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A constraint on the viable fðRÞ model is investigated by confronting theoretical predictions with the

multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky Survey, data

release 7. We obtain a constraint on the Compton wavelength parameter of the fðRÞmodel on the scales of

cosmological large-scale structure. A prospect of constraining the Compton wavelength parameter with a

future redshift survey is also investigated. The usefulness of the redshift-space distortion for testing the

gravity theory on cosmological scales is demonstrated.
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I. INTRODUCTION

Experimental tests of gravity on the scale of the Solar
System show good agreement with predictions of general
relativity (e.g., [1]). The nature of the Newtonian gravity is
the attractive force, which naturally predicts a decelerated
expansion of the Universe. Contrary to this expectation, it
has been discovered that our Universe is undergoing an
accelerated expansion epoch [2–4]. Though the accelerated
expansion is explained by introducing a cosmological con-
stant, its small but nonzero value cannot be explained
naturally [5]. The problem might be deeply rooted in the
nature of fundamental physics.

This problem has attracted many researchers, and many
works have been done, both theoretically and observatio-
nally. As a generalization of the cosmological constant,
dynamical fields, called the dark energy model and its
variants, are proposed to explain the accelerated expansion
of the Universe (see [6] and references therein). As an
alternative to the dark energy model, modification of grav-
ity may explain the accelerated expansion. General rela-
tivity is not considered to be the complete theory, because
its quantum theory cannot be formulated in a well defined
manner. The theory of gravity might need to be reformu-
lated within a more general framework.

From the observational point of view, the constraint on
the gravity theory on cosmological scales has not been well
investigated, compared with the constraint on the scales of
the Solar System. Many future projects to produce large
galaxy surveys are in progress or planned [7–12], which
aim to explore the nature of the dark energy. These surveys
are useful for testing the theory of gravity at cosmological
scales (e.g., [13]). The dynamical dark energy models may
have similar expansion rates as models of modified gravity,

but predict different histories for the growth of structures.
The key to testing the gravity theory is the measurement of
the evolution of cosmological perturbations, as many au-
thors have concluded recently [14–25].
The cosmic microwave background (CMB) anisotropies

are useful for investigating the cosmological perturbations
through the measurements of the integrated Sachs-Wolfe
effect or the lensing effect on the angular power spectrum
[26]. Imaging surveys of galaxies are also useful through
the weak lensing statistics or cluster number counts
[27,28]. Similarly, redshift surveys of galaxies are helpful
for testing gravity [29–34]. In the present paper, we revisit
the problem of testing the gravity theory through a mea-
surement of the multipole power spectra in the Sloan
Digital Sky Survey (SDSS) luminous red galaxy (LRG)
sample [31]. Measuring the multipole power spectra is a
way to estimate the redshift-space distortions, which re-
flect the linear growth rate of the matter density perturba-
tions [35–37].
Many authors have investigated the clustering nature of

the SDSS LRG sample [38–47]. In Refs. [48,49], recent
results on LRGs from the SDSS data release (DR) 7 are
reported. In Ref. [46], a test of gravity is considered using
the observed anisotropic correlation function. Three of the
authors of the present paper have shown that the SDSS
LRG sample is useful to test the gravity theory by measur-
ing the quadrupole power spectrum of galaxy distribution,
which represents the redshift-space distortions [31]. In the
present paper, we revisit the issue of testing the gravity
theories on cosmological scales using the SDSS LRG
sample of DR 7, especially focusing on the fðRÞ gravity
model.
The fðRÞ models proposed in [50–53] are viable models

of modified gravity, which include some function of the
Ricci scalar fðRÞ added to the Einstein-Hilbert action. As
the modification of gravity involves the introduction of an
extra degree of freedom in general, one must be careful
with the resulting behavior. Furthermore, any theory must
reduce to the general relativity on the scales of the Solar
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System. In the fðRÞ model, the general relativity is sup-
posed to be recovered by the chameleon mechanism
[54,55], which hides the field of the extra degree of free-
dom because the mass of the field becomes large for a
dense region. The cosmological bounds on the fðRÞ model
have been investigated with the cosmic microwave back-
ground anisotropies [56] and also using the abundance of
galaxy clusters [57]. However, our approach is based on the
redshift-space distortion [58].

This paper is organized as follows. In Sec. II, we briefly
review the fðRÞ model and the characteristic evolution of
the matter density perturbation. In Sec. III, we present our
results for the multipole power spectrum of the SDSS LRG
sample of the DR 7. In Sec. IV, the cosmological constraint
is discussed by confronting the observed multipole spectra
with the theoretical predictions. In Sec. V, a prospect of
constraining the fðRÞmodel is discussed on the basis of the
Fisher matrix analysis, assuming a future large redshift
survey. Section VI is devoted to summary and conclusions.
Throughout this paper, we use units in which the velocity
of light equals 1, and adopt the Hubble parameter H0 ¼
100h km=s=Mpc with h ¼ 0:7.

