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The formation and evolution of superdense clumps (or subhalos) is studied. Such clumps of dark matter

(DM) can be produced by many mechanisms, most notably by spiky features in the spectrum of

inflationary perturbations and by cosmological phase transitions. Being produced very early during the

radiation-dominated epoch, superdense clumps evolve as isolated objects. They do not belong to

hierarchical structures for a long time after production, and therefore they are not destroyed by tidal

interactions during the formation of larger structures. For DM particles with masses close to the

electroweak mass scale, superdense clumps evolve towards a power-law density profile �ðrÞ / r�1:8

with a central core. Superdense clumps cannot be composed of standard neutralinos, since their

annihilations would overproduce the diffuse gamma radiation. If the clumps are constituted of superheavy

DM particles and develop a sufficiently large central density, the evolution of their central part can lead to

a ‘‘gravithermal catastrophe.’’ In such a case, the initial density profile turns into an isothermal profile with

� / r�2 and a new, much smaller core in the center. Superdense clumps can be observed by gamma

radiation from DM annihilations and by gravitational wave detectors, while the production of primordial

black holes and cascade nucleosynthesis constrain this scenario.
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I. INTRODUCTION

Gravitationally bound structures in the Universe have
developed from primordial density fluctuations �ð ~x; tÞ ¼
��=� that in turn were produced at inflation from quantum
fluctuations. In the standard approach to inflation, the
spectrum of these primordial fluctuations has a nearly
scale-invariant form, PðkÞ � �2

k / knp with np ’ 1.

During the radiation-dominated (RD) epoch fluctuations

grow slowly, �k / lnðt=tiÞ, while they grow as �k /
ðt=teqÞ2=3 after the transition to the matter-dominated

(MD) epoch at t ¼ teq. Gravitationally bound objects are

formed and detach from the cosmological expansion, when
fluctuations enter the nonlinear regime � � 1. The non-
linear stage of fluctuation growth has been studied both
analytically [1–4] and in numerical simulations [5–9] for
the formation of galaxies and structures on larger scales.
The density profile in the inner part of dark matter (DM)
halos is given by �ðrÞ / r��, with � � 1:7–1:9 in analytic
calculations [3], � ¼ 1 in the simulations of Navarro,
Frank and White [6] and � ¼ 1:5 in the simulations of
Moore et al. [8] and Jing and Suto [9].

The smallest DM objects in the Universe, which we shall
call clumps or subhalos, are produced first. The evolution
of DM clumps has been studied in Ref. [10] in the hier-
archical model in which due to the merging of objects a
small clump is hosted by a bigger one, the latter is sub-
merged into an even bigger one, etc. The important obser-
vation of [10] was the role of tidal interactions, which fully
disrupt most clumps. The survived clumps can be further
destroyed in the Galaxy by tidal interactions in the Galactic

plane, near the Galactic center, and in collisions with stars
in the halo (see [11] for a review). The characteristic
feature of these processes of disruption is that the core of
a clump survives and thus the gamma signal from DM
annihilations in clumps changes only mildly [11]. A sta-
tistical approach to the search for galactic small-scale
substructures has been recently proposed in [12,13].
The mass spectrum of DM clumps has a low-mass cutoff

Mmin due to the leakage of particles from a clump. This
mass is strongly model dependent: It depends on the leak-
age mechanism (free streaming, collisional damping, etc.),
on the properties of the DM particles and the resulting
decoupling temperature and others. Therefore, the pre-
dicted Mmin varies for neutralinos in the minimal super-
symmetric standard model from 10�7 to 10�5M� [14,15].
We have described above the standard cosmological

scenario for the clumps. In nonstandard scenarios the
properties of DM clumps can be very different. In
Ref. [16], isothermal perturbations in the DM density
were considered within the framework of a spherical col-
lapse model. Perturbations collapse in the RD epoch and
produce superdense DM objects. Another possibility for
the production of superdense clumps is given by a spiky
spectrum of perturbations [17–19]. The general idea com-
mon to these scenarios is that there exists a spike on top of
a scale-invariant power-law spectrum of perturbations
which results in the production of dense clumps in a very
early cosmological epoch. In this work, we consider in
contrast to [16] the formation of clumps at the RD epoch
from adiabatic spiky perturbations. The difference to iso-
thermal perturbations is mainly in their evolution during
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the linear stage: While isothermal perturbations are frozen
in, adiabatic fluctuations grow logarithmically.

