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We discuss a possible solution to the cosmological constant problem based on the hypothesis of a fixed

point for higher-dimensional quantum gravity coupled to a scalar. At the fixed point, which is reached only

for an infinite value of the scalar field, dilatation symmetry becomes exact. For this limit we concentrate

on the absence of a scalar potential since a polynomial potential is not consistent with dilatation symmetry

in higher dimensions. We find generic solutions of the higher-dimensional field equations for which the

effective four-dimensional cosmological constant vanishes independently of the parameters of the higher-

dimensional effective action. Under rather general circumstances these are the only quasistatic stable

extrema of the effective action which lead to a finite four-dimensional Planck mass. We discuss the

associated higher-dimensional self-tuning mechanism for the cosmological constant. If cosmological

runaway solutions approach the fixed point as time goes to infinity, the effective dark energy vanishes

asymptotically. In the present cosmological epoch the fixed point is not yet reached completely, resulting

in a tiny amount of dark energy, comparable to dark matter. We discuss explicitly higher-dimensional

geometries which realize such asymptotic solutions for time going to infinity.
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I. INTRODUCTION

Anomalous dilatation symmetry may be a key ingredient
for a dynamical solution of the cosmological constant
problem [1,2]. In the asymptotic limit of time t going to
infinity, a cosmological runaway solution of the field equa-
tions can approach a fixed point. At the fixed point all
memory of explicit mass or length scales is lost and the
quantum effective action becomes dilatation symmetric. In
other words, the dilatation anomaly vanishes when it is
evaluated for the field configurations corresponding to the
fixed point [3]. In consequence, a scalar field becomes
massless in the asymptotic limit for t ! 1, corresponding
to the Goldstone boson of spontaneously broken dilatation
symmetry.

For the approach to the fixed point at finite t the anomaly
is not yet zero, and correspondingly the scalar ‘‘pseudo-
Goldstone boson’’ still has a small mass that vanishes only
asymptotically. These ideas are realized in practice in
quintessence cosmologies, where the ‘‘cosmon’’ field plays
the role of the pseudo-Goldstone boson of spontaneously
broken anomalous dilatation symmetry [1,3]. The cosmon
mass is varying with time and of the order of the Hubble
parameter [4].

Before discussing cosmological solutions, it is crucial to
understand the asymptotic solution towards which the
cosmological runaway solution converges asymptotically.
In our scenario, this asymptotic solution should correspond
to flat Minkowski space and therefore to an ‘‘asymptoti-
cally vanishing cosmological constant.’’ However, a van-
ishing cosmological constant is not enforced by dilatation
symmetry—asymptotic dilatation symmetry could, in prin-
ciple, also be realized with a nonzero effective cosmologi-
cal constant.

In two recent papers [3,5] we have argued that a higher-
dimensional setting sheds new light on the question why
the effective four-dimensional cosmological constant �
vanishes asymptotically. Actually, such an asymptotic van-
ishing happens for a large generic class of cosmological
runaway solutions without any tuning of parameters. The
remaining problem concerns the strict limits on the pos-
sible variation of fundamental couplings, which are not
obeyed for some classes of such solutions. In Ref. [3] we
have discussed several scenarios of how to reconcile
asymptotically static couplings (with an interesting pos-
sible exception in the neutrino sector [6]) and an asymp-
totically vanishing cosmological constant.
In the present paper we investigate higher-dimensional

models for which the quantum effective action exhibits an
exact dilatation symmetry for a suitable fixed point. This
fixed point should become relevant for the asymptotic
solution. A dilatation symmetric effective action is also
the starting point for approaches where dilatation symme-
try is realized as an exact quantum symmetry [7]. Thus, the
basic object of our investigation is the quantum effective
action � where all quantum fluctuations are already in-
cluded. The field equations derived from � are exact with-
out any further quantum corrections. Our key finding is that
in the presence of higher-dimensional dilatation symmetry
these field equations have generic solutions for which the
four-dimensional cosmological constant vanishes, � ¼ 0.
They correspond to stable extrema of �.
We do not postulate here that the effective action of a

fundamental theory is dilatation symmetric. In general, it is
not, and dilatation anomalies are present. For example, a
dilatation anomaly arises if running couplings induce an
explicit scale, or if a higher-dimensional cosmological
constant is present. We only make the hypothesis that �
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has a fixed point for certain asymptotic field values to be
specified below. Only in this asymptotic limit the dilatation
anomaly vanishes—only the ‘‘fixed point effective action’’
is dilatation symmetric.

For a cosmological runaway solution the values of fields
are not static but continue to change for all times. We
investigate solutions where the fields move toward the
fixed point region for t ! 1. For t ! 1 the field equations
derived from the fixed point effective action become accu-
rate. As the runaway solution approaches a fixed point the
anomalous parts of the effective action vanish. Since such a
fixed point is generally reached only asymptotically for
t ! 1, it is only in this limit that the field equations exhibit
an exact dilatation symmetry.

Our discussion of a dilatation symmetric effective action
will therefore be insufficient for the cosmological solu-
tions. The solutions of the field equations derived from the
dilatation symmetric effective action account only for the
possible asymptotic states for t ! 1. Nevertheless, it is a
necessary condition in our scenario that the dilatation
symmetric effective action has an extremum which de-
scribes an acceptable asymptotic state. This solution
should have flat four-dimensional space. Furthermore, a
simple solution to the problem of time-varying couplings
would be a static ratio between the characteristic length
scale of internal geometry and the effective four-
dimensional Planck length. The latter should lead after
dimensional reduction to finite nonzero values of the gauge
couplings and other dimensionless couplings and mass
ratios in the resulting model of particle physics.
Inversely, if a satisfactory asymptotic solution exists, the
chances that a runaway solution will approach it for t ! 1
are quite high.

Dilatation symmetry is easily realized in models that
contain, besides the metric, also a scalar field �. A striking
difference between dilatation symmetry in higher dimen-
sions, d > 6, as compared to four dimensions is the ab-
sence of a polynomial potential for a scalar field with a
canonical kinetic term [3]. Indeed, for d ¼ 4 mod 4 (or
d ¼ 2 mod 4 with a symmetry � ! ��) the most general
effective action, which is polynominal in � and consistent
with general coordinate transformations (diffeomorphism-
symmetry) and global dilatation symmetry, reads

� ¼
Z
x̂
ĝ1=2

�
� 1

2
�2R̂þ �

2
@�̂�@�̂�þ FðR̂�̂ �̂ �̂ �̂Þ

�
: (1)

The normalization of � is chosen such that it has a canoni-
cal kinetic term, up to the free dimensionless parameter � .
While for d ¼ 4 a term ��4 is dilatation invariant (and for
d ¼ 6 a term ��3), no polynomial �n with integer n is
dilatation invariant for d > 6.

We may first investigate the case that F contains only

polynomials of the curvature tensor R̂�̂ �̂ �̂ �̂ or derivatives

thereof. A typical example for F is

F ¼ 	R̂ðd=2Þ; (2)

and we will discuss more general polynomial forms of F in
the next section (cf. Refs. [3,5]). For odd dimensions no
invariant polynomial in the curvature tensor exists and
therefore F ¼ 0. (We disregard invariants involving the 

tensor.) We will often concentrate on the simplest form of
such a fixed point effective action by taking F ¼ 0 in
Eq. (1). Nevertheless, we also discuss more general forms.
The polynomial form of F is actually not essential for our
findings and we will extend our discussion to the most
general dilatation symmetric term F that only involves the
metric. In contrast, the absence of a dilatation symmetric
(nonpolynomial) potential Vð�Þ at the fixed point remains
important for certain aspects of our discussion. We only
briefly comment in Sec. III on possible modifications if a
nonpolynominal potential for � would be present at the
fixed point. It seems likely that this will not change the
existence of extrema of � with � ¼ 0.
The key argument for the generic existence of solutions

with � ¼ 0 is rather simple and directly related to higher-
dimensional dilatation symmetry. Let us consider the most
general form of a dilatation symmetric quantum effective
action

� ¼
Z
x̂
ĝ1=2L: (3)

Dilatation transformations correspond to a rescaling of the
metric by a constant factor �2, and an associated rescaling
of �,

ĝ �̂ �̂ ! �2ĝ�̂ �̂; ĝ1=2 ! �dĝ1=2;

� ! ��ððd�2Þ=ð2ÞÞ�; L ! ��dL:
(4)

A dilatation symmetric effective action remains invariant
under these rescalings. For general field values we may

define ��½ĝ�̂ �̂; �� ¼ �½��2ĝ�̂ �̂; �
ððd�2Þ=ð2ÞÞ�� and con-

sider the asymptotic limit � ! 1. Our fixed point hypothe-
sis states then that �� becomes dilatation symmetric for
� ! 1.
The special role of dilatation symmetry for the problem

of the cosmological constant is visible already for the most
general form of a dilatation symmetric effective action. We
are interested in configurations with a block diagonal
metric

ĝ �̂ �̂ðx; yÞ ¼ �ðyÞgð4Þ��ðxÞ; 0

0; gðDÞ
�ðyÞ

 !
: (5)

Here x� denotes the four-dimensional coordinates and y�

are coordinates of D-dimensional internal space, with cor-

responding metrics gð4Þ�� and g
ðDÞ
�, d ¼ Dþ 4. The function

�ðyÞ accounts for a possible warping [8–11]. The configu-
ration for the metric is supplemented by a configuration for

the scalar field �ðyÞ. With ĝ1=2 ¼ ðgð4ÞÞ1=2�2ðgðDÞÞ1=2 we
define
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WðxÞ ¼
Z
y
ðgðDÞðyÞÞ1=2�2ðyÞLðx; yÞ; (6)

and write

� ¼
Z
x
ðgð4ÞÞ1=2W: (7)

We observe the scaling under dilatations (gð4Þ�� ! �2gð4Þ��,

gðDÞ
� ! �2gðDÞ

�)

W ! ��4W: (8)

The possible extrema of � can be classified into two
categories, according to the existence of an extremum of
WðxÞ or not. Consider first the case where an extremum of
WðxÞ exists for an appropriate field configuration ĝ�̂ �̂, �.