II. fðRÞ GRAVITY MODEL

In this section, we briefly review the fðRÞ model, pro-
posed in Refs. [50–53]. In general, higher derivative terms
are expected in the low-energy effective action of gravity.
Inspired by this, the fðRÞ model introduces some function
of the Ricci scalar fðRÞ, adding to the Einstein-Hilbert
action. We consider the theory defined by

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ fðRÞÞ þ Sm; (1)

where Sm is the action of the matter. Many aspects of the
fðRÞ model have been investigated; see e.g. [60,61] for a
review (cf. [62,63]). We assume that the chameleon mecha-
nism is responsible for the recovery of the general relativity
on Solar-System scales. The chameleon mechanism is a
nonlinear effect. Recently, the effect on the quasinonlinear
power spectrum was investigated based on the perturbative
approach or the numerical simulations [64–67]. This non-
linear chameleon effect becomes influential in the non-
linear regime. In the present paper, however, we can
neglect the nonlinear chameleon effect because we need
to consider only rather large scales, k & 0:2h Mpc�1.

For the viable model, the function fðRÞ must satisfy
some conditions. We consider the model where the asymp-
totic form of fðRÞ can be expressed by

fðRÞ ’ �2�

�
1�

�
Rc

R

�
2n
�
; (2)

where � is the cosmological constant, n is a constant that
specifies the fðRÞmodel, and Rc is also a constant with the
same dimension as that of the Ricci scalar. The background

expansion of this fðRÞ model is well approximated by that
of the �CDM model.
It is known that the additional term fðRÞ involves the

introduction of an extra degree of freedom. Namely, fR �
df=dR corresponds to the extra degree of freedom, which
behaves like a scalar field. From the above action, one can
derive the equation for fR,

r�r�fR ¼ 1

3
ðRþ 2f� RfRÞ þ 8�G

3
ð��þ 3PÞ; (3)

where � and P are the energy density and the pressure of
the matter, respectively. If we regard the right-hand side of
Eq. (3) as the derivative of the effective potential
dVeff=dfR, the mass of fR can be read

m2 ¼ d2Veff

df2R
¼ 1

3

�
1þ fR
fRR

� R

�
: (4)

The viable fðRÞ theory satisfies f � R, and jfRj � 1.
Assuming RfRR � 1, the mass of the extra degree of
freedom is

m2 ’ 1

3

1

fRR
; (5)

where fRR ¼ d2f=dR2. Thus, fRR > 0 is required to avoid
the extra degree of freedom becoming tachyonic. This
extra degree of freedom mediates an attractive force, and
modifies the gravity from the range determined by the
Compton wavelength � ¼ 1=m. From Eq. (2), we have

fRR ¼ d2fðRÞ
dR2

¼ 4nð2nþ 1Þ� R2n
c

R2nþ2
: (6)

In the subhorizon limit, the matter density perturbation
follows (e.g., [68] and references therein),

€�þ 2
_a

a
_�� 4�Geffða; kÞ�� ¼ 0; (7)

where

Geffða; kÞ
G

¼ 1þ 1

3

k2=a2

k2=a2 þ 1=ð3fRRÞ
; (8)

and the dot denotes the differentiation with respect to the
cosmic time.
Instead of Rc, we introduce the parameter kc by

1

3fRR
¼ k2c

�
�0=a

3 þ 4ð1��0Þ
�0 þ 4ð1��0Þ

�
2nþ2

; (9)

where kc represents the wave number corresponding to the
Compton wavelength at the present epoch. Thus, the fðRÞ
model is specified by n and kc. The growth factor can be
obtained by solving Eq. (7), which we denote by D1ða; kÞ.
The growth rate is given by f ¼ d lnD1ða; kÞ=d lna.
In the Einstein–de Sitter background universe, the evo-

lution of the density perturbation can be solved analytically
[69]. Two of the authors of the present paper investigated
characteristic features of the evolution of the growth rate of
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the fðRÞ model, both numerically and analytically in
Ref. [70]. In the present paper, we solve the evolution
equation (7) numerically (cf. [71,72]). Figure 1 shows the
growth factor divided by the scale factor (left) and the
growth rate (right), respectively, as a function of the scale
factor. The solid curve is the �CDM model with the
density parameter �0 ¼ 0:28. The dashed curves are for
the fðRÞ model with different wave numbers
k=ðh Mpc�1Þ ¼ 0:2, 0.1, and 0.05, respectively. Here the
fðRÞ model assumes n ¼ 1 and kc ¼ 0:05h Mpc�1.
Because of the modification of the gravity the growth
factor and the growth rate are enhanced, and this enhance-
ment is scale-dependent.