We include in this and in the accompanying paper [20] a
discussion of the detection prospects of stable superheavy
DM particles. Since the annihilation signal from the mean
distribution of these particles in the halo is far below
observational limits, we examine whether there are new
effects which improve the detection chances. One such
effect follows from the early kinetic decoupling of super-
heavy DM particles from the thermal plasma. In this case
the cutoff mass can be significantly smaller, as e.g. in the
case of ultracold WIMPs [18], and thus clumps of practi-
cally all masses are formed. This opens the door for the
formation of light superdense DM clumps at the RD stage.
The only necessary condition is the existence of spiky
small-scale perturbations.

This article is organized as follows. We determine the
initial properties of the DM clumps, first assuming a stan-
dard power-law for the initial cosmological perturbations
in Sec. II and then a spiky perturbation spectrum in Sec. III.
In Sec. IV, we derive constraints on the superdense clump
scenario considering primordial black hole production.
Then we study the evolution of the density profile of
superdense clump in Sec. VI, commenting on the case of
neutralinos with masses close to the electroweak mass
scale in Sec. V. We present finally our conclusions in
Sec. VII.

II. CLUMPS IN THE STANDARD COSMOLOGICAL
SCENARIO

We briefly remind in this section the formation of
clumps and their properties assuming a standard power-
law spectrum of the initial cosmological perturbations. In
contrast to the usual approach, we allow here very small
masses of the clumps being inspired by the smallness of
Mmin in the case of superheavy DM (SHDM), where Mmin

can be of order of SHDM particle mass m.
Small clumps form at the MD epoch for z � 1, i. e. at a

time when the effect of the cosmological constant can be
still neglected. In the spherical model of the Press-
Schechter theory [21,22], the formation of an object occurs
at the time tf when the density contrast �ðM; tfÞ reaches
�c ¼ 3ð12�Þ2=3=20 ’ 1:686. The mean density ��int and
the radius R of the collapsing clumps are

�� int ¼ � ��ðzfÞ ¼ ��eq

�
1þ zf
1þ zeq

�
3 ¼ ��eq

�3�3
eqðMÞ
�3
c

;

(1)

and

R ¼
�

3M

4� ��int

�
1=3

; (2)

where � ¼ 18�2 ’ 178 [22], �eqðMÞ is the variance and

� ¼ �eq=�eqðMÞ is the peak height of the density fluctua-

tions at the time teq of matter and radiation equality, while

�eq is the density at teq.

According to Ref. [11], surviving clumps are character-
ized by � ’ 1–3 and we set � ¼ 2 in all following calcu-
lations. Having fixed �, the dependencies RðMÞ and ��ðMÞ
are unambiguous and the mean density �� of small-scale
DM clumps as function of the clumps mass M is shown in
Fig. 1.
The mass function of clumps, i.e. the fraction of DM in

the form of clumps with mass M, is given by [11]

�int

dM

M
’ 0:02ðnþ 3Þ dM

M
; (3)

where the effective exponent n in Eq. (3) is found as n ¼
�3ð1� 2@ log�eqðMÞ=@ logMÞ and depends very weakly

on M. The simplest inflation models give PðkÞ / knp with
np � 1. The 7-year WMAP data, np ¼ 0:963� 0:014,

favor clearly ns < 1 [23]. Clumps can form nevertheless,
because of the presence of additional logarithms in the
transfer function. The small-scale spectrum at the epoch
of matter-radiation equality can be expressed as [10]

�eqðMÞ ’ 8:2� 103:7ðnp�1Þ�3

�
M

M�

�ð1�npÞ=6

�
�
1� 0:06 log

�
M

M�

��
3=2

: (4)

