PHYSICAL REVIEW D 81, 103512 (2010)

Applicability of the linearly perturbed FRW metric and Newtonian cosmology
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It has been argued that the effect of cosmological structure formation on the average expansion rate is
negligible, because the linear approximation to the metric remains applicable in the regime of nonlinear
density perturbations. We discuss why the arguments based on the linear theory are not valid. We
emphasize the difference between Newtonian gravity and the weak field, small velocity limit of general

relativity in the cosmological setting.
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I. INTRODUCTION

The backreaction conjecture and perturbation theory

It has been proposed that the observed increase in the
expansion rate and the distance scale of the Universe at late
times relative to the matter-dominated homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) model
could be explained by the breakdown of the homogeneous
and isotropic approximation because of the formation of
nonlinear structures [ 1-5]. The effect of clumpiness on the
average expansion rate is called backreaction [6-8]; see
[9-11] for reviews. The exact Buchert equations for the
average expansion rate show that large variance can lead to
accelerated expansion as faster regions come to dominate
the volume [8]. This effect has been demonstrated with
exact toy models [10,12—16]. At late times there are devia-
tions of order unity in the expansion rate between different
regions, so this mechanism could also work in the real
Universe. The correct order of magnitude and time scale of
the change of the expansion rate have been shown to
emerge from the physics of structure formation in a semi-
realistic model without any free parameters [17,18]. The
relation between the average expansion rate and observa-
tions of light is also understood, though it should be
established more rigorously and details remain to be
worked out [19-21]. However, there is no fully realistic
calculation yet, and whether backreaction is important in
the real Universe remains an open question. The difference
between Newtonian gravity and the weak field, a small
velocity limit of general relativity [22-29] plays an im-
portant part in the problem. Therefore, quantifying the
importance of the growth of structures on the average
expansion rate requires treating a statistically homogene-
ous and isotropic but locally complicated nonlinear system
in general relativity.

However, it has been argued that the effect of nonlinear
structures on the expansion rate can be evaluated in linear
perturbation theory around the FRW metric [3,16,30-39],
sidestepping subtleties of nonlinear general relativity and
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the Newtonian limit. The argument is that even though the
density perturbation becomes nonlinear when structures
form, the corresponding metric perturbation in the longi-
tudinal gauge, calculated from the Poisson equation, re-
mains much smaller than unity, so the effect on the
averages is negligible. There are multiple problems with
this argument. Evaluating the effect on averages requires
going at least to second order, so using first order pertur-
bation theory is inconsistent, observables are not given by
the metric alone, but by the metric and its derivatives
(which can become large) and, finally, the linear equations
do not, in fact, apply once the density perturbation be-
comes nonlinear. In short, it is not enough to calculate the
magnitude of the effect in linear perturbation theory, the
applicability of the linear treatment also has to be
considered.

Some of these arguments have been addressed before
[5,8,10,17,21,40-42]. However, as they are being repeated
in the literature, it may be useful to discuss the issue in
more detail than in [5,10,17,21], and from a slightly differ-
ent perspective than in [8,40-42]. In Sec. II we consider
perturbation theory around the FRW metric and show why
the linear and second order calculations are not sufficient
for evaluating backreaction once the density field becomes
nonlinear. We then look at the full nonlinear equations for
the averages and consider the Newtonian limit. In Sec. III
we discuss previous work on this topic, and in Sec. IV we
summarize our conclusions and outlook.

II. PERTURBATIONS AND THE AVERAGE
EXPANSION RATE

A. The perturbative calculation
1. The Einstein equation and the metric

We assume that matter and geometry are related by the

Einstein equation
Gop = Top (2.1)

where G, is the Einstein tensor and T, is the energy-
momentum tensor; we use units in which 877Gy = 1,
where Gy is Newton’s constant. We assume that the matter
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can be described as dust,

Top = puqupg, 2.2)
where p is the energy density and u® is the velocity of the
observers, taken to be comoving with the dust.

The perturbed FRW metric in the longitudinal gauge is
(we consider only a spatially flat background and only
scalar perturbations)

ds* = —(1 +2®(t, x))dt* + (1

—2W(z, x))a(t)zéijdxidxj. (2.3)

The Einstein tensor for the metric (2.3) is
G% = —3H*(1 — 2®) — 2a2V>¥ + 6HW,
G*, =~ —(2H + 3H?)(1 — 2®) + 2¥ + 6HWV + 2HD
—a V(¥ - D) + a 203V — D),
G =a20,0,(¥V—®) (i #))

Go; =20,(V + HD), (2.4)
where = denotes dropping terms which are higher than first
order (or, later, second order; it should be clear from the
context which is meant) in ® or W, the dot denotes
derivative with respect to the background coordinate time
t, and no summation is implied in G*,. We also split the
velocity into the background and the perturbation, u® =
#* + ou®, and assume that du® is small. From the nor-
malization condition g,g u®uP = —1 it then follows that
u=1-0a.