III. MULTIPOLE SPECTRUM OF THE SDSS LRG
SAMPLE

The multipole power spectrum P‘ðkÞ is defined by the
coefficient of the multipole expansion of the anisotropic
power spectrum Pðk;�Þ,

Pðk;�Þ ¼ X
‘¼0;2;4...

P‘ðkÞL‘ð�Þð2‘þ 1Þ; (10)

where L‘ð�Þ are the Legendre polynomials, �ð¼ cos�Þ is
the directional cosine between the line of sight direction
and the wave number vector k. Note that our definition of
the multipole spectrum P‘ðkÞ is different from the conven-
tional one by the factor 2‘þ 1 [35,36,73]. Here the
Legendre polynomials satisfy the normalization condition

Z þ1

�1
d�L‘ð�ÞL‘0 ð�Þ ¼ 2

2‘þ 1
�‘‘0 : (11)

The monopole P0ðkÞ represents the angular averaged
power spectrum, which is what we usually mean by the
power spectrum; the quadrupole P2ðkÞ represents the lead-
ing anisotropy in the power spectrum because of the

redshift-space distortion. The hexadecapole P4ðkÞ repre-
sents a different aspect of the redshift-space distortion. In
the present paper, we focus on the monopole and quadru-
pole spectra. The quadrupole spectrum reflects the peculiar
velocities of the galaxies [35,36,73]. Those peculiar mo-
tions can be used to test the gravity theory on cosmological
scales.
Pioneering works on the measurement of the quadrupole

spectrum was carried out by Cole, Fisher, and Weinberg
[35] and Hamilton [36] using the IRAS galaxy survey
catalog. Cole et al. presented a systematic method to
estimate the quadrupole power spectrum through the an-
isotropic power spectrum [35]. The method was applied to
the two degree field (2dF) galaxy survey to estimate the �
factor. Hamilton obtained the quadrupole power spectrum
by a transformation of the correlation functions [36]. In the
present work, however, we adopt a different method to
estimate the quadrupole power spectrum [74]. Our method
is in line with the widely used way to estimate the mono-
pole power spectrum [75,76], and allows us to obtain the
multipoles of the redshift-space power spectrum without
evaluating the correlation function or the anisotropic power
spectrum. In Ref. [31], we applied the method to the SDSS
LRG sample from DR 6 to test the general relativity on
cosmological scales. In the present paper, we revisit this
problem with the SDSS LRG sample of DR 7 [77].
Our LRG sample is restricted to the redshift range z ¼

0:16–0:47. In order to reduce the sidelobes of the survey
window we remove some noncontiguous parts of the sam-
ple (e.g., three southern slices), which leads us to
�7150 deg2ð¼ �AÞ sky coverage with a total of N ¼
100 157 LRGs. The data reduction procedure is the same as
that described in [39]. In this power spectrum analysis, we
adopted the spatially flat lambda cold dark matter (�CDM)
model distance-redshift relation s ¼ s½z�, which is consis-
tently chosen when comparing with theoretical prediction.

FIG. 1 (color online). (a)D1ðaÞ=a as a function of the scale factor. The solid curve is the�CDMmodel with�0 ¼ 0:28. The dashed
curves are for the fðRÞ model with the wave numbers k=ðh Mpc�1Þ ¼ 0:2, 0.1, and 0.05 from top to bottom, respectively. Here we
adopted the model n ¼ 1 and kc ¼ 0:05h Mpc�1. (b) Same as (a) but for the growth factor f ¼ d lnD1=d lna.
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The strategy to measure the multipole power spectrum is
the same as that described in [74]. We adopt the estimator
of the multipole power spectrum for the discrete density
field of the galaxy catalog, as follows:

P‘ðkÞ ¼ 1

�Vk

Z
�Vk

d3kðR‘ðkÞ � S‘ðkÞÞ; (12)

where �Vk is the shell in the Fourier space and

R‘ðkÞ ¼ A�1

�XN
i1

c ðsi1 ;kÞeik�si1L‘ðŝi1 � k̂Þ

� �
XNrnd

j1

c ðsj1 ;kÞeik�sj1L‘ðŝj1 � k̂Þ
�

�
�XN

i2

c ðsi2 ;kÞe�ik�si2 � �
XNrnd

j2

c ðsj2 ;kÞeik�sj2
�
;

(13)

S‘ðkÞ ¼ A�1ð1þ �ÞX
N

i1

c ðsi1 ;kÞL‘ðŝi1 � k̂Þ; (14)

where si1 (sj1) is the position of galaxies (random sample);

c is the weight factor, which we take as c ¼ 1;� ¼ ŝ � k̂
is the directional cosine between ŝð¼ s=jsjÞ and

k̂ð¼ k=jkjÞ; � � N=Nrnd and in our case is 0.05; and A
is determined by

A ¼
Z sðzmaxÞ

sðzminÞ
ds �n2ðzÞc 2ðs;kÞ: (15)

