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We study the stability of the Einstein static universe in the Hořava-Lifshitz (HL) gravity and a

generalized version of it formulated by Sotiriou, Visser, and Weifurtner. We find that, for the HL

cosmology, there exists a stable Einstein static state if the cosmological constant � is negative. The

universe can stay at this stable state eternally and thus the big bang singularity can be avoided. However,

in this case, the Universe can not exit to an inflationary era. For the Sotiriou, Visser, and Weifurtner HL

cosmology, if the cosmic scale factor satisfies certain conditions initially, the Universe can stay at the

stable state past eternally and may undergo a series of infinite, nonsingular oscillations. Once the

parameter of the equation of state w approaches a critical value, the stable critical point coincides with

the unstable one, and the Universe enters an inflationary era. Therefore, the big bang singularity can be

avoided and a subsequent inflation can occur naturally.
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I. INTRODUCTION

In the standard cosmological model, the existence of a
big bang singularity in the early Universe is still an open
problem. In order to resolve this problem, Ellis et al.
proposed, in the context of general relativity, a scenario,
called an emergent universe [1,2]. In this scenario, the
space curvature is positive and the Universe stays, past
eternally, in an Einstein static state and then evolves to a
subsequent inflationary phase. So, the Universe originates
from an Einstein static state, rather than from a big bang
singularity. It is also worth noting that an Einstein static
state as the initial state of the Universe is also favored by
the entropy considerations [3]. However, the Einstein static
universe in the classical general relativity is unstable,
which means that it is extremely difficult for the
Universe to remain in such an initial static state in a long
time due to the existence of perturbations, such as the
quantum fluctuations. Therefore, the original emergent
model does not seem to resolve the big bang singularity
problem successfully as expected.

Since in the early epoch, the Universe is presumably
under extreme physical conditions, new effects, such as
those stemming from quantization of gravity, or a modifi-
cation of general relativity or even other new physics, may
become important. As a result, the stability of the Einstein
static state has been examined in various cases [4–16]. For
example, the emergent scenario within the frameworks of
loop quantum gravity and braneworld cosmology have
been discussed in Refs. [5–8], where it was found that a
successful model can be obtained, while the stability in the
presence of vacuum energy corresponding to conformally

invariant fields has been studied and a nonsingular emer-
gent cosmological model was reconstructed [4]. In fðRÞ
gravity, it was found that the Einstein static state is stable
under homogeneous perturbations [9], but this stability is
broken by adding inhomogeneous perturbations [10]. In
fðGÞ gravity, the stability of the Einstein static state against
homogeneous perturbations has been analyzed in Ref. [11],
where G is the Guass-Bonnet term. In addition, Barrow
et al. [12] found, with the covariant techniques, that the
Einstein static state is stable for small inhomogeneous
vector and tensor perturbations, as well as for adiabatic
scalar density inhomogeneities with c2s > 0:2.
Recently, motivated by the Lifshitz theory in solid state

physics, Hořava proposed a power-counting renormaliz-
able theory of gravity, called Hořava-Lifshitz (HL) gravity
[17]. In the ultraviolet (UV) limit, HL has a Lifshitz-like
anisotropic scaling between space and time characterized
by the dynamical critical exponent z ¼ 3 and thus breaks
the Lorentz invariance, while in the infrared (IR), it flows
to z ¼ 1. So, it is expected to reduce to the classical general
relativity gravity theory in the low energy limit. Applying
the HL gravity to cosmology, it has been found, in a nonflat
universe, that the Friedmann equation is modified by a 1

a4

term [18–20], where a is the scale factor. The cosmological
perturbations with the HL gravity were studied in
Refs. [21–30], and the results showed that a scale invariant
superhorizon curvature perturbation could be produced
without inflation. In the original HL gravity, Hořava as-
sumed two conditions: detailed balance and projectability.
More recently, Sotiriou, Visser, and Weifurtner (SVW)
[31] suggested to build a general HL theory with project-
ability but without detailed-balance conditions. For a spa-
tially curved Friedmann-Robertson-Walker universe, the
SVW generalization gives an extra 1

a6
correction term and*Corresponding author.
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modifies the coefficient of the 1
a4

term in the Friedmann

equation as compared to the HL theory. Let us note here
that some other issues in HL gravity have been dealt with
in Refs. [32–35].