The mass function (3) with the spectrum (4) is shown in
Fig. 2 by dashed lines. Its 1=M shape is in good agreement
with the corresponding numerical simulations of Ref. [24],
only its normalization is a few times smaller than the one
found there. For an extrapolation by many orders of mag-
nitudes this must be considered as remarkable agreement.
Note also that using the power-law spectrum that is

normalized to the temperature fluctuations of the CMB,
i.e. at cosmological scales, for subgalactic scales or even
DM clumps with mass M	 1 g implies an extrapolation
by 	48 orders of magnitudes. This extrapolation can be
justified only within the simplest models for inflation.
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FIG. 1. The mean density � of DM clumps as function of the
clumps massM for different spectral indices np of the primordial

density perturbations.
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Integrating the mass function (3) from Mmin to M	
102M�, we obtain the initial (i.e. before possible destruc-
tion in the Galaxy) fraction of DM in the form of clumps.
In contrast to the standard case of EW scale neutralinos,
whereMmin 	 ð10�6–10�8ÞM� [15], in superdense clumps
the DM particle can have much larger mass and thus Mmin

can be much smaller. As a result the fraction of surviving
clumps increases. In particular for superheavy neutralinos,
Mmin can be comparable to the particle mass m and
the fraction of surviving clumps is calculated as as 0.15,
0.18, 0.21 and 0.26 for np ¼ 0:949, 0.963, 0.977 and 1,

respectively.
Clumps inside galaxies lose mass and can be destroyed

in tidal interactions with stars. The collective gravitational
field of the Galactic disk is the most important factor for
the clump destruction. A method to study the destruction
process of clumps was presented in [15] (for a more de-
tailed approach with gradual mass loss see [11]), where
only clumps with M> 10�6M� were considered. Here we
calculate the survival probability for the wider mass inter-
valm<M 
 102M�, using the same formalism as in [15].
The result for the survival probability Pð�Þ at the position
of the Sun, r ¼ 8:5 kpc from the Galactic center is pre-
sented in Fig. 3. Note that the survival probability Pð�Þ
means the fraction of surviving clumps near the Sun but
most of these clumps have elongated orbits and spend the
largest part of their orbital period far from the Sun at the
outer parts of the Galactic halo.

The resulting mass function P�int that accounts for the
effect of tidal destruction by stars is shown in Fig. 2 by
solid lines. Integrating

R
P�intdM=M again fromM	m to

M	 102M� we obtain the actual fractions of DM in the
form of clumps as 0.006, 0.015, 0.033 and 0.085 for np ¼
0:949, 0.963, 0.977 and 1, respectively.

Clumps formed from the standard power-law spectrum
considered above have a rather small density. For many

DM particle candidates, including SHDM particles, such
clumps are unobservable via their annihilation signal and
these clumps can be detected only gravitationally. It has
been already suggested that interferometric detectors for
gravitational waves like LISA have the capability to detect
the tiny variation of the gravitational field, when a compact
object crosses the detector. Small SHDM clumps should be
included in the list of objects to be searched for by LISA,
such as primordial black holes [25], asteroids [26] or
compact DM objects of unknown nature [27]. The observ-
able signal is caused by the gravitational tidal force which
changes the interferometer arm length and produces cor-
respondingly a phase shift. LISAwill have the capability to
search for compact objects in the mass interval 1016 g 

M 
 1020 g according to Ref. [25] and 1014 g 
 M 

1020 g according to Ref. [27]. The signal will be in the
form of single pulses with its characteristic frequency at
the lower end of the expected LISA sensitivity curve and a
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FIG. 2. The fraction of DM in the form of survived clumps per
unit logarithmic mass interval �M	M as function of clump
mass M for np ¼ 0:949 (bottom), 0.963, 0.977 and 1 (top): The

initial fractions are shown by dashed lines; the present fractions
are shown by solid lines.
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FIG. 3. The survival probability Pð�Þ as function of the mean
internal clump density � at the distance 8.5 kpc from Galactic
center.
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primordial density perturbations (from top to bottom): np ¼
0:949, 0.963, 0.977 and 1. The horizontal line shows LISA’s
arm’s length L ’ 5� 1011 cm.
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rate	 a few per decade, if the objects constitute the major
part of DM. The clumps under consideration in this Section
present only 1–10% of all DM, and correspondingly, the
detection rate will be 1–2 order of magnitudes lower. In
addition, the radii of the clumps generally exceed LISA’s
arm length L ’ 5� 1011 cm (see the Fig. 4) and the tidal
forces will be smaller due to the extension of these objects.
Therefore, the detection of the SHDM clumps by LISA
seems unlikely. The next generation of gravitational wave
interferometers offers more promising perspectives for
detection (for details see Ref. [25]).

