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We investigate consequences of an ultraviolet fixed point in quantum gravity for the cosmological

constant. For this purpose we perform dimensional reduction of a general dilatation-symmetric effective

action � in dimension d > 4 to an effective four-dimensional theory of gravity with a dilaton field. We find

a stable flat phase in the space of the extrema of � which results in a vanishing four-dimensional

cosmological constant �. In order to understand the self-tuning mechanism leading to � ¼ 0 we discuss

in detail the most general warped geometries with maximal four-dimensional symmetry and SOðd� 4Þ
isometry of internal space. While the solutions of the d-dimensional field equations admit singular spaces

with arbitrary �, the extremum condition for � imposes additional restrictions which result in � ¼ 0. In

cosmology, the dilatation-symmetric fixed point may only be reached for asymptotic time t ! 1. At finite

t dilatation anomalies result in an effective potential and mass for the pseudodilaton or cosmon and in dark

energy.
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I. INTRODUCTION

The possible importance of a dilatation-symmetric fixed
point for the understanding of the cosmological constant
problem has been stressed long ago [1–3]. This fixed point
may be associated with an ultraviolet fixed point of quan-
tum gravity, as found [4] in functional renormalization
group studies of the asymptotic safety scenario [5].
Indeed, a fixed point is typically visible not only in the
running of couplings with varying momentum, but also for
suitable varying background fields. The close correspon-
dence between momentum flow and background field flow
has been established first for four-dimensional scalar theo-
ries [6], but holds in a much wider context. In the region of
field space which is dominated by the fixed point the
quantum effective action � must be dilatation invariant,
whereas close to the fixed point small ‘‘dilatation anoma-
lies’’ govern the flow of couplings in the vicinity of the
fixed point. We emphasize that these statements hold for
the effective action �which includes all effects of quantum
fluctuations—the fixed point may typically even be gen-
erated by the quantum fluctuations.

The central idea for a solution of the cosmological
constant problem [1] argues that the effective cosmological
constant � vanishes precisely at the fixed point. It is then
sufficient that cosmological ‘‘runaway solutions’’ drive the
fields into the region of the fixed point as time t increases.
For a cosmological runaway solution the values of fields
are not static but continue to change for all times. Only for
t ! 1 the field equations derived from the fixed point
effective action become accurate. Since such a fixed point
is generally reached only asymptotically for t ! 1, it is
only in this limit that the field equations exhibit an exact
dilatation symmetry. For finite t the dilatation anomalies
are still present, although their effects are small since they
have to vanish for t ! 1. Based on this scenario a dy-

namical form of homogeneous dark energy has been pre-
dicted long before observational discovery [1]. (See also
the subsequent papers [7].)
At the fixed point all memory of mass or length scales is

lost and the quantum effective action becomes dilatation-
symmetric. In other words, the dilatation anomaly vanishes
when it is evaluated for the field configurations corre-
sponding to the fixed point [8]. In consequence, a scalar
field becomes massless in the asymptotic limit, corre-
sponding to the Goldstone boson of spontaneously broken
dilatation symmetry. For the approach to the fixed point the
dilatation anomaly is not yet zero, and correspondingly the
scalar ‘‘pseudo-Goldstone boson’’ still has a small mass
that vanishes only asymptotically. These ideas are realized
in practice in quintessence cosmologies, where the ‘‘cos-
mon’’ field plays the role of the pseudo-Goldstone boson of
spontaneously broken anomalous dilatation symmetry
[1,8]. The cosmon mass is varying with time and of the
order of the Hubble parameter [2].
The cosmological approach to a fixed point may also

explain why the time variation of fundamental parameters
as the fine structure constant or the electron to proton mass
ratio is very small [3,9]. If such couplings run toward a
nonzero fixed point in dependence of the time-varying
cosmon field moving to infinity for t ! 1, the field de-
pendence and therefore the time dependence is expected to
be small close to the fixed point. An interesting exception
may be a relatively slow approach to a fixed point (or a
weak instability) in the gauge singlet sector of physics
beyond the standard model—this could result in time-
varying neutrino masses and the scenario of ‘‘growing
neutrino quintessence’’ [10].
It is a crucial ingredient for the validity of the fixed point

scenario for the solution of the cosmological constant
problem that the cosmological constant � vanishes pre-
cisely at the fixed point. We have argued that a higher-
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dimensional setting sheds new light on this issue [8,11]. In
a series of two joint papers we therefore investigate higher-
dimensional models for which the quantum effective action
� exhibits an exact dilatation symmetry. Our central find-
ing states that the cosmological constant problem is indeed
solved if � is dilatation symmetric. There are always
extrema of � for which � vanishes. The remaining issue
concerns the question if interesting particle physics obtains
for those extrema.

The first paper [12] presents the general ideas and dis-
cusses the ‘‘flat phase’’ in the space of possible extrema of
� which results in a vanishing four-dimensional cosmo-
logical constant �. Simple examples of higher-
dimensional geometries demonstrate that the flat phase
can be realized for an almost arbitrary form of the
dilatation-symmetric effective action for a scalar-tensor-
theory, provided that the fixed point effective action does
not contain a nonpolynomial potential for the scalar field.

In the present paper we extend these findings by a
discussion of the most general warped geometries with
maximal four-dimensional symmetry and internal SOðd�
4Þ isometry. The solutions of the d-dimensional field equa-
tions admit arbitrary �—the cosmological constant ap-
pears as an integration constant of the general solution.
We show how the extremum conditions for � restrict the
allowed values of the integration constants and enforce a
vanishing cosmological constant. We find that the exis-
tence of a ‘‘flat phase’’ of extrema of � which leads to� ¼
0 is a very general feature and discuss the associated ‘‘self-
tuning’’ of the cosmological constant. The additional di-
mensions are crucial for this mechanism.

For the specific case of SOðd� 4Þ isometry we will find
that the extremum conditions turn out to be so strong that
all geometries with this symmetry lead to a diverging four-
dimensional Planck mass. While this precludes the real-
ization of SOðd� 4Þ symmetry together with four-
dimensional Poincaré symmetry for a realistic compactifi-
cation, the general conditions leading to � ¼ 0 remain
valid for much more general solutions with reduced sym-
metry, for which a finite Planck mass may be found.

The basic object of our investigation is the quantum
effective action � where all quantum fluctuations are al-
ready included. The field equations derived from � are
exact without any further quantum corrections. We do
not postulate here that the effective action of a fundamental
theory is dilatation symmetric—in general, it is not, due to
dilatation anomalies. We only make the hypothesis that �
has a fixed point for certain asymptotic field values to be
specified below. Only in this asymptotic limit the dilatation
anomaly vanishes—the ‘‘fixed point effective action’’ is
dilatation symmetric. We emphasize, nevertheless, that a
dilatation-symmetric effective action is also the starting
point for approaches where dilatation symmetry is realized
as an exact quantum symmetry [13]. (For early discussions
of a dilatation-symmetric standard model see [14,15].)

For a pure gravity theory in d dimensions the most
general dilatation-symmetric effective action takes the
form

� ¼
Z
x̂
ĝ1=2FðR̂�̂ �̂ �̂ �̂Þ; (1)

with
R
x̂ ¼

R
ddx and ĝ ¼ � detðĝ�̂ �̂Þ. Here F transforms

as a scalar under general coordinate transformations and
has therefore to be constructed from the curvature tensor

R̂�̂ �̂ �̂ �̂ and its covariant derivatives, contracted with ap-

propriate combinations of the inverse metric ĝ�̂ �̂. (We use
hats for d-dimensional objects and indices.) Dilatation
symmetry forbids the use of parameters with dimension
of mass or length in the construction of F. More generally,
the effective action may also depend on fields other than
gravity. In this paper we first concentrate on gravity
coupled to a higher-dimensional scalar dilaton field and
turn back to the action (1) only in Sec. XI.
We can write the most general form of a dilatation-

symmetric quantum effective action as

� ¼
Z
x̂
ĝ1=2L; (2)

where L ¼ F in the case of pure gravity. Dilatation trans-
formations correspond to a rescaling of the metric by a
constant factor �2,

ĝ �̂ �̂ ! �2ĝ�̂ �̂; ĝ1=2 ! �dĝ1=2; L ! ��dL:

(3)

A dilatation-symmetric effective action remains invariant
under these rescalings. This requirement also fixes the
scaling of an additional d-dimensional dilaton field.
The special role of dilatation symmetry for the existence

of a flat phase of solutions with a vanishing cosmological
constant is visible already for the most general form of a
dilatation-symmetric effective action. We are interested in
solutions with a block diagonal metric

ĝ �̂ �̂ðx; yÞ ¼ �ðyÞgð4Þ��ðxÞ; 0

0; gðDÞ
��ðyÞ

 !
; (4)

with x� the four-dimensional coordinates and y� coordi-

nates of internal space, with corresponding metrics gð4Þ��

and gðDÞ
��, d ¼ Dþ 4. The function �ðyÞ accounts for a

possible warping [16–19]. With ĝ1=2 ¼ ðgð4ÞÞ1=2�2ðgðDÞÞ1=2
we define

WðxÞ ¼
Z
y
ðgðDÞðyÞÞ1=2�2ðyÞLðx; yÞ; (5)

such that

� ¼
Z
x
ðgð4ÞÞ1=2W: (6)

The scaling under dilatations [gð4Þ�� ! �2gð4Þ��, gðDÞ
�� !

�2gðDÞ
��] implies
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W ! ��4W: (7)

Every extremum of W realizes an extremum of � in the
flat phase [12] and implies� ¼ 0. Indeed, an extremum of
W can only occur for field configurations for which W
vanishes,W0 ¼ 0. This follows from the use of a neighbor-
ing rescaled field configuration (3) with � ¼ 1þ �. For an
extremum of W the variation with � has to vanish, @�ð1þ
�Þ�4W0 ¼ 0, thusW0 ¼ 0. In consequence the variation of
� also vanishes

�� ¼
Z
x̂
ðĝ1=20 �W þ �ĝ1=2W0Þ ¼ 0; (8)

realizing an extremum of �. This extremum occurs for
�0 ¼ 0, such that for any effective four-dimensional theory
this results in � ¼ 0. This follows for solutions with
maximal four-dimensional symmetry where

�0 ¼ �
Z
x
ðgð4ÞÞ1=2	2�; (9)

with 	 the effective four-dimensional reduced Planck mass
(	2 b¼M2

p=8
). This property of the flat phase is very

general and does not change if we add additional fields
to the dilatation invariant effective action as, for example, a
scalar � in a scalar-tensor theory.

The paper [12] has focused on two issues:
(i) The existence of extrema of W for a large class of

dilatation-symmetric effective actions.
(ii) The dimensional reduction to effective four-

dimensional gravity and the establishment that� ¼
0 in the flat phase.

Furthermore, a demonstration that an effective action
which admits a flat phase does generically not allow other
extrema with arbitrarily small j�j is given in Ref. [11]. In
particular, there are no continuous families of extrema
where � appears as a continuous parameter. This issue is
important for warped geometries with singularities where
the existence of families of solutions of the higher-
dimensional field equations with continuous � is known
[16–18]. We will see that the extremum conditions for � go
beyond the higher-dimensional field equations [20]. They
precisely select the solutions with � ¼ 0 out of the con-
tinuous family of solutions.

The investigations of this paper are mainly based on the
simplest possible dilatation-symmetric effective action for
a scalar-tensor theory, but the results are much more gen-
eral as we argue in Secs. X and XI. In the course of our
discussion we will explicitly address the issues of quantum
corrections, ‘‘tuning of the cosmological constant to zero,’’
and the ‘‘naturalness’’ of the solutions with � ¼ 0. Many
general aspects are already discussed in [8,12] and not
repeated here, such that we concentrate more on specific
solutions. We find rather satisfactory answers to the natu-
ralness problem. Asymptotic dilatation symmetry in

higher-dimensional theories may indeed provide the key
for a solution of the cosmological constant problem.
Our paper is organized as follows: In Sec. II we start

with a simple dilatation-symmetric effective action for a
scalar-tensor theory and perform a convenient Weyl scal-
ing. Section III discusses the most general form of the
quasistatic solutions with SOðDÞ isometry (as well as
particular solutions with reduced isometry). This class of
solutions shows the cosmological constant � as a continu-
ous free integration constant, together with other free in-
tegration constants. The general solution has up to two
singularities. The properties of the metric close to the
singularities are investigated in Sec. IV. The presence of
the scalar field allows for a richer spectrum of possibilities
than for pure gravity [16,18,20]. Section V establishes
criteria for obtaining an effective four-dimensional gravity,
including cases where the volume of the D-dimensional
subspace is infinite [19,21]. They are applied to select
solutions which are acceptable from this point of view. In
Sec. VI we classify the singular solutions into ‘‘zerowarp
solutions,’’ first discussed in [16] and ‘‘warped branes,’’
first investigated in [17]. A discussion of the global geo-
metrical properties in Sec. VII closes the investigation of
the most general solutions with SOðDÞ isometry.
The second part of the paper deals with dimensional

reduction to effective four-dimensional gravity. In
Sec. VIII we perform the reduction for the warped geome-
tries with SOðDÞ symmetry. The effective four-
dimensional action depends on the integration constants
which appear in the most general solution of the
d-dimensional field equations. We show in Sec. IX that
the requirement that acceptable solutions should also obey
the four-dimensional field equations severely restricts
the allowed integration constants. Indeed, the four-
dimensional field equations are more restrictive than the
d-dimensional field equations since they reflect the extre-
mum condition for arbitrary field variations which are local
in four-dimensional space, but not necessarily in
d-dimensional space. (The d-dimensional field equations
correspond to variations which are local in d-dimensional
space.) In particular, we find that the additional constraints
leave � ¼ 0 as the only possibility.
We extend our arguments to a much more general form

of the dilatation-symmetric effective action in Sec. X. We
present the general argument that stable compactifications
with a finite four-dimensional gravitational constant and
� � 0 must have � ¼ 0. For these extrema of � both the
dilaton and the radion have a vanishing mass. The radion
corresponds to a rescaling of the characteristic length l of
internal space while keeping � fixed. One may ask if the
small mass of the radion away from the fixed point could
turn it into a dark matter candidate.
In Sec. XI we discuss pure higher-dimensional gravity

theories in light of these findings. We show that a flat phase
with � ¼ 0 still exists in the absence of the d-dimensional
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dilaton field �. The role of the four-dimensional dilaton is
now played by l and coincides with the radion. We briefly
address the possibility of ’’geometrons’’—four-
dimensional scalar fields with a flat potential in the limit
of a dilatation-symmetric �. They correspond to deforma-
tions of internal geometry within the space of extrema of �
which keep the characteristic length scale l for internal
geometry fixed. For the cosmology of the present epoch,
which has not yet reached the fixed point, the geometrons
acquire a small mass and one may again speculate about
possible candidates for dark matter.

Our conclusions in Sec. XII discuss the self-tuning of the
cosmological constant to zero in the higher-dimensional
context. Two appendices investigate the special case of
warped branes for five-dimensional dilatation symmetry
and explore the possible class ofD-dimensional hyperbolic
Einstein spaces with finite volume and isometry SOðD1 þ
1Þ � SOðD�D1Þ.

II. DILATATION-SYMMETRIC GRAVITY IN
HIGHER DIMENSIONS

Our starting point is the d-dimensional dilatation-
symmetric action

� ¼
Z

ĝ1=2
�
� 1

2
�2R̂þ �

2
@�̂�@�̂�

�
: (10)

This is the simplest form of the dilatation-symmetric ef-
fective action in the presence of a scalar field �. Dilatations
involve a rescaling of �,

� ! ��ððd�2Þ=2Þ�; (11)

in addition to the rescaling of the metric (3). One may
speculate that it corresponds to an exact ‘‘ultraviolet’’ fixed
point in arbitrary d in the limit � ! 1. The existence of
such a fixed point could be related to the formulation of a
consistent quantum gravity. Corrections to Eq. (10) would
then correspond to deviations from the fixed point. Besides
diffeomorphism symmetry and dilatation symmetry the
action (10) exhibits the extended scaling of the field equa-
tions discussed in [12]. We observe that for fixed momenta
we obtain a free theory in the limit � ! 1 if we expand
around flat space. This adds to the plausibility for the
existence of such a fixed point.

A. Field equations

The field equations obtain by variation of the effective
action (10) with respect to the dilaton � and the metric ĝ�̂ �̂,

�D̂2�þ R̂� ¼ 0; (12)

and

�2

�
R̂�̂ �̂ � 1

2
R̂ĝ�̂ �̂

�
¼ Tð�Þ

�̂ �̂

¼ �@�̂�@�̂�� �

2
@�̂�@�̂�ĝ�̂ �̂

þD�̂D�̂�
2 � D̂2�2ĝ�̂ �̂: (13)

Here D�̂ is the d-dimensional covariant derivative, D̂2 ¼
D�̂D�̂ and ĝ ¼ � detðĝ�̂ �̂Þ. We are interested in cosmo-

logical solutions where the ‘‘ordinary’’ four space-time
dimensions (with coordinates x�, � ¼ 0; . . . ; 3Þ and inter-
nal space (with coordinates y�, � ¼ 1; . . . ; D) play a dif-
ferent role. (Higher-dimensional indices �̂ run from zero
to d� 1, d ¼ Dþ 4.) Contracting Eq. (13) yields

�2R̂ ¼ �@�̂�@�̂�þ 2ðd� 1Þ
d� 2

D̂2�2; (14)

and therefore

� ¼ �d� 1

d� 2

Z
@�̂fĝ1=2@�̂�2g: (15)

For all solutions with a vanishing boundary term the
action vanishes. According to our discussion in the
Introduction this implies a vanishing four-dimensional
cosmological constant for any extremum of � which ad-
mits a dimensionally reduced effective four-dimensional
theory. A simple solution of the field equations. (12) and
(13) is

R̂ �̂ �̂ ¼ 0; � ¼ �0: (16)

In particular, a geometry M4 � TD, with M4 flat four-
dimensional Minkowski space and TD a D-dimensional
torus with finite volume�D, solves the field equations and
corresponds to an extremum of �. Dimensional reduction
leads to consistent four-dimensional gravity with a nonzero
effective Planck mass and a vanishing effective cosmologi-
cal constant� ¼ 0. This demonstrates that solutions in the
flat phase always exist for the effective action (10).