Here the integral in the expression for A means the inte-
gration over the whole survey volume, and �nðzÞ is the mean
(comoving) number density of the galaxies. The error for
the estimator P‘ðkÞ is given by the variance [74]

h�P‘ðkÞ2i ’ 2
ð2�Þ3
�Vk

Q2
l ðkÞ; (16)

with

Q2
l ðkÞ ¼

1

�Vk

Z
�Vk

dkA�2
Z sðzmaxÞ

sðzminÞ
ds �n4ðzÞc 4ðs;kÞ

� ½Pðk; sÞ þ 1= �nðsÞ�2L2
‘ðŝ � k̂Þ: (17)

Here we have assumed � � 1. The covariance between
the errors of different multipole spectra h�P‘ðkÞ�P‘0 ðkÞi
can be evaluated with the same formulas (16) and (17), but

only replacing L2
‘ðŝ � k̂Þ by L‘ðŝ � k̂ÞL‘0 ðŝ � k̂Þ in (17)

[78]. In our analysis we adopt c ðs;kÞ ¼ 1. Figure 2 shows
the mean number density as a function of z, when assuming
the �CDM with �0 ¼ 0:28 for the distance-redshift rela-
tion s ¼ s½z�.

Figure 3 compares the observed monopole power spec-
trum and our theoretical model. The dark (black) points
with error bars in Fig. 3 show the monopole power spec-

trum of the DR 7. The light (green) points are the previous
results for the DR 6 [31]. The dashed and the dotted curves
represent the fðRÞ model with n ¼ 1=2, with the scale-
dependent bias model of case 1 (see the next section for
details). The dashed curve is for kc ¼ 1h Mpc�1, while the
dotted one for 10�3h Mpc�1. The cosmological parame-
ters are �0 ¼ 0:28, h ¼ 0:7, and ns ¼ 0:96 (primordial
spectral index). The amplitude of the primordial perturba-

FIG. 2. The mean number density of galaxies �n as a function of
the redshift z of the SDSS LRG sample, where we adopted the
�CDM model with �0 ¼ 0:28 for the distance-redshift relation
s ¼ s½z�.

FIG. 3 (color online). P0ðkÞ of the SDSS LRG sample, where
we adopted the distance-redshift relation s ¼ s½z� of the �CDM
model with �0 ¼ 0:28. The dark (black) points correspond to
the DR 7, while the light (green) ones to the DR 6. The dashed
and dotted curves show the fðRÞmodel with n ¼ 1=2, adopting a
scale-dependent bias [case 1 in Eq. (23)] and 	v ¼ 350 km=s.
The dashed curve is for kc ¼ 1h Mpc�1, while the dotted curve
is kc ¼ 10�3h Mpc�1. The cosmological parameters are �0 ¼
0:28, h ¼ 0:7, and ns ¼ 0:96 (primordial spectral index), and the
amplitude of the perturbation is determined so as to be 	8 ¼ 0:8
in the limit of infinitely large kc.
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tion is chosen to be 	8 ¼ 0:8 in the limit of infinitely large
kc. The Smith nonlinear fitting formula [79] is adopted.
One can see that P0ðkÞ can be fitted with our theoretical
model by choosing suitable bias parameters.

Figure 4 plots P2ðkÞ=P0ðkÞ. The meaning of the points
and the parameters of the curves corresponds to those of
Fig. 3. This figure shows that the quadrupole power spec-
trum can be used to constrain the fðRÞ model. Also it is
clear that the long Compton wavelength model does not fit
the data.

IV. COSMOLOGICAL CONSTRAINT

In order to investigate the cosmological constraint on the
fðRÞ model from the multipole spectra, our theoretical
model needs to include nonlinear effects. In the present
paper, for simplicity, we adopt the following model for the
galaxy power spectrum [80,81],

Pgalðk;�; zÞ ¼ ðbþ f�2Þ2Pnlðk; zÞD½	vk��; (18)

where Pnlðk; zÞ denotes a nonlinear matter power spectrum,
D½k�	v� is the damping factor due to the finger of God
effect, and 	2

v is the pairwise velocity dispersion.
Assuming an exponential distribution function for the pair-

wise velocity, e�
ffiffi
2

p jv12j=	v=
ffiffiffi
2

p
	v, where v12 is the pairwise

peculiar velocity projected along the separation of a pair,
the damping function is [82] (cf. [83,84])

D ½	vk�� ¼ 1

1þ ~	2
vk

2�2=2
; (19)

with ~	v ¼ 	v=H0. In this case, we have

P0ðk; zÞ ¼ 1

3k5 ~	5
v

�
2fk~	vð�6fþ ð6bþ fÞk2 ~	2

vÞ

þ 3
ffiffiffi
2

p ð�2fþ bk2 ~	2
vÞ2tan�1 k~	vffiffiffi

2
p

�
Pnlðk; zÞ;