With the energy-momentum tensor (2.2) and the
Einstein tensor (2.4), the Einstein equation (2.1) reduces,
at first order, to

3HX(1 — 2®) + 2a72V2V¥ — 6HV = p, (2.5)

2H +3H? — 2V — 6HV — 2H® + ¢ 2V2(V — ®)
—a 29V — ®) =0, (2.6)
9;0;,(¥ — @) =0, (2.7)
20;(V + H®) =~ —pdu,. (2.8)

Note that we have not made any assumptions about the
perturbations of p. From (2.7) it follows that ¥ — & =
A(t, x') + B(t, x*) + C(t, x*), where A, B, and C are arbi-
trary functions. We are mostly interested in the situation
when the perturbations are statistically homogeneous and
isotropic, in which case A = B = C = 0, and we assume
this from now on. (The condition ¥ — ® = 0 would also
follow from the technical requirement that the Fourier
transform of ¥ — & exists.)
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2. The static case

Let us first consider the static case H = 0, and choose
a = 1. The set of equations (2.5), (2.6), (2.7), and (2.8)
reduces to

V2D =~ p, (2.9)
® =0, (2.10)
20,® =~ —pébu,. (2.11)

To be consistent with neglecting terms which are second
order in @, we should discard the right-hand side of (2.11),
because according to (2.9), p is of order ®. We then obtain
the result ® = Ar + B(x), where A is a constant and B(x)
is determined by the density via (2.9). It is possible for p to
have large variations without ® becoming large or the first
order treatment becoming invalid. (This is the case in the
solar system, for example.) However, in that case there is a
slight inconsistency in the treatment, because we have
assumed that V2 = %p is small. If p is allowed to be
large, we should equally treat V>® as a large term, so
products such as ®V2® should not be discarded. However,
we should then take into account second order terms in the
metric, because they can be of the same order. Let us look
at this in more detail in the cosmological situation.

3. The cosmological case

With H # 0, the Einstein equations (2.5), (2.6), (2.7),
and (2.8) read

3H2(1 — 2®) + 2a72V2® — 6HD = p, (2.12)
2H +3H? — 2d — 8HD =0, (2.13)
20,(d + HD) = — pdu,. (2.14)

As is usual, we assume that the background and first
order equations are separately satisfied. This follows if we
assume that the average of @ over the background space
vanishes. We split the density into the background value
and the perturbation, p = p + §p, but do not assume that
op is small. We then have

3H? = p, (2.15)

2a7V2D — 6H*D — 6HD = 6p, (2.16)
2H + 3H? =0, (2.17)

b +4HD =0, (2.18)

Su; = —%ai(cb + HD). (2.19)
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Equations (2.17) and (2.18), which come from the
pressure-free condition (2.13), determine the evolution of
a and ®, regardless of the energy density. They lead to the
standard relations a « 23, ® = A(x) + B(x)r~5/3, where
A and B are arbitrary functions. According to (2.15) and
(2.16), the density contrast 8 = 8p/p is related to @ by

2

5—7v2¢>—2¢—3¢.
H

= 3eH? (2.20)

We have nowhere required that 6 should be small, so one
could at first sight think that (2.20) applies even when &
becomes of order unity, as long as ® remains small,
analogously to the static case. (In the static case p = 0,
so 4 is not defined, but the variation of p between different
regions of space can be large.) Keeping to the linear theory,
this is not true. The time evolution of ® is determined
independently of p, and inserting ® = A + Br~5/? into
(2.20) shows that, dropping the decaying mode, the density
contrast has a constant part and a part which is proportional
to a. Therefore 6 grows without limit. For an underdense
region, 6 cannot go below —1, so this evolution is clearly
not correct as & becomes of order unity. The behavior is
also wrong for overdense regions, as is well known from
the spherical collapse model [43] (see [44] for reviews).

For the volume expansion rate 6 = V ,u® we have

6 ~3H — 3(d + HD) + 9,u’ = 3H(1 — 3b — 15),
(2.21)

where we have dropped the decaying mode of ®. (For the
expression in terms of the proper time measured by the
observers, see [5].) It is clear that the expansion rate given
by the linear theory is wrong when & becomes of order
unity.

4. The reason for the breakdown

We have assumed that the Einstein tensor and the ve-
locity u® can be expanded linearly in the metric perturba-
tions. We have found that the observables calculated using
this procedure fail to describe the real behavior when 6 ~
V2®/(aH)? becomes of order *1, even if ® would seem
to remain small, so the linearly perturbed metric would
appear to be valid.

The reason is that in neglecting all terms which are
second order in ®@, we have implicitly assumed that terms
such as ®V2>®/(aH)? are much smaller than ®, i.e. that
|V2®/(aH)?*| ~ |8] < 1. To extend the calculation into
the regime |8| = 1, we would have to expand to second
order in @. But to do this consistently, we have to include
the intrinsic second order terms in addition to the squares
of first order terms. Indeed, the distinction between the two
is gauge dependent [45], as first order quantities are not
invariant under second order gauge transformations. And at
second order, the metric cannot be written in the simple
diagonal form (2.3) [46]. It may be that the effect of the
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second order terms is small for a particular quantity of
interest, but this has to be determined via a consistent
calculation.

