼ ðð�ð0Þðp;�0Þ�ð0Þ�ðp;�ÞÞ2
� ð�ð0Þ�ðp;�0Þ�ð0Þðp;�ÞÞ2Þ: (67)

It is clear from this formula that the zeroth-order power
spectra of the fieldsUi are isotropic and scale invariant and
that the cross correlation vanishes. Here it is convenient to
define the function

~Iðp�0; p�Þ � ip2Ipð�0; �Þ; (68)

where

~Iðx; yÞ ¼
�

1

2x2y2
� 1

2x2
þ 2

xy
� 1

2y2
þ 1

2

�
sinð2x� 2yÞ

þ
�
1

x2y
� 1

xy2
þ 1

x
� 1

y

�
cosð2x� 2yÞ: (69)

Solving for the correlations of the variables ĥ
 and Â�
in terms of the correlations of the rotated variables Ui, we
find

Pĥ
ð ~pÞ ¼ cos2c ~pC11ð ~pÞ þ sin2c ~pC22ð ~pÞ
þ i

2
sinð2c ~pÞðC12ð ~pÞ � C21ð ~pÞÞ; (70)

PÂ�ð ~pÞ ¼ sin2c ~pC11ð ~pÞ þ cos2c ~pC22ð ~pÞ
� i

2
sinð2c ~pÞðC12ð ~pÞ � C21ð ~pÞÞ; (71)

�CÂ�ĥ
ð ~pÞ ¼ Cĥ
Â�ð ~pÞ
¼ cos2c ~pC12ð ~pÞ þ sin2c ~pC21ð ~pÞ

þ i

2
sinð2c ~pÞðC11ð ~pÞ � C22ð ~pÞÞ; (72)

where we have used the fact that c� ~k ¼ �c ~k. All of the

above correlations, and c ~p, are functions of time. It is

understood that these expressions are evaluated at the end
of inflation.
From here on, we will use the shorthand notation

p ¼ p�0
: (73)

Using (66) and the expression for Mð1Þ, the power spec-
tra and correlations are given more explicitly by

Pĥ
ð ~p; �Þ ¼ j�ð0Þðp;�Þj2 þ p�2

�Z �
f1ð�0; ~pÞ~Iðp�0; p�Þd�0 þ

�Z �
sinð2c ~pð�0Þ � 2c ~pð�ÞÞf2ð�0; p̂Þ~Iðp�0; p�Þd�0

�

þ
�Z �

cosð2c ~pð�0Þ � 2c ~pð�ÞÞf3ð�0; p̂Þ~Iðp�0; p�Þd�0
��

þ � � � ; (74)

PÂ�ð ~p; �Þ ¼ j�ð0Þðp;�Þj2 þ p�2

�Z �
f1ð�0; ~pÞ~Iðp�0; p�Þd�0 �

�Z �
sinð2c ~pð�0Þ � 2c ~pð�ÞÞf2ð�0; p̂Þ~Iðp�0; p�Þd�0

�

�
�Z �

cosð2c ~pð�0Þ � 2c ~pð�ÞÞf3ð�0; p̂Þ~Iðp�0; p�Þd�0
��

þ � � � ; (75)
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Cĥ
Â�ð ~p; �Þ ¼ ip�2

�Z �
cosð2c ~pð�0Þ � 2c ~pð�ÞÞf2ð�0; p̂Þ~Iðp�0; p�Þd�0; (76)

�
Z �

sinð2c ~pð�0Þ � 2c ~pð�ÞÞf3ð�0; p̂Þ~Iðp�0; p�Þd�0
�
þ � � � ¼ �CÂ�ĥ
ð ~p; �Þ: (77)

It is clear from the expression above that the correlations
above are functions only of the change in the angle c ~p.

D. Discussion

We are interested primarily in direction-dependentmod-
ifications to the power spectra—i.e. modifications of the
power spectra that depend on the direction of the wave
vector, not just its magnitude. Non-direction-dependent
effects will modify spectral indices, but such effects cannot
be disentangled experimentally as due to primordial an-
isotropy. In principle, one could use our method to calcu-
late spectral indices and, for example, relate them to the
size of the direction-dependent effects.

The largest direction-dependent contribution comes
from the piece involving f2. The contribution is given by

p�2

�Z �
sinð2c ~pð�0Þ � 2c ~pð�ÞÞf2ð�0; p̂Þ~Iðp�0; p�Þd�0

�

� �ðaHÞ2
p3

�
cos

�
2
c 0

~p


0 logðaH=pÞ
�
� 1

�
; (78)

assuming
c 0

~p


0 is approximately constant throughout infla-

tion, where we have used the fact that ð1� f0
f
0Þ � 3 and the

relevant integral is calculated in Appendix D. Modes of
astrophysical interest crossed the horizon about 60 e-folds
before the end of inflation, so for such modes,
logðaH=pÞ � 60.

When

fð�Þ ¼ exp

�
2c�

Z �@�V
�V

��1
d�

�
; (79)

for c� 1�Oð1Þ we found that �̂A � 3ðc�1Þ
2c � during the

anisotropic period of expansion. If the anisotropic period
of expansion were to last all 60 e-folds before the end of
inflation, then we should expect order one direction-
dependent corrections to the gravitational wave power
spectrum for inflationary scenarios in which

ffiffiffi
�

p
* 1

60 .

Such values of � can easily be realized in large-field infla-
tionary models. This analytic result seems to confirm the
numerical findings in [22].