B. Weyl scaling

For a systematic discussion of solutions of the field
equations it is convenient to perform a coordinate change
in field space by a Weyl scaling

ĝ �̂ �̂ ¼ w2~g�̂ �̂: (17)

This results in

R̂ ¼ w�2ð ~R� fd@
�̂ lnw@�̂ lnw� gdD̂

2 lnwÞ; (18)

and fd, gd constants depending on d. Insertion into the
action yields

� ¼ 1

2

Z
~g1=2wd�2�2f� ~Rþ fd@

�̂ lnw@�̂ lnwþ gdD̂
2 lnw

þ �@�̂ ln�@�̂ ln�g: (19)
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The indices are now raised and lowered with the metric
~g�̂ �̂, and this metric is also used for the connection in the

covariant derivatives. Also ~R is the curvature scalar com-
puted from ~g�̂ �̂. Choosing

w ¼ Md�
�ð2=ðd�2ÞÞ (20)

and omitting the total derivative �gd one obtains

� ¼ Md�2
d

2

Z
~g1=2

�
� ~Rþ

�
� þ 4fd

ðd� 2Þ2
�
@�̂ ln�@�̂ ln�

�
:

(21)

We can associate Md with the d-dimensional Planck mass.
Using a rescaled scalar field

� ¼
�
� þ 4fd

ðd� 2Þ2
�
1=2

lnð�=Mðd�2Þ=2
d Þ; (22)

we arrive at

� ¼ Md�2
d

2

Z
~g1=2f� ~Rþ @�̂�@�̂�g: (23)

This action contains a higher-dimensional Einstein term
and the kinetic term for a free scalar field. A multiplicative
scaling of � corresponds to a constant shift in �. Thus � is
the Goldstone boson corresponding to spontaneously bro-
ken dilatation symmetry in a nonlinear field basis.

The field equations derived from the action (23),

D̂ 2� ¼ 0; (24)

~R �̂ �̂ � 1
2
~R~g�̂ �̂ ¼ @�̂�@�̂�� 1

2@
�̂�@�̂�~g�̂ �̂; (25)

are exactly equivalent to the field equations (12) and (14).
We have only made a change of variables (17), (20), and
(22). They are, however, much easier to solve. In particular,
the constants � and Md do not appear anymore—they
influence only the translation to ĝ�̂ �̂ and �. Contracting

the second equation yields

~R ¼ @�̂�@�̂� ¼ D�̂ð�@�̂�Þ ¼ 1
2D̂

2�2; (26)

where the last two identities use Eq. (24). For all solutions
of the field equations the action (23) vanishes.

An obvious solution of the field equations is

� ¼ const; ~R�̂ �̂ ¼ 0; (27)

corresponding to � ¼ const, R̂�̂ �̂ ¼ 0. The corresponding

geometry could be d-dimensional Minkowski space, or a
direct product of four-dimensional Minkowski space and a
Ricci-flat D-dimensional internal space. If internal space
has finite volume�D the effective four-dimensional action
is well defined. It has indeed a vanishing cosmological
constant and a four-dimensional reduced Planck mass M
given by M2 ¼ Md�2

d �D. For a Ricci-flat space with non-

Abelian symmetry the four-dimensional theory will exhibit
a non-Abelian gauge symmetry. For an arbitrary isometry

of internal space the four-dimensional gauge coupling is
finite and nonzero. We want to learn more about the
general solution and consider next geometries with warp-
ing and a possible nonuniform � or �.

III. WARPED SOLUTIONS

In this and the next sections we discuss possible solu-
tions for the ansatz

~g�̂ �̂ðx; yÞ ¼
�ðzÞ~gð4Þ��ðxÞ; 0; 0

0; L2; 0

0; 0; L2�ðzÞ �g �� ��ð �yÞ

0BB@
1CCA;

�ðx; yÞ ¼ �ðzÞ: (28)

Here D� 1 coordinates �y �� form a homogeneous space,

�R �� �� ¼ Cg �� ��: (29)

The internal coordinates �y �� and z are dimensionless and
L denotes the characteristic linear size of internal space.

The four-dimensional metric ~gð4Þ�� is used to define the four-

dimensional Ricci-tensor ~Rð4Þ
�� and we assume

~R ð4Þ
�� ¼ � ~L�2~gð4Þ��; � ¼ �1: (30)

The limit ~L ! 1 corresponds to flat four-dimensional
space with a vanishing cosmological constant, while finite
~L with � ¼ 1 or � ¼ �1 can describe four-dimensional
de Sitter or anti–de Sitter space, with a positive or negative
cosmological constant, respectively.

A. Warped field equations

If we choose for �g �� ��ð �yÞ the metric of a D�
1-dimensional hypersphere, our ansatz exhibits an SOðDÞ
isometry. Furthermore, we may assume that ~gð4Þ��ðxÞ de-
scribes a four-dimensional space with maximal symmetry.
In this case our ansatz describes the most general metric
which is consistent with these symmetries. It is therefore
well suited for a systematic study of all possible solutions
that share SOðDÞ and maximal four-dimensional symme-
try. Still, it contains enough freedom to account for warp-
ing and a nonconstant �ðzÞ. For given constants L, ~L, � we
have to solve three differential equations for the three
dimensionless functions �ðzÞ, �ðzÞ, �ðzÞ, which depend
on the dimensionless coordinate z. The function �ðzÞ is
the warp factor.
Let us start with the scalar field equation

D̂ 2� ¼ ~g�1=2@�̂ð~g1=2@�̂�Þ
¼ ��2��ððD�1Þ=2Þ@zð�2�ðD�1Þ=2@z�ÞL�2 ¼ 0:

(31)

Denoting z derivatives by primes this reads
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�00 þ 2
�0

�
�0 þD� 1

2

�0

�
�0 ¼ 0: (32)

The general solution is

�0 ¼ E��2��ððD�1Þ=2Þ; (33)

with E a free integration constant.
For the gravitational field equations one has [8,20]

2 ~R�� � ~R~g�� ¼ L�2

�
�2�

�
L
~L

�
2
��1 � ðD� 1ÞC��1 þ 3

�00

�
þ 3

2
ðD� 1Þ�

0

�

�0

�
þ ðD� 1Þ�

00

�

þ 1

4
ðD� 1ÞðD� 4Þ

�
�0

�

�
2
�
~g�� ¼ �L�2�02~g��; (34)

2 ~R �� �� � ~R~g �� �� ¼ L�2

�
�4�

�
L
~L

�
2
��1 � ðD� 3ÞC��1 þ 4

�00

�
þ
�
�0

�

�
2 þ 2ðD� 2Þ�

0

�

�0

�
þ ðD� 2Þ�

00

�

þ 1

4
ðD� 2ÞðD� 5Þ

�
�0

�

�
2
�
~g �� �� ¼ �L�2�02~g �� ��; (35)

2 ~Rzz � ~R~gzz ¼ L�2

�
�4�

�
L
~L

�
2
��1 � ðD� 1ÞC��1 þ 3

�
�0

�

�
2 þ 2ðD� 1Þ�

0

�

�0

�
þ 1

4
ðD� 1ÞðD� 2Þ

�
�0

�

�
2
�
~gzz

¼ L�2�02~gzz: (36)

Only three of the four equations (32) and (34)–(36) are independent. Subtracting Eq. (34) from Eq. (35) one finds

�02 ¼ �C��1 þ
�
�0

�

�
2 � 2

�00

�
þ �0

�

�0

�
þ 1

2
ðD� 2Þ

�
�0

�

�
2 � 1

2
ðD� 2Þ�

00

�
; (37)

and the difference between Eqs. (36) and (34) yields

�02 ¼ ��

�
L
~L

�
2
��1 þ 3

2

�
�0

�

�
2 � 3

2

�00

�
þ 1

4
ðD� 1Þ�

0

�

�0

�
þ 1

4
ðD� 1Þ

�
�0

�

�
2 � 1

2
ðD� 1Þ�

00

�
: (38)

On the other hand, the derivative of Eq. (36) implies

�00�0 ¼ 2�

�
L
~L

�
2 �0

�2
þ 1

2
ðD� 1ÞC �0

�2
þ 3

�
�0

�

�
2
�
�00

�0 �
�0

�

�
þ ðD� 1Þ�

0

�

�0

�

�
�00

�0 �
�0

�
þ �00

�0 �
�0

�

�
þ 1

4
ðD� 1ÞðD� 2Þ

�
�0

�

�
2
�
�00

�0 �
�0

�

�
¼ �2

�0

�
�02 �D� 1

2

�0

�
�02; (39)

where the second identity uses Eq. (32). Multiplying
Eq. (38) with �2�0=� and Eq. (37) with �ðD�
1Þ�0=ð2�Þ, and taking the sum yields Eq. (39). For a
solution it is therefore sufficient to obey two suitable linear
combinations of Eqs. (34)–(36) and the scalar field equa-
tion (32).

Once �0 is expressed in terms off � and � by Eq. (33),
we therefore end with 2 s order differential equations for �
and �. The local solution around some point z0 has four
integration constants, �ðz0Þ, �0ðz0Þ, �ðz0Þ, �0ðz0Þ. They are
not independent, however, since Eq. (36) yields a relation
between the four integration constants which depends on
�ðL= ~LÞ2. In other words, we may take

� ¼ �

�
L
~L

�
2

(40)

as one of the integration constants. For fixed �, Eq. (36)
constitutes a relation between �ðz0Þ, �0ðz0Þ, �ðz0Þ, and
�0ðz0Þ, and only three further integration constants are
left. For fixed � it is also obvious that the solutions of
the system of equations (34)–(36) are independent of L.

B. Reduction of field equations

One can express the derivative �0=� in terms of �. For
this purpose we use Eq. (36) and the combination of
Eqs. (34) and (35) that does not contain a term ��00, i.e.
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�02 ¼ 2D���1 � ðD� 1ÞC��1 � ðDþ 2Þ�
00

�

� ðD� 1Þ
�
�0

�

�
2 � 1

2
ðD� 1ÞðD� 2Þ�

0

�

�0

�

þ 1

4
ðD� 1ÞðD� 2Þ

�
�0

�

�
2
: (41)

Combining this with Eq. (36) yields the important identity

ðD� 1Þ�
0

�

�0

�
¼ 4���1 � 2

�00

�
� 2

�
�0

�

�
2
: (42)

It indeed allows us to express �0=� in terms of � and its
derivatives (for �0 � 0)

�0

�
¼ 1

D� 1

�
4�

�0 � 2
�00

�0 � 2
�0

�

�
; (43)

and therefore

�00

�
¼ 1

ðD� 1Þ2
�
4�

�0 � 2
�00

�0 � 2
�0

�

�
2

� 1

D� 1

�
4��00

�02 þ 2�000

�0 � 2

�
�00

�0

�
2 þ 2

�00

�

� 2

�
�0

�

�
2
�
: (44)

Using the variable

s ¼ ln

�
�

�0

�
(45)

we can now write Eq. (38) as a third order differential
equation

s000 � D

D� 1

ðs00Þ2
s0

� 4

D� 1
s00s0 �Dþ 3

D� 1
ðs0Þ3

þ 2

D� 1

�

�0

e�s

�
ðDþ 1Þ s

00

s0
þ ðDþ 3Þs0

�
� 4

D� 1

�2

�2
0

e�2s

s0
¼ E2

�4
0

e�4ss0��ðD�1Þ: (46)

For E ¼ 0 the scalar field plays no role and Eq. (46)
describes possible solutions to higher-dimensional
Einstein gravity. In this case no explicit � dependence is
left in Eq. (46). For � ¼ 0, one has a second order differ-
ential equation for U ¼ s0, which has been discussed ex-
tensively in [18,20], and, for the special case D ¼ 2, in
[16]. This equation typically has solutions with
singularities.

In terms of the variables s and

v ¼ ðD� 1Þ ln �
�0

þ 4 ln
�

�0

; (47)

Eqs (38) and (42) read

s00 þ 1

2
v0s0 � 2

�

�0

e�s ¼ 0; (48)

v00 þ 1

2ðD� 1Þ ½v
02 � 8v0s0 þ 4ðDþ 3Þs02�

þ 2E2��4
0 ��ðD�1Þ

0 e�v ¼ 0: (49)

Equations (48) and (49) are equivalent to the two linear
combinations of Eqs. (34)–(36) that are independent of C.
As long as �0 � 0 (or s0 � 0), they are also equivalent to
the coupled system of equations (46) and (43). In the
special situation E ¼ 0, the latter equations decouple in
the sense that one can solve first Eq. (46) independently of
an explicit computation of �, and subsequently determine
� from Eq. (43). The use of Eqs. (48) and (49) has the
advantage that the special solutions with flat four-
dimensional space (� ¼ 0) or constant scalar field (E ¼
0) are particularly apparent. An extensive discussion of the
solutions for � ¼ E ¼ 0 can be found in Ref. [20].

C. Initial conditions and integration constants

We recall, however, that the initial conditions for the
numerical solution are constrained by Eq. (36). It is at this
place that the geometry of the D� 1 dimensional sub-
space, i.e. the constant C, enters. We may choose the initial
condition for the solution of Eqs. (48) and (49) at some
point z0. Instead of the two initial values sðz0Þ and vðz0Þwe
may consider �0 and �0 as the corresponding integration
constants. This allows us to use for all solutions a fixed
prescription of the additive constants in s and v, as, for
example, sðz0Þ ¼ vðz0Þ ¼ 0. The dependence on �0 and
�0 can be partly absorbed in the definitions

~� ¼ �

�0

; ~E2 ¼ E2��4
0 ��ðD�1Þ

0 ; ~C ¼ ðD� 1ÞC
�0

:

(50)

At this level we have three integration constants ~�, ~E2, and
~C, while the overall normalization of �0 is irrelevant and
plays no role after the redefinition of the integration con-
stants. We remain with two free further integration con-
stants, e.g. s0ðz0Þ and v0ðz0Þ. Only one of them is
independent. Indeed, Eq. (36) yields the relation

D� 2

4
v02 þ 2v0s0 � ðDþ 3Þs02

¼ ðD� 1Þ½ ~E2e�v þ ~Ceð4s�vÞ=ðD�1Þ þ 4~�e�s�: (51)

Furthermore, we can often choose z0 conveniently such
that either v0ðz0Þ or s0ðz0Þ has a standard value, as �1 or 0.
we are thus left with three continuous physical integration

constants, namely, ~E, ~C, and ~�. Because of translation
invariance in z, we also may choose for z0 a standard value,
as z0 ¼ 0 or z0 ¼ 1.

IV. STRUCTURE OF SINGULARITIES

The generic solutions to the field equations will have one
or two singularities. This is reminiscent of Einstein gravity
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in four dimensions in absence of matter, where the non-
trivial static radially symmetric solutions all show a singu-
larity—the black hole. It is therefore useful to classify the
singularities. This can be done with the help of Eq. (42),
which relates a possible singular behavior of � with the
one for �.

A. Powerlike singularities

We first look at possible singularities with a powerlike
behavior

� ¼ �0z
�; � ¼ �0z

�; (52)

where Eq. (42) implies, for >�2,  � 0,

� ¼ 2þ 4

D� 1
: (53)

Indeed, for>�2we can indeed neglect the terms�� in
the vicinity of the singularity. Similarly, for � < 2 (or <
D
2 � 1) we can neglect the terms �C. For the ‘‘internal

volume factor’’ the relation (53) implies

�ðD�1Þ=2�2 � z; (54)

such that the volume integration near the singularity re-
mains finite.

On the other hand, one finds

�02 ¼ ~E2z2; ~E2 ¼ E2��4
0 ��ðD�1Þ

0 ; (55)

such that the terms �E2 influence the behavior near the
singularity. We may determine  from Eq. (36)

~E 2 ¼ 32 � 2ðD� 1Þ�þ 1

4
ðD� 1ÞðD� 2Þ�2

¼ 1

D� 1
fD� 2� 4� ðDþ 3Þ2g; (56)

or

 ¼ 1

Dþ 3

�
�2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 1Þ½Dþ 2� ~E2ðDþ 3Þ�

q �
:

(57)

This leads us to the interesting observation that the strength
of the singularity, as expressed by the ’’singular exponent’’
, depends on the integration constant ~E. This differs from
earlier examples [8,16,18,20] where  was found to be
determined only by D.

We note that for � < 2, where the terms �C can be
neglected near the singularity, the singular solution (52),
(53), and (57) automatically obeys Eq. (41) and therefore
solves the complete system (34)–(36). This is not guaran-
teed for � ¼ 2, where Eq. (41) [or Eq. (34)] yields an

additional constraint for ~C.
The maximal and minimal values of  are reached for

~E ! 0

þ ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 1ÞðDþ 2Þ

p
� 2�=ðDþ 3Þ;

� ¼ �½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD� 1ÞðDþ 2Þ

p
þ 2�=ðDþ 3Þ;

(58)

with �ðDÞ taking the values þð2Þ ¼ 0, þð3Þ ¼
ð ffiffiffiffiffiffi

10
p � 2Þ=6, þð1Þ ¼ 1, �ð2Þ ¼ �4=5, �ð3Þ ¼
�ð ffiffiffiffiffiffi

10
p þ 2Þ=6, �ð1Þ ¼ �1. For all finite D the allowed

values of � are in the range �1<� < 1. For ~E2 > 0
the two solutions obey� <1;2 <þ and approach each

other as ~E2 increases. They coincide for ~E2
c ¼ ðDþ

2Þ=ðDþ 3Þ, with

ð ~EcÞ ¼ � 2

Dþ 3
: (59)

No solutions with real  exist for ~E2 > ~E2
c. We finally note

that for D ¼ 1 all solutions with a powerlike singularity
have  ¼ �1=2, ~E2 ¼ 3=4. (The quantities � and C have
no meaning in this case.)