This means that a (infinitesimally) close neighboring field
configuration does not change the function WðxÞ. We may
denote the value of WðxÞ at its extremum by W0ðxÞ. The
scaling property (8) immediately implies W0ðxÞ ¼ 0.
Indeed, using in Eq. (4) � ¼ 1þ 
, with infinitesimal 
,
defines a neighboring configuration. The combination of
scaling and extremum condition, @
ð1þ 
Þ�4W0 ¼ 0, can
be obeyed only for W0 ¼ 0. With Eq. (7) and W0 ¼ 0 an
extremum ofW is also an extremum of the effective action
�. Thus, whenever an extremum ofW exists, this defines an
extremum of � obeying the field equations, with a vanish-
ing value of � at the extremum, �0 ¼ 0.

For all solutions which admit dimensional reduction to
an effective four-dimensional ‘‘local’’ theory of gravity we
will show that �0 ¼ 0 implies that the effective four-
dimensional cosmological constant � vanishes. The exis-
tence of extrema of W is a rather generic feature and we
find that within our setting stable extrema in this ‘‘flat
phase’’ always exist. Only the question remains if this
flat phase includes solutions with interesting particle phys-
ics. There may exist additional extrema of � which are not
extrema of W and for which � does not vanish. Four-
dimensional theories with a nonvanishing cosmological
constant are possible only for this possible second category
of extrema of � which are not extrema of WðxÞ. In the
absence of a nonpolynominal scalar potential we find that
all such possible solutions in the nonflat phase are unstable
if � � 0. This singles out a vanishing four-dimensional
cosmological constant.

The existence of extrema of W is a qualitative feature
that does not depend on the precise values of the parame-
ters characterizing L. As an example we may consider the
polynomial effective action (1). It is obvious that

R̂�̂ �̂ �̂ �̂ ¼ 0, � ¼ �0 ¼ const corresponds to such an ex-

tremum, with L0 ¼ 0. The existence of this extremum
extends to a very large class of nonpolynomial L as well.
It is sufficient that the �-dependent part of L vanishes for
flat space and constant �, and that the remaining � inde-

pendent part F vanishes for R̂�̂ �̂ �̂ �̂ ¼ 0.

Furthermore, if

WFðxÞ ¼
Z
y
ðgðDÞÞ1=2�2F (9)

admits an extremum with respect to variations of the
metric, this must occur for WF;0ðxÞ ¼ 0 by the same scal-

ing arguments as above. (No polynomial form of F needs
to be assumed here.) A dilatation symmetric theory involv-
ing only gravity (without the scalar field �) will imply a
vanishing cosmological constant if an extremum of WF

exists which leads to acceptable four-dimensional gravity
(with nonzero and finite effective Planck mass).
Let us next extend the setting by adding a scalar partL�

which is quadratic in �, without being necessarily poly-
nomial in the curvature tensor. For a given metric ĝ�̂ �̂ we

can find a partial extremum of �� ¼ R
x̂ ĝ

1=2L� ¼R
xðgð4ÞÞ1=2W� by solving the higher-dimensional field

equation for �, consistent with an extremum condition in
case of singular geometries which will be derived later.
This results inW� ¼ 0, as expected for possible extrema of

a purely quadratic polynomial. A necessary condition for
an extremum of W ¼ W� þWF remains, therefore, WF ¼
0. However, only the sumW� þWF has to be an extremum

with respect to variations of the metric, and notW� andWF

separately. We discuss an example of this type of extrema
in the Appendix. We observe that for a quadratic L� we

could ‘‘integrate out’’ the scalar field in favor of nonlocal
gravitational interactions. This demonstrates incidentally
that our setting is not restricted to a local effective gravi-
tational action.
From these simple observations we conclude that in the

presence of dilatation symmetry the vanishing of the cos-
mological constant � is very robust with respect to varia-
tions of the precise form of �. The effective action may be
characterized by many parameters, as, for example, the
coefficients of different terms appearing in a polynomial
approximation of F. A change of the values of these
parameters will typically not change the value � ¼ 0, as
long as an extremum of W continues to exist and is
compatible with effective four-dimensional gravity. This
feature is a particular consequence of dilatation symme-
try—it no longer holds in the presence of dilatation anoma-
lies. In view of the robustness of � ¼ 0 we find many
analogies to phases in many body theories. For the ‘‘flat
phase’’ an extremum ofW exists and � ¼ 0. Extrema of �
in the ‘‘nonflat phase’’ are not extrema of W, and we will
typically find �> 0.
For effective four-dimensional theories in the flat phase

we will show that W can be associated with the effective
potential V for four-dimensional scalar fields. The mini-
mum of V occurs then necessarily for V0 ¼ 0.
Furthermore, V has flat directions. One such flat direction
corresponds to the dilatations (4) and the corresponding
massless scalar field is the dilaton. There may be more flat
directions since the extrema ofWðxÞmay occur for a whole
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class of different configurations ĝ�̂ �̂, �. In this case we

expect additional massless fields for the dilatation sym-
metric asymptotic cosmological solution for t ! 1. For
finite t the presence of dilatation anomalies will induce
mass terms for these scalars, which vanish only for t ! 1.
It is conceivable that such additional light scalar fields
(beyond the cosmon) are interesting candidates for dark
matter.

Our investigation focuses on two issues.
(i) The existence of extrema of W and a first discussion

of characteristic properties of solutions in the flat
phase.

(ii) The dimensional reduction to effective four-
dimensional gravity and the establishment that� ¼
0 in the flat phase.

A demonstration that an effective action which admits a
flat phase does generically not allow other extrema with
arbitrarily small j�j is given in Ref. [5]. In particular, there
are no continuous families of extrema where� appears as a
continuous parameter. This issue is important for warped
geometries with singularities where the existence of fam-
ilies of solutions of the higher-dimensional field equations
with continuous � is known [8–10]. In this case the extre-
mum conditions for � go beyond the higher-dimensional
field equations [12]. They precisely select the solutions
with � ¼ 0 out of the continuous family of solutions. The
particular properties of warped spaces within our general
dilatation symmetry setting will be discussed in an accom-
panying paper [13].

In the course of our discussion we will explicitly address
the issues of quantum corrections, ‘‘tuning of the cosmo-
logical constant to zero.’’ and ‘‘naturalness’’ of the solu-
tions with � ¼ 0. Some of the general aspects are already
discussed in [3] and not repeated here, such that we con-
centrate here on our specific setting. We discuss the special
role of higher dimensions for the ‘‘self-tuning’’ of the
cosmological constant to zero. This self-tuning is particu-
lar to the case of dilatation symmetry and closely con-
nected to the robustness of the existence of extrema of W
under a change of parameters in the effective action. We
find rather satisfactory answers to the naturalness problem.
Asymptotic dilatation symmetry in higher-dimensional
theories may indeed provide the key for a solution of the
cosmological constant problem.