Demanding that the direction-dependent effect on the
gravitational wave power spectrum for modes of astro-
physical interest is less than, say, about 30% would mean
that the argument of the cosine function in (76) is small so
that the cosine can be expanded in a Taylor series. In this

case the power spectrum for ĥ
 is approximately,

Pĥ
ð ~p; �Þ �
ðaHÞ2
2p3

�
1þ

�
2
c 0

~p


0 logðaH=pÞ
�
2
�

� ðaHÞ2
2p3

ð1þ 4�̂AðlogðaH=pÞÞ2ð1� ðn̂ � p̂Þ2ÞÞ;
(80)

where n̂ is the preferred direction. Thus we may identify

g�grav � �4�̂AðlogðaH=pÞÞ2 � �18�ðlogðaH=pÞÞ2:
(81)

Note that g�grav is nearly (though not exactly) scale invari-

ant for modes of astrophysical interest.
Imposing a limit like jg�gravj< 0:3 for modes of astro-

physical interest corresponds to a limit on �̂A like

�̂ Ajaverage after horizon crossing & 10�4 when jg�gravj< 0:3:

(82)

V. PERTURBATIONS: EVEN SECTOR

The even sector action is much more complicated than
that of the odd sector. This sector contains three dynamical
degrees of freedom that, in the isotropic limit, transform as
a scalar, vector, and tensor under rotations. This sector is
further complicated by additional nondynamical scalar
variables.
As in the previous section, we begin in this section by

diagonalizing the kinetic part of the quadratic action. This
process is more complicated for the three dynamical de-
grees of freedom in this (even) sector than for the two of
the odd sector, and the smallness of certain background
quantities must be exploited; we eventually work in the
limit �̂A � � � 1, which is confirmed to be a sensible
limit at the end of the calculation. As in the odd-sector
calculation, we quantize and use ‘‘in-in’’ perturbation the-
ory to calculate power spectra and cross correlations of the
scalar, vector, and tensor degrees of freedom. The most
interesting results in this section are the scalar perturba-
tions power spectrum (111) and corresponding value for g�
(112), and also the ratio of the direction-dependent correc-
tion to the scalar power spectrum over that of the tensor
power spectrum (116).
Instead of presenting the entire quadratic action (as we

did in IV for the odd sector), here we present the action to
lowest order in �, �, �̂A, and �. We expand the action
assuming that �̂A,�, and �̂

0
A=�̂A are order � or smaller. For
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simplicity, we first present the action to lowest order before
elimination of the auxiliary fields � and �. (See
Appendix A for the definitions of � and �.) The action
can be written

Seven ¼
Z

d�
Z d3k

ð2�Þ3 ½H
yM1Hþ�yQHþHyQy�

þ�yM2�	; (83)

where the vectors H and � are defined by

H ¼

ĥþ0

Âþ0

r̂0
ĥþ

Âþ

r̂

0
BBBBBBBB@

1
CCCCCCCCA

� (84)

and the matrices M1, M2, and Q are given by

M 1 ¼

1
2 0 0 0 0 0

0 1
2 0 �ic 0

~k
0 �i2

ffiffiffi
2

p
a
�z c

0
~k

0 0 1
2 0 0 0

0 ic 0
~k

0 
02 � k2

2 2ic 0
~k

0 2

ffiffiffi
2

p
a
�z c

02
~k

0 0 0 �2ic 0
~k

0 
02 � k2

2 �i4
ffiffiffi
2

p
a
0
�z c

0
~k

0 i2
ffiffiffi
2

p
a
�z c

0
~k

0 2
ffiffiffi
2

p
a
�z c

02
~k

i4
ffiffiffi
2

p
a
0
�z c

0
~k

1
2
z00
z � k2

2 þ 16 a2

�2z2
c 02

~k
� 8 a2
02

�2z2
�̂A

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
þOð�Þ; (85)

M2 ¼
a2

�2 c 02
~k

� 3a2

�2 ðc 02
~k
þ ð2=3Þ�̂A


02Þ � 3
2 z

2
02

� 3a2

�2 ðc 02
~k
þ ð2=3Þ�̂A


02Þ � 3
2 z

2
02 9a2

�2 ðc 02
~k
þ ð2=3Þ�̂A


02Þ � �2z2

a2
Þ þ 3z2
02

2 ð1þ 2z0

0zÞ

0
@

1
A

þ a2k2

�2

0 �ð1� � ~k�
4 Þ

�ð1� � ~k�

4 Þ ð1þ � ~k�

2 � �2z2

2a2
Þ

0
@

1
AþOð�2Þ; (86)

Q ¼ 0 i affiffi
2

p
�
c 0

~k
0

ffiffiffi
2

p
a
� c

02
~k

�i affiffi
2

p
�
c 0

~k

0 4 a2

�2z
c 02

~k

0 0 0 �3
ffiffiffi
2

p
a
� c

02
~k
þ ak2�

4
ffiffi
2

p
�
ð� ~k � 4Þ 0 1

2 k
2z� 12 a2

�2z
c 02

~k

0
@

1
AþOð�3=2Þ; (87)

and c 0
~k
is as in (44). Note here the identity


02ð� ~k � 4Þ�̂A ¼ �4c 02
~k
: (88)

Solving the (constraint) equations of motion derived by
varying the action with respect to � and � and plugging
the constraint equations back into the action leads to the
action in terms of the three dynamical fields:

Seven ¼
Z

d�
Z d3k

ð2�Þ3 ½H
yðM1 �QyM�1

2 QÞH	: (89)

Keep in mind that c 0
~k
is a direction-dependent quantity

that varies from zero to plus or minus
ffiffiffiffiffiffi
�̂A

p
, depending on

the orientation of the wave vector with respect to the
preferred direction. The bottom right element of M1, rep-

resenting (minus) the effective mass for r̂, is 1
2 ðz

00
z � k2Þ in

the isotropic limit. So if, for example, �̂A is order �2z2

a2
¼

Oð�Þ, then we should expect a very dramatic direction-
dependent effect on the curvature perturbation power spec-
trum, because the direction-dependent term would be on
the same order as the normal, isotropic term (at least in the
long wavelength limit). In fact, assuming that taking into
account the QyM�1

2 Q correction to M1 and properly di-
agonalizing the kinetic term in the action would not

weaken the direction-dependent effect on the power spec-
trum, we can get a rough limit on the average value of
�̂A=ð�2z2=a2Þ during inflation, after horizon crossing.
Based on the argument of Sec. III E, we may take a 30%
direction-dependent contribution to curvature perturbation

power spectrum to be an upper limit. Noting that z00
z ¼


02ð2þOð�; �ÞÞ, the 30% limit translates roughly to14

�̂Aa
2

�2z2

��������average
� �̂A

2�

��������average
<10�2 ðapproximateÞ:

(90)

Given phenomenological constraints, it is therefore most
interesting to consider scenarios in which �̂A � �. Taking

�̂ A � ð9=2Þ� � �; (91)

by inspection one can see that in the long wavelength limit,

Q yM�1
2 Q ¼ Oð�̂A=�Þ (92)

and

14The first equality can be seen from Eqs. (16) and (37), given
that �̂A must be small compared to �2z2=a2.
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M 1 ¼

1
2 0 0 0 0 0

0 1
2 0 0 0 �i2

ffiffiffi
2

p
a
�z c

0
~k

0 0 1
2 0 0 0

0 0 0 
02 � k2

2 0 0

0 0 0 0 
02 � k2

2 �i4
ffiffiffi
2

p
a
0
�z c

0
~k

0 i2
ffiffiffi
2

p
a
�z c

0
~k

0 0 i4
ffiffiffi
2

p
a
0
�z c

0
~k

1
2
z00
z � k2

2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
þOð�; �̂A=�Þ: (93)

We will find, with a careful analysis in the �̂A � � limit,
that the actual constraint on �A is much stronger than the
approximate constraint in (90). Thus the �A � � approxi-
mation is valid.

A. Diagonalizing the action

Once again, the resulting kinetic terms are not diagonal-
ized and canonical quantization cannot proceed. In the
�̂A � � � 1 limit, the kinetic terms can be diagonalized
by performing a time-dependent unitary rotation

r̂
Âþ

� �
¼ cos� ~kð�Þ �i sin� ~kð�Þ�i sin� ~kð�Þ cos� ~kð�Þ
� �

U1

U2

� �
; (94)

where

�0~kð�Þ � �2
ffiffiffi
2

p a

�z
c 0

~k
¼ �2

ffiffiffi
2

p a

�z

�
k2e

�	ffiffiffiffiffi
k2

p ffiffiffiffiffiffi
�̂A

p

0
�

(95)

and where c 0
~k
is the rotation angle in the odd sector, given

by (44). The rotation of r̂ and Âþ occurs on a much faster

time scale than that of ĥ
 and Â� since c 0
~k
¼ Oð ffiffiffiffiffiffi

�̂A

p Þ and
�0~k ¼ Oð ffiffiffiffiffiffiffiffiffiffiffi

�̂A=�
p Þ.

In terms of these rotated fields the even action takes the
form

Seven ¼
Z

d�
Z d3k

ð2�Þ3
�
1

2
ĥþ0ĥþ�0 � 1

2
ðk2 � 2
02Þĥþĥþ�

þ 1

2

U0
1

U0
2

� �y U0
1

U0
2

� �
� 1

2

U1

U2

� �y
M

U1

U2

� �
þ � � �

�
;

(96)

where the Hermitian matrix M is defined

M � ðk2 � 2
02ÞIþ ½sinð2� ~kÞ�3 � cosð2� ~kÞ�2	
�
3
�0~k

0

�

02

(97)

up to corrections of order �, �, and �̂A=�.
15 We have used

the same convention for Pauli matrices as in Eq. (49) and,
again, I is the 2
 2 identity matrix.

B. Correlations using perturbation theory

The analysis of correlations of dynamical fields in this
sector will be very similar to that of the odd sector, up to
minus signs and replacing c ~k with � ~k. It should be noted

that the largest direction-dependent corrections to correla-
tions in the odd sector are order

ffiffiffiffiffiffi
�̂A

p
, whereas here we are

working to order
ffiffiffiffiffiffiffiffiffiffiffi
�̂A=�

p
assuming �̂A � �. It therefore

should be unsurprising that the autocorrelation of the

gravitational wave amplitude, ĥþ, has no anisotropic con-

tribution at Oð ffiffiffiffiffiffiffiffiffiffiffi
�̂A=�

p Þ. The same can be said of the cross

correlation between ĥþ and Âþ.
Considering now only terms up to order

ffiffiffiffiffiffiffiffiffiffiffi
�̂A=�

p
given

�̂A � �, we choose as our free Hamiltonian,

Heven
0 �

Z d3k

ð2�Þ3
"
1

2
ĥþ0ĥþ�0 þ 1

2

U0
1

U0
2

 !y U0
1

U0
2

 !

þ 1

2

�
�ijð�0Þkikj � 2

�2

�
ĥþĥþ�

þ 1

2

U1

U2

 !y
Mð0Þ U1

U2

 !#
; (98)

where

Mð0Þ �
�
�ijð�0Þkikj � 2

�2

�
I: (99)

The interaction-picture fields then obey the following
equations,

d2UI
i

d�2
þ
�
�ijð�0Þkikj � 2

�2

�
UI

i ¼ 0: (100)

As in Sec. IV, the fields can be expanded into appropriately
normalized mode functions and time-independent creation
and annihilation operators. Dropping terms of order �,
�̂A=�, �, or higher [including terms with coefficients
ð�ijð�Þ � �ijð�0ÞÞkikj] the interaction-picture Hamil-

tonian takes the form

HIð�Þ ¼
Z d3k

ð2�Þ3
�
1

2

UI
1

UI
2

� �y
Mð1Þ UI

1

UI
2

� ��
; (101)

where

Mð1Þ ¼ M�Mð0Þ ¼ 3½sinð2� ~kÞ�3 � cosð2� ~kÞ�2	
��0~k

0

�

02:

(102)

15Recall that, e.g., z00=2z ¼ 
02 þOð�; �Þ and z0=z ¼

0 þOð�; �Þ.
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After computing correlations of the rotated variables using
the ‘‘in-in’’ formalism, we can find the correlations of
the unrotated variables using the equations analogous to
Eqs. (70)–(72).