III. NONSTANDARD PERTURBATIONS AND
SUPERDENSE CLUMPS

A. Spiky density perturbation spectrum

The variance of the normalized power-law spectrum at
the horizon scale during the RD stage was expressed for the
standard inflationary scenario in Ref. [28] as

�HðMÞ ’ 9:5� 10�5

�
M

1056 g

�ð1�npÞ=4
: (5)

We see that in view of current observations (np < 1) the

variance �HðMÞ is too small for the formation of clumps at
the RD stage. Such clumps can be produced effectively
only from nonstandard spectra containing e.g. spikes.

A sharp peak emerges in the fluctuation spectrum e.g., if
an inflationary potential Vð	Þ has a flat segment [17,29].
The mean density perturbation on the horizon scale is

�H 	M�3
Pl V

3=2=V 0. Hence, if the derivative V 0 ¼
dVð	Þ=d	 ! 0 for some value of the scalar field 	,
then a peak emerges in the perturbation spectrum on the
corresponding scale. A similar effect can arise in infla-
tionary models with several scalar fields [30,31]. In both
types of models, the spectrum outside the peak can have an
ordinary shape. In particular, it can be a Harrison-
Zel’dovich spectrum, and can give rise to galaxies, clusters
and superclusters according to the standard scenario.

Another possibility to generate a spiky density perturba-
tion spectrum are cosmological phase transitions, for ex-
ample, the QCD phase transition [32]. If somewhere a high
peak arises in the perturbation spectrum, then the corre-
sponding clumps would be the densest DM objects in the
Universe. Theoretical models for nonstandard spectra were
discussed also in [33]. A peak in PðkÞ was proposed also in
[34]. The authors of Ref. [35] found evidence for excess
power at small scales 	10h�1 kpc in comparison with a
flat primordial power spectrum. This result was obtained
from the study of Lyman-
 absorbers and can be explained
within complex inflation models with the generation of
extra power at small scales. Such models can lead to the
effective production of very dense clumps.

We will refer to all these models collectively as spiky
models or spiky mass-spectrum models.

Dark matter clumps are formed in a wide range of
masses, if the power spectrum of primordial cosmological
density perturbations has a power-law form. If on the
contrary the spectrum has a peak on some scale, then
clumps are formed mostly in a narrow range of masses,
near the mass that corresponds to this peak.

B. Formation of superdense DM clumps at the RD
epoch

A useful approximation for the nonlinear evolution of
perturbations in the radiation-dominated epoch is the
spherical collapse model [16,36]. In this model, the evolu-
tion of perturbations after the horizon crossing is described
by

yðyþ 1Þ d
2b

dy2
þ

�
1þ 3

2
y

�
db

dy
þ 1

2

�
1þ�

b2
� b

�
¼ 0;

(6)

where y ¼ að�Þ=aeq, � ¼ dt=da is the conformal time,

aeq is the scale factor at �eq, and � ¼ ��DM=�DM is the

relative overdensity of DM. The radius of the perturbed
region is parametrized as

r ¼ að�Þbð�Þ�: (7)

Here, � is the comoving coordinate of the spherical layer
considered and the value bð�Þ takes into account the slow-
down of the cosmological expansion in the perturbed den-
sity region. Equation (6) is applicable for the evolution of
both entropy and adiabatic perturbations, but has to be used
with different initial conditions.
The formation of clumps from entropy perturbations

was considered in [16]. In this particular case, the initial
data have the form � ¼ ��DM=�DM and db=dt ¼ 0. The
object formed has the density [16]

� ’ 140�3ð�þ 1Þ�eq: (8)

For instance,� ’ 1� 104 in the case of axions as DM, and
axionic miniclusters have masses in the range 	ð10�13 �
0:1ÞM�. The observational signatures of the presence of
these axionic miniclusters in the Galactic halo were con-
sidered in [16,37].
The corresponding method for the nonlinear evolution of

adiabatic perturbations during the radiation-dominated
epoch is described in [38]. For adiabatic perturbations� ¼
0, the initial velocity db=dt is nonzero and is defined using
linear perturbation theory. The transformation from the
Euler description for the growth of density perturbations
� to the Lagrange description (7) is provided by the rela-

tion b ¼ ð1þ �Þ�1=3 [36]. The evolution of perturbations
with � � 1 on scales less than the horizon is defined by the
known analytic solution [32] (see also [38])