In this paper, we will discuss the stability of the Einstein
static universe in the contexts of HL gravity and SVW HL
theory, respectively. In the following section, we briefly
review the HL and SVW HL cosmology. In Sec. III, we
analyze the Einstein static solutions and discuss the stabil-
ity of these solutions. Finally, in Sec. IV, we present our
main conclusions.

II. THE HORı́AVA-LIFSHITZ COSMOLOGY

In HL gravity, it is convenient to use the Arnowitt-
Deser-Misner decomposition of the metric

ds2 ¼ �N2dt2 þ gijðdxi þ NidtÞðdxj þ NjdtÞ; (1)

where gij is the 3-dimensional spatial metric,N is the lapse

function, Ni is the shift vector, and the coordinates scale as
t ! ‘zt, xi ! ‘xi. In this paper, we only consider the z ¼ 3
case. Next, we turn our attention to the implications of HL
gravity in cosmology.

A. The HL cosmology

The action of HL gravity consists of kinetic and poten-
tial terms. The former is given by

Sk ¼ 2

�2

Z
dtd3x

ffiffiffi
g

p
NðKijK

ij � �K2Þ; (2)

where Kij ¼ 1
2N ð _gij �riNj �rjNiÞ is the extrinsic cur-

vature, K ¼ gijKij, K
ij ¼ gikgjlKkl, and � is a dimension-

less parameter. When � ¼ 1, one recovers the kinetic part
of the 4-dimensional Einstein-Hilbert action. With the
detailed-balance condition, the potential term has the form

SV ¼
Z

dtd3x
ffiffiffi
g

p
N

�
�CijC

ij þ �
�ijkffiffiffi
g

p RilrjR
l
k þ �RijR

ij

þ �R2 þ �Rþ 	

�
: (3)

Here Rij is the three-dimensional spatial curvature tensor,

R ¼ gijRij, �
ijk is the antisymmetric tensor with �123 ¼ 1,

and Cij ¼ �ilkffiffi
g

p rkðRj
l � 1

4

j
lRÞ is the Cotton tensor. The

constants �, �, � , �, �, and 	 are defined, respectively, as

� ¼ � �2

2!4
; � ¼ �2�

2!2
; � ¼ ��2�2

8
;

� ¼ �2�2ð1� 4�Þ
32ð1� 3�Þ ; � ¼ �2�2

8ð1� 3�Þ�;

	 ¼ � 3�2�2

8ð1� 3�Þ�
2;

(4)

where� is the cosmological constant, and� and! are two
coupling constants. In this case, the emergent speed of light

becomes

c ¼ �2�

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1� 3�

s
: (5)

So, for the case where 3�� 1> 0, a negative� is required
in order to guarantee that the speed of light is real. Let us
note that a positive � can be obtained by making an
analytical continuation for parameters � and !2 by � !
i� and !2 ! �i!2 [18]. In addition, it was found in
Ref. [36] that a negative cosmological constant may dis-
appear in the different geometries, plane symmetric space-
times, for example.
For a homogeneous and isotropic universe described by

the metric

ds2 ¼ �dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2d2�

�
; (6)

the Friedmann equation in HL gravity can be expressed as

6

�2
ð3�� 1ÞH2 ¼ �� 	� 6k�

a2
� 12k2ð� þ 3�Þ

a4
: (7)

Here k ¼ 0, �1, and � is the energy density of a perfect
fluid in the Universe, which satisfies the conservation
equation

_�þ 3H�ð1þ wÞ ¼ 0; (8)

where w ¼ p=� is the equation of state. In the present
paper, a constant w is considered, which is a good approxi-
mation, since, as shown in Refs. [1,2], a plateau potential is
required in the past-asymptotic limit in the emergent sce-
nario. It is easy to see that, for a spatially flat universe, this
Friedmann equation is the same as that in general relativity.
Now, we define two new constants

� ¼ �2

6ð3�� 1Þ ;  ¼ �2�4

48ð3�� 1Þð1� 3�Þ : (9)