The correlations are approximately given by

Pr̂ð ~p; �Þ � j�ð0Þðp;�Þj2 þ p�2

�Z �
sinð2� ~pð�0Þ

� 2� ~pð�ÞÞ3
�0~pð�0Þ

0ð�0Þ 


02ð�0Þ~Iðp�0; p�Þd�0
�
;

(103)

PÂþð ~p; �Þ � j�ð0Þðp;�Þj2 � p�2

�Z �
sinð2� ~pð�0Þ

� 2� ~pð�ÞÞ3
�0~pð�0Þ

0ð�0Þ 


02ð�0Þ~Iðp�0; p�Þd�0
�
;

(104)

Cr̂Âþð ~p; �Þ ¼ �CÂþ r̂ð ~p; �Þ

� ip�2

�Z �
cosð2� ~pð�0Þ � 2� ~pð�ÞÞ3

�0~pð�0Þ

0ð�0Þ


 
02ð�0Þ~Iðp�0; p�Þd�0
�
; (105)

where ~I is defined in (69).

Assuming �̂A and ��0

0 ¼ z

�a are nearly constant during

inflation, as in the scenarios we described in Sec. II, then

� ~pð�Þ �
�0~p

0 
ð�Þ (106)

and we may estimate the relevant integral as in
Appendix D. Then we see that

Pr̂ð ~p; �Þ � ðaHÞ2
2p3

�
1� 2

�
cos

��
2
�0~p

0

�
logðaH=pÞ

�
� 1

��
;

(107)

PÂþð ~p; �Þ � ðaHÞ2
2p3

�
1þ 2

�
cos

��
2
�0~p

0

�
logðaH=pÞ

�
� 1

��
;

(108)

Cr̂Âþð ~p; �Þ ¼ �CÂþr̂ð ~p; �Þ

� i
ðaHÞ2
p3

sin

��
2
�0~p

0

�
logðaH=pÞ

�
; (109)

where
�0
~p


0 should be taken as the average value after horizon

crossing.
Now g�, the parameter that characterizes the effect of a

preferred direction on the CMB power spectrum, is roughly
given by

jg�j � �2

�
cos

��
2
�0~p

0

�
logðaH=pÞ

�
� 1

���������max
: (110)

The maximal value of
�0
~p


0 for a given wave vector is

approximately 2
ffiffiffiffiffi
�̂A

�

q
. So even if �̂A=� is, say, order 10�4,

the argument of the cosine in (110) could be significant for
modes of astrophysical interest because for such modes
logðaH=pÞ � 60. It is then clear that jg�j could be order
one even for very small values of � and �̂A.
Let us suppose that �̂A is small enough to satisfy the

jg�j< 0:3 bound of Sec. III E. Then the cosine in (107) can
be expanded in a Taylor series to give

Pr̂ð ~p; �Þ � ðaHÞ2
2p3

�
1þ 16

�̂A

�
ðlogðaH=pÞÞ2ð1� ðn̂ � p̂Þ2Þ

�
;

(111)

where n̂ is the preferred direction, and therefore

g� � �16
�̂A

�

�
log

�
aH

p

��
2 � �72

�

�

�
log

�
aH

p

��
2
: (112)

Note that g� is negative, as is g�grav [see Eq. (81)]. A

negative g� means that, for a given scale, power is mini-
mized in the preferred direction. We can understand this
general feature in the following way: The pressure con-
tributed by the background electric field slows the expan-
sion of the direction along which the electric field points. In
other words, expansion is slower along the preferred di-
rection. Generically the power in primordial perturbations
increases in proportion to the Hubble parameter squared;
the faster the expansion, the more quickly quantum fluctu-
ations are stretched into ‘‘classical’’ perturbations. Since
the power of primordial perturbations increases with the
Hubble parameter, squared, and since in our scenario the
space-time is expanding most slowly in the preferred di-
rection, we might expect that the power of perturbations
with wave vectors parallel to the preferred direction will be
smaller than the power of perturbations with wave vectors
in any other direction. We predict that, generically, models
in which a preferred direction expands more rapidly/slowly
than other directions will lead to positive/negative values
of g�.
The limit jg�j< 0:3 translates into a limit on the average

value of �̂A

� during inflation (after horizon crossing) for

modes of astrophysical interest:

�̂A

�

��������average after horizon crossing
<

3

160ð60Þ2 : (113)

Since �̂A is assumed to be essentially constant during
inflation (as is �̂�), the limit can be written

�̂A

�̂��

��������average after horizon crossing
& 10�6: (114)

The measurement of g� puts a very stringent constraint on
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the ratio of vector field energy density to the inflaton
energy density. At the same time, we see that even a very
small Uð1Þ gauge field energy density during inflation
could lead to a significant direction-dependent effect on
the curvature perturbation power spectrum.

Supposing that �̂A � �, as we have just seen must be the
case in order to comply with observation, the ratio of the
gravitational wave power spectrum (PT) to the scalar
power spectrum (PS) is approximately16,17

PT

PS
¼ 4

PEþ þ PE


Pr

� 8Pĥ


Pr̂

�
�2z2

a2

�
� 16�: (115)

This fact, in conjuction with (81) and (112), leads to the
prediction

g�grav
g�

� 1

64

PT

PS

: (116)

The direction-dependent effects of a small persistent an-
isotropy during inflation on the tensor power spectrum are
suppressed with respect to the direction-dependent effects
on the scalar power spectrum by a number of order the
tensor-to-scalar ratio. This is a consistency condition for
the model, given the constraint from observation, �̂A � �.

VI. CONCLUSIONS

In this paper, we considered gauge-invariant perturba-
tions in a class of models with a persistent background
anisotropy. After determining the quadratic action in terms
of the dynamical fields, we computed the dominant
direction-dependent effects of the background anisotropy
on primordial power spectra.

We showed that even a very small persistent anisotropy
(with the anisotropy parameter much smaller than the
slow-roll parameter �) can give rise to a dramatic
direction-dependent effect on the primordial power spectra
of dynamical fields. In an anisotropic background, the
coupling between what reduces to the spin-1 and the
spin-0 and spin-2 degrees of freedom in the isotropic
case is extremely important. We showed that such cou-
plings give rise to the dominant direction-dependent con-
tributions to the primordial power spectra of tensor and
scalar perturbations.