� ¼ 3Ain

2

�
ln

�
xffiffiffi
3

p
�
þ �E � 1

2

�
: (9)
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In this solution the numerical constant equals �E � 1=2 �
0:077, Ain ¼ �H=	, 	 ’ 0:817, �H is the radiation density
perturbation on the horizon scale and the variable x is
related to the comoving wave-vector k of the perturbation
by x ¼ k�. The connection between x and y is defined by
the relation [38]

x ¼ �

22=3

�
3

2�

�
1=6 cy

M1=3G1=2�1=6
eq

: (10)

It is suitable to connect the analytic solution of the linear
theory (9) with the numerical solution of the nonlinear
Eq. (6) at the time corresponding to the ‘‘transition’’ value
of perturbations with � ¼ 0:2 (see [38]). At this moment
we define the initial velocity of the forming DM clump as

db

dy
¼ ��Hb

4

2y	
: (11)

The cosmological expansion of the forming DM clump
stops when dr=dt ¼ 0 or according to Eq. (7) when
db=dy ¼ �b=y. The corresponding density and radius of
the clump are

�max ¼ �eqy
�3
maxb

�3
max; Rmax ¼

�
3M

4��max

�
1=3

; (12)

where bmax and ymax are, respectively, the values of b and y
at the same moment. After decoupling from the cosmo-
logical expansion, the object virializes and contracts by a
factor two. In Ref. [38] this model was used to describe a
noncompact DM object with single mass 	0:1M�, pre-
sumably observable through microlensing. Now we con-
sider the whole possible range of masses and densities
of DM clumps. Calculating numerically the solution of
Eq. (6) within the above formalism, we find the density
of the clump � ¼ �ðM;�HÞ as function of its mass M and
the radiation perturbation value on the horizon scale �H as
shown in Fig. 5.

Some characteristic values of the clump density � are
displayed in Fig. 6 for several values of the clump massM.
One observes the convergence of curves to �	 �eq 	
10�19 g cm�3 at small �H, i.e. for clumps formed near
matter-radiation equality. This corresponds to the known
analytical results that the evolution during the MD epoch
does not depend on the mass but only on the initial (at t ¼
teq) value of the fluctuation.

Note that (in contrast to the case with standard power-
law spectrum of cosmological perturbations) superdense
clumps from a spike in the spectrum are not destroyed by
tidal forces and their mass function peaks near a definite
mass. Therefore the fraction of DM in the form of such
clumps is �	 1=2. Half of the volume is in the form of
overdensities (clumps), and the remaining space is filled by
voids. Because of the compactness of superdense clumps,
these clumps can satisfy the condition R< L ’
5� 1011 cm for the mass interval 1014 g 
 M 
 1020 g
and are thus observable by the LISA detector.

IV. CLUMPS AND PRIMORDIAL BLACK HOLES

The formation of DM clumps leads to several restric-
tions on the fluctuation spectrum. For instance, high-
energy particles from DM annihilations in clumps during
the epoch of nucleosynthesis and after it (the cascade
nucleosynthesis) might distort the prediction of standard
nucleosynthesis.
Another important restriction on the spectrum of the

adiabatic perturbations comes from upper limits on the
mass and density of primordial black holes (PBHs)
[39,40], because the value of DM density perturbations
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FIG. 5 (color online). The mean density � (in g cm�3) of DM
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depends on the radiation density perturbations and the
formation of DM clumps can be related to the formation
of PBHs from the same perturbation spectrum [38]. It
should be noted that in the case of entropy perturbations
PBHs do not form.

Clumps and PBHs originate from fluctuations of the
same type but are formed at different times. The large
difference between the masses of DM clumps and of
PBHs arises because of the large difference in energy
density enclosed in a fixed comoving volume as function
of time: The energy density of radiation at the RD epoch
far exceeds the mass in CDM at the matter domination
epoch in the same comoving volume.