B. Special cases

In principle, we could have modifications of Eq. (57) for
the special case

� ¼ 2;  ¼ D

2
� 1: (60)

Now the terms �C can no longer be neglected and one
finds from Eq. (36) the condition

~Cþ 1
4ðD� 2ÞðDþ 2Þ þ ~E2 ¼ 0: (61)

Such solutions can exist for C< 0, or for D ¼ 2 if ~E ¼ 0
(C vanishes for D ¼ 2), or for D ¼ 1 for ~E2 ¼ 3

4 . The

choice C< 0 leads, however, to a contradiction with

Eq. (34) and must be excluded. The cases with ~C ¼ 0 are
contained in Eqs. (53) and (57), which therefore describe
all possible singular behaviors. For singularities obeying
Eq. (58), we observe that � < 2 holds for all D> 2, while
� ¼ 2 is reached for D ¼ 2 and  ¼ þ ( ~E ¼ 0). In
conclusion, the term �C can always be neglected close
to the singularity, if  � 0, >�2.
As particular cases we may investigate singularities

consistent with Eq. (42), which show singular behavior
only in the function �, while � is regular. In the vicinity
of the singularity at z ¼ 0 we may study the ansatz

� ¼ �0z
�; � ¼ �0

�
1þ 1

2
�z2

�
; (62)

for which Eq. (42) implies for z ! 0

½ðD� 1Þ�þ 2�� ¼ 4���1
0 : (63)

For � < 2, the leading singularities in Eq. (36) cancel for

� ¼ 2

D� 1
; ~E2 ¼ D� 2

D� 1
; � ¼ ���1

0 : (64)

Similarly, solutions with singular � and regular � are
possible for
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� ¼ �0z
1=2; � ¼ �0; ~E2 ¼ 3

4: (65)

The singularities (64) and (65) can be regarded as special
cases of Eqs. (52), (53), and (57).

Finally, an interesting class of possible solutions are
characterized by the limiting behavior for z ! 0,

� ¼ �0z
2; � ¼ �0: (66)

For C ¼ D� 2, E ¼ 0, � ¼ 0, �0 ¼ 1 this describes flat
space with a constant scalar field �—an obvious solution of
the field equations. (A flat torus, C ¼ E ¼ � ¼ 0, � ¼ �0,
� ¼ �0, is also a solution.) More generally, for �0 ¼
C=ðD� 2Þ the point z ¼ 0 describes a regular fixed point
of the rotational isometries acting on the D� 1 dimen-
sional subspace parametrized by �y�. [For the sphere SD�1,
with C ¼ D� 2, the isometries form the group SOðDÞ and
the rotational isometries are SOðD� 1Þ.] For D ¼ 2 one
has C ¼ 0 and �0 � 1 describes a canonical singularity
[8].

For a behavior of the type (66) we find a constraint from
Eq. (42)

ðD� 1ÞðD� 2Þ
z2

�
~C

z2
¼ ~E2z�2ðD�1Þ: (67)

For D> 2 such solutions are only possible for ~E ¼ 0 and
C=�0 ¼ D� 2. In particular, all regular solutions of the
type (66) have a constant scalar field. For D ¼ 2 the left-
hand side of Eq. (67) vanishes, implying again ~E ¼ 0 and a
constant scalar field. The solutions with a constant scalar
field and a behavior (66) have been investigated in
Ref. [18].

C. Exact power solutions

For the special case � ¼ 0, C ¼ 0 the powerlike solu-
tions (52) are exact. They are actually the most general
solutions. Indeed, we can combine Eqs. (49) and (51) to

v00 þ 1
2v

02 ¼ 0: (68)

The general solution

v0 ¼ 2

z
; v ¼ 2 lnzþ v0; (69)

has used a first integration constant in order to have the
singularity at z ¼ 0. Equation (48) takes the form

s00 þ 1

z
s0 ¼ 0; (70)

with general solution

s0 ¼ �

z
; s ¼ � lnzþ s0: (71)

We can set v0 ¼ s0 ¼ 0 since these integration constants
can be absorbed by �0 and �0. This yields

� ¼ �0z
�; � ¼ �0z

�; � ¼ 2þ 4

D� 1
; (72)

as the most general solution. Insertion into Eq. (51) finally
determines  according to Eq. (57). No further constraint
restricts �0, which is therefore a free integration constant.

V. WARPED SOLUTIONS AND LOCAL
FOUR-DIMENSIONAL GRAVITY

In this section we show that all realistic solutions with a
consistent four-dimensional gravity should have two sin-
gularities if E � 0. For this purpose we have to classify the
possible behavior for z ! �1, and to define the criterion
for a finite effective four-dimensional gravitational con-
stant. More generally, we discuss properties of the solu-
tions which lead to an effective four-dimensional gravity at
long distances.

A. Number of singularities and types of warped
solutions

Solutions with no or one singularity could approach
finite nonzero values of �ðzÞ and �ðzÞ as z ! 1 or z !
�1. Equation (42) tells us that this is only possible for
� ¼ 0, while the combination of Eqs. (34) and (36) yields
C ¼ 0, E ¼ 0, such that this option cannot be realized for
E � 0. We conclude that all solutions with a nonconstant
scalar field must either have two singularities that we may
locate at z ¼ 0 and z ¼ �z > 0 without loss of generality, or
else at least one of the functions �ðzÞ or �ðzÞ must ap-
proach zero or diverge as z ! 1 or z ! �1.
For a discussion of the possible types of solutions for

z ! �1 we may again assume a powerlike behavior (52).
Equation (42) admits three types of solutions. For the first,
� goes to a constant, vanishes or increases less fast than z2

(>�2). This is only possible for� ¼ 0. The exponent �
obeys Eq. (53) and therefore � >�6=ðD� 1Þ. For the
second type, � increases �z2 ( ¼ �2). This requires

� ¼ 2ð~�� 3Þ=ðD� 1Þ. The third type of solutions has
the leading behavior (53) with <�2, � ¼ ð2þ
4Þ=ðD� 1Þ<�6=ðD� 1Þ, and the term �� is subdo-
minant for the asymptotic behavior. The case  ¼ �2 is
the boundary between the first and third type of solutions.
It is remarkable that for all solutions with an asymptotic
behavior >�2 the integration constant � must vanish.
On the other hand, Eq. (36) can be obeyed for C � 0 only
if � � 2. Solutions of the third type could therefore exist
only for C ¼ 0. In this case, however, Eq. (57) applies and
therefore >�1. We conclude that the third type of
solutions cannot be realized. For the boundary case we
consider first � > 2 or C ¼ 0. Then the term �C in
Eq. (36) can be neglected and we find for  ¼ �2 the
relations

 ¼ �2; ~E2 ¼ 1
4ðD� 1ÞðD� 2Þ�2 þ 2ðD� 1Þ�;

~� ¼ 1
2ðD� 1Þ�þ 3: (73)
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For the special case � ¼ 2, Eq. (36) relates ~E2 to ~C

 ¼ �2; � ¼ 2; ~E2 ¼ ðD� 1ÞðDþ 2Þ � ~C;

~� ¼ Dþ 2: (74)

For the first type of solutions with ~� ¼ 0, Eq. (57) holds
ifC ¼ 0 or � > 2. Then the maximal value for � is 6=ðD�
1Þ, excluding solutions with � > 2 for D> 3. For D ¼ 3
the condition > 1=2, required for � > 2, is not compat-
ible with Eq. (57). We conclude that all possible solutions
of the first type (>�2) must have � ¼ 2 or C ¼ 0. The
solutions with � ¼ 2 obey

 ¼ D

2
� 1; � ¼ 2;

~E2 ¼ � 1

4
ðD� 2ÞðDþ 2Þ � ~C; � ¼ 0;

(75)

while for C ¼ 0 one has a range of critical exponents
related by Eqs. (53) and (57) to ~E2,

>�2; � >� 6

D� 1
; C ¼ 0; � ¼ 0:

(76)

Thus for D> 2 all solutions of the first type need C � 0.
At this stage, the possible asymptotic behaviors for z !
�1 are given by Eqs. (73)–(76).

B. Requirement of consistent four-dimensional gravity

We next restrict our general discussion to solutions that
lead to an acceptable four-dimensional gravity. After di-

mensional reduction the effective Planck mass M ¼
ð8
GNÞ�1=2 obeys

M2 ¼ MDþ2
d LD

Z
z
��ðD�1Þ=2: (77)

Here we define
R
z such that it includes a factor VD�1

corresponding to the volume of the D� 1 dimensional
subspace parametrized by the coordinates �y�. For a power-
like behavior (52) near a singularity at z ¼ 0, or for z ! 1,
Eq. (53) implies

��ðD�1Þ=2 � z�þððD�1Þ=2Þ� � z1þ: (78)

Finiteness of the gravitational constant requires near a
singularity >�2, while for z ! 1 one needs <�2.
If these conditions are not obeyed, an effective four-
dimensional description of gravity at long distances is
not possible. Dimensional reduction is not meaningful in
this case. As we have seen above, asymptotic solutions for
z ! 1with <�2 are not compatible with our system of
equations. In consequence, the only realistic solutions
admitting four-dimensional gravity must have two singu-
larities, one located at z ¼ 0, the other at z ¼ �z. [For E ¼
0, one of the singularities can be replaced by the regular
behavior (66).]

The structure of the solutions near z ¼ �z is the same as
for z ¼ 0,

� ¼ ��ð �z� zÞ� �; � ¼ ��ð�z� zÞ�: (79)

However, the exponents  and � may differ. This differ-
ence can arise from the different sign characterizing the

two solutions (57). Also the constants ~E2, ~C, ~� are now

replaced by �E2, �C, ��, which are defined similar to Eq. (50),
but with ��, �� replacing �0, �0. For all solutions of Eq. (57)
one has >�1, such that M2 in Eq. (77) is well defined.
As we have discussed before, the general solution has three
continuous integration constants which may be chosen as

the constants ~E2, ~C, ~� in the vicinity of the singularity at
z ¼ 0, with �0 and �0 defined by Eq. (52). A given local
solution in the vicinity of z ¼ 0 has then to be extended to
larger z until a new singularity is reached.

VI. GEOMETRY NEAR SINGULARITIES

A. Cusps, cones, and infinitons

Let us consider the geometry of the solutions with
singularities somewhat closer. We first note that, in gen-
eral, the singularities are true singularities, and not coor-
dinate singularities. For E � 0 the curvature scalar
diverges at the singularities,

~Rðz ! 0Þ ! E2L�2��4��ðD�1Þ � E2z4�ðD�1Þ� ¼ E2z�2;

(80)

and similar for z ! �z. This divergence is not integrable,

since the volume element�R
dz�2�ðD�1Þ=2 � R

dzz leads

to logarithmic singularities in
R
z ~g

1=2 ~R. The trace of the

energy momentum tensor shows a similar divergence,
which can be considered as the source for the singularity
in ~R. For the action, the two singularities cancel such that
� ¼ 0. We note that �ðzÞ diverges logarithmically at the
singularities. With

�0ðz ! 0Þ ! E��2��ððD�1Þ=2Þ � Ez�1; (81)

one finds

�ðz ! 0Þ � E lnz; �ðz ! �zÞ � �E lnð�z� zÞ: (82)

Since � and � are both positive, � increases (decreases)
monotonically for E> 0 (E< 0). The action is symmetric
with respect to a reflection � ! ��. Without loss of gen-
erality we can therefore choose E> 0. Then �ðzÞ ap-
proaches �1 for z ! 0, and þ1 for z ! �z.
Consider next the geometry of the D-dimensional inter-

nal space, i.e. the hypersurfaces with fixed x�, dx� ¼ 0.
This geometry is described by �ðzÞ �g �� ��ð �yÞ. As an example,

�g �� ��ð �yÞ may be the metric of the (D� 1)-dimensional unit

sphere, with C ¼ D� 2. For � > 0 one finds a pointlike
singularity—the ‘‘radius’’ of the (D� 1)-dimensional sub-
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space shrinks to zero as the singularity is approached. Only
for � ¼ z2 the point z ¼ 0 could be included in the mani-
fold, similar to the pole in the D-dimensional sphere. For

� < 2 the internal curvature RðDÞ diverges as the singular-
ity is approached.

RðDÞ ¼ ðD� 1Þ�
�
1�D

4
�

�
z�2: (83)

For the range 0< �< 2 we conclude

RðDÞðz ! 0Þ !
8<:1 for � < 4=D
�1 for � > 4=D
0 for � ¼ 4=D

: (84)

[Eqs. (83) and (84) hold for D ¼ 2 for all �.] For RðDÞ !
�1 (� > 4=D) the singularity is a cusp, and for RðDÞ ! 0
a generalized cone. (For D ¼ 2 the singularities �� z�,
� < 2 or � ¼ �z2,�> 1, cannot be embedded in flat three
dimensional space.) The singularities with � > 0 can be
associated with a generalized ‘‘brane’’ [17,22,23] sitting at
z ¼ 0.

The brane or pointlike singularities correspond to >
�1=2. Depending on ~E, the solution of Eq. (58) with the
plus sign corresponds to the range

2

Dþ 3
� � � 2

Dþ 3

�
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 2

D� 1

s �
; (85)

such that the singularity is powerlike and may have posi-
tive or negative curvature. Cusp singularities with � >
4=D are realized close to the upper bound ( ~E2 ! 0) for
allD> 2, whereas the lower bound corresponds to positive

RðDÞ. Also the solutions with a negative sign in Eq. (58) can
have a pointlike singularity with RðDÞ ! 1 for sufficiently
large ~E2.

For  ! � ( ~E2 ! 0), however, the exponent � be-
comes negative, with

�� ¼ 2

Dþ 3

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 2

D� 1

s �
: (86)

For � < 0, the singularity is of a different type. Close to the
singularity, the radius of the (D� 1)-dimensional sub-

space now diverges. The curvature RðDÞ also diverges to
negative infinity. Singularities of this type may be called
‘‘infinitons.’’ Nevertheless, the volume of internal space
remains finite as long as � >�2=ðD� 1Þ This is always
realized for � � ��.

B. Warped branes and zerowarps

Another important aspect of the singularities concerns
the warp factor �. Let us consider the five-dimensional
space spanned by the coordinates x� and z. Apart from the
signature, this is the analogue of D-dimensional internal
space, with � replaced by �. Indeed, for D ¼ 5 our equa-

tions are invariant under the exchange � $ �, ~C $ 4~�, or
� $ �. For < 0, one has a pointlike singularity in
five-dimensional space. As the singularity is approached
for z ! 0, the five-dimensional distance between two ar-
bitrary points in four-dimensional space-time shrinks to
zero. Even the locations of the most remote galaxies have
an arbitrarily small five-dimensional distance from each
other. The singularities with < 0, where the warp factor
� vanishes at the singularity, are called ‘‘zerowarps.’’ For
> 0, in contrast, the five-dimensional distance between
two locations x� and x0� diverges to infinity as z ! 0. For
a fixed four-dimensional volume the volume of the five-
dimensional space remains finite as long as < 1=2. This
is not automatically obeyed. ForD � 7, an infinite volume
of five-dimensional space becomes possible (> 1=2),
even though the four-dimensional volume is finite.
We conclude that the singularities either correspond to

warped branes (� > 0) or to zerowarps (< 0).
Singularities where a brane is simultaneously a zerowarp
are possible only for ~E2 exceeding a minimum value, not
for ~E ¼ 0. Zerowarp solutions have first been discussed in
[16], and warped brane solutions in [17]. An intensive
discussion of warped branes with codimension one has
started with [19], and codimension two branes have been
investigated more recently in [24–27]. We discuss warped
branes in five-dimensional gravity with a dilaton (codi-
mension one) in Appendix A. Warped branes with codi-
mension � 2, embedded in Ricci-flat higher-dimensional
space, are investigated in detail in [20].

VII. GLOBAL PROPERTIES OF SOLUTIONS

A. Monotonic behavior

Let us next turn to the global properties of the solutions.
This concerns, in particular, the question which type of
singularities can be connected by a smooth solution for 0<
z< �z (or 0< z <1). We first consider the warp factor and
ask if a � is monotonic or if a turning point [maximum or
minimum of �ðzÞ] can occur. For a turning point with
�0ðztÞ ¼ 0, Eq. (42) implies �00ðztÞ ¼ 2�. For �> 0 a
minimum of � at zt is possible, and for �< 0 a maximum
may occur. For � ¼ 0 one finds �00ðztÞ ¼ 0 and higher
derivatives of � at zt are needed for a characterization of a
possible turning point. For � ¼ 0, one actually finds that
�0ðztÞ ¼ 0 implies that all derivatives of � vanish at zt.
This follows by subsequent differentiations of Eq. (42). For
� ¼ 0, we conclude that either� is monotonic or constant.
For a monotonic � there must then be at least one singu-
larity (or regular point) with � 0, such that� vanishes or
approaches a constant. On the other hand, either� diverges
at a second singularity of for z ! �1, or it approaches a
constant.
A similar discussion is possible for the potential turning

points of � at z�, �
0ðz�Þ ¼ 0. A linear combination of

Eqs. (34) and (35) yields
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���1 �Dþ 5

4
C��1 � 3

4

�
�0

�

�
2 þ 3

2

�0

�

�0

�
þDþ 2

4

�00

�

þD2 þD� 14

16

�
�0

�

�
2 ¼ � 1

4
�02; (87)

and, in combination with Eq. (36), we obtain

�0

�

�0

�
¼ C��1 � 1

2

�00

�
�D� 3

4

�
�0

�

�
2
: (88)

For a possible turning point this yields

�00ðz�Þ ¼ 2C: (89)

Similar to the discussion above, we conclude that for C ¼
0 the function �ðzÞ is either monotonic or constant. For
C> 0 it may have a minimum, but no maximum. In
particular, for C � 0 the presence of two pointlike singu-
larities with � > 0 is excluded.