There has been a fair amount of work on vector fields
with time-dependent couplings that are put in by hand,
assuming exponential expansion. We found that the
amount of anisotropy in power spectra are quite sensitive
to the details of how nonexponential the expansion is, and
how long the expansion lasts. Perhaps this sensitivity is
unsurprising in light of the no-hair theorem.

We found that for a given scale j ~kj, the curvature power,
Pð ~kÞ, is minimized when ~k points along the preferred
direction.18 We attribute this feature to the fact that, in
the class of models we considered, the preferred direction
is expanding more slowly than other directions.
We showed that anisotropic effects are more pronounced

in the scalar power spectrum than in the tensor power
spectra. In fact, we showed that the direction-dependent
effects on the tensor power spectrum are suppressed with
respect to the direction-dependent effects on the scalar
power spectrum by a number of order the tensor-to-scalar
ratio. A priori one might have expected that the tensor
power spectra and the scalar power spectrum would de-
velop fractional direction dependence of the same magni-
tude. We find that this is not the case.
Finally, upon examination of the quadratic action for all

dynamical degrees of freedom, we find no indication of
instabilities in this model. This should not be surprising
since the matter stress energy satisfies the dominant energy
condition.
We did not calculate the cross correlation between ten-

sor and scalar perturbations. But one can see from the form
of the quadratic action19 that such a nonzero, direction-
dependent correlation should exist. The cross-correlation
effect will be small compared to the direction-dependent
effect on the curvature power spectrum, but it could be
interesting.
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APPENDIX A: PARAMETRIZATION OF
PERTURBATIONS

In the following we use many of the same conventions
and notation as in [23]. Since the background space-time is
homogeneous, we decompose our perturbations into
Fourier modes

�ðxi; �Þ ¼
Z d3k

ð2�Þ3 e
ikjx

j
�ðki; �Þ: (A1)

For a given Fourier mode, characterized by the time-
independent wave vector ki, we form an orthonormal basis
fe1i ; e2i g for the subspace perpendicular to the wave vector
such that

�ijeai e
b
j ¼ �ab and �ijeai kj ¼ 0: (A2)

Here �ij is the spatial metric defined in (4). Such an

orthonormal basis for the spatial hypersurfaces is uniquely
defined up to a spatial rotation about the wave vector ki. To

16In the last equality we used Eqs. (16) and (37), given that �̂A
must be small compared to �2z2=a2.
17What are identified as tensor perturbations are the amplitudes
of the transverse, traceless (TT) part of �gij=a

2. We defined
�gij;TT=a

2 ¼ 2Eij, thus the extra factor of 22 below.

18In other words, we found that g� is negative.
19See Eqs. (85)–(89).
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remain properly normalized with the above normalization
condition, these basis vectors must be time dependent.

For definiteness, and without loss of generality, we will
take wave vectors to be of the form ki ¼ ðk1; k2; 0Þ. The
basis vectors can then be written as

e1i ¼
�
� e�3	k2ffiffiffiffiffi

k2
p ;

e3	k1ffiffiffiffiffi
k2

p ; 0

�
and e2j ¼ ð0; 0; e	Þ;

(A3)

where �ijkikj ¼ k2.

It turns out that there always exists a choice of basis
vectors e1i and e2j that results in the basis vectors having

definite sign under what we will call

k parity: ki ! �ki: (A4)

Our basis (A3) is such that under k parity, eai ! ð�1Þaeai .
Such a choice of basis is now unique up to discrete spatial
rotations around the ki axis by multiples of �=2.

We parametrize the most general perturbations about the
background Bianchi I metric (4) in the standard way,

ds2 ¼ �að�Þ2½ð1þ 2AÞd�2 þ 2Bidx
idt

þ ð�ijð�Þ þ hijÞdxidxj	: (A5)

Following [23],

Bi ¼ @iBþ �Bi; (A6)

hij ¼ 2C

�
�ij þ

�ij

H

�
þ 2@i@jEþ 2@ðiEjÞ þ 2Eij; (A7)

where �ij ¼ 1
2�

0
ij and H ¼ 
0 and also,

�ij@i �Bj ¼ 0; �ij@iEj ¼ 0;

�ij@iEjk ¼ 0; and �ijEij ¼ 0:
(A8)

We parametrize perturbations of the inflaton field and the
electromagnetic field by �� and �F��, respectively.

One can show that the following are Uð1Þ gauge and
diffeomorphism invariant variables,

�ðkÞ ¼ Aþ 1

að�Þ
�
a

�
B� ðk2EÞ0

k2

��0
; (A9)

�ðkÞ ¼ �C� a0ð�Þ
að�Þ

�
B� ðk2EÞ0

k2

�
; (A10)

�iðkÞ ¼ �Bi � ðEiÞ0; (A11)

Eij; (A12)

�ðkÞ ¼ ��þ�0ð�Þ
�
B� ðk2EÞ0

k2

�
; (A13)

�F
ijðkÞ ¼ �Fij þ 2 �F�½iikj	

�
B� ðk2EÞ0

k2

�
; (A14)

�F
i ðkÞ ¼ �F�i � �jk �F�jikiðikkEþ EkÞ

þ
�
�F�i

�
B� ðk2EÞ0

k2

��0
: (A15)

The perturbation in the gauge field can be decomposed
along directions transverse and parallel to the spatial wave
vector:

�Ai ¼ ði�Að?;þÞðk; �ÞÞe1i þ ð�Að?;�Þðk; �ÞÞe2i
þ ði�Akðk; �ÞÞÞk̂i; (A16)

where the amplitudes �Að?;�Þðk; �Þ are Uð1Þ gauge invari-
ant.20 In A0 ¼ E ¼ B ¼ Bi ¼ 0 gauge the electromagnetic

gauge fields �Að?;�Þðk; �Þ are simply related to the gauge-
invariant magnetic and electric field perturbations. In par-
ticular, we may define

�Aþðk; �Þ � iðe1Þikj�F
ij

k2

and �A�ðk; �Þ � � ðe2Þikj�F
ij

k2
;

(A17)

where �ijkikj ¼ k2 and where spatial indices are under-

stood to be raised and lowered with the spatial metric, �ij.