Apparently, � is positive if 3�� 1> 0 and negative if
3�� 1< 0, whereas is always negative if�2 > 0. Using
these newly defined constants, the above Friedmann equa-
tion for a closed universe can be reexpressed as

H2 ¼ ��þ 3�2 � 6�

a2
þ 3

a4
; (10)

which be further written as

H2 ¼ ��þ 3�2

�
1� 2

�a2
þ 1

�2a4

�
: (11)

Differentiating this equation with time and using the en-
ergy conservation equation, we have

€a

a
¼ � 1þ 3w

2
H2 þ �2

�
9

2
ð1þ wÞ � 3ð1þ 3wÞ 1

�a2

� 3ð1� 3wÞ
2

1

�2a4

�
: (12)
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B. The SVW HL cosmology

Sotiriou, Visser, and Weifurtner generalized the original
HL theory by keeping the projectability but abandoning the
detailed-balance conditions [31]. In this case, the modified
Friedmann equation has the following form:

�
1� 3

2
�

�
H2 ¼ �þ�

3
� 1

a2
þ 2�1

a4
þ 4�2

a6
; (13)

where �,�1, and�2 are coupling constants. Comparing the
above equation with that in HL theory, one can see that the
SVW generalization not only gives an extra correction
term, but also modifies the coefficients of other terms. It
is interesting to note that the 1=a6 correction term may also
result from a radiation fluid within the UV regime [37]. So,
the influence of such a radiation fluid within the UV regime
on the stability of an Einstein static state can be regarded as
a specific case of the analysis to be carried out next.
Defining two dimensionless constants, ��1 ¼ �1� and
��2 ¼ �2�

2, we find that the modified Friedmann equation
in SVW HL theory becomes

�
1� 3

2
�

�
H2 ¼ �þ�

�
1

3
� 1

�a2
þ 2 ��1

�2a4
þ 4 ��2

�3a6

�
:

(14)

Then, differentiating Eq. (14) with time, one has

2

�
1� 3

2
�

�
€a

a
¼ �

�
1� 3

2
�

�
ð1þ 3wÞH2

þ�

�
ð1þ wÞ � 1þ 3w

�a2
þ 6w� 2

�2a4
��1

þ 12w� 12

�3a6
��2

�
: (15)

III. THE EINSTEIN STATIC SOLUTION

The Einstein static solution is given by the conditions
_a ¼ 0 and €a ¼ 0, which imply

a ¼ aEs; HðaEsÞ ¼ 0: (16)

A. The HL cosmology

From Eq. (12), it is easy to that the Einstein static
solution satisfies the following equation:

9

2
ð1þ wÞ � 3ð1þ 3wÞ 1

�a2
� 3ð1� 3wÞ

2

1

�2a4
¼ 0:

(17)

Solving this equation, one obtains two critical points

Point A:
1

a2Es
¼ �; (18)

and

Point B:
1

a2Es
¼ � 3ð1þ wÞ

1� 3w
�: (19)

Substituting these critical points into Eq. (10) reveals that
Point A corresponds to

�A ¼ 0; (20)

and Point B to

�B ¼ � 48

�ð1� 3wÞ2 �
2: (21)

If � is negative, Point A is physically meaningless since
a2Es ¼ 1

� is negative. The existence condition for Point B is

� 3ð1þwÞ
1�3w < 0, which leads to�1<w< 1

3 . For a positive�

obtained from an analytical continuation for parameters �
and !2 by � ! i� and !2 ! �i!2, which yields a posi-
tive  since �2 becomes negative after the analytical
continuation [refer to Eq. (9)], it seems that Point A exists
and so does Point B if w satisfies the condition w<�1 or
w> 1

3 . However, in this case, the energy density corre-

sponding to Point B, �B, becomes a negative since  is
positive, which is meaningless. So, in the case of a positive
�, only point A exists physically.
In order to study the stability of these critical points, we

introduce two variables

x1 ¼ a; x2 ¼ _a: (22)

They obey the following equations:

_x 1 ¼ x2; (23)

_x2 ¼ � 1þ 3w

2

x22
x1

þ 9

2
�2ð1þ wÞx1

� 3�ð1þ 3wÞ 1
x1

� 3ð1� 3wÞ
2

1

x31
: (24)

Linearizing the system described by the above two equa-
tions near critical points, one can obtain the eigenvalues of
the coefficient matrix, which determine the stability of
these critical points. After some calculations, we get the
eigenvalue #2:

Point A: #2 ¼ 12�2; (25)

Point B: #2 ¼ �12�
1

a2Es
: (26)

If #2 < 0, the corresponding equilibrium point is a center
point, otherwise it is a saddle one. In order to analyze the
stability of the critical points in detail, we now divide our
discussions into two cases, i.e., �< 0 and �> 0.