(20)

P2ðk; zÞ ¼ 1

30k7 ~	7
v

�
�360bfk3 ~	3

v þ 90b2k5 ~	5
v

þ 8f2k~	vð45þ k4 ~	4
vÞ � 15

ffiffiffi
2

p ð6þ k2 ~	2
vÞ

� ð�2fþ bk2 ~	2
vÞ2tan�1 k~	vffiffiffi

2
p

�
Pnlðk; zÞ;

(21)

P4ðk; zÞ ¼ ð�2fþ bk2 ~	2
vÞ2

24k9 ~	9
v

�
�10k~	vð42þ 11k2 ~	2

vÞ

þ 3
ffiffiffi
2

p ð140þ 60k2 ~	2
v þ 3k4 ~	4

vÞtan�1 k ~	vffiffiffi
2

p
�

� Pnlðk; zÞ; (22)

from Eqs. (18) and (19). For the nonlinear matter power
spectrum Pnlðk; zÞ, we adopt the fitting formulas by
Peacock and Dodds [85] or by Smith et al. [79]. For the
bias, we consider the following scale-dependent forms,

bðkÞ ¼
8<
:
b0 þ b1ð k

0:1h Mpc�1Þ� case 1

b0 þ b1ð k
0:1h Mpc�1Þ þ b2ð k

0:1h Mpc�1Þ2 case 2
;

(23)

where b0, b1, b2, and � are the fitting parameters.
Our strategy is the following. We use the monopole and

quadrupole spectra in the wave number range
0:02h Mpc�1 � ki � 0:2h Mpc�1, and compute the chi
squared


2 ¼ X
‘;‘0¼0;2

X
i;j

ðP‘ðkiÞ � Pobs
‘ ðkiÞÞC�1

‘‘0 ðki; kjÞ

� ðP‘0 ðkjÞ � Pobs
‘0 ðkjÞÞ; (24)

where Pobs
‘ ðkiÞ is the observed power spectrum and

C‘‘0 ðki; kjÞ ¼ h�P‘ðkiÞ�P‘0 ðkjÞi is the covariance matrix.

Here the covariance of the errors of the monopole and
quadrupole spectra is taken into account, however, it
does not affect our results quantitatively.
The left panel of Fig. 5 shows the contours of�
2 on the

kc � 	v plane, where we used the covariance matrix from
Sec. III,

C‘‘0 ðki; kjÞ ¼ h�P‘ðkiÞ�P‘0 ðkjÞi�ij: (25)

The one-sigma (dashed curve) and two-sigma (solid curve)
contour levels are given, respectively. Here the chi squared
is computed to minimize (24) by fitting the bias parameters

FIG. 4 (color online). P2ðkÞ=P0ðkÞ of the SDSS LRG sample.
The meaning of the points corresponds to those of Fig. 3. The
dashed (dotted) curve is the theoretical prediction of the fðRÞ
model with n ¼ 1=2, kc ¼ 1h Mpc�1 (10�3h Mpc�1). The pa-
rameters of the bias model and 	v are the same as those of Fig. 3.
The other cosmological parameters and the amplitude of the
primordial perturbation of the fðRÞ model are also the same as
those of Fig. 3.
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b0, b1, b2, or �, for each value of kc and 	v. The other
parameters are fixed n ¼ 1=2, �0 ¼ 0:28, �b ¼ 0:044,
ns ¼ 0:96, and h ¼ 0:7. For Pnlðk; zÞ, we adopted the
Peacock and Dodds formula [85] (thin curve) and the
Smith formula [79] (thick curve), respectively. The redshift
is fixed to z ¼ 0:3, which is typical for the LRG sample.
The amplitude of the matter power spectrum is fixed so as
to be 	8 ¼ 0:8 in the limit of infinitely large kc, i.e., in the
limit of the �CDM model.

For comparison, the right panel of Fig. 5 shows the
contours of �
2, which take the correlation of the errors
of different wave numbers into account by evaluating
Eq. (24), with the covariance matrix obtained from mock
catalogs. Because of the inclusion of the correlation of
errors of different wave numbers, the constraint becomes
weaker compared with the left panel.