The dynamical, gauge-invariant dynamical electromag-
netic variables are �A�ðk; �Þ as defined above and are

equal to �Að?;�Þðk; �Þ as defined in (A16) in A0 ¼ E ¼
B ¼ Bi ¼ 0 gauge (a modified Newtonian gauge).
The tensor perturbations Eij are gauge-invariant by con-

struction. We will further decompose the tensor perturba-
tions by constructing the two independent symmetric
traceless tensors that are transverse to the wave vector ki.
We again follow [23] and define these tensors as

Eij ¼ Eþ�þij þ iE
�
ij ; (A18)

�þij ¼
e1i e

1
j � e2i e

2
jffiffiffi

2
p ; (A19)

�
ij ¼
e1i e

2
j þ e2i e

1
jffiffiffi

2
p : (A20)

We have chosen this normalization since

�ik�jl�ij�
0
kl ¼ �0

: (A21)

Because we have chosen a basis with the property that,
under k parity, eai ! ð�1Þaeai , these tensors have k-parity
transformations �þij ! þ�þij and �
ij ! ��
ij .

20The factors of i accompanying some perturbations are to
ensure that the relation ��ðk; �Þ ¼ �ð�k; �Þ holds for all
Fourier amplitudes.
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We will take the Mukhanov-Sasaki scalar variable
(which is conserved outside the horizon in the isotropic
limit) to be

r � 
0
��0 �þ�: (A22)

In a gauge with spatially flat slicing, this variable corre-
sponds to minus the curvature perturbation,�� , as defined,
e.g., in [27].

Some of the variables listed are not dynamical and must
be removed from the action using constraint equations.
There are a total of five dynamical variables in the theory.

In the isotropic limit, these variables correspond to two
electromagnetic perturbations, two tensor perturbations,
and one scalar perturbation. Furthermore, the action sepa-
rates into uncoupled parts according to the transformation
of fields under k parity: a piece including Eþ, �Aþ, and r
and one including E
 and �A�.

APPENDIX B: QUADRATIC ACTION AND
EINSTEIN’S EQUATIONS

Given a metric g�� ¼ �g�� þ �g��, the Einstein-Hilbert

action to quadratic order in �g�� can be written as

�ð2ÞSEH ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
1

4�2
�g��ð �r
�g	�Þð �r	�g
�Þ � 1

4�2
�g��ð �r
�g��Þð �r	�g
	Þ þ 1

8�2
�g�� �g��ð �r
�g��Þð �r
�g��Þ

� 1

8�2
�g�� �g��ð �r
�g��Þð �r
�g��Þ þ 1

2�2
�R�� �g��ð�g��Þð�g��Þ � 1

4�2
�R�� �g��ð�g��Þð�g��Þ

þ 1

8�2
�Rð �g���g��Þ2 � 1

8�2
�R �g�� �g��ð�g���g��Þ

�
(B1)

after dropping boundary terms. In the above equation, the covariant derivatives ( �r) are compatible with the background
metric

�r 
 �g�� ¼ 0: (B2)

We used this form of the action and our parametrization to compute Einstein’s equations. In particular, the first-order
change in the components Einstein tensor can be written in the following way (in Newtonian gauge, where E ¼ B ¼
Bi ¼ 0):

a2�G
�
� ¼ �2��þ 6H�0 �

�
�

H

�0
�2 þ �ij

H
@i@j�� �i

j@i�
j þ ðEi

jÞ0�j
i þ ð6H 2 � �2Þ�� 1

2
ð�2Þ0 �

H
; (B3)

a2�G
�
i ¼ ��2 @i�

H
þ �j

i@j

�
�þ

�
�

H

�0�� 2@ið�0 þH�Þ � 1

2
��ij�

j � 2�j
k@jE

k
i þ �k

j@iE
j
k þ 3�j

i@j�þ ð�j
i Þ0

H
@j�;

(B4)

a2�Gi
j ¼ �i

j½2�00 þ ð2H 2 þ 4H 0Þ�þ�ð���Þ þ 2H�0 þ 4H�0	 � @i@jð���Þ � 2
�ði

k

H
@jÞ@k�

þ �i
j

�
�H

�
�0

H 2

�0 þ �
H 0

H 2

�0
�þ ��

H
��0

�
þ �i

j

�
�2ð�þ ð�=H Þ0Þ þ �kl

H
@k@l�

�

þ ðEi
jÞ00 ��Ei

j þ 2H ðEi
jÞ0 � �l

kðEk
l Þ0�i

j þ �i
jð�k

l @k�
lÞ � 2H�ik@ðk�jÞ � �ik½@ðk�0

jÞ � 2�l
ðk@jlj�jÞ	

þ ð�i
jÞ0
�
2
H 0

H 2
�� 2

�0

H
� 2ð�þ�Þ

�
þ �i

j

�
2
H 0

H
�� 4H�

�
þ 1

2
�i
j

�20

H
�� ð�i

jÞ00
H

�

þ 4H ½�i
kE

k
j � �k

jE
i
k	 þ 2½�i

kE
k
j � skjE

i
k	0 � 5�i

j�
0 þ 2H ½�i

k@jE
k � �k

j@kE
i	 þ ½ð�i

kÞ0@jEk � ð�k
jÞ0@kEi	;

(B5)

where 0 denotes derivatives with respect to conformal time and

H ¼ a0

a
; �ij ¼ 1

2
�0
ij: (B6)

In these equations, spatial indices are raised and lowered with �ij.
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Our expressions (B3) and (B5) do not match those of
[23]. In particular, the expression in [23] does not contain
the gauge noninvariant terms on the last line in (B5).21 We
are confident that our expression is correct, in part because
our Einstein tensor is gauge covariant while theirs is gauge
invariant.