The formation of PBHs takes place on the tail of the
distribution of Gaussian fluctuations, whereas the main
part of clumps is produced from rms fluctuations.
Therefore only a small part of the fluctuations which result
in the formation of clumps may produce PBHs at the RD
epoch. In other words, because of the large threshold of
PBH formation, the major part of fluctuations does not
collapse into PBHs and evolves continuously up to the
end of the RD epoch. During the RD epoch the mass of
radiation in the comoving volume varies as MrðtÞ ¼
MaðteqÞ=aðtÞ, where the scale-factor of the Universe a /
t1=2 and M is the comoving mass at the moment of tran-
sition to MD. The mass M equals approximately to the
mass of nonrelativistic matter inside the fluctuation, i.e. the
mass of a clump which may be formed from this fluctua-
tion. On the other hand at horizon crossing MrðtÞ 	
4�ð2ctÞ3�ðtÞ=3, where �ðtÞ ¼ 3=32�Gt2. From these re-
lations for MrðtÞ we estimate the mass MH and the time tH
of PBHs formation as function of the clump mass M as

MH 	 cM2=3G�1=3t1=3eq ; tH 	GMH=c
3: (13)

From the Friedmann equations, the formula for MH was
derived exactly in Ref. [38] and is given by

MH ¼ 1

22=3

�
3

2�

�
1=6 M2=3c

G1=2�1=6
eq

¼ 2� 105
�

M

0:1M�

�
2=3

M�;

(14)

while the dependence tHðMÞ is

tH ¼ 3:7

�
M

M�

�
2=3

s: (15)

The fraction of the mass in radiation that is transformed
into PBHs at the time tH is then [40]

� ¼
Z 1

�c

d�Hffiffiffiffiffiffiffi
2�

p
�H

exp

�
� �2

H

2�2
H

�
’ �H

�c

ffiffiffiffiffiffiffi
2�

p exp

�
� �2

c

2�2
H

�
;

(16)

where �c is the threshold value of the density perturbations
�H which result in PBHs formation. The current PBHs
density parameter is �BH ’ �aðteqÞ=aðtHÞ.

For a large enough value of the rms perturbation �H �
h�2

Hi1=2, an extremely large number of PBHs can be formed
[40]. This provides a limitation on �H.
The number density of PBHs depends strictly on the

threshold value �c. In early works, e. g. [40–42], the value
of �c ¼ 1=3was obtained. In recent years the phenomenon
of critical gravitational collapse was discovered in numeri-
cal simulations, for which �c ’ 0:7 [43,44]. Some limits on
the number density of PBHs in different mass ranges were
obtained in [40,42]. These restrictions on the value of �H

for PBHs are shown in Fig. 2 for the case �c ¼ 0:7. The
relation (14) was used in our calculations. The local mini-
mum on the curve corresponds to the restrictions on the
Hawking evaporating PBHs with masses MBH ’ 1015 g.
For PBHs with a larger mass the only restrictions comes
from the condition that their cosmological density parame-
ter �PBH 
 1.
We recall that PBHs are formed on the tail of the

Gaussian perturbation distribution, �H � �c � �H. On
the contrary the overwhelming number of DM clumps
are formed from the rms perturbations. For this reason in
Fig. 2 and in the calculations for DM clumps we put �H ’
�H.

V. SUPERDENSE CLUMPS FROM ORDINARY
NEUTRALINOS

We consider in this section the standard case of ther-
mally produced neutralinos with mass close to the electro-
weak mass scale. We will show that the diffuse gamma flux
produced by such neutralinos constituting superdense
clumps exceeds the observed flux, and thus superdense
clumps should consist of DM particles nonthermally
produced.
In order to make our estimate most transparent, we

consider first the integral photon flux produced by DM
annihilations. This flux is easy to estimate using the anni-
hilation cross section h�vi for the process þ  ! �0 þ
all and the mean density ��int of neutralinos in a clump.
We calculate first the rate _N� of gamma rays with

energies higher than 70 MeV produced by a single clump,
assuming a r�1:8 density profile with core at r 
 Rc for a
clump with total mass M and radius R,

_N � ¼ 1:6��0

h�vi
m2



��intM

�
R

Rc

�
0:6
; (17)

where ��0 is neutral pion multiplicity, Rc ¼ xcR is the
core radius, and m is the neutralino mass.