B. Solutions with � ¼ 0

In the following we will consider � ¼ 0. For C ¼ 0 we
have found that the powerlike solutions (52), with  and �
obeying Eqs. (53) and (57), are exact solutions for the
whole range of z. These exact solutions extend from z ¼
0 to z ! 1 and have therefore no second singularity at
some finite �z. They correspond to the third type of asymp-
totic solutions for z ! 1, Eq. (76), and do not admit
dimensional reduction with finite M2, Eq. (77). For C �

0, the powerlike solutions are approached for ~C ! 0.
Typically the powerlike solutions are dividing lines be-

tween solutions with two singularities (for ~C> 0) and

solutions with a regular behavior for z ! 1 (for ~C< 0).
For � ¼ 0 one has still two free integration constants left,
while the singular behavior depends only on one integra-
tion constant, ~E2 or . The second integration constant
does not influence the behavior at the pole for z ! 0, but it
decides on which side of the dividing line a given solution

is located. For C � 0 we may use ~C as the second integra-
tion constant.

C. Classification of solutions

We may classify the possible solutions according to the
type of the singularity for z ! 0. For type (A), the solution
corresponds to the plus sign in Eq. (58) with > 0, i.e.

ðAÞ: > 0; � > 0; ~E2 <
D� 2

D� 1
: (90)

Solutions of type (B) again have the plus sign in Eq. (58)
but < 0,

ðBÞ: < 0; � > 0;
D� 1

Dþ 2
< ~E2 � Dþ 2

Dþ 3
:

(91)

Similarly, the type (C) characterizes solutions with the
minus sign in Eq. (58), with � > 0,

ðCÞ: < 0; � > 0;
3

4
< ~E2 � Dþ 2

Dþ 3
: (92)

The singularities (A)–(C) describe warped branes. The
solutions (B) and (C) are simultaneously zerowarps.
Finally, the type (D) denotes zerowarp solutions where
both  and � are negative, with a minus sign in Eq. (58),

ðDÞ: < 0; � < 0; ~E2 < 3
4: (93)

For ~E2 ¼ ðDþ 2Þ=ðDþ 3Þ the types (B) and (C) coincide.
The boundary between (C) and (D) has ~E2 ¼ 3=4, � ¼ 0,
 ¼ � 1

2 , and the boundary between (A) and (B) obeys
~E2 ¼ ðD� 2Þ=ðD� 1Þ,  ¼ 0, � ¼ 2=ðD� 1Þ.

D. Solutions with two singularities

Let us now investigate the possibilities for two singular-
ities. The monotonic behavior of �ðzÞ tells us that a solu-
tion of type (A) can only be connected to a second
singularity at z ¼ �z which is of type (B), (C), or (D).
Similarly, singularities at z ¼ 0 of the types (B), (C), or
(D) require a type (A) singularity at z ¼ �z. Thus, one of the
singularities is always a pointlike singularity of type (A).
Since the role of the two singularities is interchangeable,
we may take for z ! 0 the solution of type (A).
For C> 0 the second singularity at �z cannot be point-

like. The only remaining possibility is a singularity of type
(D). [Only for C< 0 the type (B) or (C) singularities at �z
are also conceivable.] Let us concentrate on C> 0. The
solution starts for z ! 0 with � ! 0, � ! 1 according to

� ¼ �0z
�;

2

D� 1
<�< �þ

� ¼ �0z
�; 0<< þ;

(94)

with þ given by Eq. (59). Correspondingly, the variables
s and v [Eqs. (45) and (47)] obey

ŝ ¼ � lnz; v̂ ¼ 2 lnz: (95)

Close to the singularity we can linearize Eqs. (48), (49),
and (52) with

sðzÞ ¼ ŝðzÞ þ �sðzÞ; vðzÞ ¼ v̂ðzÞ þ �vðzÞ; (96)

such that

z2�00
s þ z�0

s � z

2
�0
v ¼ 0;

z2�00
v þ 2z

ðD� 1Þ ½ð1þ 2Þ�0
v � ð4þ 2ðDþ 3ÞÞ�0

s�
� 2 ~E2�v ¼ 0;

2z

D� 1

��
1þ 2�D

2

�
�0
v � ð4þ 2ðDþ 3ÞÞ�0

s

�
� 2 ~E2�v þ 2 ~Cz2�� ¼ 0: (97)

Combining the last two equations yields
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z2�00
v þ Dz

D� 1
�0
v � 2 ~Cz2�� ¼ 0: (98)

A solution is

�v ¼ 2 ~C

ð2� �Þð2� �þ 1
D�1Þ

z2��;

�s ¼  ~C

ð2� �Þ2ð2� �þ 1
D�1Þ

z2��:

(99)

For � ¼ 0 and given ~E2, let us consider the limit ~C !
0þ. In this limit the location of the second singularity �zwill
move to infinity. The solution stays very near the exact
solution for a large range 0< z < zc, with zc of the order of
�z but somewhat smaller. In the region z � zc the power law
solution (52), (53), and (57) around z ¼ 0 is matched to a
similar singular solution around z ¼ �z.

VIII. DIMENSIONAL REDUCTION

At this stage we have described the general quasistatic
solutions of the field equations (12) and (13) that are
consistent with the ansatz (28). They are described by
several free integration constants. In particular, the cosmo-
logical constant � turns out to be one of these integration
constants. In the presence of singularities not all solutions
of the higher-dimensional field equations correspond to
extrema of the action [20]. One possible way to understand
this issue investigates the effective four-dimensional
action.

A. Four-dimensional effective action

The four-dimensional action will also be useful for a
discussion of cosmological solutions. The quasistatic so-
lutions discussed so far are possible candidates for the
asymptotic state of the Universe as t ! 1, but cannot
describe the cosmological evolution. In particular, the
cosmological evolution will decide which one of the pos-
sible asymptotic states is approached.

An investigation of the general time-dependent solutions
is rather involved. The functions �, �, and � become now
functions of z and t, and the most general ansatz consistent
with internal symmetries, time and space translations, as
well as rotations and reflections in space, contains several
other functions of z and t [28]. In order to get a first
approach, one may study the cosmological solutions of
an effective four-dimensional theory, obtained by dimen-
sional reduction.

Dimensional reduction involves an ansatz for the rele-
vant degrees that may be important for cosmology after
some early initial period—say after inflation. Besides the

four-dimensional metric ~gð4Þ��ð ~x; tÞ, this typically comprises
other fields with a small mass. We will include here the
radion by promoting L in Eq. (28) to a field Lð ~x; tÞ. In
addition, we consider the dilaton by the ansatz �ðx; yÞ ¼

�ð0ÞðzÞ þ �ð ~x; tÞ. The reduced four-dimensional theory is
found by inserting the ansatz in the higher-dimensional
action and integrating over the internal coordinates y�,

�ð4Þ½~gð4Þ��; L; �� ¼ Md�2
d

2

Z
y
~g1=2f� ~Rþ @�̂�@�̂�g: (100)

For this purpose we have to specify appropriate functions

�ð0ÞðzÞ, �ð0ÞðzÞ, �gð0Þ
�� ��
ð �yÞ, �ð0ÞðzÞ. We will choose them as one

of our quasistatic solutions. This choice is not unique, and
we will discuss this issue in more detail below.
With our ansatz for the metric we can decompose the

higher-dimensional curvature scalar (omitting terms that
will lead to irrelevant total derivatives)

~R ¼ ~Rð4ÞðxÞ��1ðzÞ � ~c@� lnLðxÞ@� lnLðxÞ��1ðzÞ
þ L�2ðxÞ ~RDðzÞ; (101)

with

~R ðDÞðzÞ ¼ RðDÞ �
�
�0

�

�
2 � 4

�00

�
� 2ðD� 1Þ�

0

�

�0

�
:

(102)

Here

RðDÞ ¼ ðD� 1ÞC
�

� ðD� 1Þ�
00

�
� 1

4
ðD� 1ÞðD� 4Þ

�
�0

�

�
2

(103)

is the curvature scalar computed from the internal part of
the metric (28) for L ¼ 1. It depends on �, �0, and �00. [We

abbreviate here �, � instead of �ð0ÞðzÞ, �ð0ÞðzÞ.] Inserting
into the higher-dimensional action yields

�ð4Þ ¼
Z
x
ð~gð4ÞÞ1=2

�
1

2
	2½� ~Rð4Þ þ ~c@� lnL@� lnL

þ @��@��� þ V

�
; (104)

where

	2 ¼ M2
dðMdLÞD

Z
z
��1�ðD�1Þ=2; (105)

and

V ¼ 1

2
M4

dðMdLÞD�2
Z
z
�2�ðD�1Þ=2f�02 � ~RDg: (106)

B. Four-dimensional solutions and contradiction for
� � 0

For any solutions of the higher-dimensional field equa-

tions the higher-dimensional action and therefore also �ð4Þ
must vanish. This follows directly from Eq. (26). We
employ this observation for a computation of V by noting

that for @� lnL ¼ 0, @�� ¼ 0, ~Rð4Þ ¼ 4�L�2 we have in-

deed a solution of the higher-dimensional field equations,
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implying

�02 � ~RD ¼ 4���1: (107)

(This can, of course, be verified by a direct computation for
our quasistatic solutions.) We find

V ¼ 2�M4
dðMdLÞD�2

Z
z
��ðD�1Þ=2 ¼ 2�	2L�2: (108)

For constant L and � one may be tempted to relate V and
the effective four-dimensional cosmological constant� by
Eq. (108). Considering only the higher-dimensional solu-
tions of the field equation this seems possible for arbitrary
�. The situation is more complicated, however. Solving the
field equations for the effective four-dimensional theory
with L ¼ � ¼ const results in

	2

�
~Rð4Þ
�� � 1

2
~Rð4Þ~gð4Þ��

�
¼ �V~gð4Þ��; (109)

or

	2 ~Rð4Þ ¼ 4V: (110)

This implies ~Rð4Þ ¼ 4V=	2 ¼ 8�L�2, leading to a contra-

diction with the higher-dimensional solution �Rð4Þ ¼
4�L�2, unless � ¼ 0. This simple observation singles
out the case of a vanishing cosmological constant � ¼ 0.
Only in this case the higher-dimensional and four-
dimensional field equations lead to the same static solution.

For higher-dimensional solutions with integration con-
stant � ¼ 0 the potential VðL; �Þ vanishes identically. In
this case L ¼ const, � ¼ const are indeed solutions of the
four-dimensional field equations. Again, this does not
hold for� � 0. Now we find a nonvanishing potential V �
LD�2.

C. Four-dimensional Weyl scaling

Since also the effective four-dimensional gravitational
constant �	�2 depends on the field L, a better under-
standing of the cosmological solutions of the field equa-
tions derived from the action (104) can be gained after
Weyl scaling. With

~gð4Þ�� ¼ w2
4g��; w4 ¼ M	�1;

~Rð4Þ ¼ w�2
4 ðR� f4@

� lnw4@� lnw4 � g4D
2 lnw2

4Þ;
(111)

and R the curvature scalar corresponding to g��, one has

(f4 ¼ 6)

�ð4Þ ¼
Z
x
g1=2

�
1

2
M2½�Rþ f4@

� ln	@� ln	

þ ~c@� lnL@� lnLþ @��@��� þM4

	4
V

�
¼
Z
x
g1=2

�
1

2
M2

�
�Rþ

�
6þ 4~c

D2

�
@� ln	@� ln	

þ @��@��

�
þ 2�ĉ2=DM4

�
	2

M2
d

��ððDþ2Þ=DÞ�
;

(112)

where

ĉ ¼
Z
z
��ðD�1Þ=2: (113)

We may introduce canonically normalized fields for the
dilaton, � ¼ M�, and radion

~’ ¼
�
6þ 4~c

D2

�
1=2

M ln
	

Md

; (114)

such that their kinetic terms have the standard form for real
scalar fields. For � � 0 we find an effective potential for
the radion, U ¼ ðM4=	4ÞV,

U ¼ 2�ĉ2=DM4 exp

�
�~�

~’

M

�
;

~� ¼ 2ðDþ 2Þ
D

�
6þ 4~c

D2

��1=2
:

(115)

D. Cosmological solutions

We recognize the radion as a type of quintessence field
that increases towards infinity as time goes on. For � � 0,
the effective four-dimensional theory describes cosmolo-
gies with an asymptotically vanishing dark energy, and not
a de Sitter space with a cosmological constant different
from zero. Asymptotically, the curvature scalar in the
Einstein frame R goes to zero. In the absence of matter
the asymptotic solution is [1], [2]

~’

M
¼ 2

~�
lntþ ~’0: (116)

If we expand around a higher-dimensional solution

ð�ð0ÞðzÞ; �ð0ÞðzÞ; ~gð0Þ��ð �yÞ; �ð0ÞðzÞÞ with integration constant

� � 0 we conclude that this solution is not a solution of
the field equations for the effective four-dimensional the-
ory. The four-dimensional solution leads to asymptotically
flat space (R ! 0), but increasing 	 and therefore L. This
is in contradiction to the higher-dimensional solution with

constant ~Rð4Þ and L. For an extremum of � the four-
dimensional field equations must be obeyed, however.
We infer that higher-dimensional solutions with integration
constant � � 0 cannot be extrema of the effective action.
In the presence of singularities the extrema of the action
have to obey additional constraints beyond the higher-
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dimensional field equations [20]. We will address this issue
in the next section. We will see that these constraints allow
quasistatic solutions only for � ¼ 0.

IX. POTENTIAL FOR INTEGRATION CONSTANTS

The action � is a functional of arbitrary metrics
~g�̂ �̂ðx; yÞ and scalar fields �ðx; yÞ. The extremum condition

�� ¼ 0 singles out the allowed solutions. If we interpret
� as the quantum effective action after the inclusion of
all quantum effects, the resulting field equations
@�=@~g�̂ �̂ðx; yÞ ¼ 0, @�=@�ðx; yÞ ¼ 0, are exact identities
for the allowed states of the system.

A. Dependence of effective action on integration
constants

Let us now evaluate � for a finite dimensional subspace
of metrics and scalar fields that we define in the following.
Consider a given solution of the local field equations (33)–
(36), with singularities at z ¼ 0 and z ¼ �z. We denote the
corresponding functions by ��ðzÞ, ��ðzÞ, �0

�ðzÞ, with � ¼
ðE0; L0;�0; �0Þ the remaining integration constants which
specify the solution. [Two integration constants are fixed
by the location of the singularities, and we recall that �0 or,

equivalently ~C for C � 0, is fixed by Eq. (36).] Consider
now a class of metrics given by the ansatz (28), with

�ðzÞ ¼ �̂
�0
��ðzÞ, �ðzÞ ¼ �̂

�0
��ðzÞ and arbitrary L. This

keeps the location of the singularities at z ¼ 0 and z ¼ �z.

We also keep the functions ~gð4Þ��ðxÞ and �g �� ��ðyÞ fixed, where
~gð4Þ�� corresponds to a given fixed value �= ~L2

0 ¼ �0=L
2
0 for

given �. Similarly, we consider scalar fields where �0ðzÞ is
given by an arbitrary E in Eq. (33). This subspace of field
configurations is characterized by four variables
ðE; L; �̂; �̂Þ and we investigate the effective potential for
these variables

W�ðE; L:�̂; �̂Þ ¼ Md�2

2
LD

Z
z
�2�ðD�1Þ=2ð@�̂�@�̂�� ~RÞ:

(117)

The effective action depends on these variables via

��ðE; L; �̂; �̂Þ ¼
Z
x
ð~gð4ÞÞ1=2W�ðE; L; �̂; �̂Þ; (118)

and an extremum of the action corresponds to an extremum
of W�. We employ a subscript � in order to recall that W�

depends implicitly on the chosen integration constants E0,
L0, �0, �0. For E ¼ E0, L ¼ L0, � ¼ �0, �̂ ¼
�0ðE0; L0;�0; �0Þ, we know that W must vanish identi-
cally due to Eq. (26).

Inserting the functions ��ðzÞ, ��ðzÞ, �0�ðzÞ one obtains

W� ¼ 1

2
Md�2

d

�
E2�̂2�̂ðD�1Þ=2

� LD�2

E2
0�

2
0�

ðD�1Þ=2
0

Z
z
�2

��
ðD�1Þ=2
� �02

�

� 4�0

L2
0

�̂�̂ðD�1Þ=2LD

�0�
ðD�1Þ=2
0

Z
z
���

ðD�1Þ=2
�

� �̂2�̂ðD�1Þ=2LD�2

�2
0�

ðD�1Þ=2
0

Z
z
�2

��
ðD�1Þ=2
�

�
�
~RD;� þ

�
�0

�̂
� 1

� ðD� 1ÞC
��

��
: (119)

Using Eqs. (33) and (107)

~RD;� ¼ �02
� � 4�0�

�1
� ¼ E2

0�
�4
� ��ðD�1Þ

� � 4�0�
�1
� ;

(120)

we find

W� ¼ 1

2
Md�2

d

�̂2�̂ðD�1Þ=2LD�2

�2
0�

ðD�1Þ=2
0

�
ðE2 �E2

0Þ
Z
z
��2

� ��ðD�1Þ=2
�

þ 4�0

�
1��0L

2

�̂L2
0

�Z
z
���

ðD�1Þ=2
�

þðD� 1ÞC
�
1��0

�̂

�Z
z
�2

��
ðD�3Þ=2
�

�
: (121)

We recall that �0 is fixed in terms of E0, L0,�0, and�0 and
observe that W� indeed vanishes for E ¼ E0, �0=�̂ ¼
L2
0=L

2, �̂ ¼ �0.