Our paper is organized as follows. In Sec. II we present a
first discussion of a polynomial effective action (1). We
establish explicitly the existence of extrema of W belong-
ing to the flat phase for a large class of effective actions,
and demonstrate the vanishing of the cosmological con-
stant if effective four-dimensional gravity exists. We ex-
tend this discussion to the most general dilatation
symmetric effective action and show that extrema in the
flat phase with � ¼ 0 exist whenever an appropriate d� 4
dimensional functional �W admits an extremum. Section III

addresses the existence of the two ‘‘phases’’ for solutions
in an effective four-dimensional framework and shows
why � ¼ 0 is singled out in the flat phase. We concentrate
on ‘‘quasistatic solutions’’ for which the four-dimensional
fields are static and homogeneous, while the metric de-
scribes a geometry with maximally four-dimensional sym-
metry, with positive, negative, or vanishing �. It also
demonstrates that the nonflat phase with �> 0 can only
be realized if certain conditions in parameter space are met.
The nonflat phase appears to be less generic than the flat
phase. We find that all possible extrema in the nonflat
phase for � � 0 are unstable.
In Sec. IV we discuss an interesting ‘‘extended scaling

symmetry’’ which becomes realized for the simplest fixed
point with F ¼ 0, or if the contribution of the term�F can
be neglected for the extremum condition. Extended scaling
symmetry admits quasistatic solutions only in the flat
phase. Section V deals with the issue of an ‘‘adjustment’’
or ‘‘tuning’’ of the cosmological constant. The robustness
of � ¼ 0 with respect to changes of parameters in the
dilatation symmetric effective action is associated to a
mechanism of ‘‘self-adjustment’’ or ‘‘self-tuning.’’ In this
respect we highlight the differences between a four-
dimensional theory with a finite number of scalar fields
and a higher-dimensional setting with infinitely many ef-
fective four-dimensional scalar fields. This is an important
ingredient for the understanding of the robustness of the
flat phase, which would be hard to implement with a finite
number of degrees of freedom.
Section VI investigates the dilatation symmetric effec-

tive action (1) with a polynomial form of F. We display the
field equations and discuss simple solutions with a vanish-
ing four-dimensional cosmological constant �. An
Appendix is devoted to particular solutions with
non–Ricci-flat internal space, which nevertheless results
in � ¼ 0. These solutions demonstrate explicitly that non-
Abelian isometries of internal space are possible for ex-
trema in the flat phase.
The final part presents a simple estimate of the dilatation

anomaly in Sec. VII. In Sec. VIII we show that this leads to
cosmological runaway solutions for which � vanishes
asymptotically, while for finite t a homogeneous dark
energy component accounts for quintessence. We present
our conclusions in Sec. IX.

II. DILATATION SYMMETRYAND VANISHING
FOUR-DIMENSIONAL COSMOLOGICAL

CONSTANT

In this section we show a few striking general properties
of solutions to the higher-dimensional field equations
which are derived from a dilatation symmetric polynomial
effective action (1). (i) There exist always solutions for
which the four-dimensional effective cosmological con-
stant � vanishes. (ii) Particular solutions of this type,

with constant � ¼ �0 and R̂�̂ �̂ �̂ �̂ ¼ 0, exist for arbitrary
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polynomial F. The existence of these solutions with� ¼ 0
extends to nonpolynomial F, provided F is analytic around
flat space, ĝ�̂ �̂ ¼ ��̂ �̂ or, even weaker, provided an ex-

pansion of
R
ĝ1=2F linear in ĥ�̂ �̂ ¼ ĝ�̂ �̂ � ��̂ �̂ exists and

the coefficient of the linear term vanishes. (Typically, F is

at least quadratic in ĥ��.) (iii) Further solutions with � ¼
0 and R̂�̂ �̂ �̂ �̂ � 0 are possible. For example, if FðR̂ ¼
0Þ ¼ 0, all solutions with � ¼ �0 must have � ¼ 0.

A. Absence of dilaton potential and vanishing
cosmological constant

The particular features arising from the absence of a
potential for the scalar field � and their impact on the
cosmological constant problem can be realized by the
following chain of arguments. First, for any solution with

a constant nonzero value of � the curvature scalar R̂ must
vanish. This follows from the scalar field equation

�R̂ ¼ ��D̂2�: (10)

In contrast, for d ¼ 4 Eq. (10) would contain an additional
term 4��3, such that for � ¼ const one would infer a

nonzero R̂ for � � 0, i.e. R̂ ¼ 4��2. Second, if F vanishes

for R̂ ¼ 0, as for the example (2), one infers that for
solutions with constant � the effective action must vanish,
� ¼ 0. Third, let us consider solutions with maximal four-
dimensional symmetry, i.e. Poincaré symmetry for flat
space or the corresponding symmetries of de Sitter or
anti–de Sitter space. (The corresponding geometries have
a zero, positive, or negative cosmological constant, respec-
tively.) For this class of solutions a vanishing effective
action, � ¼ 0, implies flat space or a vanishing four-
dimensional cosmological constant. The last step follows
for any solution which admits dimensional reduction to an
effective four-dimensional theory. This should generically
be the case if the geometry of the ‘‘internal dimensions’’
exhibits a characteristic length scale l (‘‘compactification
scale’’), such that for present observations with ‘‘large
wavelengths’’ as compared to l internal space remains
unobservable.

B. Vanishing extremum value of � implies � ¼ 0

Let us develop the argument why extrema of the action
with �0 ¼ 0 imply � ¼ 0 in some detail. Within higher-
dimensional theories with a small characteristic length

scale an effective four-dimensional action �ð4Þ can be
obtained by expanding the higher-dimensional fields �
and ĝ�̂ �̂ in a complete system of functions in internal

space, and subsequently integrating over internal space.
The coefficients of the expansion correspond to infinitely
many four-dimensional fields, often comprising massless
fields and a tower of massive Kaluza-Klein modes. If the
higher-dimensional action vanishes for a given field con-
figuration ĝ�̂ �̂, �, the four-dimensional effective action has

to vanish as well, �ð4Þ ¼ 0. Here �ð4Þ is evaluated for values
of the four-dimensional fields that correspond to the given
higher-dimensional configuration.
Furthermore, if the higher-dimensional fields are uncon-

strained, any extremum of the higher-dimensional action

must be an extremum of �ð4Þ with respect to the variation of
each four-dimensional field. In particular, �ð4Þ must be an
extremum with respect to the variation of the four-

dimensional metric gð4Þ��. (We indicate higher-dimensional
quantities and indices by a hat, �̂; �̂; . . . , and four-
dimensional indices without a hat, �; �; . . . .) For any
extremum of � we can therefore set all four-dimensional
fields to the values corresponding to this extremum, except

for gð4Þ��. Evaluating the four-dimensional action for this

situation reduces �ð4Þ½gð4Þ��� to a functional depending only

on gð4Þ��. If � is an extremum, �ð4Þ must be an extremum

with respect to the variations of gð4Þ��. (See Ref. [3] for a

more extended discussion.) In other words, gð4Þ�� has to obey
the four-dimensional field equations.

We now consider the most general form of �ð4Þ½gð4Þ��� in
the case where a derivative expansion is valid on cosmo-
logical scales and where possible four-dimensional scalar
fields take constant values

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2

�
V � �2

2
Rð4Þ þ . . .

�
: (11)

This should be a valid approximation whenever four-
dimensional gravity is effectively local, which we consider
to be a generic case. The field equations corresponding to

the extremum condition for �ð4Þ are Einstein’s equations
with a cosmological constant

�2

�
Rð4Þ
�� � 1

2
Rð4Þgð4Þ��

�
¼ �Vgð4Þ��: (12)

Contraction of this equation, Rð4Þ ¼ 4V=�2 ¼ 4�, and

insertion into Eq. (11), yields the value of �ð4Þ, and there-
fore also the higher-dimensional action �, at the extremum

� ¼ �ð4Þ ¼ �V
Z
x
ðgð4ÞÞ1=2: (13)

Avanishing value of � at the extremum implies a vanishing
four-dimensional cosmological constant V ¼ �2� ¼ 0,
and vice versa. This closes the argument that �0 ¼ 0
implies� ¼ 0. In a higher-dimensional context, a solution
to the cosmological constant problem amounts to finding a
quantum effective action which vanishes precisely at its
extremum, without fine tuning of parameters. This should
hold at least asymptotically for t ! 1.
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C. Simple higher-dimensional solutions with � ¼ 0

We next discuss a few simple cases where extrema of �
imply � ¼ 0 independently of the precise choice of cou-
plings parametrizing �.

For an effective action with dilatation symmetry we have

seen that an asymptotic solution with @�̂� ¼ 0 implies R̂ ¼
0. In turn, this implies � ¼ 0 whenever F contains only

terms that involve at least one power of R̂ or its covariant

derivatives. A dilatation symmetric polynomial of R̂�̂ �̂ �̂ �̂

or its covariant derivatives can always be written in the

form F ¼ FR þ FH, where FR vanishes for R̂ ¼ 0, and FH

involves only the traceless tensors

Ĥ �̂ �̂ ¼ R̂�̂ �̂ � 1

d
R̂ĝ�̂ �̂; Ĉ�̂ �̂ �̂ �̂ ¼ R̂½�̂ �̂ �̂ �̂�; (14)

or their covariant derivatives. (The symbol [�̂ �̂ �̂ �̂ ]
stands for total antisymmetrization in all indices.) A suffi-
cient condition for a solution of the higher-dimensional
field equations with constant � and a vanishing effective
four-dimensional cosmological constant� is therefore that
FH vanishes for this solution, FH0

¼ 0. In particular, we

may discuss the class of possible fixed point actions with
FH ¼ 0. This encloses a large variety of actions, parame-
trized by many dimensionless couplings. For example,
such couplings can be associated with the coefficients of

dilatation invariant polynomials with at least one factor R̂.
For FH ¼ 0, all solutions of the higher-dimensional field
equations with constant � will lead to � ¼ 0.