Effectively, there are three expansion parameters: O,
0;®/(aH), and V?>®/(aH)*> ~ 8. (No higher derivatives
appear, because the Einstein equation is second order.) The
formal perturbation expansion is defined in powers of the
metric perturbation, treated as an infinitesimal quantity
[47]. However, in the real Universe, the metric perturbation
has a finite amplitude, so the gradients can make the other
expansion parameters large even when ® remains small.
The gradient is a dimensional quantity, so a comparison
scale must enter. In cosmology, the relevant scale is aH,
and since aH decreases in a decelerating FRW universe,
gradients become more important with time. We can also
view this as follows: for a time-independent ®, the magni-
tude of V2® is fixed in time, while the curvature scale of
the Universe, to which it is compared, decreases. This kind
of an instability is not present in the static case.

In a situation with multiple expansion parameters, per-
turbation theory can be expected to remain valid when all
parameters are small, and to fail when all of them are large.
When some parameters become large while others remain
small, the validity of perturbation theory depends on the
system, and on the quantity under consideration. In cos-
mology, the metric (2.3) is simply the first order term in an
expansion, and when gradients of the metric perturbation
become large, higher order terms can no longer be ne-
glected. This does not necessarily mean that all first order
results are wrong: a consistent calculation with higher
order terms may show that some linear relations are valid.
However, this cannot be determined using the linear theory.

For backreaction, the important quantity is the average
expansion rate. (The primary quantities are of course ob-
servables defined in terms of measurements of light; for the
connection to the average expansion rate, see [19-21].)
One might argue that even if the linear theory fails to
correctly describe the local quantities when density pertur-
bations are nonlinear, the effect on the averages never-
theless remains small. To address this issue, let us see
what happens when we expand to second order.

5. The average expansion rate at second order

Taking the metric (2.3) and calculating 6§ = V_ u® to
second order in @, we obtain (we take ® = 0; see [5] for
the general expression)

118 H
0=3H, +—  —=0,P;P
45 (aH)?
2 H 2 1
—=—=0; a-<I>+<I>a-<I>———a~<DV2<I>>,
3 (aH)? ’(’ Y 3 (aH) !

(2.22)

where H, = 2/(37) is the background expansion rate in
terms of the proper time 7 of comoving observers. The last
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term, with four derivatives, is of order 82, so there are large
local variations in the expansion rate. Averaging (2.22) on
the hypersurface of constant proper time, we obtain [5]

22 22 1
X (3,(®a, D)), + 287 i 370, <1>>>o)

(2.23)

where () is a proper average with the correct volume
element, (), is an average taken on the background hyper-
surface of constant proper time, without perturbations in
the volume element, and we have assumed (®), = 0. It is
noteworthy that the term with four derivatives, which has
the largest amplitude locally, is a boundary term. Before
discussing this feature, let us note that this calculation is
not consistent, because we have used the first order metric
to calculate a second order quantity, i.e. we have neglected
intrinsic second order terms. To obtain a result which does
not depend on the gauge, it is necessary to truncate the
metric consistently at second order instead of first order.
The result is then [45]"

() =~ 3HT< 257 @ H)2<a iPa; ),
3 G @Dy
16 1 ,
185 T PP — 010,00 jcp)>0). (2.24)

Comparing (2.23) and (2.24) shows that the first order
calculation in the longitudinal gauge happens to give
qualitatively the right answer, but the coefficients of the
terms are wrong. (In first order perturbation theory, doing
the calculation in the synchronous comoving gauge, for
example, would give a qualitatively different result.) Note
that there is nothing in the result of the first order calcu-
lation that would indicate that the answer is wrong. An
average of a total derivative can be converted into a surface
integral of a flux through the boundary. If the distribution is
statistically homogeneous and isotropic, there is no pre-
ferred direction, so the integral vanishes (up to statistical
fluctuations). (In perturbation theory, the technical require-

'As an aside, in [45] it is assumed, as is usual, that the
equations are satisfied separately order by order in perturbation
theory. While this procedure is self-consistent, there seems to be
no rigorous justification for it beyond first order. At first order,
the equations for the background and perturbations decouple,
assuming that the average of the perturbations vanishes. Starting
at second order, the average of the perturbations does not vanish,
so decoupling of the background and perturbations is an extra
assumption.
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ment that ® can be expanded in Fourier modes would lead
to the same conclusion.) With vanishing boundary terms,
the correction to the mean is ~(9,®9,®),/(aH)?, which is
of the order 107 for a realistic linear theory power spec-
trum. To see the failure of the linear theory expanded to
second order, we have to work with the second order
metric. With the metric truncated at first order, it is impos-
sible to determine the magnitude of the higher order terms
which are neglected. As the intrinsic second order terms
are as large as the first order terms squared, the question
arises as to the magnitude of the terms which are even
higher order. While calculating the coefficients of the
various terms would be an involved task, it is straightfor-
ward to write down their general form.