B. Variation of internal volume implies � ¼ 0

One may expect that the higher-dimensional solution
E ¼ E0, L ¼ L0, �̂ ¼ �0, �̂ ¼ �0 corresponds to an ex-
tremum of the action and therefore of W�. This is not the

case. Let us first take E ¼ E0, �̂ ¼ �0, �̂ ¼ �0, and con-
sider W� as a function of the characteristic size of internal

space L,

W�ðLÞ ¼ 2�0M
d�2
d ĉ�ðLD�2 � LDL�2

0 Þ: (122)

The condition for an extremum at L ¼ L0,

@W�

@L jL0

¼ 2�0M
d�2
d ĉ�½ðD� 2ÞLD�3 �DLD�1L�2

0 �
¼ �4�0M

d�2
d LD�3

0 ĉ� ¼ 0 (123)

is obeyed only for�0 ¼ 0. We infer that all solutions of the
local higher-dimensional field equations with �0 � 0 are
not an extremum of the action. Extrema of the action (10)
must have a vanishing effective four-dimensional cosmo-
logical constant�0 ¼ 0. It is precisely for this case that we
have found a consistent dimensional reduction in the pre-
ceding section.
The family of metrics with two singularities, where �̂

and L are varied while �̂ ¼ �0 and E ¼ E0 are kept fixed,
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is perfectly acceptable. Since ĉ� ¼ R
z ���

ðD�1Þ=2
� is finite,

the potential W� remains finite for this class of metrics.

There is no doubt that the action should be an extremum
within this family of metrics. For solutions with �0 � 0,
there exist neighboring metrics for which the action per
volume of four-dimensional space-time W� changes by a

finite amount, such that the solution is not an extremum.
Therefore, �0 � 0 is clearly not compatible with accept-
able solutions. We conclude that for all extrema of the
action with two singularities the effective four-dimensional
cosmological constant vanishes without any tuning of
parameters.

C. Variation of integration constants for internal
geometry

Let us next consider variations of �̂, with E ¼ E0, � ¼
�0, L ¼ L0 fixed. Near the singularities one has

�2�ðD�3Þ=2 � z�2þððD�3Þ=2Þ� � zððD�3Þ=ðD�1ÞÞ�ð4=ðD�1ÞÞ

� z1��: (124)

The z integral of this expression remains finite near z ¼ 0,
provided < D

2 � 1 or � < 2. This holds for all D � 3.

The class of metrics with varying �̂ seems again to be
acceptable. For �0 ¼ 0, E ¼ E0, we remain with

W� ¼ D� 1

2
CMd�2

d

Z
z
�2

��
ðD�3Þ=2
� A;

A ¼ �̂2

�2
0

LD�2

�
�̂ðD�1Þ=2

�ðD�1Þ=2
0

� �̂ðD�3Þ=2

�ðD�3Þ=2
0

�
:

(125)

ForC ¼ 0 this does not yield an additional constant and we
find that W� vanishes identically. For C � 0, however, an

extremum at �̂ ¼ �0, �̂ ¼ �0, L ¼ L0 requires
�2

0L
D�2
0 =�0 ¼ 0. This is not consistent with our ansatz

(28). We conclude that for all extrema of the action with
the ansatz (28) and two singularities, the space spanned by
the coordinates �y� must be Ricci-flat, i.e. C ¼ 0, �R �� �� ¼ 0.

We have seen, however, that no solutions with two singu-
larities exist for � ¼ 0, C ¼ 0—the exact singular solu-
tions are the powerlike solutions (52), (53), and (57) that do
no lead to an acceptable four-dimensional gravity. Some
ingredient is needed to stabilize �̂ at some finite value, if
the solutions with two singularities and C � 0 are to play a
role. One possibility are time-dependent cosmological so-
lutions, where �̂ðtÞ is finite for any finite time t. We will
come back to this issue below. For the moment, we only
note that the derivative

@W�

@�̂ j�0
¼ D� 1

2
~CM4

dðMdLÞD�2
Z
z
�2

��
ðD�3Þ=2
� (126)

gets small for small values of the integration constant ~C.
We also should emphasize a difference between the

physics associated to a variation of �̂ and a variation of
L. For fixed values L ¼ L0, �̂ ¼ �0, E ¼ E0, �̂ ¼ �0, the

dimensional reduction to an effective four-dimensional
theory is valid whenever� ¼ 0, independently of the value
of C. Contradictions arise only for � � 0. In fact, we may
evaluate � for fixed ��, ��, �� only as a functional of an

arbitrary metric ~gð4Þ��ðxÞ. Then W�½~gð4Þ��� precisely corre-

sponds to the effective four-dimensional Lagrangian and

��½~gð4Þ��� to the effective four-dimensional action for the

metric. The solution ~gð4Þ��ðxÞ of the higher-dimensional field

equations is an extremum of ��½~gð4Þ��� only for � ¼ 0.

D. Variation of scalar integration constants

Let us finally consider variations of E. In fact, the
situation is more subtle if we keep the metric fixed, L ¼
L0, �̂ ¼ �0, �̂ ¼ �0, but vary the scalar field with E � E0.
For a finite coefficient of the term �E2 in W� one con-

cludes immediately that the only extremum with
@W�=@E ¼ 0 occurs for E ¼ 0, and therefore infer E0 ¼
0. However, the coefficient in the first term in Eq. (121) is
not finite if singularities are present, since

��2��ððD�1Þ=2Þ � z2�ððD�1Þ=2Þ� � z�1: (127)

We conclude that E � E0 does not describe an acceptable
field configuration with finite W�. For a given metric only

the choice E ¼ E0 ensures that W� remains finite.

This issue may be better understood if we write the piece
in the action containing the scalar field as

�� ¼ Md�2
d

2

Z
~g1=2@�̂�@�̂�

¼ �Md�2
d

2

Z
f~g1=2�D̂2�� @�̂ð~g1=2�@�̂�Þg: (128)

The first term vanishes for any solution of the field equa-
tions. However, there is a second ‘‘boundary term,’’ which
reads for our local solution

�� ¼ Md�2
d

2
LD�2

Z
x
ð~gð4ÞÞ1=2

Z
z
@zð�2�ðD�1Þ=2��0Þ

¼ Md�2
d

2
LD�2E

Z
x
ð~gð4ÞÞ1=2ð�ð�zÞ � �ð0ÞÞ: (129)

More precisely, �ð0Þ stands for �ðz ! 0þÞ and �ð�zÞ for
�ðz ! �z�Þ. In fact, near the singularities one has �0 � z�1

and �0 � ð�z� zÞ�1, respectively. Therefore � diverges
logarithmically to �1 for z ! 0þ, and to þ1 for z !
�z�, if E> 0 (and inversely for E< 0). The difference
�ð�zÞ � �ð0Þ therefore diverges and �� is not well defined.
On the other hand, the curvature part of the action, �R,
contains a similar divergence. Indeed, for any solution of
the field equations one has

~R ¼ ð�0Þ2; (130)

and therefore
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�2�ðD�1Þ=2 ~R ¼ E0�
0: (131)

Insertion into �R yields

�R ¼ �M2
d

2

Z
~g1=2 ~R

¼ �Md�2

2
VD�1L

D�2E0

Z
x
ð~gð4ÞÞ1=2ð�ð �zÞ � �ð0ÞÞ;

(132)

such that for E ¼ E0 one finds �R ¼ ���.
If we restrict the allowed field configurations to the ones

where �=V4 (with V4 the volume of four-dimensional
space-time) remains finite, the divergences in �R and ��

must cancel. This fixes the allowed value of E as a function
of the singularity in the metric. For solutions of the field
equations this requires E ¼ E0 for given ��, ��. At this

stage we are then not allowed to varyE and should consider
W� only as a function of L, �̂, �̂, omitting the first term in

Eq. (121).
Instead of varying � by a multiplicative constant at fixed

~g�̂ �̂, we may alternatively consider a shift of � by an

additive constant, � ! �þ �, at fixed ĝ�̂ �̂. We first verify

that the extrema of the action (23) coincide with the
extrema of the original action (10). This is not automatic
since the transformation has neglected a boundary term

�� ¼ gd
2

Z
~g1=2�2wd�2D̂2 lnw

¼ � gd
d� 2

Md�2
d

Z
@�̂ð~g1=2@�̂ ln�Þ

�
Z
z
@zð�2�ðD�1Þ=2�0Þ: (133)

However, this term vanishes identically for the solutions of
the field equations such that the extrema are the same for
Eqs. (10) and (23). For a constant infinitesimal shift � the
variation of the action (10) reads simply

�� ¼ �
Z

ĝ1=2�R̂�

¼ �
Z
x
ð~gð4ÞÞ1=2

Z
z
wd�2�ðD�1Þ=2�R̂�: (134)

If a constant shift � would correspond to a finite varia-

tion ��=V4, i.e. for finite
R
z w

d�2�ðD�1Þ=2�R̂, the extre-

mum condition �� ¼ 0 would imply R̂ ¼ 0. [Note

� ¼ expðc��Þ � 0 for positive c� ¼ ½� þ 4fd=ðd�
2Þ2�1=2 and w, �, � > 0.] Combining Eqs. (12) and (14)
one finds for all solutions of the field equations

R̂ ¼ �@�̂ ln�@�̂ ln�ĝ
�̂ �̂ ¼ �w�2c2�ð�0Þ2; (135)

such that R̂ ¼ 0 corresponds to E0 ¼ 0. However, with

y ¼ wd�2�ðD�1Þ=2�R̂ ¼ �Md�2
d c2�E

2
0�

�1��2��ððD�1Þ=2Þ

(136)

one finds for E0 > 0, with �y > 0, �y > 0,

yðz ! 0Þ � z�1��y ; yðz ! �zÞ � ð�z� zÞ�1þ�y :

(137)

Therefore
R
z y converges for z ! �z, but diverges for z !

0. Even though the variation at constant ĝ�̂ �̂ shows a

different behavior at the singularities as compared to the
one with fixed ~g�̂ �̂, it still changes �=V4 by an infinite

amount.
Nevertheless, there are other variations of � which leave

�=V4 finite, but imply E0 ¼ 0 for the extremum condition.
Consider a z dependent shift � ! �þ �ðzÞ, with fixed
~g�̂ �̂. The variation of the action (23) becomes

�� ¼ Md�2
d

Z
~g1=2@�̂�@�̂�

¼ Md�2
d

�Z
@�̂ð�~g1=2@�̂�Þ �

Z
�~g1=2D̂2�

�
: (138)

The second contribution vanishes by virtue of the field
equation (24) such that

�� ¼ Md�2
d

Z
x
ð~gð4ÞÞ1=2

Z
z
@zð��2�ðD�1Þ=2�0Þ

¼ Md�2
d E0

Z
x
ð~gð4ÞÞ1=2

Z
z
@z�ðzÞ: (139)

If we take �ðzÞ ¼ �z we obtain for the spaces with two
singularities at z ¼ 0 and z ¼ �z a finite value

R
z � ¼

VD�1��z. The extremum condition with respect to such a
variation, �� ¼ 0, impliesE0 ¼ 0. If we admit solutions of
the field equations where � diverges at the singularities,
there seems to be no reason to exclude the configurations
where � is shifted by a finite amount, as � ! �þ �z.
More generally, it is always possible to find �ðzÞ withR
z @z� � 0. We infer that all extrema of the action have

E ¼ 0 and therefore z-independent values of the scalar
field, � ¼ �0, � ¼ �0. In this case �� ¼ 0 is obeyed for
arbitrary �, cf. Eq. (138).

E. Extrema of effective action

We conclude that the extrema of the action require for
quasistatic solutions with a warped geometry (28) the
choice of integration constants E ¼ 0, � ¼ 0, C ¼ 0.
The remaining integration constants �0, �0, L correspond
to trivial rescalings of the coordinates in this case. The
singular solutions with warping are given by the powerlike
solution (52), with  and � determined by Eqs. (58) and
(53). They do not lead to a finite four-dimensional Planck
mass. If we restrict the range of z to 0< z < zmax the
effective four-dimensional Planck mass diverges 	2 �
z2max. We may imagine a cosmology where this particular
static solution is approached asymptotically, with an effec-
tive zmax increasing with time. However, for a realistic
particle physics the typical mass scale for the Kaluza-
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Klein modes has also to increase with zmax, and the dimen-
sionless couplings should remain essentially static despite
the increase of zmax. It may be difficult to achieve these
requirements.

The absence of solutions with � ¼ C ¼ E ¼ 0 and
finite 	 is a particularity of our limitation to an SOðDÞ
isometry. Other solutions with a different isometry group
are compatible with � ¼ C ¼ E ¼ 0 and lead neverthe-
less to a consistent four-dimensional gravity with finite 	.
For the ansatz (28) the extrema with a direct product
structure �ðzÞ ¼ �0, �ðzÞ ¼ �0, with �g �� ��ðyÞ the metric

of a Ricci-flatD� 1-dimensional space with finite volume
VD�1, are consistent. This also holds if ĝ��ðy; zÞ describes
a Ricci-flat D-dimensional geometry. Such spaces are in-
deed extrema of �. We conclude that internal geometries
corresponding to extrema ofW in Eqs. (5) and (6) typically
exist. They single out a vanishing cosmological constant
� ¼ 0.

This result has far reaching consequences. In particular,
it explains within our model why asymptotic cosmological
solutions lead to a vanishing cosmological constant. We
should therefore understand better why the local solutions
of the field equations are not automatically extrema of the
action. The basic reason is that the local field Eqs. (24) and
(25) are obtained from local variations of the action. Local
variations �~g�̂ �̂ðx; yÞ typically vanish outside some region
in higher-dimensional space-time. Since any extrema of �
must also be extrema with respect to local variations, it is a
necessary condition for any state that the field equations
are obeyed. For compact internal spaces with a regular
warp factor, this condition is also sufficient. In presence
of singularities it is not.

In other words, in addition to the local variations we
have also to consider variations of the d-dimensional fields
that are not local in d-dimensional space-time. For ex-
ample, a variation of L changes the internal metric for all
values of z, not only in a local region. This holds even if
LðxÞ is local in four-dimensional space-time. The extre-
mum condition for � under a variation of L is not contained
in the field equations. It has to be imposed in addition.

We therefore can devise the following strategy for find-
ing the extrema of �. First, one solves the field equations.
The most general solution consistent with a given symme-
try has typically a number of integration constants �j. In

the second step, one may evaluate � as a function of the
integration constants by inserting the corresponding solu-
tions of the field equations for some fixed ‘‘trial values’’
� ¼ �j;0. This leads to a potential W�ð�jÞ for the integra-
tion constants. The third step determines the extrema ofW.
These are then the extrema of the action. The resulting
extremum condition typically fixes part of the integration
constants �j. Alternatively, one may perform dimensional

reduction to an effective four-dimensional theory and use
the requirement that an extremum of � has to obey the
effective four-dimensional field equations.

For compact internal spaces with a regular warp factor
the situation is special. Now part of the integration con-
stants �j are fixed by the conditions of regularity. The

solutions of the field equations are automatically extrema
of W� in this case. This follows from the absence of

boundary terms, such that the local variations are sufficient
to find the extrema of �. We conclude that compact regular
solutions are always acceptable states. There are, however,
additional possibilities with singularities. In this case the
conditions on the integration constants �j for the regularity

are replaced by the extremum conditions for W�.

X. GENERAL DILATATION-SYMMETRIC
EFFECTIVE ACTION

In this section we generalize the discussion of the pos-
sible extrema of � in Sec. IX.We add to the effective action
(10) the most general dilatation-symmetric pure gravita-
tional part,

� ¼
Z

ĝ1=2
�
� 1

2
�2R̂þ �

2
@�̂�@�̂�þ FðR̂�̂ �̂ �̂ �̂Þ

�
: (140)

We only assume here that F is dilatation invariant and
depends only on the metric and its derivatives, being a
scalar under general coordinate transformations. We do not
need to restrict the discussion to a polynomial form of F.

A. General solutions

We also consider much more general solutions as in the
preceding sections by investigating all possible quasistatic
solutions with a warped metric (4) and � ¼ �ðyÞ. The
detailed form of the solutions will not be important for
the general arguments of this section. We only need the
observation that there are families of higher-dimensional
solutions with free integrations constants as we have en-
countered in the preceding sections. The overall scale of �
and the characteristic length scale l of internal space count
among these integration constants. We assume that the
solutions are of the type admitting dimensional reduction
to an effective four-dimensional theory of gravity. Within
this very general setting we will find a class of solutions in
the ’’flat phase’’ with vanishing four-dimensional cosmo-
logical constant � ¼ 0. These solutions are extrema of �
and are stable. In contrast no stable extrema of � with� �
0 exist if � � 0. These statements hold independently of
the values of the couplings that parametrize F.
We will work directly with the action (140) without

performing a Weyl scaling. Nevertheless, direct contact
with the results of the preceding sections can be easily
made. In this case we use the ansatz (28) and employ the
simple relation (17) and (20) between ĝ�̂ �̂ and ~g�̂ �̂ which

amounts to appropriate multiplicative rescalings for the
metric components. We can use

gð4Þ�� ¼ M2
d�

�ð4=ðd�2ÞÞ~gð4Þ�� (141)
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and absorb the multiplicative factor between ~g�� and ĝ��
in L2, which is not determined by the higher-dimensional
solution anyhow.