The total diffuse flux produced in a galactic DM halo can
be calculated as

Jtot� ¼ 1

4�
�nclRh

_N� (18)

with Rh as the radius of the DM halo and �ncl as the clump
mean space density, which is given by the fraction � of DM
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in the form of clumps and the massMh of the galactic DM
halo as

�n cl ¼ 3

4�

�Mh

M

1

R3
h

: (19)

Using Eqs. (17)–(19) we can express the diffuse flux Jtot� in

terms of the mean density of neutralinos in clumps ��int, the
main characteristic of superdense clumps:

Jtot� ¼ fNFW
0:4

�

��0�Rh

x0:6c

��int ��
DM
halo

m2


h�vi; (20)

where ��DM
halo is the mean density of DM halo. To take into

account the Navarro-Frenk-White (NFW) density profile
one must multiply the homogeneous halo result by the
additional factor fNFW ¼ 293. The obtained flux is given
as convenient expression where most of parameters are
observationally known and the main characteristic of su-
perheavy clumps is ��int. For the parameters in Eq. (20), we
use ��0 ¼ 10 appropriate for gauge boson decays, � ¼
1=2 (for spiky scenario), Rh � 200 kpc and ��DM

halo ¼ 1:1�
10�3 GeV=cm3 obtained as 3Mh=4�R

3
h. We assume xc �

0:1.
Typically superdense clumps have very large densities

(see Fig. 6) and for ordinary neutralinos the resulting
gamma-ray flux exceeds the observations. First we analyze
the problem, whether ordinary neutralinos are compatible
with a spiky scenario of clump production. With this aim
we choose in Eq. (20) parameters which minimize the flux.
For the mean density of neutralinos in a clump, ��int, we
take the minimum value, assuming neutralino produced at
the beginning of the MD epoch. In this case ��int ¼
178�eq ¼ 8:3� 106 GeV=cm3 [see Eq. (1) in the limit

zf ! zeq]. We parametrize the annihilation cross section

h�vi by the characteristic value 1� 10�26 cm3=s as

h�vi26 ¼ h�vi=ð10�26 cm3 s�1Þ: (21)

With this parameters the minimum gamma-ray flux is

Jtot� ¼ 4:3h�vi26m�2
100 cm�2 s�1 sr�1; (22)

where m100 is the neutralino mass m in units of 100 GeV.

The integral flux (22) is about 5 orders of magnitudes
larger than the observed flux. Does it help to increase the
neutralino mass or to consider a smaller annihilation cross
section? To answer the first part of this question, we con-
sider now the differential isotropic diffuse photon flux
observed by Fermi-LAT at jbj> 60 degrees [45],

JobsðEÞ ¼ 6� 10�7

�
E

GeV

��2:45
GeV�1 cm�2 s�1 sr�1:

(23)

The differential photon flux produced by annihilations can
be obtained from Eq. (20) replacing 2��0 by dN=ð2mdxÞ,
where dN=dx is the number of photons with energy E ¼
xm=2 produced per annihilation. Since moreover dN=dx

increases at small x for increasing m, the ratio

J�ðEÞ=JobsðEÞ is practically constant. The minimal allowed

annihilation cross section of neutralinos obtained in [46]
for the case of strongly suppressed s-wave annihilations is
h�vi ¼ 1:7� 10�30m�2

100 cm3=s. With these parameters

the minimum gamma-ray flux is still above the measured
Fermi-LAT flux. Finally, we remark that even postulating
at tree-level only couplings e.g. to electrons would lead to
an overproduction of photons via Bremsstrahlung, c.f. e.g.
Ref. [47]. In conclusion, ordinary neutralino as other ther-
mally produced DM particles are excluded as constituents
of superdense clumps. A DM particle suitable to compose
superdense clumps must have a smaller annihilation cross
section than allowed for a thermal relic.

VI. DENSITY PROFILE EVOLUTION

In the case of a spiky spectrum, clumps are formed not in
the process of hierarchical clustering but due to the evolu-
tion of isolated density fluctuations. Such a scenario is
similar to the analytic approach in Ref. [3]. The ordinary
gravitational contraction combined with the multistream
instability produces the universal power-law density profile
with exponent � ¼ 1:7–1:9 [3]. This power-law shape for
�ðrÞ has been recently confirmed in the numerical simula-
tions [48] for neutralino clump formation during the MD
epoch. We assume here that the clumps produced at the RD
stage in the process of ordinary gravitational contraction
have a profile �ðrÞ / r�1:8 for Rc < r < R and �ðrÞ ¼
�c ¼ const for r < Rc, where Rc is the unknown core
radius of the clump. This core may be produced due to
tidal forces [10] in the clumps formed at the MD stage. In
this case a large core is produced with xc � Rc=R	
0:01–0:1. More precisely, the given value corresponds not
to the radius of the constant-density core but to the break in
the slope of the density profile. Moreover, the above-
mentioned calculations are valid for the MD dominated
epoch, where the process of core formation can be much
different from that at the RD epoch.
Another estimate for the core size has been obtained in