APPENDIX C: DIAGONALIZING A KINETIC
TERM

Suppose a kinetic term takes the form

K ¼ 1
2X

y0X0 þ Xy0MX þ XyMyX0; (C1)

where X is a vector of fields and M is a time-dependent
matrix. Diagonalizing the kinetic term requires a change of
variables

X ! VY; (C2)

where V is a time-dependent unitary matrix, such that

K ! 1
2Y

y0Y0 þ total derivativeþ YyQY; (C3)

where Q is some Hermitian matrix. We can calculate
directly that

K ¼ 1
2Y

y0Y0 þ YyðVy0V þ VyðMy �MÞVÞY0

þ total derivativeþ YyQY: (C4)

The kinetic term is diagonalized by a unitary matrix V that
satisfies

Vy0V ¼ �VyðMy �MÞV
or equivalently VVy0 ¼ M�My:

(C5)

If M were a time-independent matrix, then the kinetic
term would be diagonalized by a constant unitary matrix V
such that

VyðM�MyÞV ¼ D; (C6)

where D is a constant diagonal matrix.

APPENDIX D: ESTIMATES OF INTEGRALS

In order to get a quantitative estimate of the effect of the
anisotropic background on power spectra, we must esti-
mate the integrals in (74)–(77). Wemay take �̂A,�, and the
slow-roll parameters to be nearly constant. Then the rele-
vant integrals are

p�2
Z �

sinð2c ~pð�0Þ � 2c ~pð�ÞÞ
0ð�0Þ2~Iðp�0; p�Þd�0;

p�2
Z �

cosð2c ~pð�0Þ � 2c ~pð�ÞÞ
0ð�0Þ2~Iðp�0; p�Þd�0;

(D1)

Z �ðe2n	ð�0Þ � e2n	ð�0ÞÞ~Iðp�0; p�Þd�0;

and p�2
Z �


0ð�0Þ2~Iðp�0; p�Þd�0;
(D2)

where ~Iðx; yÞ was defined in (69) as

~Iðx; yÞ ¼
�

1

2x2y2
� 1

2x2
þ 2

xy
� 1

2y2
þ 1

2

�
sinð2x� 2yÞ

þ
�
1

x2y
� 1

xy2
þ 1

x
� 1

y

�
cosð2x� 2yÞ: (D3)

During slow-roll inflation,


0ð�Þ ¼ e
ð�ÞHð�Þ � � 1

�
; (D4)

c ~pð�0Þ � c ~pð�Þ � ð
ð�0Þ � 
ð�ÞÞ k2e
�	0

k0

ffiffiffiffiffiffi
�̂A

p
; (D5)

ðe2n	ð�0Þ � e2n	ð�0ÞÞ � 2n�ð
ð�0Þ � 
ð�0ÞÞ: (D6)

Let us define a new variable z by22

� p� ¼ e�z: (D7)

From (D4) it is clear that

ez � aH

p
and so z � logðH=pÞ þ 
: (D8)

We may thus rewrite the integrals (D1) and (D2) in terms
of the variable z:

Is � p�1
Z z�

sin

�
2
c 0

~p


0 ðz� z�Þ
�
~Ið�e�z;�e�z� Þezdz;

Ic � p�1
Z z�

cos

�
2
c 0

~p


0 ðz� z�Þ
�
~Ið�e�z;�e�z� Þezdz;

(D9)

I1 � p�1
Z z� ðz� z0Þ~Ið�e�z;�e�z� Þe�zdz;

I2 � p�1
Z z� ~Ið�e�z;�e�z� Þezdz;

(D10)

21Some of our manifestly gauge-invariant terms disagree with
those of [23] as well.

22This is just a convenient dimensionless variable and is not
equal to a�0=
0 as in (37).
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where z� is the value of z at the end of inflation and

c 0
~p


0 � p2e
�	0

p

ffiffiffiffiffiffi
�̂A

p
: (D11)

The function

~Ið�e�z;�e�z� Þez (D12)

oscillates rapidly with growing amplitude for z < 0. See
Fig. 2. For z > 0 and values of z� on the order of tens, the
function is well approximated by a constant

~Ið�e�z;�e�z� Þez � �2
3e

2z� ; 0< z < z�: (D13)

The constant can be found by expanding the function about
z� ¼ 1 and then about z ¼ 1.
The contribution of terms that go like I1 will be subdo-

minant compared to contributions from terms proportional
to the other integrals,23 so we will not bother to calculate
I1. Since the dominant contribution to the other integrals
will occur when z > 0 (which corresponds to after horizon
crossing) we may approximate the integrals by

Is � � 2

3
e2z�p�1

Z z�

0
sin

�
2
c 0

~p


0 ðz� z�Þ
�
dz

¼ � 2

3
e2z�p�1

�2c 0
~p


0

��1
�
cos

�2c 0
~p


0 z�
�
� 1

�
; (D14)

Ic � � 2

3
e2z�p�1

Z z�

0
cos

�
2
c 0

~p


0 ðz� z�Þ
�
dz

¼ � 2

3
e2z�p�1

�2c 0
~p


0

��1
�
� sin

�2c 0
~p


0 z�
��
; (D15)

I2 ¼ p�1
Z z� ~Ið�e�z;�e�z� Þezdz � � 2

3
e2z�p�1z�:

(D16)

Modes of astrophysical interest crossed the horizon about
60 e-folds—plus or minus a few—before the end of in-
flation. Such modes of astrophysical interest therefore
correspond to z� � 60.

[1] R.W. Wald, Phys. Rev. D 28, 2118 (1983).
[2] L. Ackerman, S.M. Carroll, and M.B. Wise, Phys. Rev. D

75, 083502 (2007).
[3] T. R. Dulaney, M. I. Gresham, and M.B. Wise, Phys. Rev.

D 77, 083510 (2008).
[4] B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev.

D 79, 063517 (2009).
[5] S.M. Carroll, T. R. Dulaney, M. I. Gresham, and H. Tam,

Phys. Rev. D 79, 065011 (2009).
[6] M.-a. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett.