In the right panel of Fig. 5, we obtain the covariance
matrix by using mock catalogs, which were built by fol-
lowing the procedure described in Ref. [39]. First, we
generate the density field using a second order
Lagrangian perturbation calculation. Then, we perform
Poisson sampling of the generated density field so as to
end up with a galaxy sample that has a clustering strength
enhanced by a bias and a number density equal to the
observed LRG sample density. We then extract the catalog
by applying the radial and angular selection function. We
have checked that the mock catalogs have the amplitude of
the monopole and quadrupole power spectra consistent
with the observed LRG power spectra, and also that the
diagonal components of the covariance matrix from the
mock catalogs give almost the same error as those of
Eq. (16) in the range of 0:02h Mpc�1 � ki �
0:2h Mpc�1 [39,86]. Figure 6 shows the two-dimensional
map of the correlation matrix

r‘ðki; kjÞ ¼
C‘‘ðki; kjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C‘‘ðki; kiÞC‘‘ðkj; kjÞ
q ; (26)

for ‘ ¼ 0 and 2 from 1000 mock catalogs. The binning of
the covariance matrix is �k ¼ 0:01h Mpc�1. One can see
from Fig. 6 that the off-diagonal part is suppressed.
The normalization of the cosmological perturbations

should be determined by the cosmic microwave back-
ground anisotropies, depending on the parameters n and
kc of the fðRÞ model. However, the background expansion
of the viable fðRÞ model is almost the same as that of the
�CDM model, and the evolution of the matter density
perturbations is only altered at late time, if compared
with the �CDM model. This alteration will raise an addi-
tional integrated Sachs-Wolfe effect on the CMB anisotro-
pies due to the modified evolution of the matter density
perturbation at late time. We neglect this effect on the
normalization of the perturbation, for simplicity. Then,

FIG. 5. �
2 on the kc � 	v plane. Here we adopted the model
n ¼ 1=2. The other parameters are �0 ¼ 0:28, h ¼ 0:7, and
ns ¼ 0:96. The normalization is fixed 	8 ¼ 0:8 in the limit of
large kc. The Peacock and Dodds nonlinear fitting formula is
used for the thin curves, while the Smith formula is used for the
thick curves. Solid (dashed) contours correspond to �
2 ¼ 6:2
(�
2 ¼ 2:3). The left panel adopted Eq. (25), while the right
panel used the covariance matrix from the mock catalogs.
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FIG. 6 (color online). The correlation matrix, Eq. (26), for ‘ ¼ 0 (left) and ‘ ¼ 2 (right), respectively, from 1000 mock catalogs.
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we simply fixed the amplitude of the primordial cosmo-
logical perturbation by 	8 in the limit of large kc, i.e., the
	8 of the �CDM model.

Figure 5 shows that the shorter Compton wavelength
model with 	v ’ 350 km=s gives the best fit to the data.
Figure 7 shows the contours of �
2 on the kc � n plane.
Here 
2 is computed with Eq. (24) with (25) by fitting the
bias parameters and 	v. Figures 7(a)–7(c)fix the normal-
ization of the perturbation to be 	8 ¼ 0:8, 0.82, and 0.78,
in the limit of large kc, respectively. The contour levels of
�
2 ¼ 2:3 (dotted curve) and 6.2 (solid curve) correspond
to 1	 and 2	 confidence, respectively. In Fig. 7 we used
the Peacock and Dodds formula (thin curve) and the Smith
formula [79] (thick curve), respectively, though the two
curves almost overlap. Figures 7(a)–7(c) adopt the bias
model of case 1. Figure 7(d) is the same as Fig. 7(a), but
adopted the bias model of case 2. The left lower region in
each panel is excluded.

Figure 8 is the same as Fig. 7, but adopted the covariance
matrix from the mock catalogs for the chi squared. The
constraint of Fig. 8 is weaker compared with that of Fig. 7.
Especially, the constraint for the model with larger n
becomes weaker. However, Fig. 8 indicates that the long

Compton wavelength case of the fðRÞ model with the
smaller value of n is excluded.
Thus far, we have used the redshift-space power spec-

trum (18). In order to check the reliability of our result, we
next consider the other possible model for the redshift-
space power spectrum,

Pgðk;�Þ ¼ ðb2ðkÞP��ðkÞ þ 2fbðkÞP��ðkÞ�2

þ f2P��ðkÞ�4Þe�ðfk�	vÞ2 ; (27)

where P��ðkÞ is the nonlinear matter power spectrum,
P��ðkÞ is the power spectrum of the velocity divergence,
and P��ðkÞ is the cross power spectrum of matter and the
velocity divergence. This model is obtained from the
model proposed by Scoccimarro [87] and assumes a linear
bias relation. Very recently, Jenning et al. proposed a fitting
formula for the redshift-space power spectrum of the
form (27), assuming bðkÞ ¼ 1. The fitting formula relates
the nonlinear matter power spectrum P��ðkÞ to P��ðkÞ and
P��ðkÞ. By using the N-body simulations it was demon-
strated that the fitting formula is accurate to better than
10% for the �CDM model and quintessence dark energy
models for k & 0:2h Mpc�1. Although the accuracy of the
fitting formula for the fðRÞ model has not been explicitly
demonstrated, we assume its validity, and use it in the
following �
2 calculations.
Figure 9 shows the contours of�
2 on the kc � n plane,

the same as Fig. 7, but with the covariance matrix from the
mock catalogs and the redshift-space power spectrum (27).
In the original formula, 	v is obtained from P��ðkÞ, how-
ever, we assumed 	v to be a fitting parameter, as is done in
Fig. 8. This figure shows that the constraint becomes