1. �< 0

In this case,< 0 and Point A is physically meaningless
since a2Es < 0. Therefore, we only discuss the stability of
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Point B, which exists under the condition �1<w< 1
3 .

From Eq. (26), it is easy to see that #2 < 0 since �> 0.
This means that point B is stable. In Fig. 1, we plot the
evolution of the scale factor with time and the phase
diagram in space ða; _aÞ. This figure shows that the
Universe can stay at the stable state eternally and may
undergo a series of infinite, nonsingular oscillations about
this point. Thus, the initial big bang singularity can be
avoided. By numerical calculation, however, one finds
that, when w is larger than 1

3 or less than �1, the

Universe may undergo an accelerating expansion. It there-
fore appears that the Universe may enter an inflationary
phase from this stable point if the condition�1<w< 1

3 is

violated. However, from Eq. (19), we find that, once w
evolves through�1 or 13 , the scale factor a becomes1 or 0.

Therefore, in this case, the Universe is essentially stuck at
the stable static state unless the scale factor becomes
singular.

2. �> 0

A positive � can be obtained by making an analytical
continuation of the parameters � and !2 by � ! i� and
!2 ! i!2 [18]. The analytical continuation changes the
sign of  and makes it a positive constant (> 0), since it
contains a �2 factor. Now, critical point A can exist, but it
is a saddle point since #2 > 0. The critical point B is
physically meaningless due to �B < 0 as we have pointed
out. Therefore, in this case, there is no stable Einstein static
universe.

A summary of the existence and stability of Points A and
B is given in Table I.

B. The SVW HL cosmology

For the SVW HL cosmology, we only consider the case
of a positive cosmological constant (�> 0).1 From
Eq. (15), one can see that the critical points are determined
by the following cubic equation:

ð1þ wÞ � 1þ 3w

�a2
þ 6w� 2

�2a4
��1 þ 12w� 12

�3a6
��2 ¼ 0:

(27)

When �2 ¼ 0, the above equation simplifies to a quadratic
one, which is similar with that in the HL theory, but not
identical, since coefficients are different. Thus, now we
separately discuss two cases, �2 ¼ 0 and �2 � 0.

1. �2 ¼ 0

In this case, Eq. (27) reduces to

ð1þ wÞ � 1þ 3w

�a2
þ 6w� 2

�2a4
��1 ¼ 0: (28)

Solving this equation, one can obtain two critical points:

Point C:
1

�a2Es
¼ 1

4ð3w� 1Þ ��1

½1þ 3w

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3wÞ2 � 8 ��1ð3w2 þ 2w� 1Þ

q
�;

(29)

Point D:
1

�a2Es
¼ 1

4ð3w� 1Þ ��1

½1þ 3w

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 3wÞ2 � 8 ��1ð3w2 þ 2w� 1Þ

q
�:

(30)

When �1 ¼ 3
8 , critical points C and D reduce to 1

a2Es
¼ 2

3 �

and 1
a2Es

¼ 2ð1þwÞ
3w�1 �, respectively, which are the same as that

in the HL cosmology [given in Eqs. (18) and (19)] after a
redefinition of the cosmological constant as 2

3 �. It follows,

from Eqs. (29) and (30), that when

10 5 5 10
t

4.4

4.6

4.8

5.0

a

4.4 4.6 4.8 5.0
a

0.2

0.1

0.1

0.2

a

FIG. 1 (color online). The evolutionary curve of the scale factor with time (left) and the phase diagram in space ða; _aÞ (right) for the
case �< 0 in a Planck unit and with w ¼ �0:90, � ¼ �0:6,  ¼ �1.

TABLE I. Summary of the critical points and their stability in
the case of the HL cosmology.