B. Radion and dilaton

We will perform dimensional reduction to an effective
four-dimensional theory, expanding the effective action
(140) around a solution of the higher-dimensional field

equations. The effective four-dimensional action �ð4Þ will
depend on the values of the integration constants which
characterize the particular solution around which we ex-
pand. Among these integration constants we only keep �
and l as parameters of the four-dimensional theory. They
play the role of four-dimensional scalar fields and can be
associated with the dilaton and the radion. The quasistatic

solutions must be extrema of �ð4Þ with respect to variations
of � and l. For the other integration constants we assume
that they have fixed values which correspond to a (partial)

extremum of � and �ð4Þ. (This means that the derivatives of
W� in Sec. IX with respect to these parameters vanish.)

This procedure is illustrated by the detailed discussion in
the preceding sections. In this case we insert for �g �� ��ð �yÞ,
�ðzÞ, �ðzÞ, �ðzÞ one of the solutions of the higher-
dimensional field equations, as given by a set of integration
constants � ¼ ð�; . . .Þ. These solutions do not fix L and the
normalization of �, such that we can indeed retain two
scalar degrees of freedom.

The strong result of this section that only solutions with
� ¼ 0 are possible stable extrema of �will be based on the
extremum conditions for � and l as well as an investigation
of stability of possible extrema. For the discussion of

stability we will need the second variations of �ð4Þ with
respect to � and l.

The general form of the four-dimensional action can be
written as

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2

�
V � 1

2
	2Rð4Þ þ . . .

�
: (142)

We regard �ð4Þ as an expansion in powers of the four-
dimensional curvature tensor and the dots denote terms
involving higher powers of it. The potential V plays the
role of the four-dimensional effective potential for � and l,
where we recall that all quantum fluctuations are already
included. It is given by

V ¼
Z
y
ðgðDÞÞ1=2�2

�
�1

2
�2RðintÞ þ �

2
@��@��þFðRðintÞ

�̂ �̂ �̂ �̂Þ
�
:

(143)

Here RðintÞ and FðRðintÞ
�̂ �̂ �̂ �̂Þ are evaluated by inserting for the

d-dimensional curvature tensor the functions gðDÞ
��ðyÞ, �ðyÞ,

�ðyÞ, which correspond to a particular solution of the
d-dimensional field equation, while the four-dimensional

metric is kept flat, gð4Þ�� ¼ ��. Quantities like RðintÞ and

therefore V will depend on the choice of the integration
constants which characterize the higher-dimensional
solution.
On the other hand, one finds for the effective gravita-

tional constant

	2 ¼
Z
y
ðgðDÞÞ1=2�f�2 � 2Gg; (144)

where we use

R̂ ¼ RðintÞ þ Rð4Þ=�: (145)

Here G obtains from the first order term in an expansion of

F in Rð4Þ=�,

F ¼ FðRðintÞ
�̂ �̂ �̂ �̂Þ þGRð4Þ=�þ . . . : (146)

For the example F ¼ �R̂d=2 one has

F ¼ �ðRðintÞÞd=2 þ �d

2
ðRðintÞÞðd=2Þ�1Rð4Þ=�þ . . . ; (147)

such that

G ¼ �d

2
ðRðintÞÞðd=2Þ�1: (148)

We can now define the characteristic length scale l for
the internal geometry byZ

y
ðgðDÞÞ1=2�2 ¼ lD: (149)

Similarly, we define the characteristic scale �� for the scalar
field by Z

y
ðgðDÞÞ1=2��2 ¼ lD ��2: (150)

This definition is obvious for a constant � and � ¼ 1, but
can now be applied for arbitrary configurations, including
y-dependent scalar configurations with @�� � 0 and
warping.

C. Effective potential and Planck mass

We define dimensionless constants

~F ¼ l4
Z
y
ðgðDÞÞ1=2�2FðRðintÞ

�̂ �̂ �̂ �̂Þ;

~G ¼ l2
Z
y
ðgðDÞÞ1=2�G;

(151)

and observe that ~F and ~G do not change under a rescaling
of the internal metric. They can therefore be evaluated for a

fixed l0. (For the definition of ~F and ~G it is understood that
the same metric is used for all quantities on the right-hand
side.) Similarly, we define
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~Q ¼ 1

2
���2l2�D

Z
y
ðgðDÞÞ1=2�2ð�@��@��� �2RðintÞÞ:

(152)

[Again, the definition (152) is understood in the sense that
the solution for �ðyÞ is also used for the computation of ��
on the right-hand side, and similar for the scaling of the
internal metric.] In terms of these constants we can write

V ¼ ~Q ��2lD�2 þ ~Fl�4; (153)

and

	2 ¼ lD ��2 � 2 ~Gl�2: (154)

The constants ~Q, ~F, ~G have to be evaluated for a particular
solution of the higher-dimensional field equations. In gen-
eral, they will depend on the integration constants � used
for this solution.

We further restrict the solutions to obey the conditionZ
y
@�ðĝ1=2�@��Þ ¼ 0: (155)

This condition has to be met for any extremum of �.
Indeed, we may consider an infinitesimal variation
�ðy; xÞ ! �ðy; xÞ þ �ðy; xÞ. This results in a variation of �
(140)

�� ¼
Z
x̂
ĝ1=2f�@�̂�@�̂�� ��R̂g

¼ �
Z
x̂
@�̂ðĝ1=2�@�̂�Þ �

Z
x̂
ĝ1=2�ð�D̂2�þ R̂�Þ:

(156)

The second term vanishes by virtue of the field equa-
tion (13), such that an extremum of � (�� ¼ 0) requiresZ

x̂
@�̂ðĝ1=2�@�̂�Þ ¼ 0 (157)

for all acceptable variations �. For � depending only on y
and the choice � ¼ ��ðxÞ�ðyÞ, with ��ðxÞ nonvanishing inside
some local region in four-dimensional space-time, an ex-
tremum implies the condition (155).

We can use the extremum condition (157) in order to

bring ~Q into an intuitive form. Any d-dimensional solution
must obey the scalar field equation (12) which does not
depend on the term F. For quasistatic solutions (@�� ¼ 0)

we can combine the field equation (12) and the extremum

condition (155) in order to bring ~Q to the form

~Q ¼ 1

2
���2l2�D

Z
y
ðgDÞ1=2�2�2ðR̂� RðintÞÞ: (158)

Both R̂ and RðintÞ have to be evaluated for a solution of the
higher-dimensional field equations. [For the warped solu-
tions of the preceding sections they are characterized by
the integration constants ð�0; �0; L0Þ, while E0 ¼ 0 is
required by Eq. (155).]

D. Solutions with � ¼ 0

Our strategy is to investigate the possible values of ~F, ~G,

and ~Q for which a stable quasistatic solution of the field

equations derived from �ð4Þ (9) exists. We will find that for
�� � 0 the only possibility is ~Q ¼ ~F ¼ 0. Consistent stable
quasistatic solutions therefore exist whenever the integra-
tion constants of the d-dimensional solution can be chosen

such that ~Q ¼ ~F ¼ 0, while the derivative of W� with

respect to all integration constants except �� and l vanishes.
We will see that these solutions all have � ¼ 0 and indeed
correspond to an extremum of �. We recall that the four-
dimensional cosmological constant is one of the integra-
tion constants. The d-dimensional solution around which
dimensional reduction is performed will therefore depend
on some ‘‘trial value’’ �0. Of course, consistency requires
that the value of � found from the quasistatic extremum of
Eq. (9) coincides with �0. We will investigate separately
the cases �0 ¼ 0 and �0 � 0. They correspond to the two
different phases for the possible solutions.
Let us first expand around a solution with�0 ¼ 0. In this

case one has RðintÞð�0 ¼ 0Þ ¼ R̂ð�0 ¼ 0Þ and therefore

concludes ~Q ¼ 0. For this choice of integration constants
the potential (143) is given by

V ¼ ~Fl�4: (159)

There are two alternative situations, according to the ex-
istence of a solution of the higher-dimensional field equa-
tions with ~F ¼ 0 or not. Consider first the case where a
suitable choice of integration constants allows for a solu-
tion with ~F ¼ 0, while the condition (155) is also obeyed.
This seems to be a generic situation, since there are typi-
cally several integration constants �i on which ~Fð�iÞ de-
pends, and only two are fixed by �0 ¼ 0 and the condition
(155). (For the warped solutions in the preceding section
two free integration constants L0, �0 remain after �0 ¼ 0,
E0 ¼ 0 are fixed.) If ~Fð�iÞ ¼ 0 is possible we can perform
dimensional reduction to an effective four-dimensional
model by expanding around the higher-dimensional solu-

tion with integration constants �ð0Þ
i chosen such that

~Fð�ð0Þ
i Þ ¼ 0, ~Qð�ð0Þ

i Þ ¼ 0. The effective potential is then
found to be independent of l and ��,

Vðl; ��Þ ¼ 0: (160)

The field equations for l and �� are obeyed, and the solution

of the gravitational field equations, gð4Þ�� ¼ ��, is consis-

tent with a vanishing cosmological constant,�0 ¼ 0. Such
a quasistatic configuration therefore solves both the higher-
dimensional and the four-dimensional field equations. For
this class of solutions the ‘‘tuning’’ of the cosmological
constant to zero happens independently of the values of the
higher-dimensional couplings, i.e. � and the dimensionless
couplings parametrizing F.
The solutions with � ¼ 0 define the flat phase of the

possible extrema of �. They obey W0 ¼ 0 for the discus-
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sion in the Introduction, Eqs. (5)–(9). For W0 ¼ 0 we can
turn Eq. (8) around and infer from �� ¼ 0 that �W must
vanish, such that the solution corresponds to an extremum
ofW. Extrema in the flat phase always exist for the general
dilatation-symmetric effective action (140). Indeed, we
may consider the direct product of four-dimensional
Minkowski space and a D-dimensional torus M4 �T D,
accompanied by a constant value for �. For a finite volume
of the torus this leads to consistent four-dimensional grav-

ity with finite nonzero 	. One finds ~F ¼ ~G ¼ ~Q ¼ 0.
Since M4 �T D is a regular space the solution of the
d-dimensional field equations is automatically an extre-
mum of �. The interesting question concerns the ‘‘size’’ or
‘‘extension’’ of the flat phase, i.e. a classification which
nontrivial solutions belong to. If for a given ansatz one
finds no integration constants which extremize W� and

allow for ~F ¼ 0, or if such solutions do not lead to a finite
nonzero 	2, this only means that no solutions consistent
with the ansatz belong to the flat phase. This is what we
have encountered in the preceding sections for the most
general ansatz with SOðDÞ symmetry, where finite 	2 has
not been realized.

E. Possible solutions with � � 0

Let us next investigate possible additional extrema be-
longing to the nonflat phase. They would have a nonvan-
ishing cosmological constant � � 0. We will find that
stable solutions are not possible for �� � 0. This finding
is crucial for an understanding why � ¼ 0 is singled out.
Let us suppose that within a given ansatz one finds a choice
of integration constants such that a higher-dimensional
solution with �0 ¼ 0 exists. One may ask what happens
if we perform a dimensional reduction by expanding
around some neighboring higher-dimensional solution,
with integration constants such that �0 � 0. We will
show that this leads to instabilities, indicating that such
higher-dimensional solutions cannot be stable extrema of
the action.

For a general higher-dimensional solution with integra-

tion constant �0, given by Rð4Þ ¼ 4�0, Eqs. (158) and
(145) imply

V ¼
Z
y
ðgðDÞÞ1=2f2�0�

2�þ �2FðRðintÞ
�̂ �̂ �̂ �̂Þg: (161)

We can directly express ~Q in terms of the integration
constant �0 and the scale l0 using Eqs. (158) and (150)

~Q ¼ 2�0l
2
0: (162)

Here l0 is the ‘‘trial scale’’ for which ~Q is evaluated. (If we
choose a different l0, �0 should also be changed accord-

ingly, since for any higher-dimensional solutions R̂, Rint �
l�2
0 . Therefore ~Q should be considered as a constant and l0
should be kept fixed if we later vary the radion field l away
from the space of d-dimensional solutions. The indepen-

dent integration constant is the dimensionless combination
�0l

2
0.)

F. Maximally symmetric four-dimensional geometry

For the solutions of the gravitational equations derived
from the effective action (9) we concentrate on spaces with
maximal symmetry

Rð4Þ ¼ 4�: (163)

Inserting this solution into �ð4Þ (9) we define the ‘‘cosmo-
logical potential’’

Wð ��; lÞ ¼ V � 2�	2: (164)

It differs from the effective potential V by a term propor-

tional to the cosmological constant. Extrema of �ð4Þ corre-
spond to extrema ofW with respect to variations of �� and l,
not to extrema of V. (Only for � ¼ 0 the two potentialsW
and V coincide.) Inserting Eqs. (153), (154), and (162) we
obtain the explicit form of the cosmological potential

W ¼ 2�0l
2
0
��2lD�2 þ ~Fl�4 � 2�ð ��2lD � 2 ~Gl�2Þ: (165)

We concentrate on solutions with �� � 0. The field equa-
tion for �� has the simple solution

�l2 ¼ �0l
2
0: (166)

In this respect the four-dimensional solution is consistent
with the ansatz used for the dimensional reduction. The
second condition for an extremum, namely @W=@l ¼ 0,
reads

ðD� 2Þ�0l
2
0
���2lD�2 � 2 ~Fl�4 �D� ��2lD � 4 ~G�l�2 ¼ 0:

(167)

Insertion of �l2 ¼ �0l
2
0 implies the extremum condition

�0
��2lD0 ¼ �ð ~Fþ 2 ~G�0l

2
0Þl�4

0 : (168)

Depending on the values of ~F and ~G this equation can have
solutions with�0 � 0, such that corresponding extrema of
� may exist.

G. Stability of solutions

For �0 < 0 the leading term in W (165) for ��2 ! 1,
l ! 0 goes to minus infinity. A stability analysis reveals
that possible extrema with �0 < 0 are unstable. An insta-
bility also occurs for extrema with �0 > 0 which become

allowed for ~G< 0. The matrix of second derivatives,

m̂ 2
ij ¼

1

2

@2W

@xi@xj
; ðx1; x2Þ ¼ ðl; ��Þ; (169)

evaluated for the extremum conditions (166) and (168),
reads
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m̂ 2 ¼ 4
~Fl�6

0 �D�0
��2lD�2

0 ; ��0
��lD�1
0

��0
��lD�1
0 ; 0

 !
: (170)

Because of the vanishing of m̂2
22 stability is only possible if

the off diagonal elements vanish. For nonzero �� and finite
l0 this is possible only for �0 ¼ 0. In this case the extre-
mum condition (168) requires ~F ¼ 0, and m̂2 vanishes
identically at the extremum.

In presence of the pure curvature term �F in the effec-
tive action we conclude that extrema with �0 � 0 cannot
be excluded. (In contrast to the extrema with �0 ¼ 0 we
have not yet found an explicit example, however.) This
contrasts with the situation for F ¼ 0 where the extremum
conditions lead to contradictions between the higher-
dimensional and the four-dimensional field equations un-
less �0 ¼ 0. However, all possible extrema with �� > 0,
finite l and �0 � 0 turn out to be unstable. Again, the
solutions with �0 ¼ 0 are singled out.

The stability of an extremum of � is crucial for its
relevance for the asymptotic cosmological solution as
time goes to infinity. In our picture a runaway cosmological
solution approaches the field region dominated by the
ultraviolet fixed point only asymptotically. Any instability
of the solution will deviate a given solution from a trajec-
tory toward the fixed point. We conclude that in presence of
possible stable and unstable fixed point solutions only the
stable ones have a chance to be reached. In our case this
type of cosmology can asymptotically only approach the
solutions with � ¼ 0.

XI. GRAVITY WITHOUT DILATON

In this section we discuss the case of a dilatation-
symmetric effective action without a dilaton field. The
effective action (140) contains then only the purely gravi-
tational part �F. The relevant solutions will simulta-
neously cover the solutions with � ¼ 0 in the preceding
section. In the absence of � or for � ¼ 0 the extremum
condition (167) for WðlÞ becomes

~Fþ 2 ~G�l2 ¼ 0: (171)

Stability of this extremum requires

~F � 0: (172)

This coincides with the stability condition of positive or
zero eigenvalues of the mass matrix (170) for solutions
with � ¼ 0. In the absence of a dilaton field or for � ¼ 0
the four-dimensional effective Planck Mass reads

	2 ¼ �2 ~Gl�2: (173)

It is a positive only for

~G< 0: (174)

We conclude that stable solutions can exist for positive or
vanishing �,

� ¼ � ~F

2 ~Gl2
: (175)

From this point of view extrema with nonzero � are no
longer excluded and could be reached for the asymptotic
solution.
The difference between solutions in the flat or nonflat

phases persists, however. Very large classes of dilatation-
symmetric � will still have extrema that lead to � ¼ 0.
First of all, we recall thatM4 � TD remains an acceptable
stable solution in the flat phase with� ¼ 0. The size of the
flat phase depends on the properties of F. In this context we
recall that F is not arbitrary but corresponds to an ultra-
violet fixed point. This may well single out a specific form,
for example, a simple polynomial.
For large classes of effective actions it is easy to find a

very extended space of solutions in the flat phase, including
geometries with nonabelian symmetries. As a first ex-
ample, we may assume that the ultraviolet fixed point
corresponds to an effective action where F takes the form

F ¼ R̂�H; � > 1: (176)

Here H is an arbitrary (possibly nonlinear and nonlocal)
invariant not involving any parameter with dimension of
mass and scaling appropriately under dilatations.