Furthermore, if FR is at least quadratic in R̂ and FH

involves at least two powers of Ĥ�̂ �̂ or its covariant

derivatives, any configuration with @�̂� ¼ 0, R̂�̂ �̂ ¼ 0

will solve the higher-dimensional field equations, with
�0 ¼ 0 for the solution. Independently of the values of
the various dimensionless couplings appearing in FR or
FH, all extrema of � will lead to a vanishing four-
dimensional cosmological constant. Dilatation symmetric
effective actions of this type always admit solutions in the
flat phase, and therefore with � ¼ 0.

For an even more general form of � we mention two
points. First, all configurations with @�̂� ¼ 0, � � 0,

R̂�̂ �̂ �̂ �̂ ¼ 0 are always solutions of the d-dimensional field

equations derived from the action (1). This follows from
the simple observation that F must involve at least two

powers of R̂�̂ �̂ �̂ �̂ or its covariant derivatives. Therefore F

does not contribute to the extremum condition for � if

R̂�̂ �̂ �̂ �̂ ¼ 0. Then R̂�̂ �̂ �̂ �̂ ¼ 0, � ¼ �0, � ¼ 0 is indeed

a solution, as stated in (i) and (ii). For the rather wide

conditions in the presence of a nonpolynomial FðR̂�̂ �̂ �̂ �̂Þ
stated in the first paragraph the essential point is that

R̂�̂ �̂ �̂ �̂ ¼ 0 remains a solution, and FðR̂�̂ �̂ �̂ �̂ ¼ 0Þ ¼ 0.

For the solutions with R̂�̂ �̂ �̂ �̂ ¼ 0 the effective four-

dimensional action (11) has V ¼ 0 and an effective
squared Planck mass

�2 ¼
Z
y
ðgðDÞÞ1=2��2; (15)

with
R
y an integral over theD internal coordinates y�, gðDÞ,

the determinant of the internal metric gðDÞ
� , and � the

warping factor according to Eq. (5). For the example of a
D-dimensional torus with finite volume �D, and � ¼ 1,
one finds a finite squared Planck mass �2 ¼ �D�

2. The flat
torus solution has an isometry of internal spaceUð1ÞD. The
corresponding four-dimensional gauge theory has finite
nonzero gauge couplings if �D is finite. This proves at
least the existence of asymptotic solutions with the desired
general properties. On the other hand, d-dimensional
Minkowski space with infinite �D or other flat geometries
with infinite �D, are also solutions, but do not lead to an
acceptable four-dimensional description.
The existence of the flat torus solutions leads to an

important statement: The most general form of a dilatation
symmetric effective action in the absence of a potential for
� admits always solutions in the flat phase, for which the
effective four-dimensional constant � vanishes, while
four-dimensional gravity with �2 > 0 is well behaved.
This holds independently of all possible couplings appear-
ing in �. Quantum fluctuations influence the values of the
effective couplings in �. As long as they do not induce a
nonpolynomial dilatation symmetric potential Vð�Þ there
are always solutions with R̂�̂ �̂ �̂ �̂ ¼ 0 and � ¼ 0. In this

sense the flat phase is stable with respect to quantum
fluctuations. The dilatation symmetric fixed point is often
reached asymptotically for � ! 1. In this case it is suffi-
cient that Vð�Þ plays no role in this limit—we will discuss
examples of this type in Sec. VIII. Having established the
existence of solutions in the flat phase, the only remaining
issue remains if the class of solutions in the flat phase also
comprises realistic particle physics realizations, for ex-
ample, with non-Abelian gauge symmetries arising from
non-Abelian isometries of the internal metric.
Our second point states that F must not necessarily have

the most general possible form. At this place we recall that
the effective action (1) is only supposed to be the part of the
action which determines the asymptotic solution in case of
a runaway toward a fixed point with restored dilatation
symmetry. The contribution of further terms, that violate
dilatation symmetry, only vanishes for the fixed point for
t ! 1. On the other hand, for this fixed point some of the
couplings in F may vanish. For example, if this concerns

the parts in FH that only involve Ĉ�̂ �̂ �̂ �̂, solutions with

� ¼ const, R̂�̂ �̂ ¼ 0 necessarily lead to a vanishing four-

dimensional cosmological constant even for Ĉ�̂ �̂ �̂ �̂ � 0.

D. General extrema with � ¼ 0

We finally give a simple condition that a dilatation
symmetric effective action leads to solutions with � ¼ 0.
This condition holds for an arbitrary form of �, including a
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possible nonpolynominal potential for �. Let us define the
functional �W

�W ¼
Z
y
ðgðDÞðyÞÞ1=2�2LðyÞ: (16)

This is analogous to Eq. (6), but now evaluated for a metric

(5) with gð4Þ��ðxÞ ¼ ��� and � ¼ �ðyÞ. The functional �W

depends then only on the internal metric gðDÞ
�ðyÞ and two

D-dimensional scalar fields �ðyÞ and �ðyÞ. Whenever �W
admits an extremum this corresponds to an extremum of �
with � ¼ 0.

By virtue of the scaling (8) any extremum of �W occurs
for �W0 ¼ 0—the argument is the same as the one given in
the introduction. Furthermore, any extremum of �W is a
solution of the d-dimensional field equations. This may be
understood most easily by noting that the configurations
� ¼ �ðyÞ,

ĝ �̂ �̂ðyÞ ¼
�ðyÞ���; 0

0; gðDÞ
�ðyÞ

 !
; (17)

are the most general d-dimensional configurations with
four-dimensional Poincaré symmetry. An extremum in
this subspace is automatically an extremum in the space
of arbitrary d-dimensional fields. This follows from the
classification of d-dimensional fields in terms of represen-
tations of the Poincaré group. The above D-dimensional
configurations comprise all singlets. Therefore, the other
representations must appear at least quadratic in �, such
that setting them to zero solves the field equations. Of
course, one may verify this argument also by an explicit
computation of the field equations. Any extremum of �W is
an extremum of WðxÞ as defined in Eq. (6). As we have
argued before, this implies that it is an extremum of �. The
vanishing of the cosmological constant,� ¼ 0, is manifest
from the configuration (17) and confirms our general
discussion.

Finding an extremum of �W amounts to a standard prob-
lem for aD-dimensional Euclidean field theory with metric
gD�ðyÞ and two scalar fields �ðyÞ, �ðyÞ. The functional �W

is invariant under general coordinate transformations in D
dimensions. With respect to the scaling

gD� ! �2gD�; � ! ��ððd�2Þ=ð2ÞÞ�; � ! �;

(18)

the functional �W has a definite scaling dimension, �W !
��4 �W. On the other hand, we know that LðyÞ does not
involve any coupling with dimension mass or length. We
therefore expect the presence of a new D-dimensional
dilatation symmetry. This is indeed realized, and �W re-
mains invariant under the transformation

gD� ! 2gD�; � ! �ððDþ2Þ=ð2ÞÞ�; � ! 2�:

(19)

The combination of the transformations (18) and (19)
amounts to the scaling property, with invariant gD�, �,

� ! �2�; �W ! �4 �W; L ! L: (20)

This accounts for the particular � dependence of �W in
Eq. (16) and implies that L involves only derivative terms
�@y ln�.

The existence of extrema of �W seems rather generic and
we conclude that the ‘‘flat phase’’ of extrema of � with
� ¼ 0 is not empty. The flat phase precisely consists of all
extrema of �W. This holds since extrema of � with maximal
four-dimensional symmetry and � ¼ 0 are precisely the
configurations (17). For a suitable form ofL the flat phase
may comprise geometries with an interesting particle phys-
ics, for example, spaces with a non-Abelian isometry.