FIG. 7. �
2 on the kc � n plane, which we evaluated with
Eqs. (24) and (25). For each pair of kc and n, the minimum value
of 
2 is computed by fitting the bias parameter and 	v. Other
parameters are fixed: �0 ¼ 0:28, h ¼ 0:7, and ns ¼ 0:96. The
normalization of the primordial perturbation is chosen so as to be
	8 ¼ 0:8 (a), 	8 ¼ 0:82 (b), and 	8 ¼ 0:78 (c), in the limit of
large kc. The panels (a)–(c) adopt the bias model of case 1. Panel
(d) is the same as (a) but with bias model of case 2. Solid (dotted)
contours correspond to �
2 ¼ 6:2 (2.3). Almost overlapping
thin and thick curves assume Peacock and Dodds’s formula
and Smith’s formula, respectively.

FIG. 8. The same as the Fig. 7 but with the covariance matrix
from the mock catalogs.
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weaker when compared to the previous model (18). The
models with large values of n are not constrained.
However, the long Compton wavelength case of the fðRÞ
model with the smaller value of n is excluded. This new
model predicts that P��ðkÞ is smaller than P��ðkÞ for values
of k & 0:1 Mpc�1, which reduces the quadrupole power
spectrum and thus weakens the constraint.

Let us compare our result with the other constraints on
the fðRÞ model. References [56,57] have investigated the
constraints on the fðRÞ model for the case n ¼ 1=2. In
Ref. [56], the constraint from the CMB anisotropies
through the integrated Sachs-Wolfe effect is investigated.
However, the constraint is weak. Only the horizon-scale
Compton wavelength model is excluded. In Ref. [57], the
constraint from the cluster number count is investigated.
Though it is restricted to the case n ¼ 1=2, they obtained
jfR0j & 10�4, where fR0 is the value of fR at the present
epoch. In the case n ¼ 1=2, jfR0j is related to kc by

kc ’ 0:04

�
10�4

jfR0j
�
1=2

h Mpc�1: (28)

Reference [57] reports that kc & 0:04h Mpc�1 is ex-
cluded. The constraint is similar to our result, when the
redshift-space power spectrum (18) is used (see Fig. 8).
When an arguably more accurate model (27) is used, the
constraint becomes slightly weaker than that of (18) (see
Fig. 9).

V. FUTURE PROSPECT OF MEASURING
COMPTON SCALE

In this section, we estimate future prospects of con-
straining the Compton scale with the use of the Fisher
matrix technique, which is frequently used for estimating
minimal attainable constraint on model parameters. We
focus on the error of the Compton wave number kc. We
adopt the Fisher matrix of the form (e.g., [88])

Fij ¼ 1

4�2

Z kmax

kmin

dkk2
Z þ1

�1
d�

@Pgalðk;�Þ
@�i

@Pgalðk;�Þ
@�j

� V

ðPgalðk;�Þ þ 1= �nÞ2 ; (29)

where �i denotes a model parameter, V is a survey volume,
�n is a mean number density of galaxies.
In the Fisher matrix analysis, for simplicity, we consider

the 6 parameters kc, n, 	v, b0, b1, and �, adopting the bias
model of case 1. Figure. 10(a) shows the 1	 error �kc, in
determining the Compton wave number kc as a function of
the target value of kc, assuming a redshift survey like the

FIG. 9. The same as the Fig. 7 but with the covariance matrix
from the mock catalogs and the redshift-space power spectrum
(27). Only the curves with Peacock and Dodds’s formula for the
nonlinear matter power spectrum are plotted.