�< 0 �> 0
Existence Stability Existence Stability

Point A meaningless 8w unstable

Point B �1<w< 1
3 stable meaningless

1The negative cosmological constant case can be treated
similarly.
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�� 1 ¼ ð1þ 3wÞ2
8ð3w� 1Þðwþ 1Þ ; (31)

two critical points, C and D, coincide, and thus, in this
case, there is only one critical point,

1

a2Es
¼ wþ 1

4ð3wþ 1Þ�: (32)

The energy density �, at critical points C and D, is

�ðaEsÞ ¼
�
� 1

3
þ 1

�a2Es
� 2 ��1

1

�2a4Es

�
�; (33)

where 1
a2Es

is given by (29) or (30). In order to ensure these

critical points exist with a physical meaning, it is required
that a2Es > 0 and �ðaEsÞ � 0. This yields a region of ex-
istence in the ðw; ��1Þ parameter space,

(i) For Point C:

w��1

3
; 0� ��1 � 3

8
; �1

3
� w� 1

3
;

ð1þ 3wÞ2
8ð3w2 þ 2w� 1Þ �

��1 � 3

8
; w>

1

3
; ��1 � 3

8
:

(34)

(ii) For Point D:

� 1

3
� w<

1

3
;

ð1þ 3wÞ2
8ð3w2 þ 2w� 1Þ<

��1 < 0:

(35)

In Fig. 2, we show the regions of existence in the ðw; ��1Þ
parameter space for both critical points C and D.

With the same method as that used in the HL theory, we
find the eigenvalue of critical points C andD, which can be
expressed as

#2 ¼ ð1þ wÞ þ 1þ 3w

�a2Es
� 3ð6w� 2Þ ��1

�2a4Es
: (36)

There is no point in the existence region in the parameter

ðw; ��1Þ space for Point C which gives rise to a negative #2.
Hence Point C is always unstable. For critical Point D, the
region of stability and existence is

� 1

3
� w<

1

3
;

ð1þ 3wÞ2
8ð3w2 þ 2w� 1Þ<

��1 < 0; (37)

which means that, if PointD exists, it is always stable. The
left panel of Fig. 3 shows the region of parameters ðw; ��1Þ
corresponding to PointD. We summarize the existence and
stability of points C and D in Table II.
Thus, if the cosmic scale factor satisfies Eq. (30) ini-

tially, and w and ��1 lie in the region given in (37), the
Universe can stay at a stable state past-eternally and
undergo an infinite oscillation. If w evolves in such a
way that w and ��1 satisfy Eq. (31), then the stable critical
point D coincides with the unstable one (Point C) and
becomes unstable. As a result, the Universe goes out of
the stable state and enters an inflationary phase naturally. A
particular case which realizes a phase transition from a
stable state to an inflation era is shown in Fig. 4. So the big
rip singularity may be avoided successfully in this case.

2. �2 � 0

Now, the Einstein static points satisfy Eq. (27), which is
a cubic equation of a2Es. The solution of Eq. (27) is deter-
mined by the following expression:

� ¼ B2 � 4AC; (38)

where A ¼ b2 � 3ac, B ¼ bc� 9ad, and C ¼ c2 � 3bd

2 1 0 1 2
5

4

3

2

1

0

1

2

w

1

4 2 0 2 4
5

4

3

2

1

0

1

w

1

FIG. 2 (color online). Regions of existence in the ðw; ��1Þ
parameter space. The left panel shows the existence region for
Point D, while the right panel for Point C.

2 1 0 1 2
5

4

3

2

1

0

1

2

w

1

0.20 0.25 0.30 0.35 0.40
0

1

2

3

4

w

1

aEs
2

Point D

Point C

FIG. 3 (color online). Regions of stability in the ðw; ��1Þ pa-
rameter space for Point D (left panel), and the evolution of
Points C and D with the decreasing of w (right panel). In the
right panel, � ¼ 0:6 and ��1 ¼ �1.

TABLE II. Summary of the critical points and their stability in
the SVW HL cosmology with �2 ¼ 0.