III. QUASISTATIC SOLUTIONS

The simple arguments in the preceding section imply
that for a large class of dilatation symmetric effective
actions a dynamical tuning mechanism for the effective
four-dimensional cosmological constant � must be at
work, such that � vanishes independently of the parame-
ters of the effective action and the details of the solution.
Important ingredients of this ‘‘adjustment of the cosmo-
logical constant’’ can be understood in terms of the effec-
tive four-dimensional action (11). The general adjustment
mechanism will be discussed in Sec. V.
We are interested in ‘‘quasistatic solutions’’ for which

four-dimensional space has maximal symmetry
[Minkowski or (anti-) de Sitter space], while the internal
geometry (including a possible warping) does not depend
on the four-dimensional coordinates x�. These quasistatic
solutions are assumed to be approached for t ! 1. For any
finite cosmological time the Universe is still evolving in
time. For late time, however, the evolution towards the
asymptotic solution becomes slow. The quasistatic solution
becomes then a valid approximation for phenomena char-
acterized by not too large length and time scales. This is
comparable to Minkowski space being a valid approxima-
tion to the present ‘‘cosmological background metric’’ on
scales much smaller than the horizon. (Of course, the
distinction between vanishing and very small � becomes
relevant only for sufficiently large scales.)
In this section we demonstrate that for a wide and

generic class of higher-dimensional solutions ( ~G � 0, see
below) all possible quasistatic solutions must have � ¼ 0.
The essence of this argument are instabilities that exclude
any quasistatic solutions with a positive or negative four-
dimensional cosmological constant. We further show that

possible solutions with ~G< 0, finite l and � � 0 are un-
stable. Our arguments hold for an arbitrary form of a
dilatation symmetric effective action (not necessarily poly-
nomial in the curvature tensor) which depends on � only
quadratically. In this situation all stable quasistatic solu-
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tions with � � 0 and the finite characteristic length of
internal space belong to the flat phase with � ¼ 0.

A. Effective four-dimensional theory

In the effective four-dimensional theory the effective
Planck mass � [cf. Eqs. (11) and (15)] can depend on the
values of four-dimensional scalar fields. We may choose a
field basis where �ðxÞ itself is interpreted as a scalar field.

For quasistatic solutions we can neglect in �ð4Þ all deriva-
tive terms for � as well as for other scalar fields. One could
restrict the discussion to j�j � �2, such that we can also
neglect all invariants involving higher powers of the four-
dimensional curvature tensor. The effective Planck mass �
depends on the value of � and the characteristic length
scale l of internal space

�2 ¼ lD ��2 � 2 ~Gl�2; (21)

with D the dimension of internal space, D ¼ d� 4.
More precisely, we define l by the relation

Z
y
ðgðDÞÞ1=2�2 ¼ lD: (22)

A suitable average of � over internal space is denoted by ��,
where the normalization of �� is fixed such that the coeffi-
cient of the first term in Eq. (21) equals one,

Z
y
ðgðDÞÞ1=2�2�2 ¼ lD ��2: (23)

The term � ~G arises from an expansion of F linear in the

four-dimensional curvature scalar Rð4Þ and integrated over

internal space. If we denote F ¼ GRð4Þ þ . . . the coeffi-

cient ~G reads

~G ¼ l2
Z
y
ðgðDÞÞ1=2�G: (24)

Similarly, the effective potential V depends on �� and l
according to

V ¼ ~Q ��2lD�2 þ ~Fl�4; (25)

with ~F the appropriate dimensionless integral over internal

space of F, evaluated for gð4Þ�� ¼ ���, while ~Q arises from

the corresponding integral of the first two terms in Eq. (1).
More explicitly, ~F is defined by

~F ¼ l4
Z
y
ðgðDÞÞ1=2�2FðRðintÞ

�̂ �̂ �̂ �̂Þ; (26)

with RðintÞ
�̂ �̂ �̂ �̂ the ‘‘internal part’’ of the higher-dimensional

curvature tensor, which is found for a solution of the type

given by Eq. (5) by replacing gð4Þ��ðxÞ ! ���. The coeffi-

cient ~Q obtains as

~Q ¼ 1

2
���2l2�D

Z
y
ðgðDÞÞ1=2�2ð�@��@��� �2RðintÞÞ:

(27)

We will investigate extrema of �ð4Þ with respect to free

four-dimensional fields gð4Þ��ðxÞ, lðxÞ, and ��ðxÞ. For any
arbitrary higher-dimensional solution with x-independent
�ðyÞ we may multiply �ðyÞ by a free x-dependent factor,
turning �� in Eq. (23) to a four-dimensional scalar field. A
similar procedure for x-dependent factors multiplying

gðDÞ
�ðyÞ or �ðyÞ promotes lðxÞ in Eq. (22) to a four-

dimensional scalar field. Since �ðxÞ can be expressed by
Eq. (21) in terms of ��ðxÞ and lðxÞ, we do not need to
consider it as an independent scalar field. We note that

the definitions of ~G, ~F, ~Q are not affected by such
x-dependent factors.

We assume that all other fields expect ��, l, and gð4Þ�� are
taken at values which correspond to solutions of their
respective field equations. We can therefore discuss the
characteristic behavior of possible solutions of the field
equations derived from the effective four-dimensional ac-

tion �ð4Þ by variation with respect to gð4Þ��, l, and ��. They

depend on the values of three dimensionless constants ~G,
~F, ~Q. We observe that the generic form of Eqs. (21) and
(25) purely follows from dimensional analysis in case of
dilatation symmetry, under the assumption that the � de-
pendence of � is quadratic. The combination of Eqs. (11),
(21), and (25) contains all essential ingredients of our
analysis. From the analysis in Sec. II we learn that the

values of ~G, ~F, ~Q are not arbitrary—often particular values

as ~F ¼ ~Q ¼ 0 are singled out, consistent with the extre-
mum condition for � with respect to variations of the
degrees of freedom not appearing explicitly in Eqs. (21)
and (25). This extends to a large class of warped solutions
which will be discussed in the accompanying paper [13].
We are interested in maximally symmetric spaces obey-

ing

Rð4Þ ¼ 4� ¼ 4V

�2
; (28)

with � the four-dimensional cosmological constant.
Insertion into Eqs. (11) and (7) yields

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2W; W ¼ V � 2��2: (29)

We investigate possible solutions of the higher-
dimensional field equations or, equivalently, the four-
dimensional field equations, with time- and space-
independent �� and l. They must correspond to an extre-
mum ofWð ��; lÞ, evaluated for fixed�. The problem is then
reduced to the discussion of extrema of a simple function
of two variables �� and l.
An extremum of Wð ��; lÞ is not necessarily an extremum

ofWðxÞ, Eq. (6), with respect to variations of gð4Þ��. One may
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therefore find solutions belonging either to the flat or non-
flat phase. We will find that for a large part of the space of

parameters ð ~F; ~Q; ~GÞ no quasistatic solutions with � � 0

exist. This concerns the range ~G � 0, where W becomes
unstable whenever � � 0. Only solutions with � ¼ 0
remain possible as candidates for asymptotic quasistatic

solutions. In other words, ~G � 0 forces the solutions to

belong to the flat phase. For ~G< 0 both the flat and the
nonflat phase is possible. Solutions with � � 0 are found
to be unstable, however, if �� � 0 such that all stable
quasistatic solutions belong to the flat phase or have �� ¼ 0.

B. Classification of possible quasistatic solutions

The quasistatic solutions correspond to extrema of W

with respect to variations of �� and l, where ~F, ~G, ~Q and �
are considered as fixed parameters. It is convenient to use
scalar fields with canonical dimension,

’� ¼ ��lðD=2Þ; ’l ¼ l�1; (30)

such that

V ¼ ~Q’2
�’

2
l þ ~F’4

l ; �2 ¼ ’2
� � 2 ~G’2

l ; (31)

and

W ¼ ~Q’2
�’

2
l þ ~F’4

l � 2�’2
� þ 4 ~G�’2

l : (32)

The discussion reduces then to an investigation of poly-
nomials with quartic and quadratic terms. It is easy to
verify that for all extrema of W the condition (28), V �
��2 ¼ W þ��2 ¼ 0, or

~Q’2
�’

2
l þ ~F’4

l ��’2
� þ 2 ~G�’2

l ¼ 0 (33)

is obeyed.

We first consider the case ~F ¼ ~G ¼ 0. For example, this
is realized for F ¼ 0 in Eq. (1). We are interested in
solutions with ’� � 0. The extremum condition for ’l

reads

~Q’l ¼ 0; (34)

such that either ~Q ¼ 0 or ’l ¼ 0. On the other hand, the
extremum condition for ’� implies for ’� � 0,

~Q’2
l ¼ 2�: (35)

We conclude from Eq. (34) that � must vanish if ’� � 0.
This also follows from Eq. (28) since V vanishes if Eq. (34)
is obeyed.

Solutions with ’l ¼ 0 ‘‘solve’’ the cosmological con-
stant problem, but also lead to vanishing four-dimensional
gauge couplings (as well as other dimensionless couplings
like Yukawa couplings if fermions are added). Indeed, an
isometry of internal geometry leads to a gauge symmetry in
four dimensions, and one finds for the gauge coupling g

1

g2
¼ a1 ��

2lDþ2 þ a2 (36)

where a2 vanishes if the term �F is absent. Thus g is
nonzero only if

! ¼ ��lððDþ2Þ=ð2ÞÞ ¼ ’�

’l

(37)

remains finite. The solution of interest for realistic theories

(finite!) requires’l � 0 and therefore ~Q ¼ 0. For ~Q ¼ 0,
� ¼ 0 one hasW ¼ V ¼ 0 such that neither ’l nor ’� (or

!) are fixed by the extremum condition for W. One could

indeed find generic solutions with ~Q ¼ 0.