6. The general structure of the corrections

At second order, the possible correction terms are the
squares of the three expansion parameters, (D?),
(0;D0,®)y/(aH)?, and (VZDV>D),/(aH)* ~ (6?). (The
quantity (®V2®d), is equal to —(3,; P9, D), up to a bound-
ary term.) For simplicity, we take ® = 0. As long as |®| ~
H|®|, taking into account time dependence would simply
introduce more terms of the same order of magnitude, and
would not lead to any qualitative change. When the aver-
age expansion rate is expressed in terms of the proper time
7 (as opposed to the unphysical coordinate time f), P
appears in the expansion rate only with derivatives acting
on it [48]. This is to be expected, because if ® depends
only on time, it corresponds to using a different time
coordinate, not to having a physical degree of freedom.
Assuming that the higher order equations are satisfied
order by order and the perturbations are Gaussian, all
higher order terms from scalar perturbations factorize
into products of these three expectation values, since they
are sourced by the first order terms. In contrast, vector and
tensor perturbations (which necessarily arise at higher
orders) have solutions which do not need to be supported
by a source, so their contribution cannot be completely
expressed in terms of the first order seed fields. (See [46]
for the second order case.) However, such terms are ex-
pected to be subdominant to the scalar perturbations in the
nonlinear regime.

We now return to the feature that at second order, the
term with the highest number of derivatives (and therefore
locally the largest amplitude) is a boundary term and as
such vanishes upon averaging, up to statistical fluctuations.
In [5] it was argued that at higher orders there might not be
such a cancellation for the leading terms. However, in [49]
it was realized that because each factor of 9;/(aH) is
accompanied by one power of the speed of light ¢, the
terms with the highest number of spatial derivatives are the
ones which dominate in the Newtonian limit ¢ — . In
Newtonian gravity, the backreaction correction is exactly a
boundary term [7]. Thus, in general relativity the term with
the highest number of spatial derivatives at each order in
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perturbation theory is a boundary term.” The general struc-
ture of the corrections from scalar perturbations to the
average expansion rate is therefore (see also [40])

L3000, 3 A0 + ),

(0) = 3HT<1 + P >,

(2.25)

where A, are constants and ... indicates subleading terms
with a smaller number of derivatives, such as (9;P9; P)j X
(8%)a~™/(aH)*™, with n = m = 1. In powers of ®, the A,
term is of order 2n + 2. The term {52), can appear at fourth
order in @ at the earliest, where the leading correction is
(0;9,®)y/(aH)*> X (§%). This term grows without
bound with increasing |5], so the breakdown of the pertur-
bative expansion is transparent. None of the coefficients A,
have been calculated. It is possible to determine A; in third
order perturbation theory, which is being developed [50],
without a full fourth order calculation [51]. However,
calculating A; would be inconclusive, because at every
order, there are an increasing number of terms that grow
even faster as | 8| becomes of order unity.

In [40] it was argued that the series (2.25) would have
only a finite number of gradient terms when ® is taken as
the full metric perturbation and not only the linear part (and
¥ # & is included). However, this is not the case: for a
metric of the form (2.3), the velocity u’ (and thus also )
expanded as a series in @ necessarily contains an infinite
(or zero) number of spatial derivatives [5]. And as we have
noted, beyond first order, the metric cannot be written in
the form (2.3) [46].

From the fact that the series (2.25) would naively seem
to diverge at (62), ~ 1 we cannot conclude that the sum of
the correction terms would be large. However, we can
definitely say that the series expansion does not prove
that the correction would be small when ® is small. The
magnitude of the effect has to be established with non-
perturbative methods, or a resummation of the series. For
studies in the spherically symmetric situation where the
exact solution is known, see [16,52-55]. In particular, [55]
shows that it is possible to have a large effect on the
observable distance-redshift relation even when the metric
can be written in the form (2.3) (at least on the light cone).
These models are not conclusive of the cosmological situ-
ation, which is not spherically symmetric.® Different re-
summation schemes have been applied in Newtonian
cosmology [56], and it would be interesting if such meth-
ods could be extended to general relativity.

We would still expect to recover linear equations for
perturbations with wavelengths much larger than the size

2Assuming that the leading order general relativity result
reduces to the Newtonian theory at all orders. As we discuss
in Sec. II B, this is not necessarily true. If that is not the case, the
series (2.25) is even more divergent.

*Note that in [54] the average spatial curvature is small, so it is
clear that backreaction is not important.
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of the structures, as is usual in statistical physics. These
should look similar to perturbation equations around the
FRW Universe, with correction terms due to the underlying
structure [10]. This is also suggested by the success of
FRW perturbation theory in describing observations of
large-scale structure. Such equations would be analogous
to the Buchert equations, which look like FRW equations
with correction terms, though their physical content is
different, as they involve only average quantities and not
local expansion. The effect of backreaction cannot be
described merely as a change in the FRW background
[10,17,19,21], unlike argued in [38,57,58]. Even though
the average expansion rate will always agree with that of
some FRW model, other observables will in general not be
the same as in that FRW Universe. In particular, the
relationship between the average expansion rate and the
luminosity distance is different than in FRW models if
backreaction is important [19,21,59,60].

We have discussed perturbation theory as it is most
commonly formulated, by adding perturbations on top of
a background (and previous perturbations). The alternative
is to take the full nonlinear system and linearize it. In
cosmology (unlike in the spherically symmetric case) we
cannot write down the exact solution to linearize. However,
itis at least possible to build perturbation theory by starting
from the full exact equations, written in the covariant
formalism, and linearize around the FRW solution [61—
63]. This has the benefit that all terms are included to begin
with, so it is transparent to estimate what is being dropped,
unlike in the case when perturbations are added to a
background order by order. In addition, the covariant for-
malism deals only with measurable quantities and the
physical spacetime, so there are no gauge artifacts.
Instead of a perturbative analysis, we go directly to the
exact nonperturbative equations for physical insight into
the effect of perturbations becoming large. A comparison
of the general relativistic and Newtonian cases is also
instructive, given that backreaction vanishes in the latter,
for a statistically homogeneous and isotropic distribution.