Obviously, F has an extremum for R̂ ¼ 0, since

�F ¼ R̂��1ð�H�R̂þ R̂�HÞ: (177)

All such solutions corresponds to an extremum of W and
we find directly ~F ¼ 0,� ¼ 0. There are many geometries

with R̂ ¼ 0, for example, a direct product M4 � SD1 �
N D�D1 with N D�D1a space with finite volume and a
negative curvature scalar which cancels the positive curva-
ture scalar of SD1 .
We may replace SD1 by SD2 � SD1�D2 . Solutions with

R̂ ¼ 0 exist for arbitrary relative radii rD2
and rD3

of theD2

and D3 ¼ ðD1 �D2Þ-dimensional subspaces. The four-
dimensional effective potential will therefore not depend
on the ratio ! ¼ rD2

=rD3
. We expect a scalar field that

corresponds to a variation of!. In the asymptotic limit t !
1 the potential for this field vanishes and the scalar be-
comes massless. We may denote by ‘‘geometrons’’ such
effective four-dimensional scalars which do not change the
value of F at the extremum. They reflect possible defor-
mations of the geometry which are compatible with the
extremum value of F. In this sense they are somewhat
analogous to the moduli fields in string theory.
Depending on the particular geometry of the extremum
of F in Eq. (176) there may be several geometrons. In the
present cosmological epoch the asymptotic solution is not
yet reached and one expects a nontrivial potential for the
geometrons which only disappears in the asymptotic limit,
e.g. for l ! 0. In consequence, the geometrons still have a
mass. It is an interesting question if geometrons could play
the role of dark matter, similar to axions.
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As a second example with a large variety of solutions in
the flat phase we consider

F ¼ K2H; (178)

with K and H arbitrary scalars built from the metric
(without involving couplings with dimension of mass).
Again, F has an extremum at F ¼ 0, this time for K ¼
0, since

�F ¼ 2HK�Kþ K2�H: (179)

The cosmological constant vanishes again, since ~F ¼ 0.
There may be many geometries consistent with the condi-
tion K ¼ 0 and we expect the presence of geometrons for
many solutions. The solution persists if we replace K2 by
K�, � > 1. One realizes that the example (176) becomes a

special case of this more general class, with K ¼ R̂. If K

does not vanish for R̂ ¼ 0 the solutions in the flat phase
will have a nonvanishing curvature scalar. A possible

simple example is K ¼ R̂�̂ �̂R̂
�̂ �̂ � aR̂2, which can vanish

for R̂ � 0.
What is characteristic for our examples is the existence

of an extremum forW for arbitrary dimensionless parame-
ters characterizing H or K. Changing these couplings
typically changes the details of the geometries which ex-
tremize F and W. Nevertheless, the four-dimensional cos-
mological stays zero for all values of such effective
couplings. We conclude that a self-tuning mechanism for
� is at work such that � can readjust to zero whenever
these couplings are changed. This is rather different from
the situation encountered in four-dimensional theories. We
comment on the importance of higher dimensions for the
self-tuning of � in the conclusions. The only thing that is
needed for solutions in the flat phase beyond the trivial
M4 � TD geometries is an extremum of W for such solu-
tions. An extremum of F is sufficient for this purpose
since extrema of F can occur only for F0 ¼ 0. This can
be shown using the scaling F ! ��dF under the scaling
ĝ�̂ �̂ ! �2ĝ�̂ �̂, employing arguments analogous to the

Introduction.
A third example uses a polynomial form

F ¼ F1 � R̂H; (180)

where F1 contains only terms which are at least quadratic

in the Ricci tensor R̂�̂ �̂, while H only involves the totally

antisymmetric part Ĉ�̂ �̂ �̂ �̂ of the curvature tensor. An

extremum occurs for

R̂ �̂ �̂ ¼ 0; Ĉ�̂ �̂ �̂ �̂ � 0; (181)

with Ĉ�̂ �̂ �̂ �̂ chosen such thatH is constant,H0 > 0. Again

one has ~F ¼ 0, � ¼ 0. What is less obvious for this
extremum is the stability of the solution. For our two first
examples we may take � even and H to be positive for the
extremum. Then the effective potential after dimensional
reduction obeys V � 0, at least in a region of field space

around the extremum, with V ¼ 0 at the extremum. This
guarantees stability with all mass terms for scalars positive
are zero. No such simple argument is available for the
example (180).
While ~F ¼ 0 is achieved quite easily, we still have to

verify ~G< 0 in order to have an acceptable four-
dimensional gravity. For the flat geometry M4 � TD an

expansion of F will not contain a term linear in Rð4Þ and
therefore ~G ¼ 0. This also holds for an effective action of
the type (176) where we take � ¼ 2 for simplicity. With

R̂ ¼ RðintÞ þ Rð4Þ=� [cf. Eq. (145)] we obtain

R̂ 2 ¼ ðRðintÞÞ2 þ 2RðintÞRð4Þ=�þ ðRð4ÞÞ2=�2: (182)

For a minimum of W at RðintÞ ¼ 0 the term linear in Rð4Þ

vanishes and again ~G ¼ 0. This would lead to an effective

gravity with ðRð4ÞÞ2—terms and vanishing Planck mass, not
compatible with observation. We observe, however, that

the vanishing of ~G is not a generic feature of all extrema of
W. For the example (180) one finds

~G ¼ �l2
Z
y
ðgðDÞÞ1=2�H0 < 0: (183)

If the second derivatives of the scalar potential show no
instability this type of effective action would generate a
reasonable ground state with � ¼ 0, 	2 > 0. For progress
on these issues more insight about the form of F for an
ultraviolet fixed point of gravity would be most welcome.

XII. CONCLUSIONS

Our detailed investigation of warped geometries in
d-dimensional gravity with dilatation symmetry has taught
us interesting lessons. First, not all solutions of the
d-dimensional field equations correspond to an extremum
of the quantum effective action. While for the general
solutions of the field equations the four-dimensional cos-
mological constant � appears as a free integration con-
stant, the extremum condition for � typically fixes �. We
have given a detailed description of this issue in Sec. IX in
terms of a potential for integration constants.
Second, a dilatation-symmetric � always has extrema

for which � ¼ 0. This does not depend on the detailed
form of �. In particular, �may be parametrized by a certain
number of dimensionless coupling Gk. If we vary Gk the
extrema in the ‘‘flat phase’’ with � ¼ 0 persist. This holds
even though the detailed geometry of the extremum may
vary with Gk. We conclude that a self-adjustment mecha-
nism for � is at work, which always permits � to adapt to
zero even for a variation for internal geometry.
The existence of more than four dimensions is crucial

for the possibility of this self-tuning. This can be under-
stood by a simple comparison. In a four-dimensional the-
ory we typically have a finite number of scalar fields that
we may denote by �i, and a number of couplings Gk. The
effective potential V is a function of �i, depending on the
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couplings Gk. An extremum of the effective action with
constant scalar fields and � ¼ 0 requires

@V

@�i

ð�i;GkÞj�ð0Þ
i
¼ 0; Vð�ð0Þ

i ;GkÞ ¼ 0: (184)

Even though it may be possible that Eqs. (184) are obeyed
for a certain choice ofGk, this typically no longer holds for
neighboringGk. Thus, the couplingsGk have to be tuned to
special values for obtaining� ¼ 0. Understanding why the
couplings take these special values constitutes the cosmo-
logical constant problem.

In a higher-dimensional setting the scalars �i are re-
placed by functions of the internal coordinates y. The
extremum conditions for V are now replaced by an extre-
mum condition for a functional W½�iðyÞ;Gk�, i.e.

�W½�iðyÞ;Gk� ¼ 0: (185)

This extremum condition typically has solutions. In the
case of regular geometries Eq. (185) is equivalent to the
D-dimensional field equations, while additional extremum
constraints restrict the space of solutions in case of singu-
larities. For a dilatation-symmetric � we have shown that
Eq. (185) implies W ¼ 0 for the extremum, and in con-
sequence � ¼ 0.

The role of the additional internal dimensions is twofold.
First, the flexibility of the adjustment of functions �iðyÞ
guarantees that an extremum of W persists if we vary the
couplings Gk. These functions may be viewed as infinitely
many four-dimensional scalar fields. Second, in case of
dilatation symmetry the scaling (7) guarantees that any
extremum of W occurs at W0 ¼ 0, implying � ¼ 0. For
obtaining � ¼ 0 for a given parameter set fGkg it is there-
fore sufficient to find an extremum of W.

In summary, we can state a simple condition for finding
an extremum of the dilatation-symmetric d-dimensional
effective action � which leads, after dimensional reduc-
tion, to a vanishing four-dimensional cosmological con-
stant � ¼ 0: the functional W should have an extremum.

This condition amounts to the existence of an extremum
of the action for a particular D-dimensional Euclidean
gravity theory for the metric and scalar fields. We may
demonstrate this in the absence of a higher-dimensional
dilaton field �. Then

W ¼
Z
y
�g1=2�d=2F½ĝ�̂ �̂� (186)

is evaluated for

ĝ �̂ �̂ ¼ �ðyÞ �g�̂ �̂; �g�̂ �̂ ¼ ��; 0
0; �g��

� �
; (187)

where we realize the connection to the ansatz (4) with

gð4Þ�� ¼ �� and gðDÞ
�� ¼ �g���. Inserting Eq. (187) is

equivalent to a D-dimensional Weyl scaling and results in

W ¼
Z
y
�g1=2f �F½ �g��� þ �K½�; �g���g: (188)

Here �F obtains from F by replacing ĝ�̂ �̂ ! �g�̂ �̂,

�F½ �g��� ¼ F½ �g�̂ �̂�; (189)

and exploiting the direct product structure of �g�̂ �̂ (187).

The kinetic term �K contains derivatives @�� and vanishes
for constant �. Both �F and �K are scalars with respect to
D-dimensional general coordinate transformations and
scale under constant rescalings of �g�� as

�g �� ! �2 �g��; � ! � ) �F ! ��dF;

�K ! ��d �K;
(190)

such that Eq. (7) holds, W ! ��4W. The inclusion of a
d-dimensional dilaton is straightforward—the functional
W in Eq. (188) contains then additional terms involving an
additional scalar field �ðyÞ.
The functional W always has extrema. Thus, � always

has extrema in the flat phase with � ¼ 0. The interesting
issue is not anymore to find extrema with� ¼ 0, but rather
to find interesting extrema beyond the trivial case where
�g�� is the flat metric of a torus TD and � is constant.

Furthermore, the physically interesting extrema should
result after dimensional reduction in a nonvanishing and
finite Planck mass 	. If the asymptotic behavior of a
cosmological runaway solution approaches a region in
field space where � becomes dilatation-symmetric the
cosmological constant problem can be solved. The issue
remains then to find an interesting particle physics.
The effective four-dimensional theory obtained by di-

mensional reduction from a dilatation-symmetric � always
contains a massless scalar field, the dilaton. For pure
higher-dimensional gravity the dilaton can be associated
with a variation of the characteristic length l of internal
space. If a cosmological runaway solution approaches the
region in field space where � becomes dilatation symmet-
ric, but has not yet reached the fixed point, some residual
‘‘dilatation anomaly’’ remains. This generates an effective
potential for the pseudodilaton or cosmon. After Weyl
scaling this potential Vð’Þ has to vanish as the value of
the cosmon ’ moves to infinity. (We use conventions
where dilatation symmetry is realized for ’ ! 1.) We
can associate Vð’Þ, together with the kinetic energy of
the cosmon, with dark energy. Our setting realizes a quin-
tessence scenario where dark energy relaxes to zero for t !
1, rather than approaching a nonzero cosmological con-
stant. The huge age of the Universe in units of the Planck
time can explain why the dark energy density today is tiny
in units of the Planck mass [1].
The extremum of W can be degenerate geometrically in

the sense that families of extrema exist which are parame-
trized by continuous dimensionless parameters !j beyond

the degeneracy in the characteristic length scale l. For a
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dilatation-symmetric � the effective four-dimensional ac-
tions exhibit in this case massless scalars beyond the
dilaton. We call these degrees of freedom geometrons since
they typically reflect a change of internal geometry at fixed
l. (In the presence of a higher-dimensional scalar field �
one of the !j may also be related to the dimensional ratio
��lðd�2Þ=2, without influencing the ‘‘shape’’ of internal ge-
ometry.) The role of such geometrons for the cosmology in
the present epoch depends on the details of the dilatation
anomaly, since the latter will be responsible for providing a
potential and mass terms for the !j. If one or several

masses for geometrons are in the appropriate range the
geometrons may constitute interesting candidates for dark
matter.

We finally mention that the presence of an ultraviolet
fixed point for gravity, which is approached in field space
for l ! 0, could also be helpful for another big problem for
the unification of gravity and gauge interactions in the
context of higher-dimensional theories. This problem is
the lack of knowledge in the choice of the higher-
dimensional action. Since the predictions for the particle
content and interactions of the effective four-dimensional
theory depend on the details of the higher-dimensional
effective action, this type of unification has so far suffered
from a lack of predictivity for experiments. If the cosmo-
logical evolution drives the fields to a region which is
dominated by an ultraviolet fixed point, the form of � is
no longer arbitrary. Typically the fixed point itself may not
involve any free parameters and have a unique form of �
for a given higher-dimensional field content. Only a few
relevant (or marginal) parameters may describe the devia-
tions from the fixed point. Predictions for experiments in
the present universe will then only depend on these few
relevant parameters. Needless to say that the great chal-
lenge remains to establish such an ultraviolet fixed point of
higher-dimensional gravity.

APPENDIX A: WARPED BRANES AND FIVE-
DIMENSIONAL DILATATION SYMMETRY

The case D ¼ 1 is special. The metric is now only
characterized by the function �ðzÞ and one has the field
equations (33), (34), and (36)

�0 ¼ E��2; (A1)

� 2���1 þ 3
�00

�
¼ ��02; (A2)

� 4���1 þ 3

�
�0

�

�
2 ¼ �02: (A3)

They can be combined to a second order differential equa-
tion

�00

�
þ
�
�0

�

�
2 ¼ 2���1; (A4)

or, for s ¼ lnð�=�0Þ,
s00 þ 2s02 � 2~�e�s ¼ 0; (A5)

which is equivalent to Eq. (48). For ~� ¼ 0 the first order
differential equation for U ¼ s0 ¼ �0=�,

U0 ¼ �2U2; (A6)

has the general solution (with integration constant ab-
sorbed in the location of the singularity)

U ¼ 1

2z
; s ¼ 1

2
lnz; � ¼ �0z

1=2: (A7)

This solution does not lead to acceptable four-dimensional
gravity since

R
z �

2 diverges for z ! 1.

For ~� � 0 the importance of the term �~� may be
estimated by inserting s ¼ lnz=2,

~�e�s ¼ ~�z�1=2: (A8)

It will become important as z increases, since s00 and s02

decrease faster �z�2. For ~� � 0 Eq. (A5) describes the
damped motion of a particle in a potential

V ¼ 2~�e�s: (A9)

For ~�> 0 the potential decreases for s ! 1, and one finds
the particular solution

s ¼ 2 lnzþ lnð~�=3Þ: (A10)

In terms of �ðzÞ this reads

� ¼ �

3
z2: (A11)

No four-dimensional gravity exists since
R
z �

2 is diver-

gent. The general solution approaches the asymptotic so-
lution (A11) for z ! 1, for example, by switching from

the singular solution (A7) to (A11) at zc � ð~�=3Þ�2=3.

On the other hand, for negative ~� the potential increases
for s ! 1. The increase of s is stopped at a turning point,

where s00ðztÞ ¼ 2~�e�sðztÞ < 0. After reaching its maximum
value at the turning point zt, the function �ðzÞ decreases
again until it reaches zero at a second singularity �z. The
solutions with two singularities at z ¼ 0 and z ¼ �z will
lead to a finite four-dimensional Planck mass. If j�j is
small enough, this yields an acceptable four-dimensional
gravity.
The precise solution depends on the integration con-

stants �, �ðz0Þ, and �0ðz0Þ, with z0 a suitable initial value
for z. Equation (A2) or (A3) relates these integration con-
stants with E. In fact, the general solution of Eq. (A4) has
no information about the scalar field—the latter enters via
the integration constants. We may use an alternative start-
ing point for the solution of the system of equations (A1)–
(A3) inserting Eq. (A1) into Eq. (A2)
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�00 � 2

3
�þ E2

3
��3 ¼ 0: (A12)

Now �ðzÞ is the analogue of the undamped motion of a
particle in a potential

~V ¼ � 2

3
��� E2

6
��2; (A13)

such that the ‘‘kinetic energy’’ obeys

�02 ¼ 2ð�� ~VÞ: (A14)

The integration constant � is fixed by Eq. (A3) as � ¼ 0,
i.e.