Next we include possible terms � ~F, ~G. For a polyno-
mial effective action they can arise in even dimensions
from the higher order curvature invariant F. Again, one
finds possible solutions with ’l ¼ 0 for which an extre-
mum at ’� � 0 implies� ¼ 0. For realistic solutions with
finite ! and therefore ’l � 0 the extremum condition for
’l reads

~Q’2
� þ 2 ~F’2

l þ 4 ~G� ¼ 0: (38)

Furthermore, for ’� � 0 Eq. (35) must hold, implying

~Qð!2 þ 2 ~GÞ þ 2 ~F ¼ 0: (39)

The coefficient ~F should be positive definite, ~F � 0, in
order to avoid an instability of the model—otherwise V
would go to �1 for ’l ! 1. This is guaranteed if F in
Eq. (1) has the necessary positivity properties. Stability

also requires ~Q � 0. For a large class of generic higher-

dimensional solutions one further finds ~G � 0. In conse-
quence, any solution of Eq. (39) requires

~Q ¼ ~F ¼ 0: (40)

In turn, we infer � ¼ 0 from Eq. (35) or from V ¼ 0 and
Eq. (28).
In principle, there can be other types of solutions, as

’l � 0, ’� ¼ 0. For such solutions the first two terms in

Eq. (1) may be omitted. The extremum condition for ’l,
~F’2

l þ 2 ~G� ¼ 0, fixes

� ¼ � ~F’2
l

2 ~G
: (41)

Such solutions would lead to stable four-dimensional grav-

ity only for ~G< 0, cf. Eq. (21). For this class of situations a
positive nonzero � is possible. More generally, for nega-

tive ~G<� ~F= ~Q Eq. (39) has also solutions for ~F � 0, ~Q>
0, with !2 > 0, obeying

� ¼
~Q’2

l

2
¼ � ~F’2

l

!2 þ 2 ~G
� 0: (42)

We conclude that only two types of solutions exist with
’l � 0 and stable gravity:
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ðiÞ ~F ¼ ~Q ¼ 0 ) � ¼ 0; !2 > 2 ~G

ðiiÞ ~F � 0; ~Q> 0; ~G< 0 ) �> 0: (43)

The first type (i) belongs to the flat phase whereas the
second type (ii) characterizes the nonflat phase. One could

concentrate on ~G � 0 where only type (i) is possible. All
such solutions lead to a vanishing cosmological constant.

For arbitrary solutions with ’l � 0 we note that ~Q ¼ 0
requires’� ¼ 0 or� ¼ 0. For� ¼ 0,’� � 0, also ~F ¼ 0

is needed. Similarly, for ~F ¼ 0 and ~G � 0 one always

needs ~G� ¼ 0 and ~Q’2
� ¼ 0, which in turn requires ~Q ¼

0 or ’� ¼ 0. For ’� � 0 this requires ~Q ¼ 0, � ¼ 0. For

’� ¼ 0 we may have the trivial solution ~F ¼ ~G ¼ 0, with
� and ’l undetermined that we have omitted in Eq. (43).

Finally, there exists always a solution ’� ¼ ’l ¼ 0. For
~G> 0 it corresponds to an unstable saddlepoint if � � 0,
while for � ¼ 0 it is stable. From Eq. (32) one concludes
�2 ¼ 0 and one may worry that this leads to a four-
dimensional theory without dynamical gravity. The issue
is, however, more complicated since we should consider
the limiting process ’� ! 0, ’l ! 0. We first note that !
may be finite in this limiting process such that nonvanish-
ing gauge couplings are possible. Typical particle masses
in the effective four-dimensional theory have contributions
�’l or �!’l and we take for simplicity

m2
p ¼ b1’

2
l þ b2!

2’2
l : (44)

What counts for observation are ratios between particle
masses and the Planck mass

m2
p

�2
¼ b1’

2
l þ b2!

2’2
l

!2’2
l � 2 ~G’2

l

: (45)

They remain finite in the limit ’l ! 0. For cosmology the
ratio �=�2 ��=’2

l is relevant. For � � 0 this quantity

diverges for ’l ! 0. However, for ~G> 0, � � 0 the un-
stable point ’� ¼ ’l ¼ 0 is also not approached for

asymptotic solutions. In contrast, for � ¼ 0 we find a
perfectly acceptable limit ’l ! 0, ’� ! 0, such that the

generic solution ’l ¼ ’� ¼ 0 remains interesting. In the

vicinity of this solution the quartic terms in W � ~F, ~Q
become irrelevant. The approach to’� ¼ ’l ¼ 0 therefore

realizes effectively ~F ¼ ~Q ¼ 0 and induces solutions simi-
lar to type (i) in Eq. (43).

C. Phases of solutions and parameter variations

Our discussion reveals that the dilatation symmetric
potential W shows features that are not common for ge-
neric forms of effective potentials. Small changes of the

parameters ~F or ~Q or of � can change qualitatively the
behavior of its possible extrema. This can be understood

already for the simplest case ~F ¼ ~G ¼ 0 where

W ¼ ~Q’2
�’

2
l � 2�’2

�: (46)

Consider first the variation of ’l at fixed ’�. For ~Q’2
� > 0

one finds a minimum for W at ’l ¼ 0, while W becomes

unstable for ~Q’2
� < 0. For the boundary case ~Q’2

� ¼ 0 the

value of ’l remains undetermined. Variation with respect
to ’� at fixed ’l leads to a similar situation. A minimum at

’� ¼ 0 occurs if ~Q’2
l > 2�, and the opposite case ~Q’2

l <

2� leads to instability. For the boundary case ~Q’2
l ¼ 2�

the value of ’� remains undetermined. All possible ex-

trema of W belong to the boundary case

~Q’2
� ¼ 0; ~Q’2

l ¼ 2�: (47)

In turn, the only possible solution with nonvanishing ’l

and ’� requires ~Q ¼ 0, � ¼ 0. Both ’l and ’� remain

undetermined for this case. An arbitrarily small nonvanish-

ing value of ~Q changes the solution qualitatively, either
towards instability or a vanishing value for ’�.

For the more general case (43) the only solution with
’� � 0 corresponds again to the boundary case between

instability and ’� ¼ 0, which is realized if the condition

(35) is met. We have seen that all solutions with ’l � 0
require ~F ¼ 0. We then replace the condition (47) with

~Q’2
� ¼ �4 ~G�; ~Q’2

l ¼ 2�: (48)

For ~G � 0 the only solution occurs for ~Q ¼ 0, � ¼ 0.
The sensitivity of the existence of the flat or nonflat

phase to the precise choice of the parameters ~Q, ~F is also
visible in Fig. 1. At first thought one may be tempted to

treat parameters as ~F and ~Q as generic parameters that

could assume any values. In this view the choice ~Q ¼ ~F ¼
0 may look like an artificial tuning of parameters and one

would conclude that for generic parameters with ~G> 0 no

quasistatic solution exists. However, the parameters ~F, ~Q
are not arbitrary. They result from possible solutions of the
higher-dimensional field equations. Because of their de-
pendence on infinitely many effective four-dimensional
fields may be restricted to certain values if we consider
extrema of � with respect to all these fields. We will see

~
Q

~
G

~
F ~

F = 0> 0

ξ = 0phase, ϕ
no stable
quasistatic
solution

Λ= 0

non−flat

flat phase,

0>Λ

G
~

0

< 0 G
~

> 0

FIG. 1. Stable extrema of the effective action for finite com-
pactification scale l.
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that this is precisely what happens. We have seen in the
preceding section that solutions belonging to the flat phase

exist generically. Therefore for ~G � 0 the values of ~F and
~Q have to adjust themselves to zero in order to be consis-
tent with these solutions. We will discuss this issue of
adjustment in more detail in Sec. V.

D. Stability of possible solutions

We have not yet discussed the stability of the various
solutions. Stability requires that the matrix of second de-
rivatives ofW with respect to’l and’� (at fixed�) should

not have negative eigenvalues. For the solutions (i) in the

flat phase we have ~F ¼ ~Q ¼ � ¼ 0 and therefore W van-
ishes identically, consistent with the stability requirement.

For the solutions (ii) in the nonflat phase for ~G<� ~F= ~Q
we find for ~m2

ij ¼ 1
2@

2W=@’i@’j, ð’1; ’2Þ ¼ ð’l; ’�Þ,

~m 2 ¼
~Q’2

� þ 6 ~F’2
l þ 4 ~G�; 2 ~Q’�’l

2 ~Q’�’l; ~Q’2
l � 2�

 !