Existence Stability

Point C w � � 1
3 , 0 � ��1 � 3

8 unstable

� 1
3 � w � 1

3 ,
ð1þ3wÞ2

8ð3w2þ2w�1Þ � ��1 � 3
8

w> 1
3 ,

��1 � 3
8

Point D � 1
3 � w< 1

3 ,
ð1þ3wÞ2

8ð3w2þ2w�1Þ < ��1 < 0 stable
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with a � 12ðw� 1Þ ��2, b � 2ð3w� 1Þ ��1, c��ð1þ3wÞ,
and d � ð1þ wÞ.

(i) �> 0: there is only one real solution, which corre-
sponds to only one critical point:

Point E:
1

�a2Es
¼ � 1

3a
½bþ Y1=3

1 þ Y1=3
2 �; (39)

where Y1;2 ¼ Abþ 3a
2 ð�B� ffiffiffiffi

�
p Þ.

(ii) �< 0: there are three different real solutions. Thus,
in this case, there are three critical points:

Point F:
1

�a2Es
¼ � 1

3a
½bþ 2

ffiffiffiffi
A

p
cosð�=3Þ�; (40)

Point G:
1

�a2Es
¼ � 1

3a
ðb� ffiffiffiffi

A
p ½cosð�=3Þ

þ ffiffiffi
3

p
sinð�=3Þ�Þ; (41)

Point H:
1

�a2Es
¼ � 1

3a
ðb� ffiffiffiffi

A
p ½cosð�=3Þ

� ffiffiffi
3

p
sinð�=3Þ�Þ; (42)

where � ¼ arccosðTÞ and T ¼ 1
2A3=2 ð2Ab� 3aBÞ.

(iii) � ¼ 0: Points G and H coincide since � ¼ 0 and
thus there are two critical points (Points F and G
with � ¼ 0).

At these critical points, the corresponding energy den-
sity � has the form

�ðaEsÞ ¼ � 1

3
þ 1

�a2Es
� 2 ��1

1

�2a4Es
� 4 ��2

1

�3a6Es
; (43)

with 1
a2Es

given in Eq. (39)–(41), or (42). The conditions for

these points to be physically meaningful are that �ðaEsÞ �
0 and a2Es > 0. Since it is not an easy task to obtain analytic
solutions to the existence conditions, we resort to numeri-
cal calculations and find that in order to satisfy the exis-
tence conditions, for Points F, G, and H, ��1 is required to
be less than about 3

4 , while for Point E, there is no con-

straint on ��1.
In order to show the regions of existence for Points E, F,

G, andH in the ðw; ��2Þ parameter space in detail, we chose
�2, 0, and 2 as three typical values for ��1. The results are
shown graphically in Figs. 5–8. Figure 5 shows the regions
of existence for Point E with ��1 ¼ 2, 0 and�2, Fig. 6, the
region of existence for Point F with ��1 ¼ 0 and �2, and
Figs. 7 and 8 the regions of existence for Points G and H
with ��1 ¼ 0 and �2.
In order to discuss the stability of these critical points,

we need to calculate the eigenvalues, which can be ex-
pressed as
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FIG. 4 (color online). The phase transition from a stable state
to an inflation by assuming a slowly deceasing equation of state
(wðtÞ ¼ 0:280� 0:001t) for the HL cosmology with the initial
conditions að0Þ ¼ 0:5 and _að0Þ ¼ 0. The parameters are set as
� ¼ 0:6 and ��1 ¼ �1.
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FIG. 6 (color online). Regions of existence for Point F in the
ðw; ��2Þ parameter space. The left and right panels show the case
with ��1 ¼ 0 and �2, respectively.
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FIG. 5 (color online). Regions of existence for Point E in the ðw; ��2Þ parameter space. The left, middle, and right panels show the
case with ��1 ¼ 2, 0, and �2, respectively.
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#2 ¼ � 1