B. The Newtonian limit
1. The Buchert equations

If the matter is irrotational dust, the exact equations
which describe the effect of inhomogeneities on the aver-
age expansion rate () = 39,a/a in general relativity are
[8] (for the case with nondust matter or rotation, see
[21,64-66])

2
3 a;“ = —47Gn(p) + 9, (2.26)
d,a)? 1 1
3! ;‘Z) =87Gx(p) (R —5Q, (22D
d
0:(p) +3(p) =0, (2.28)
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where G)R is the spatial curvature and Q is the backreac-
tion variable defined as

Q =36 —(6)) — 2A0?),

where o is the shear scalar. The integrability condition
between (2.26) and (2.27) is

(2.29)

d,a

ax@m+2%§@m%=—mQ—6 Q. (230

a
If © = 0, we have (P R) « a~2; in particular, this holds for
all exactly homogeneous and isotropic universes [67]. The
system of equations (2.26), (2.27), and (2.28) closes once
we are given Q or (PR); because of the integrability
condition (2.30), the effect of clumpiness can be viewed
equivalently in terms of either quantity. The Raychaudhuri
equation (2.26) together with (2.29) shows that, apart from
a possible (P R) o« a2 term, deviations from homogeneity
and isotropy have a large effect on the average expansion
rate only when the variance of the expansion rate is large,
and is not canceled by the shear (or the shear is large, and is
not canceled by the variance). This shows that (6%), = 1 is
not a sufficient condition for a large effect on the average
expansion rate. However, it is necessary that the deviation
of the expansion rate from the mean is large in a large
fraction of space (assuming that the deviation is at most of
the same order of magnitude as the mean, which is true in
cosmology).

2. Newtonian gravity and beyond

In Newtonian gravity, the counterparts of the
Raychaudhuri equation (2.26) and the conservation equa-
tion (2.28) are identical to the relativistic equations, but
there is no analog of the Hamiltonian constraint (2.27). The
variance of the expansion rate and the shear combine to
give a total derivative, so @ reduces to a boundary term
[7]. df the vorticity is nonzero, it is included in this
boundary term.) Thus, if backreaction is important in a
statistically homogeneous and isotropic universe, this must
be due to non-Newtonian aspects of general relativity
[10,11,17,40,41,49,68].

In the expansion (2.25), all correction terms are post-
Newtonian. The term ¢*(9;®9,®),/(aH)?, which may
be identified as the square of a peculiar velocity,
v?/c?, suppresses the post-Newtonian terms. However,
the terms it multiplies can become very large as
cHV2OV2 D) /(aH)* ~ (8%), grows. This demonstrates
that in general relativity, non-Newtonian effects can be
important even when velocities are small and fields are
weak. An exact example is given by rotating and expand-
ing dust. In general relativity, there are no dust solutions
which have nonzero expansion and rotation but zero shear
[69]. However, in Newtonian gravity such solutions are
exactly known [22,25]. Analysis of the Newtonian theory
in this case would be misleading, because the Newtonian
solutions betray no sign of the fact that starting from
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general relativity, they do not exist, even at small velocities
and weak fields.*

This issue arises due to the indeterminacy of Newtonian
cosmology, which is related to the absence of Newtonian
analogs of the magnetic component of the Weyl tensor’
and the evolution equation of the electric component of the
Weyl tensor [22,24,26,28,29,71,72]. Newtonian cosmol-
ogy is only defined up to boundary conditions [24,28,29].
This shows up in the fact that Q is a boundary term, and
the average expansion rate is determined by what happens
at the boundary. In general relativity this is not the case,
and backreaction is given by integrals over the volume.

If the volume considered has periodic boundary condi-
tions or is statistically homogeneous and isotropic, then in
Newtonian gravity Q vanishes, and the first integral of the
Raychaudhuri equation (2.26) leads to an equation which
looks like the Hamiltonian constraint (2.27) with © =0
and (¥R) = Ea~2, where E is a constant of motion which
may be identified with (being proportional to) the con-
served energy of the isolated system. In relativistic cos-
mology, the conserved energy is replaced by spatial
curvature, which has no physical analog in Newtonian
gravity, so the interpretation of this term is different in
the two theories, even in the FRW case. There is no
conservation law for the spatial curvature in general rela-
tivity, so (¥’ R) can evolve in a nontrivial manner, unlike the
total energy of an isolated Newtonian system [17,68]. The
equivalent statement in terms of the backreaction variable
@ is that in Newtonian gravity the variance of the expan-
sion rate always equals 3 times average shear scalar (up to
a boundary term), as we see from (2.29), while in general
relativity there is no such constraint.