102, 191302 (2009).
[7] L. Parker, Phys. Rev. Lett. 21, 562 (1968).
[8] M. S. Turner and L.M. Widrow, Phys. Rev. D 37, 2743

(1988).
[9] B. Ratra, Astrophys. J. 391, L1 (1992).
[10] V. Demozzi, V. Mukhanov, and H. Rubinstein, J. Cosmol.

Astropart. Phys. 08 (2009) 025.
[11] K. Bamba, N. Ohta, and S. Tsujikawa, Phys. Rev. D 78,

043524 (2008).

[12] S. Kanno, J. Soda, and M.-a. Watanabe, J. Cosmol.
Astropart. Phys. 12 (2009) 009.

[13] D. Grasso and H. R. Rubinstein, Phys. Rep. 348, 163
(2001).

[14] K. Dimopoulos, M. Karciauskas, and J.M. Wagstaff, Phys.
Lett. B 683, 298 (2010).

[15] S. Yokoyama and J. Soda, J. Cosmol. Astropart. Phys. 08
(2008) 005.

[16] E. A. Lim, Phys. Rev. D 71, 063504 (2005).
[17] T. S. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys.

08 (2008) 021.
[18] A. Golovnev and V. Vanchurin, Phys. Rev. D 79, 103524

(2009).
[19] K. Dimopoulos, M. Karciauskas, D.H. Lyth, and Y.

Rodriguez, J. Cosmol. Astropart. Phys. 05 (2009), 013.
[20] C. A. Valenzuela-Toledo, Y. Rodriguez, and D.H. Lyth,

Phys. Rev. D 80, 103519 (2009).
[21] C. A. Valenzuela-Toledo and Y. Rodriguez, Phys. Lett. B

685, 120 (2010).

2

3

2 z

z

FIG. 2 (color online). The function ez~Ið�ez;�e�z� Þ on a lin-
ear scale. The axes cross at the point f0; 0g. For 0< z < z� the
function is well approximated by � 2

3 e
2z� . The frequency of

oscillation for z < 0 does not vary much as z� increases—only
the amplitude changes. The plot above was generated using
z� ¼ 15.

23The contribution from I1 can be important if inflation lasts a
very long time—on the order of 103 e-folds.

PRIMORDIAL POWER SPECTRA FROM ANISOTROPIC . . . PHYSICAL REVIEW D 81, 103532 (2010)

103532-19

http://dx.doi.org/10.1103/PhysRevD.28.2118
http://dx.doi.org/10.1103/PhysRevD.75.083502
http://dx.doi.org/10.1103/PhysRevD.75.083502
http://dx.doi.org/10.1103/PhysRevD.77.083510
http://dx.doi.org/10.1103/PhysRevD.77.083510
http://dx.doi.org/10.1103/PhysRevD.79.063517
http://dx.doi.org/10.1103/PhysRevD.79.063517
http://dx.doi.org/10.1103/PhysRevD.79.065011
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1103/PhysRevLett.102.191302
http://dx.doi.org/10.1103/PhysRevLett.21.562
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1086/186384
http://dx.doi.org/10.1088/1475-7516/2009/08/025
http://dx.doi.org/10.1088/1475-7516/2009/08/025
http://dx.doi.org/10.1103/PhysRevD.78.043524
http://dx.doi.org/10.1103/PhysRevD.78.043524
http://dx.doi.org/10.1088/1475-7516/2009/12/009
http://dx.doi.org/10.1088/1475-7516/2009/12/009
http://dx.doi.org/10.1016/S0370-1573(00)00110-1
http://dx.doi.org/10.1016/S0370-1573(00)00110-1
http://dx.doi.org/10.1016/j.physletb.2009.12.024
http://dx.doi.org/10.1016/j.physletb.2009.12.024
http://dx.doi.org/10.1088/1475-7516/2008/08/005
http://dx.doi.org/10.1088/1475-7516/2008/08/005
http://dx.doi.org/10.1103/PhysRevD.71.063504
http://dx.doi.org/10.1088/1475-7516/2008/08/021
http://dx.doi.org/10.1088/1475-7516/2008/08/021
http://dx.doi.org/10.1103/PhysRevD.79.103524
http://dx.doi.org/10.1103/PhysRevD.79.103524
http://dx.doi.org/10.1088/1475-7516/2009/05/013
http://dx.doi.org/10.1103/PhysRevD.80.103519
http://dx.doi.org/10.1016/j.physletb.2010.01.060
http://dx.doi.org/10.1016/j.physletb.2010.01.060


[22] B. Himmetoglu, J. Cosmol. Astropart. Phys. 03 (2010)
023.

[23] T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol.
Astropart. Phys. 09 (2007) 006.

[24] V. F. Mukhanov, H.A. Feldman, and R.H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[25] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[26] P. Adshead, R. Easther, and E.A. Lim, Phys. Rev. D 79,

063504 (2009).

[27] S. Dodelson, Modern Cosmology (Academic Press,
Amsterdam, the Netherlands, 2003), p. 440.

[28] N. E. Groeneboom, L. Ackerman, I. K. Wehus, and H.K.
Eriksen, arXiv:0911.0150.

[29] D. Hanson and A. Lewis, Phys. Rev. D 80, 063004
(2009).

[30] A. R. Pullen and M. Kamionkowski, Phys. Rev. D 76,
103529 (2007).

TIMOTHY R. DULANEYAND MOIRA I. GRESHAM PHYSICAL REVIEW D 81, 103532 (2010)

103532-20

http://dx.doi.org/10.1088/1475-7516/2010/03/023
http://dx.doi.org/10.1088/1475-7516/2010/03/023
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1088/1475-7516/2007/09/006
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1103/PhysRevD.72.043514
http://dx.doi.org/10.1103/PhysRevD.79.063504
http://dx.doi.org/10.1103/PhysRevD.79.063504
http://arXiv.org/abs/0911.0150
http://dx.doi.org/10.1103/PhysRevD.80.063004
http://dx.doi.org/10.1103/PhysRevD.80.063004
http://dx.doi.org/10.1103/PhysRevD.76.103529
http://dx.doi.org/10.1103/PhysRevD.76.103529