3
þ 1

�a2Es
� 2 ��1

1

�2a4Es
� 4 ��2

1

�3a6Es
; (44)

at each point. We find that the critical points F and H are
always unstable, while critical points, E and G and, are
always stable as long as they exist. A summary of these
critical points and their stability is shown in Table III.
Therefore, if the initial condition is such that the cosmic
scale factor satisfies Eq. (39) or (41), the big bang singu-
larity can be avoided. To illustrate the stability of Points E
and G visually, we plot the regions of stability in ðw; ��2Þ
parameter space in Figs. 9 and 10, respectively.
Let us note that Points G and H move closer and closer

as � changes from �< 0 to 0, and coincide once � ¼ 0,
which means that the stable Point G becomes an unstable
one. Hence if the cosmic scale factor satisfies the condition
given in Eq. (41) initially, the Universe can evolve slowly
from a stable region to an unstable one with the decrease of
w, as shown in the Fig. 11. Because of the fact that this
unstable state will lead the Universe to enter an inflationary
phase, therefore, in this case, the big bang singularity can
be avoided and a subsequent inflation can appear naturally.
Note, however, that if the cosmic scale factor satisfies the
condition given in Eq. (39) initially, the Universe can stay
at the Einstein static state eternally and thus avoid the big
bang singularity, but it cannot evolve to an inflationary
phase with the evolution of w.
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FIG. 7 (color online). Regions of existence for Point G in the
ðw; ��2Þ parameter space. The left and right panels show the case
with ��1 ¼ 0 and �2, respectively.
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FIG. 8 (color online). Regions of existence for Point H in the
ðw; ��2Þ parameter space. The left and right panels show the case
with ��1 ¼ 0 and �2, respectively.

TABLE III. Summary of the critical points and their stability
in the SVW HL cosmology with �2 � 0.

Critical point Stability

4> 0 Point E stable if it exists

4< 0 Point F unstable

Point G stable if it exists

Point H unstable

4 ¼ 0 Point G or H with � ¼ 0 unstable

Point F with � ¼ 0 unstable
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FIG. 9 (color online). Regions of stability for Point E in the ðw; ��2Þ parameter space. The left, middle, and right panels show the case
with ��1 ¼ 2, 0, and �2, respectively.
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FIG. 10 (color online). Regions of stability for Point G in the
ðw; ��2Þ parameter space. The left and right panels show the case
with ��1 ¼ 0 and �2, respectively.
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IV. CONCLUSION

The Hořava-Lifshitz gravity is a power-counting renor-
malizable theory, which has an anisotropic scaling between
space and time in the UV limit, and thus breaks the Lorentz
invariance. Applying this theory to cosmology, one finds
that the Friedmann equation for a nonflat universe is modi-
fied by a 1

a4
term. The SVWHL theory is a generalization of

the original HL gravity by keeping the projectability con-
dition but abandoning the detailed-balance one. This gen-
eralization introduces an extra 1

a6
correction term to the

Friedmann equation and modifies the coefficient for the 1
a4

term as compared with the HL theory. In the present paper,
we study the influence of these correction terms on the
Einstein static state. In the case of HL cosmology, if the
cosmological constant � is negative, we find that there
exists a stable Einstein static state. The Universe can stay at
this stable state eternally and thus the big bang singularity
can be avoided. However, in this case, the Universe can not
exit to an inflationary era. So the big bang singularity
problem cannot be solved successfully. By making an
analytical continuation of the model parameters, a positive
� can be obtained [18]. But, in this case, there is no stable
Einstein static state.

For the SVW HL cosmology, when �2 ¼ 0, we find that
there exists a stable critical point and an unstable one. If the
cosmic scale satisfies the condition given in Eq. (30)
initially, the Universe can stay at the Einstein static state
past eternally. With the decrease of w, the stable point and
the saddle one move closer and closer. Once w reaches a
critical value, this stable critical point coincides with the
saddle one and there is only one critical point, which is
unstable. Thus the Universe can go out of the stable state
and then enter an inflationary era. Therefore, the big bang
singularity can be avoided and a subsequent inflation can
occur naturally.
When �2 � 0, our results show that if the cosmic scale

factor satisfies the condition given in Eq. (41) and the
equation of state w is larger than a critical value initially,
the Universe can evolve from a stable region to an unstable
one with the decrease of w. Therefore, in this case, the big
bang singularity can also be avoided and an inflation can
appear naturally. However, if the cosmic scale factor sat-
isfies the condition given in Eq. (39) initially, although the
big bang singularity can also be avoided, the Universe
cannot evolve to an inflationary phase with the evolution
of w.
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