In second order perturbation theory we have, dropping
boundary terms and taking ® = 0,

0 — oy =2 T reviey, ~ (591
9 (aH)* 0 o
4 H? 1
2\~ 2 2 ~ 2 (S2\ 172
50 1

where the second approximation holds if @ is small com-
pared to its gradient. Second order relativistic perturbation
theory around a spatially flat FRW background is close to
Newtonian gravity in the sense that there is an exact
cancellation between the variance and the shear, so @ =
0. The variance and the shear can be calculated using first

“This underlines the fact that it is not sufficient to look at the
Newtonian limit of the equations of general relativity, but it is
necessary to consider the limit of solutions, because in general
the operations of taking the limit and solving the equations do
not commute [23,25,70].

5 . . . .

We can equivalently say that in Newtonian gravity the mag-
netic component vanishes identically.
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order theory, because they vanish for the background [51].
There is only a single non-Newtonian term, the spatial
curvature, which is proportional to a~? according to the
integrability condition (2.30). To determine the coefficient
of this term, it is necessary to go to second order.

Already in first and second order perturbation theory the
variance and the shear are large. A large backreaction
effect in general relativity does not require the variance
of the expansion rate to be larger than expected; it is
enough that the cancellation with the shear is not perfect,
unlike in Newtonian cosmology. However, the spatial cur-
vature does have to become large [10,17,73]. In a realistic
cosmological setting, this is easy to understand. The spatial
curvature of the initial overdense and underdense regions
averages to zero in the linear regime, but once perturba-
tions become nonlinear, the evolution of overdense and
underdense regions is different, and the average will in
general deviate from zero. It is to be expected that if the
volume of the Universe becomes dominated by underdense
voids which expand faster than overdense regions, the
average spatial curvature will be negative.

Comparing Newtonian gravity and general relativity in
cosmology is different than in the case of isolated, asymp-
totically flat systems. For isolated systems, both Newtonian
gravity and general relativity are well defined. In contrast,
while relativistic cosmology is well defined there is no
unique Newtonian theory of cosmology, because the
Newtonian equations are only defined up to boundary
terms which have to be specified at all times [24,28,29].
(We could alternatively say that Newtonian gravity is a
theory of isolated systems only, and there are an infinite
number of possible generalizations to the cosmological
setting.) This shortcoming of the Newtonian theory is often
hidden in cosmology by the assumption of periodic bound-
ary conditions (sometimes implicitly through the use of
Fourier series). For periodic boundary conditions,
Newtonian cosmology does have a well-defined initial
value problem [28,74], at least to all orders in perturbation
theory, but this situation does not correspond to the real
Universe, which is not periodic on the observed scales.

So in the cosmological context, post-Newtonian correc-
tions refer to the difference between a realistic relativistic
cosmological model, which is thus far not tractable, and a
Newtonian model which is defined only when it does not
correspond to the real situation. In particular, it is not
possible to estimate backreaction from usual N-body simu-
lations, because the relativistic degrees of freedom are
absent. Relativistic cosmological simulations would in
principle provide an answer. The initial conditions, the
matter model, and the equations of motion are known
and well defined, but solving the system in full generality
is not computationally feasible. It would be interesting to
obtain a reduced system that would retain the relevant
relativistic degrees of freedom while being tractable.
Because relativistic cosmology is not sensitive to boundary
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conditions in the same way as Newtonian cosmology, the
periodicity required for a numerical implementation would
not be a crucial limiting factor.

One check on the correctness of the Newtonian treat-
ment in the nonlinear regime is provided by comparison of
N-body simulations with observations of structures. (In the
simulations, matter with negative pressure or modified
gravity is introduced to change the background expansion
rate. Without such an addition, observations of the expan-
sion rate and the distance scale are, of course, already
completely discrepant with the Newtonian model.) On
large scales significant differences between the simulations
and observations have been reported. The observed homo-
geneity scale is an order of magnitude larger than in
N-body simulations [75], and the number of very luminous
superclusters is about 5 times larger in observations than in
simulations [76]. Whether this reflects a deficiency of the
Newtonian treatment, or instead indicates a problem in the
way simulations are done or the observational data are
analyzed is not clear. The discrepancy could also be due
to an incorrect choice of initial conditions, matter content,
or theory of gravity.

Relativistic dust models which are Newtonian-like are a
very restricted class [77]. The close relation of linearly
perturbed relativistic FRW models and Newtonian gravity
may be misleading because Newtonian-like models suffer
from a linearization instability. In general relativity, the
Newtonian constraint that the magnetic component of the
Weyl tensor vanishes identically is, in general, not propa-
gated in time. However, in the linear theory, the constraint
is trivially satisfied at all times. There are thus linear theory
dust solutions which are not the limit of any nonlinear
solution. More importantly, this shows that relativistic
dust models do not, in general, have Newtonian counter-
parts and their evolution cannot be described in Newtonian
theory. For practical applications in cosmology, the impor-
tant issue is the quantitative importance of the non-
Newtonian features, which depends on the solution under
consideration. For addressing this question it would be
useful to understand better the relation between the evolu-
tion of the electric and magnetic components of the Weyl
tensor and spatial curvature in the context of cosmological
structure formation.