¼ 4 ~F; 2 ~Q!
2 ~Q!; 0

 !
’2

l : (49)

For the second expression we have used the extremum
conditions (35) and (38) for ’� � 0, ’l � 0. The corre-

sponding eigenvalues of ~m2 are

~m 2� ¼ 2ð ~F�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 þ ~Q2!2

q
Þ: (50)

One eigenvalue ~m2� is negative for all ~Q � 0, ! � 0.

Therefore stability requires ~Q ¼ 0, in contradiction to

the requirement ~Q> 0 for the existence of solutions in
the nonflat phase. Thus, the solutions of the type (ii) are
unstable. We arrive at the important conclusion that all
stable quasistatic solutions must have � ¼ 0 if � is dila-
tation symmetric and its � dependence is quadratic.

An overview of the situation may be gained by discus-

sing the behavior of W in the ~F, ~Q plane ( ~F � 0, ~Q � 0).
(We omit the extrema with ’l ¼ ’� ¼ 0 discussed be-

fore.) Consider first the case ~F ¼ 0, ~Q> 0. Extrema of
W where either ’� or ’l differ from zero are only possible

for� � 0, obeying either ~Q’2
l ¼ 2� or ~Q’2

� ¼ �4 ~G� or

both. Therefore, at least one of the diagonal entries of the
matrix ~m2 vanishes and all possible extrema must be
unstable. Second, we investigate the shape of W for ~F >
0. In this case the partial extrema with respect to ’l either
have ’l ¼ 0 or obey

’2
l ¼ �

~Q’2
� þ 4 ~G�

2 ~F
: (51)

We first discuss ’l � 0 where ~Q’2
� � 0 requires

4 ~G� � 0. One may insert Eq. (51) into W in order to
obtain a function depending only on ’�

Wð’�Þ ¼ �
~Q2

4 ~F
’4

� � 2�

� ~Q ~G
~F

þ 1

�
’2

�; (52)

where the range of ’2
� is restricted by ’2

l > 0 to ~Q’2
� <

4 ~G�. In view of the negative coefficient of the term ’4
� for

~Q � 0 one easily concludes that Wð�Þ can only have a
maximum for ’� � 0, clearly indicating the instability.

For ~Q> 0, ’� ¼ 0 stability requires �ð ~Q ~G= ~Fþ 1Þ � 0

whereas ’2
l > 0 needs ~G�< 0. Stable gravity (�2 < 0) is

compatible only with ~G< 0, �> 0. Using Eq. (51),

2 ~F’2
l þ 4 ~G� ¼ 0, the eigenvalues of ~m2 read �8 ~G�

and �2�ð ~Q ~G= ~Fþ 1Þ. They are both positive provided
~Q ~G<� ~F. Thus, the stable solutions in the nonflat phase
have all ’� ¼ 0. They are shown in Fig. 1.

The other alternative extremum for ~F > 0, namely,’l ¼
0, needs� ¼ 0 for’� � 0. This solution is stable for all ~G

and ~Q � 0. We conclude that stable solutions in the flat
phase occur for generic parameters. However, for ~F > 0
they have ’l ¼ 0 and are therefore not compatible with
nonvanishing gauge couplings (unless also ’� ¼ 0). Thus,
realistic asymptotic cosmologies need ~F ¼ 0 not in order
to have � ¼ 0, but rather in order to find nonzero gauge

couplings. As a general feature for ~F > 0, ~Q> 0, stable

extrema occur only if either ’� or ’l vanish. For ~Q ¼ 0 all
extrema with � � 0 are unstable. (This is different if no

field � is present in �. Then ~G< 0, �> 0 admits a stable

extremum with ’2
l ¼ �2 ~G�= ~F.) For ~Q ¼ 0, � ¼ 0, ~F >

0 the only stable extremum occurs for ’l ¼ 0. Finally, for
~F ¼ ~Q ¼ 0, ~G � 0 all extrema with ’l � 0 or ’� � 0
belong to the flat phase with � ¼ 0. They are stable since

W vanishes identically. If ~F ¼ ~Q ¼ ~G ¼ 0 one formally
also finds a stable extremum in the nonflat phase if ’� ¼ 0
and �< 0. This particular case has no acceptable gravity
since �2 ¼ 0 and will be discarded.
In conclusion of this overview all stable extrema in the

nonflat phase must have ’� ¼ 0. They are allowed only in

a restricted range for ð ~F; ~G; ~QÞ, with ~G< 0, ~Q< 0. In
contrast, the stable extrema in the flat phase exist for all

allowed ð ~F; ~G; ~QÞ. Furthermore, extrema in the flat phase

with ’l � 0 are possible for ~F ¼ ~Q ¼ 0, while ~F > 0
implies ’l ¼ 0. We show the stable extrema for ’l � 0
in Fig. 1. All stable extrema of �with finite l and nonzero �
must have a vanishing cosmological constant � ¼ 0.

E. Modifications for nonpolynomial dilaton potential

The absence of a higher-dimensional potential for � is
important for the properties of possible solutions. Assume

that a dilatation invariant nonanalytic term �j�j2d=ðd�2Þ
would be added to the effective action (1). After a dimen-
sional reduction this would add to V and W a term

�V ¼ ~Cj’�j2d=ðd�2Þj’lj2ðd�4Þ=ðd�2Þ: (53)
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An extremum in the ’� direction for ’� � 0 (at fixed ’l)

would now determine the value of ’� by

ð ~Q’2
l � 2�Þj’�j þ d ~C

d� 2
j’ljðð2ðd�4ÞÞ=ðd�2ÞÞj’�jððdþ2Þ=ðd�2ÞÞ

¼ 0: (54)

For ~C> 0 this has solutions for�> ~Q’2
l =2. Extrema with

’l � 0, ’� � 0 require now�
~Fþ 2

d
~Q!2

�
’2

l ¼ ��

�
2 ~Gþ

�
1� 4

d

�
!2

�
: (55)

For ~G, ~F, and ~Q positive semidefinite Eq. (55) can be
solved only for �< 0, such that Eqs. (54) and (55) cannot
be solved simultaneously and no extremum with ’l � 0,

’� � 0 exists. On the other hand, for ~G< 0 solutions with
�> 0 can be realized.

In the presence of ~C � 0 the stability condition for V

and W is modified, however, and ~Q � 0 is no longer
needed. The behavior for large ’l, ’� is dominated by

the quartic terms

V ¼ ð ~Fþ ~Q!2 þ ~Cj!jðð2dÞ=ðd�2ÞÞÞ’4
l ¼ Kðj!jÞ’4

l : (56)

Stability requires Kðj!jÞ � 0 or

~F � 0; ~C � 0;

~Q � ~Qmin ¼ �d

2
~F

�
d� 2

2

~F
~C

��ððd�2Þ=ðdÞÞ
:

(57)

For ~Q ¼ ~Qmin the minimum of V occurs for Vmin ¼ 0 at

!2
min ¼ � d

2

~F
~Qmin

; (58)

while for ~Q> ~Qmin one has Vmin > 0. For ~Q ¼ ~Qmin all

possible solutions have� ¼ 0. On the other hand, for ~Q>
~Qmin possible solutions must have �> 0 since Vmin > 0.

For ~G � 0 Eq. (55) requires for an extremum !2 >

�ðd=2Þð ~F= ~QÞ. In other words, for ~C> 0 stability admits

negative ~Q, and for ~Q< 0 one has a minimum of Kðj!jÞ
for finite and nonzero j!j. If V is positive at the minimum
one will find a nonzero cosmological constant �> 0. We
have not performed a stability analysis for the new types of

possible extrema for ~C> 0.
At first sight the discussion above seems to indicate that

in the presence of a nonpolynomial potential for � the
generic solution has �> 0. This conclusion is premature,
however, since it implicitly assumes that the couplings ~F,
~Q, ~G, and ~C are more or less arbitrary within their allowed
ranges. We have seen, however, in Sec. II D that extrema in
the flat phase exist rather generically for the most general
dilatation symmetric effective action. This includes a pos-
sible nonpolynomial potential for �. One concludes that
the higher-dimensional field equations and extremum con-

ditions for � precisely single out ~Qmin for all extrema in the

flat phase. On the other hand, we have not yet found

consistent extrema of � that lead to ~Q> ~Qmin and therefore
�> 0.
We will not consider the nonanalytic term in the follow-

ing. We can then conclude that all possible stable quasi-
static extrema with ’l � 0, ’� � 0 must have � ¼ 0.

They are only possible for ~F ¼ 0, ~Q ¼ 0. The existence
of such solutions follows from Sec.. II and we will discuss
their properties extensively in the later parts of this paper.

IV. EXTENDED SCALING

A particularly simple case arises if the term �F in
Eq. (1) does not contribute to the field equations for the
asymptotic fixed point solution. (For polynomial interac-
tions this is always realized for d odd since no polynomial
invariant contributing to F exists at all.) From Sec. II we

learn for this case that � ¼ �0, R̂�̂ �̂ ¼ 0 is a solution of the

field equations and leads to � ¼ 0. On the other hand, the
discussion of Sec. III implies that all possible quasistatic

solutions must have � ¼ 0, since ~G ¼ 0.