�02 ¼ E2

3�2
þ 4��

3
: (A15)

For positive � and large � we recover Eq. (A11),

�02 ¼ 4

9
�2z2 ¼ 4��

3
; (A16)

while for small � we find Eq. (A7) with

E2

�4
0

¼ ~E2 ¼ 3

4
: (A17)

The latter is the exact solution for � ¼ 0. For �< 0 the
maximal value of � is given by

�ðztÞ ¼
�
� E2

4�

�
1=3

: (A18)

The solution is symmetric around the turning point, which
is therefore in the middle between the singularities at z ¼ 0
and z ¼ �z, i.e. zt ¼ �z=2. Sufficiently away from the turning
point, we find again the singular behavior (A7) and (A17),

�ðz ! 0Þ ¼ �0z
1=2; �ðz ! �zÞ ¼ �0ð �z� zÞ1=2:

(A19)

A qualitatively correct approximation is

� ¼ �0 �z
�1=2z1=2ð �z� zÞ1=2; (A20)

with an approximate turning point

�ðztÞ ¼ �ð�z=2Þ ¼ �0

2
�z1=2;

�z ¼
�
� 2E2

��3
0

�
2=3 ¼

�
� 2 ~E2

~�

�
2=3

:
(A21)

APPENDIX B: HYPERBOLIC EINSTEIN SPACES
WITH ISOMETRIES AND FINITE VOLUME

In this appendix we study Einstein spaces in E dimen-
sions,

�R �� �� ¼ Cg �� ��: (B1)

The signature of the metric is euclidean. We are particu-
larly interested in hyperbolic spaces where C is negative. If
they have a finite volume, such spaces will be candidates
for the discussion in Sec. III, with E ¼ D� 1. The maxi-
mal isometry for an E-dimensional space, SOðEþ 1Þ,
implies positive C ¼ E� 1. We therefore consider a
smaller isometry group SOðD1 þ 1Þ � SOðD2 þ 1Þ, with
D1 þD2 þ 1 ¼ E. The most general metric can be written
in a form similar to the ansatz (17)

�g �� ��ðx; y; zÞ ¼
�ðzÞgðD1Þ

�� ðxÞ; 0; 0

0; �ðzÞgðD2Þ
�� ðyÞ; 0

0; 0; 1

0B@
1CA:
(B2)

The coordinates x�, � ¼ 1 . . .D1, describe a
D1-dimensional Einstein space, and similarly the coordi-
nates y�, � ¼ 1 . . .D2, parametrize a D2-dimensional
Einstein space, with Ricci tensors

RðD1Þ
�� ¼ �1g

ðD1Þ
�� ; RðD2Þ

�� ¼ �2g
ðD2Þ
�� : (B3)

For a realization of the isometries SOðD1 þ 1Þ �
SOðD2 þ 1Þ the Einstein spaces are spheres, with �1 ¼
D1 � 1, �2 ¼ D2 � 1. We will keep the discussion more
general at this stage. [For D1 ¼ 1, D2 ¼ 9 the isometry
group is SOð10Þ � SOð2Þ. This could account in the di-
mensionally reduced theory discussed in Sec. IV for a
realistic grand unified gauge group SOð10Þ and a genera-
tion symmetry SOð2Þ.] Our notation is somewhat similar to
Sec. IV in order to display the analogy for D1 ¼ 4, where
only the signature differs. The reader should not get con-
fused by this, the coordinates x� have no relation to the
space-time coordinates in Sec. IV. Also the z and y coor-
dinates have a different meaning.
The field equation (B1) for this metric can be taken from

[18]. (We employ here a different signature for the metric.)
They read

ðD1 þD2 � 1ÞC� ðD1 � 2Þ�1�
�1 �D2�2�

�1 þ ðD1 � 1Þ�
00

�
þ 1

4
ðD1 � 1ÞðD1 � 4Þ�

02

�2
þ 1

2
ðD1 � 1ÞD2

�0

�

�0

�

þD2

�00

�
þ 1

4
D2ðD2 � 3Þ�

02

�2
¼ 0; (B4)
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ðD1 þD2 � 1ÞC�D1�1�
�1 � ðD2 � 2Þ�2�

�1 þ ðD2 � 1Þ�
00

�
þ 1

4
ðD2 � 1ÞðD2 � 4Þ�

02

�2
þ 1

2
ðD2 � 1ÞD1

�0

�

�0

�

þD1

�00

�
þ 1

4
D1ðD1 � 3Þ�

02

�2
¼ 0; (B5)

ðD1 þD2 � 1ÞC�D1�1�
�1 �D2�2�

�1 þ 1

2
D1D2

�0

�

�0

�
þ 1

4
D1ðD1 � 1Þ�

02

�2
þ 1

4
D2ðD2 � 1Þ�

02

�2
¼ 0: (B6)

The discussion of possible solutions can be done in parallel
with Secs. III, IV, V, VI, and VII

An interesting special case are two-dimensional spaces,
E ¼ 2, that we may obtain for D1 ¼ 1, D2 ¼ 0. In
this case Eq. (B5) and all terms involving �0 and �00 in
Eqs. (B4) and (B6) have to be omitted. Since�1 ¼ �2 ¼ 0
Eqs. (B4) and (B6) are obeyed identically for this case. In
fact, these equations amount to the identity

H�̂ �̂ ¼ R�̂ �̂ � 1
2Rg�̂ �̂ ¼ 0; (B7)

that is valid for arbitrary C. Since for E ¼ 2 the Einstein
tensor is traceless and vanishes identically for our ansatz,
we need, in this case, an additional equation for the curva-
ture scalar

R ¼ 2C ¼ ��00

�
þ 1

2

�
�0

�

�
2
: (B8)

In terms of U this reads

U0 þ 1
2U

2 þ 2C ¼ 0: (B9)

For C> 0 this has the general solution

� ¼ �0

C
sin2ð ffiffiffiffi

C
p

zÞ: (B10)

For �0 ¼ 1 this describes a sphere, while for �0 � 1 the

geometry is singular for z ¼ 0 and z ¼ 
=
ffiffiffiffi
C

p
. For �0 < 1

one encounters conical singularities, with deficit angle

� ¼ 2
ð1� ffiffiffiffiffiffi
�0

p Þ: (B11)

This geometry has the shape of an American football.
For C< 0 we may infer the general solution by analytic

continuation

� ¼ �0

jCj sinh
2ð

ffiffiffiffiffiffiffi
jCj

p
zÞ: (B12)

This geometry has again a canonical singularity for z ¼ 0
if �0 < 1, and is regular for z ¼ 0 for �0 ¼ 1. However, �

diverges � expð2 ffiffiffiffiffiffiffijCjp jzjÞ for jzj ! 1. The resulting ge-
ometry does not have a finite volume anymore—the inte-

gral
R
z �

1=2ðzÞ diverges for z ! 1. We conclude that in

two dimensions negatively curved Einstein spaces with
continuous isometries and finite volume do not exist.
This shows that the possible existence for E> 2 of geome-
tries obeying the ansatz (B2) and with finite volume is not
trivial.

We now turn to D1 � 1, D2 � 1 for which the three
equations (B4)–(B6) have to be obeyed. In particular, we
find the relation

�0

�

�0

�
¼ � 4C

D2

þ 4

D2

�1

�
� 2

D2

�00

�
�D1 � 2

D2

�02

�2

¼ � 4C

D1

þ 4

D1

�2

�
� 2

D1

�00

�
�D2 � 2

D1

�02

�2
: (B13)

The structure of possible singularity is similar to Sec. IV,

� ¼ �0z
�; � ¼ �0z

�; � ¼ 2þD1

D2

;

 ¼ �2� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2ðD1 þD2 � 1Þ=D1

p
D1 þD2

;

(B14)

and similar for z ! �z. The volume of the E-dimensional
space reads

�E ¼ �D1
�D2

~�E; ~�E

Z
z
�D1=2�D2=2; (B15)

with �D1
, �D2

the volumes of the subspace with metric

gðD1Þ
�� and gðD2Þ

�� . For a singularity (B14) at z ¼ 0 the relation

between � and  implies ~�E � R
z z. Geometries with two

singularities at z ¼ 0, �z have a finite volume.
For an investigation, if a given solution corresponds to a

finite volume �E it is useful to define the function

vðzÞ ¼ �ðzÞD2=2�ðzÞD2=2: (B16)

For all values of z where our coordinates are well defined
vðzÞ must be strictly positive. If this range of z extends to
z ! 1, a finite volume requires that v approaches zero
faster than z�1, and similar for z ! �1. If the range of z is
bounded by a singularity (B14), we know that v vanishes
�z or �ð�z� zÞ. Finally, if z ¼ 0 corresponds to a regular
point where � is constant and � vanishes�z2, we also find
a vanishing v. For any geometry with finite volume vðzÞ
vanishes at the boundaries of the allowed range of z and is
positive inside this range. We conclude that a finite volume
requires the existence of a maximum of vðzÞ, or a point zm
where
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D1

�0

�
þD2

�0

�
¼ 0;

D1

�
�00

�
�
�
�0

�

�
2
�
þD2

�
�00

�
�
�
�0

�

�
2
�
< 0:

(B17)

From Eq. (B6) we infer that �0=�must obey for z ¼ zm,

D1ðD1 þD2Þ
4D2

�
�0

�

�
2 ¼ ðD1 þD2 � 1ÞC�D1�1

�

�D2�2

�
¼ A: (B18)

This is possible only if A > 0, and a finite volume therefore
requires the condition

D1�1

�
þD2�2

�
< ðD1 þD2 � 1ÞC: (B19)

For negative C this inequality can be obeyed only if �1 or
�2 are negative. We conclude that hyperbolic Einstein
spaces with the ansatz (B2) and positive or vanishing �1,
�2 always have infinite volume, similar to the geometry
(B12).

If either �1 or �2 are negative, the condition (B19) can
always be obeyed by choosing a small enough �ðzmÞ or
�ðzmÞ. The second condition in (B17) reads then

D1

�00

�
þD2

�00

�
< 4A: (B20)

Equations (B4) and (B5) yield from zm,

ðD1 � 1Þ�
00

�
þD2

�00

�
¼ 2A

�
1� 2D2

D1ðD1 þD2Þ
�
� 2

�1

�
;

D1

�00

�
þ ðD2 � 1Þ�

00

�
¼ 2A

�
1� 2D1

D2ðD1 þD2

�
� 2

�2

�
;

(B21)

and therefore,

�00

�
¼ 2A

�
2D2

D1ðD1 þD2Þ �
1

D1 þD2 � 1

�
þ 2ðD2 � 1Þ

D1 þD2 � 1

�1

�
� 2D2

D1 þD2 � 1

�2

�
;

�00

�
¼ 2A

�
2D1

D2ðD1 þD2Þ �
1

D1 þD2 � 1

�
þ 2ðD1 � 1Þ

D1 þD2 � 1

�2

�
� 2D1

D1 þD2 � 1

�1

�
:

(B22)

The condition (B20) becomes

ðD1 þD2 � 2Þ
�
D1�1

�
þD2�2

�

�
< ðD1 þD2ÞðD1 þD2 � 1ÞC; (B23)

and can be fulfilled for either D1 or D2 larger than 1 and
small enough �ðzmÞ or �ðzmÞ. We can solve numerically

the field equations, starting at zm with Eq. (B18), and we
find, indeed, solutions with finite volume �E.
If the conditions A > 0 and (B23) cannot be met the

volume�E is necessarily infinite. One can understand this
issue from a different perspective. Let us concentrate, for
simplicity, on D1 ¼ 1 where �1 ¼ 0. With

U ¼ �0=�; W ¼ �0

�
¼ � 4C

D2U
� 1

D2

�
2
U0

U
þU

�
;

(B24)

one finds a second order differential equation for U,

D2U
00 � ðD2 þ 1ÞU

02

U
� 2ðD2 þ 2ÞCU0

U
�U0Uþ @V̂

@U
¼ 0;

@V̂

@U
¼�4C2U�1 �ðD2 þ 2ÞCU�D2 þ 1

4
U3: (B25)

This describes the motion of a particle in a potential

V̂ðUÞ ¼ �4C2 lnU�D2 þ 2

2
CU2 �D2 þ 1

16
U4; (B26)

with damping or antidamping. We note that @V̂=@U is
negative everywhere if C is positive. For C< 0 the poten-

tial V̂ðUÞ has a minimum and a maximum for

U2
min ¼ � 4C

D2 þ 1
; U2

max ¼ �4C: (B27)

The possible singularities (B14) correspond to

U ¼ �

z
; W ¼ �

z
; (B28)

and therefore to large positive or negative U ! �1.
Solutions for which U approaches Umin asymptotically

for z ! 1 correspond to a space with infinite volume �E.

Indeed, U ¼ Umin ¼ 2
ffiffiffiffiffiffiffijCjp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 1

p
(for C< 0) solves

Eq. (B25) and corresponds to an exponentially diverging
�,

� ¼ �� expðUminzÞ: (B29)

For D2 ¼ 0 this is the solution (B12). For D2 � 1
Eq. (B24) implies

W ¼ �0

�
¼ � 1

D2Umin

ð4CþU2
minÞ ¼ Umin; (B30)

such that � also diverges exponentially.
In order to see for which initial conditions a solution can

approach Umin, it is instructive to investigate the possible
turning points for U. For such a turning point at zt one has

U0ðztÞ ¼ 0; U00ðztÞ ¼ �ð1=D2Þ@V̂=@U: (B31)

Denoting Ut ¼ UðztÞ, Wt ¼ WðztÞ one finds

Wt ¼ � 4C

D2Ut

� Ut

D2

; (B32)

and insertion into Eq. (B6) yields the condition
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D2�2

�t

¼ �D2 þ 1

4
U2

t þ ðD2
2 � 2ÞCþ 4ðD2 � 1Þ C

2

U2
t

¼ U�1
t

@V̂

@U
ðUtÞ þD2ðD2 þ 1ÞCþ 4D2

C2

U2
t

:

(B33)

For �2 > 0 the right-hand side must be positive and this
requires

U2
t <� 4C

D2 þ 1
¼ U2

min for C< 0;

U2
t < 4CðD2 � 1Þ for C> 0:

(B34)

For �2 < 0 the opposite inequalities hold.
Solutions with a turning point can be formulated as an

initial value problem for the differential equation (B25).
The initial values are taken at zt, namely, Ut and U0ðztÞ ¼
0, with Ut obeying the condition (B34) and �t given by
Eq. (B33). For Ut > 0 the function UðzÞ takes its minimal
value at the turning point. We can take U > 0 without loss
of generality.

Let us consider C< 0 and Ut close to the minimum,
such that we can linearize in �U ¼ U�Umin,

�U00 þ �m�U0 þm2�U ¼ 0; m2 ¼ �2C;

� ¼ D2 þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 þ 2

p :
(B35)

Since �> 2 for all D2 > 1 the approach to Umin is over-
damped,

�U ¼ c1e
��1mz þ c2e

��2mz; (B36)

with �1;2 obeying �2 � ��þ 1 ¼ 0. From Eq. (B24) we

infer the asymptotic behavior for z ! 1,

U ¼ Umin; � ¼ ��eUminz; � ¼ ��eUminz: (B37)

[For �2 ¼ 0 Eq. (B37) becomes an exact special solution
for all z.)] By a numerical solution we find that the asymp-
totic behavior (B37) is actually realized for arbitrary Ut �
Umin. The situation for D1 > 1 and �1 � 0 is similar.

For a more general discussion it is useful to simplify the
terms involving first derivatives by the choice of new
variables (for U > 0)

y ¼ U�1=D2 : (B38)

Equation (B38) then reads

y00 þ KðyÞy0 þ @ ~V

@y
¼ 0;

@ ~V

@y
¼ 4C2

D2
2

y2D2þ1 þD2 þ 2

D2
2

CyþD2 þ 1

4D2
2

y�2D2þ1;

KðyÞ ¼ � 2ðD2 þ 2Þ
D2

CyD2 � 1

D2

y�D2 : (B39)

[For U < 0 we take y ¼ �ð�UÞ�1=D2 . This changes the
sign of KðyÞ.] Consider first C< 0, where the possible
turning point yt occurs for

yt > ymin ¼ ½�ðD2 þ 1Þ=4C�1=ð2D2Þ: (B40)

The damping coefficient KðyÞ is positive for large y >
yd,

yd ¼ ½�2ðD2 þ 2ÞC��ð1=ð2D2ÞÞ ¼
�

2

D2 þ 2

�
1=ð2D2Þ

ymax

¼
�

2

ðD2 þ 2ÞðD2 þ 1Þ
�
1=ð2D2Þ

ymin: (B41)

For the initial values yðztÞ ¼ yt, y
0ðztÞ ¼ 0 one finds y

decreasing for z > zt, first in a damped motion. There are
two alternatives. Either y decreases beyond ymax. Then
nothing can prevent a further decrease to the singularity
for y ! 0, with damping turned to antidamping in the
vicinity of the singularity. Or y gets sufficiently damped
that it cannot reach ymax. For large z the motion will then
end at ymin, yðz ! 1Þ ! ymin. For yt close enough to ymin

one has ~VðytÞ< ~VðymaxÞ, such that a damped motion can
only end in the minimum. We recover the overdamped
motion (B36) and (B37). We find that for �1;2 � 0, C<
0 the solutions with a turning point for U show always the
asymptotic behavior (B37) and do not have finite volume.
Finally, it is interesting to ask if there are possible

solutions where � is not monotonic. In this caseU changes
sign such that UðzeÞ ¼ 0 at an extremum of � at ze. We
note that Eq. (B24) is only valid for U � 0, while for U ¼
0 Eq. (B6) becomes for D1 ¼ 1,

1

4
ðD2 � 1ÞW2ðzeÞ ¼ �Cþ �2

�ðzeÞ ; (B42)

such that W remains finite. In the vicinity of ze one can
approximate

U0 ¼ �2C; U ¼ �2Cðz� zeÞ;
� ¼ �ðzeÞ exp½�Cðz� zeÞ2�:

(B43)

For C< 0 this describes a minimum of �, while for C> 0
the extremum is a maximum. For C> 0 such a maximum
of � can only occur for �2 > 0. A more extensive dis-
cussion of the solutions with C> 0 can be found in
Ref. [8], Sec. 4, with the identification 2 ~V ¼ ðD1 þD2 �
1ÞC, and for solutions with C ¼ 0 in the Appendix of [3].
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