III. COMPARISON TO PREVIOUS WORK

Arguments in linear theory

There have been various claims that backreaction in the
real Universe is negligible [3,16,30-39]. In particular, it
has been argued that the relative magnitude of backreaction
corrections is given by the square of the peculiar velocity.
All these studies, except for [31,38], expand quantities
calculated with the first order metric to second order,
which, as we have seen, is not in general consistent.
Often the physical expansion rate, proper time, and hyper-
surface of averaging are also not correctly identified. That
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was first done in [5], while the first consistent second order
calculation was done in [45]. Let us discuss some of the
other shortcomings of these studies.

A numerical estimate of the correction to the expansion
rate from expanding the first order metric to second order
was first given in [30]. In [31] the Zel’dovich approxima-
tion was used to obtain the second order metric and calcu-
late corrections to the expansion rate. In [3] the correction
to the Einstein equation was calculated in the same manner.
In [34,36,38] a calculation similar to the one in [5,45] was
done, with some variations. (In [36], the perturbation of the
volume element was inconsistently neglected.) In [32] a
similar calculation for the correction to the 00-component
of the Einstein equation was done, and nonlinear scaling
relations were used for the density power spectrum, but this
cannot compensate for using only the linear metric. As
discussed in Sec. IT A, such calculations lead to the cor-
rection term (9,9, ®),/(aH)?, which is of the order 107>,
(In [31], the value 103 was obtained instead.) This result
is the origin of the idea that the magnitude of backreaction
is given by the square of the peculiar velocity, because at
second order we have (9,®9,D)y/(aH)> ~ (u;u'),.
However, beyond second order, the expansion parameter
(8%), is also involved, so the second order calculation is
inconclusive, and (9,®0,®),/(aH)*> < 1 is not a sufficient
condition for small backreaction.

As an aside, note that u' is the (spatial component of the)
deviation of the physical velocity of observers comoving
with the dust fluid from a fictitious background velocity.
This is a coordinate-dependent quantity, and we can always
set u' = 0 by choosing coordinates which are comoving
with the observers. In order to determine a physical pecu-
liar velocity, we have to define another physical velocity
field to compare u® to [78]. (In the longitudinal gauge in
the linear theory, u;u’ does give the physical magnitude of
the deviation from uniform motion.)

In [33] it was asserted that the linear metric (2.3) (or the
equivalent with a spatially curved background) describes
the Universe on all scales, except in the vicinity of black
holes and neutron stars. It was then claimed that if the
conditions |P| < 1, |D|2 <« a729,D9,D, (9,D9,D)> <
9;0;99,;0,;® hold, nonlinear corrections are negligible. In
fact, the metric (2.3) cannot (with a dust source) simulta-
neously describe the static metric in the solar system and
cosmological expansion, as is clear from the expressions
for # and 6 in (2.20) and (2.21) together with (2.18). We
can either use the metric with H = 0 to describe a static
structure or take H # 0 to describe a cosmologically
evolving region, but these conditions are obviously mutu-
ally incompatible. Apart from the inconsistency of using
the linear theory to calculate second order quantities, if we
nevertheless took (2.3) and expanded observables in terms
of @, then at fourth order and higher we would expect to
obtain terms involving (82%),, which are not necessarily
small. (Of course, these corrections are meaningless with-
out accounting for the intrinsic higher order terms.)
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It was also argued in [33] that since the average expan-
sion rate depends on the choice of the averaging hypersur-
face, accelerated expansion could arise as a gauge artifact.
However, we should distinguish three different concepts,
namely, gauge dependence, coordinate dependence, and
dependence on the averaging hypersurface. Gauge depen-
dence arises due to ambiguity in the mapping between the
perturbed physical spacetime and a fictitious background
spacetime. When points of the fictitious and real spacetime
with the same coordinate values are taken to map to each
other, gauge dependence reduces to choice of coordinates,
but in general it is a distinct issue. In the covariant formal-
ism with the full nonlinear equations, we deal only with
physical quantities and the real spacetime, so there is no
gauge issue. As all quantities are defined covariantly, in-
dependent of the choice of coordinates, the dependence on
the coordinate system appears only in the usual transfor-
mation properties of tensors under coordinate changes. In
particular, covariantly defined averages of scalar quantities
such as the volume expansion rate do not depend on the
coordinate system when expressed in terms of a physical
observable such as the observer’s proper time [45]. They
do, however, depend on the choice on the averaging hyper-
surface [48,79,80]. The reason is that the averaging hyper-
surface is a physical issue, unlike coordinates or gauge. For
irrotational dust, there is a preferred foliation which is
orthogonal to the fluid flow, and which coincides with the
hypersurface of constant proper time [10,17,41]. However,
the hypersurface should be chosen based on analysis of
observables, and cannot be determined on abstract mathe-
matical grounds [10,19,21]. Any average quantities are of
course useful only insofar they give an approximate de-
scription of what is actually measured. (For discussion of
gauge invariance in averaging, see also [66,81].)