Ref. [3], where xc is defined by the damping mode of the
perturbations. The authors obtained xc 	 �3

eq, where �eq is

the value of density fluctuation at the beginning of the MD
stage. However, this estimate is also valid for the MD
epoch.
At the current level of knowledge, the relative radius

xc � Rc=R of the core produced by ordinary gravitational
contraction must be considered as a free parameter. In the
most conservative case we use xc 	 0:1. The central den-
sity �c depends on the mean clump density �� ¼ 8�max [see
(12)] as �c ¼ ��=ð3x2cÞ.
We shall briefly discuss the evolution of superdense

clumps formed from superheavy particles. Quantitatively,
it will be considered in the accompanying paper [20].
The first stage of evolution, the ordinary gravitational

contraction, proceeds like in the case of ordinary neutrali-
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nos and results in the production of a �ðrÞ 	 r�1:8 profile
with a relatively large core, xc 	 0:01–0:1. Other processes
can become important at the second stage: (i) two-body
gravitational scattering and (ii) some limiting effect like
Fermi degeneracy or the intensive annihilation of particles.
In the cores of superdense clumps with large densities n of
particles the binary gravitational scattering of constituent
DM particles with large masses m may become the domi-
nant process, which causes the ‘‘gravithermal instability’’
or ‘‘gravithermal catastrophe,’’ well known in theory of
globular star clusters. Note that this effect takes place only
for superheavy DM and only in the most dense parts of
superdense clumps. In Fig. 6, this region is located above
the dotted line.

How can it be that gravitational two-body scattering
becomes the dominant process? It occurs because gravita-
tional scattering is proportional tom2, while EW scattering
of these particles is proportional to 1=m2. The other two
factors are the large density n of particles in the core and
the long-range character of gravitational interactions. All
this provides the fast gravitational relaxation of the system.
As a result of the gravithermal instability a clump develops
an isothermal density profile �ðrÞ / r�2 with a tiny core.
This core can be produced by the pressure of a degenerate
gas in the case of superheavy fermionic particles or by the
inverse flow due to the annihilation of particles in the
clump center [46,49]. In these cases the radius of the new
core is determined by the elementary particle properties of
dark matter.

VII. CONCLUSIONS

Superdense clumps can be produced from isothermal
perturbations [16] or from spikes in the spectrum of adia-
batic perturbations [17,38]. These objects are produced in
the very early Universe during the RD epoch. In principle,
the perturbation spectrum may include both a scale-
invariant power-law component and spikes. Being pro-
duced very early during the radiation-dominated epoch,
superdense clumps evolve as isolated objects. They do not
belong to hierarchical structures for a long time after
production, and therefore they are not destroyed by

tidal interactions during the formation of large-scale
structures.
In the case of EW scale mass particles, e.g. ordinary

neutralinos, the density profile has a r�1:8 shape with a
relatively large core characterized by Rc=R	 0:01–0:1,
produced by tidal forces. Ordinary neutralinos are ex-
cluded as the constituents of superdense clumps, because
they overproduce the diffuse gamma-ray spectrum above
100 MeV. The constituent DM particles in superdense
clumps must be either very weakly annihilating or be
superheavy, or both. The limit on the superdense clumps
is imposed by primordial black holes which originated
from the same perturbation spectrum. The allowed intrinsic
densities of superdense clumps are shown in Fig. 6. The
formation of superdense clumps at the RD epoch was
studied previously using somewhat different assumptions
in Refs. [16,38,50].
The density profile in superdense clumps depends on the

properties of the DM particles. For very heavy constituent
particles and large intrinsic densities of the clumps a
‘‘gravithermal catastrophe’’ (instability) may develop in
superdense clumps. As a result the initial density profile
turns into an isothermal one, �intðrÞ / 1=r2, and the large
initial core collapses into a tiny, very dense new core. The
steep density profile and the smallness of the core lead to a
strong DM annihilation signal. The radiation produced by
DM annihilations restricts this scenario, e.g. due to the
cascade nucleosynthesis following standard nucleosynthe-
sis. On the positive side, superdense clumps can lead to
detectable gamma radiation even in the case of superheavy
DM particles [20]. Superdense clumps can be in principle
observed also by gravitational wave detectors.
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