FIG. 10. (a) 1	 error �kc as a function of the target value of
kc. The result is based on the Fisher matrix analysis with the 6
parameters, kc, n, 	v, and b0, b1, and � for the bias model 1, and
marginalized over the 5 parameters other than kc. The target
parameters are b0 ¼ 2:5, b1 ¼ 0:5, � ¼ 1=2, and n is chosen
n ¼ 1=2; 1; 2; 4 from bottom to top, respectively. The other
parameters are fixed �0 ¼ 0:28, h ¼ 0:7, ns ¼ 0:96, and the
normalization 	8 ¼ 0:8 in the limit of the �CDM model.
Equation (18) with the Peacock and Dodds nonlinear fitting
formula is adopted. (b) The relative error �kc=kc corresponding
to (a). (c) and (d) are the same as (a) and (b), respectively, but
assumed the analysis where the full sample is divided into 3
redshift bins.
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SUMIRE (Subaru measurement of imaging and redshift of
the Universe) [9], which assumes the survey parameters
like those of the wide-field multiobject spectrograph
(WFMOS) survey [89], the range of the redshift 0:9< z <
1:6, the survey area 2000 square degrees, and the mean
number density �n ¼ 4� 10�4ðh�1 MpcÞ�3. Here we
adopted the target values 	v ¼ 400 km=s, b0 ¼ 2:5, b1 ¼
0:5, � ¼ 0:5, and n ¼ 1=2, 1, 2, and 4, from the bottom to
the top, respectively. The other parameters are fixed:�0 ¼
0:28, h ¼ 0:7, ns ¼ 0:96, and the normalization so as to be
	8 ¼ 0:8 in the limit of the �CDM model. We obtained
�kc by marginalizing the Fisher matrix over the 5 parame-
ters n, 	v, b0, b1 and �. Figure 10(b) shows the relative
error �kc=kc.

In the Fisher matrix we used the power spectrum in the
range of wave numbers k < 0:3h Mpc�1. This immedi-
ately implies that the redshift survey cannot be very sensi-
tive to the models with the short Compton wavelength, as
seen from Fig. 10. The error becomes very large for kc *
0:1h Mpc�1, but it will be possible to obtain a useful
constraint on the Compton scale, in principle, for models
with kc & 0:1h Mpc�1. However, the constraint becomes
weak for the case of large n.

Figure 10(a) assumes the power spectrum analysis with-
out dividing the full galaxy sample, which spans the red-
shift range 0:9 � z � 1:6, into redshift subsamples.
Figure 10(c) assumes the case when the galaxy sample is
divided into the three subsamples in redshift bins and that
the power spectra are obtained from each subsample. In
this case, the parameters 	v, b0, b1, and � should be fitted
in each redshift bin, and the total number of parameters in
the Fisher matrix analysis is 14. Figure 10(d) is the relative
error, corresponding to 10(c). The cosmological parame-
ters are the same as those of 10(a). The possible advantage
of this method is that the additional information of the
redshift evolution might improve the constraint. One can
see that the constraint is improved in comparison with
Figs. 10(a) or 10(b). The degree of the improvement is
small for n ¼ 1=2, but is not negligible for the case n ¼ 4.
This is understood because the redshift evolution of the
Compton scale is faster for larger n.

VI. SUMMARYAND CONCLUSIONS

In this paper, we determined a cosmological constraint
on the viable fðRÞ model based on the redshift-space
distortion by measuring the monopole and quadrupole
spectra of the SDSS LRG sample of DR 7. The monopole
and the quadrupole spectra are used to fit the bias parame-
ters and to constrain the growth factor and the growth rate
of the density perturbations, which depend on the Compton
scale of the fðRÞ model.

Our results show that the short Compton wavelength
model fits the data better, while the long Compton wave-

length model is excluded, though the constraint depends on
the evolution parameter n. For the case n ¼ 1=2, our
constraint is similar to that from the cluster number counts
reported in [57]. When we adopt a more accurate model for
the redshift-space power spectrum [90], the constraint
becomes slightly weaker. However, the long Compton
wavelength case of the fðRÞ model with the smaller value
of n is excluded. Our results exemplify that the redshift-
space distortion is quite useful in testing gravity theory. We
also demonstrated that a future redshift survey like the
WFMOS/SUMIRE is potentially useful in obtaining a
constraint on the Compton wavelength scale.
We acknowledge that the widely used theoretical model

of the anisotropic power spectrum adopted in the present
paper might need careful improvements. We adopted the
Peacock and Dodds formula and the Smith formula for the
nonlinear modeling of the mass power spectrum. Our
results do not significantly depend on the choice.
However, there might be a need to adopt a more sophisti-
cated formula for the precise nonlinear modeling within
the framework of the modified gravity, as demonstrated by
Koyama, Taruya, and Hiramatsu [91]. The treatment of the
finger of God effect in our paper was simple, which
assumed the exponential distribution function for the pair-
wise velocity and introduced one free parameter—the pair-
wise velocity dispersion. In reality it might not be an
adequate model to describe the nonlinear region of the
redshift-space power spectrum [87]. We checked the relia-
bility of our results by adopting the other possible model
proposed in Ref. [90], extensively applying the fitting
formula to the fðRÞ model, whose accuracy in this case,
however, has not been demonstrated. We found that there is
a non-negligible effect on the constraint on the fðRÞmodel.
Therefore, a more precise modeling of the redshift-space
power spectrum should arguably be needed in the future.
Concerning the modeling of the clustering bias, we
adopted a simple scale-dependent bias. Here too there is
potentially a lot of room for improvement. These issues are
outside the scope of the present paper, but need to be
elaborated for a precise test of gravity with the future
redshift surveys.
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