In [35] the linear metric was again expanded to second
order. It was assumed that the average energy density is the
same as the background energy density, which is not true
beyond first order. Accordingly, one obtains equations
which are inconsistent [17]. It was also argued that back-
reaction vanishes in a2 + 1-dimensional model. This is not
surprising, because in 2 + 1 dimensions, the integral of the
spatial curvature is a topological invariant. Therefore it
cannot evolve in time, similarly to the total energy of a
Newtonian universe discussed in Sec. II B [17]. Therefore,
in 2 + 1 dimensions, backreaction can only give Q o« a4,
and it is not clear whether the coefficient can be nonzero.
[This follows from the 2 + 1-dimensional analog of (2.30):
in d + 1 dimensions, the last term on the right-hand side is
—2d%4Q ]

In [16,37] an iterative calculation was done in the mac-
roscopic gravity formalism [82], which is an extension of
general relativity. We are interested in what happens in
general relativity, but let us note that the method of [16,37]
was to take the first order metric, expand to second order to
obtain a new background, and then repeat the process. This
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way, one never moves beyond first order perturbation
theory. As we have seen, in general relativity the higher
order terms in general do not have the same form as the first
and second order terms, so this kind of an analysis would
not be correct there.

In [39] quantities were expanded to second order in the
linear metric, with the wusual result. The correction
(0;®9,®),/(aH)*> X p ~ v*p was identified with a pres-
sure term. For clarity we note that the pressure measured
by observers comoving with dust is zero by definition. The
physical interpretation of the second order correction is
spatial curvature, not pressure. To determine the pressure
(and anisotropic stress and energy flux) generated in the
process of structure formation, it is necessary to go beyond
the ideal fluid treatment [83]. For the importance of non-
dust terms for backreaction, see [21].

Let us also comment on some studies which claim not a
small, but instead a possibly large backreaction effect from
perturbation theory.

A series expansion similar to (2.25) was presented in
[49]. It was argued that the expansion parameter is not
(8%), but a quantity which becomes of order unity around
the present time. However, the expansion in [49] is incor-
rect, because it does not take into account the factorization
of higher order terms into two-point functions and the
constraint that a nonzero two-point function must contain
an even number of momenta [17]. The only preferred era in
the perturbative expansion is (52), = 1, signifying the
formation of the first generation of gravitationally bound
objects. For typical models of supersymmetric dark matter
this happens around a redshift of 40—-60 [84], considerably
earlier than the present day. [As discussed above, the fail-
ure of the simple perturbative expansion (2.25) at (8%), =
1 does not alone indicate that backreaction would be large.]

In [85] first order theory expanded to second order was
used to estimate backreaction and compared to observa-
tions. Apart from the question of the applicability of first
(or second) order perturbation theory, the correction term
used is qualitatively wrong, because the momentum scale
in the integral is misidentified with the size of the averag-
ing domain (the suppression of the leading correction due
to the fact that it is a boundary term is also neglected); see
Sec. 5.1 of [17].

IV. CONCLUSION

If we consider cosmological perturbations which are
initially small and Gaussian with zero mean, it is necessary
to go at least to second order to find their effect on the
average expansion of the Universe, called backreaction.
Nevertheless, taking the first order metric in the longitudi-
nal gauge and expanding quantities to second order seren-
dipitously gives almost the correct second order result
[5,45]. At second order, the perturbations only lead to a
spatial curvature term with an amplitude of 107>, Several
papers have thus claimed that backreaction is negligible in
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the real Universe, based on the argument that the linear
metric is a good approximation even when density pertur-
bations are nonlinear.

We have discussed why the linearly perturbed FRW
metric does not in general correctly describe the situation
once density perturbations become nonlinear. The effect on
the average expansion rate vanishes at the linear level by
construction, and at second order, the intrinsic second
order terms are of the same order as squares of the first
order terms (in fact, the division between the two is gauge
dependent). At higher orders, generic correction terms
become larger than unity as density perturbations become
nonlinear. This does not necessarily mean that the effect on
the average expansion rate is large, simply that the naive
perturbative expansion is no longer valid.

The important question is not in which form the metric
can be written, but what happens to measurable quantities.
For this purpose it is useful to consider the covariant
formalism, which deals only with physical degrees of free-
dom and is fully nonlinear. The effect of deviations from
homogeneity and isotropy is quantified by the Buchert
equations, which show that the average expansion rate
will significantly deviate from the FRW behavior when
the variance of the expansion rate is of order unity and does
not cancel against the shear (or vice versa) [8]. Even in the
linear (and second order) theory, the variance of the ex-
pansion rate becomes of order unity as density perturba-
tions become nonlinear. However, there is no significant
backreaction in relativistic second order theory because the
variance cancels exactly against the shear apart from a
boundary term, a feature shared by nonlinear Newtonian
gravity. In exact general relativity, there is no such cancel-
lation, so Newtonian theory is not sufficient for evaluating
backreaction.

Determining whether structure formation in the real
Universe leads to a large enough variance for backreaction
to be important requires dealing with a locally complex
nonperturbative system in general relativity. However, de-
tails of the local behavior are not needed, statistical infor-
mation about the distribution of the expansion rate in
different regions is enough. A semirealistic statistical cal-
culation found a rise of 10%-30% in the expansion rate
relative to the FRW value around a time of 10 X 10° years
[17,18], which agrees with the observations within an order
of magnitude. The calculation involved several approxi-
mations, and a more careful treatment is needed. In par-
ticular, the difference between relativistic and Newtonian
cosmology should be better understood to isolate the rele-
vant relativistic degrees of freedom, related to spatial
curvature and the electric and magnetic components of
the Weyl tensor.
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