A. Extended scaling and vanishing cosmological
constant

For F ¼ 0 the field equations are invariant under an
‘‘extended scale transformation’’

� ! �; ĝ�̂ �̂ ! 2ĝ�̂ �̂: (59)

Indeed, the curvature scalar transforms as R̂ ! �2R̂, such

that the effective action scales proportional to ĝ1=2, � !
d�. The field equations obtain from a variation of �

��

��
¼ 0;

��

�ĝ�̂ �̂
¼ 0: (60)

They are invariant under the extended scaling since � and
d� lead to the same field equations. The extended scale
transformations add to the dilatation transformations

� ! ��ððd�2Þ=ð2ÞÞ�; ĝ�̂ �̂ ! �2ĝ�̂ �̂; (61)

under which � is assumed to be invariant for the asymp-
totic solution. Extended scaling is realized whenever the
effective action is dilatation symmetric and quadratic in �.
Indeed, a rescaling of � ! ��, � ! �2�, combined with
the dilatations (61), implies the extended scaling (59).
The extended scale symmetry helps to understand the

tuning mechanism which leads to a vanishing cosmologi-
cal constant for all quasistatic solutions. For any solution of
the field equations (60) � must vanish. This can be shown

as follows. Consider a solution �ð0Þ, ĝð0Þ�̂ �̂ with �ð0Þ ¼
�½�ð0; ĝð0Þ�̂ �̂�. A neighboring field configuration, scaled ac-

cording to Eq. (59) with  ¼ 1þ �, is also a solution,

with �ð0Þð�Þ ¼ ð1þ �Þd�ð0Þ. Solutions correspond to
extrema of � such that for two infinitesimally close solu-
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tions one has @�ð0Þð�Þ=@�j�¼0 ¼ 0. This implies

�ð0Þ ¼ 0 and results in � ¼ 0, as discussed in Sec. II.
Next, we may discuss the extended scaling of the effec-

tive four-dimensional fields (30)

’l ! �1’l; ’� ! ððd�2Þ=ð2ÞÞ’�;

gð4Þ�� ! 2gð4Þ��; Rð4Þ ! �2Rð4Þ; �ð4Þ ! d�ð4Þ:
(62)

While

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2

�
~Q’2

�’
2
l �

1

2
’2

�R
ð4Þ
�

(63)

has the correct scaling properties, a possible potential term
� ~F’4

l is not compatible with V ! DV and therefore not

allowed. An asymptotic fixed point where F becomes
irrelevant in Eq. (1) can therefore be interpreted as a fixed
point with extended scaling symmetry. In this sense a term
�F can be regarded as an ‘‘anomalous term’’ with respect
to extended scaling, which vanishes for the asymptotic
solution.

We can combine the extended scale transformations (59)
with the dilatations (61) such that ’� remains invariant.

With dilatations acting as l ! �l and

’l ! ��1’l; ’� ! ��1’�; gð4Þ�� ! �2gð4Þ��;

(64)

we choose � ¼ ððd�2Þ=ð2ÞÞ for this purpose, such that the
combined transformation reads

’l ! 
�1’l; ’� ! ’�;

gð4Þ�� ! 
2gð4Þ��; �ð4Þ ! 
2�ð4Þ:
(65)

Instead of Eq. (59) we will take the transformation (65) as
our definition of extended scaling in the following section.

B. Internal scaling

We observe that for ~Q ¼ 0 the action (63) exhibits a
further symmetry

’l ¼ ��1’l; (66)

while ’� and gð4Þ�̂ �̂ remain invariant. This means that the

volume of internal space decouples from the four-
dimensional physics. In other words, one can scale l !
�l without changing �ð4Þ. We may call the transformation
(66) ‘‘internal scaling.’’ (The field ’l corresponds of the
volume moduli field in string theory.) Combining internal
scaling (66) with extended scaling (65) we arrive at a

scaling where only gð4Þ�� and �ð4Þ scale �
2. Any solution
leading to a nonzero cosmological constant V0 would

contribute to � a term scaling �ðgð4ÞÞ1=2 � 
4, in contra-
diction to the scaling �� 
2. Thus, only V0 ¼ 0, � ¼
V0=’

2
� ¼ 0 is compatible with the combination of internal

and extended scaling. We observe that ~Q ¼ 0 and therefore
internal scaling invariance of the asymptotic solution is
necessary for the existence of a quasistatic solution. This
shows again that in presence of the extended scaling sym-
metry all quasistatic solutions must have � ¼ 0.

C. Goldstone bosons

We can extend the four-dimensional action (63) by
including derivative terms for the fields ’� and ’l which

have the generic form

�ð4Þ
kin ¼

1

2

Z
x
ðgð4ÞÞ1=2ðc�lD@� ��@� ��þ cl ��

2lD@� lnl@� lnlÞ

¼ 1

2

Z
x
ðgð4ÞÞ1=2

�
c�@

�’�@�’� þDc�’�@
�’�@� ln’l

þ
�
D2

4
c� þ cl

�
’2

�@
� ln’l@� ln’l

�
: (67)

One verifies that �4;kin is invariant under dilatations and

internal scaling, and covariant with respect to extended

scaling (65). For ~Q ¼ 0 no potential is present and we
can identify ’� and ’l with the two Goldstone bosons of

spontaneously broken dilatation symmetry and internal
scaling symmetry that should be present for any solution

with ’� � 0, ’l � 0. Alternatively, we can write �ð4Þ
kin in

terms of ’� and ! ¼ ’�=’l,

�ð4Þ
kin ¼

1

2

Z
x
ðgð4ÞÞ1=2ðZ�@

�’�@�’� þ Z�!’�@
�’�@� ln!

þ Z!’
2
�@

� ln!@� ln!Þ; (68)

with

Z� ¼
�
1þD

2

�
2
c� þ cl;

Z�! ¼ �D

�
1þD

2

�
c� � 2cl; Z! ¼ D2

4
c� þ cl:

(69)

D. Extended scaling anomaly

One may ask if other interactions in the effective four-
dimensional theory can be consistent with dilatations and
extended scaling. As an example, we include spinors c
and gauge fields Az

� with field strength Fz
�� and covariant

derivativesD� ¼ @� � iAz
�Tz (Tz are the appropriate gen-

erators of the gauge group):

�ð4Þ ¼
Z
x
ðgð4ÞÞ1=2

�
� 1

2
’2

�R
ð4Þ þ

~Q’4
�

!2
þ 1

2
ðZ�@

�’�@�’�

þ Z�!’�@
�’�@� ln!þ Z!’

2
�@

� ln!@� ln!Þ

þ i �c��D�c þ 1

4
!2F

��
z fð�D2=’2

�; !
2ÞFz

��

�
:

(70)

COSMOLOGICAL CONSTANT AND HIGHER DIMENSIONAL . . . PHYSICAL REVIEW D 81, 103507 (2010)

103507-13



The transformations under extended scaling (65) (�� ¼
�me

�
m, g�� ¼ e

�
mem�) are given by

c ! 
�1=2c ; A� ! A�; ! ! 
!: (71)

We have introduced f in order to account for the running of
the effective four-dimensional gauge coupling as a func-
tional of momentum (q2¼̂ �D2),

g2ðq2Þ ¼ ��2f�1

�
q2

’2
�

; !2

�
: (72)

Only the combination D2!2=’2
�, D

2 ¼ D�D�, is invari-

ant under dilatations and extended scaling such that ex-
tended scaling is preserved only if f depends only on the
combination q2!2=’2

� ¼ q2=’2
l . However, for low enough

momenta the function f is determined by the perturbative
four-dimensional beta function for the running gauge cou-
pling, @g�2=@ lnq2 ¼ b (b > 0 for asymptotically free
theories) as

f ¼ !�2b lnðq2= ~�2Þ þ f0; g�2ðq2 ¼ ~�2Þ ¼ f0!
2:

(73)

There is no choice of ~� for which f only depends on
q2!2=’2

�. We conclude that the running of four-

dimensional couplings induces an anomaly for extended
scaling. For ~�2 ¼ ’2

l ¼ ’2
�=!

2 the dilatation symmetry is

preserved.

V. ADJUSTMENT OF THE COSMOLOGICAL
CONSTANT

From a four-dimensional point of view it seems that
some type of adjustment or tuning of the cosmological
constant takes place. One may wonder if this is not ‘‘un-
natural’’ in the sense that particular parameters of the more
fundamental higher-dimensional theory must be chosen for
this tuning of � to the value zero to happen. We argue in
this section that this is not the case. A natural self-tuning
mechanism assures � ¼ 0 independently of the precise
values of parameters in the dilatation symmetric effective
action �. Since � includes all quantum fluctuations, this
means that � ¼ 0 is realized in the presence of quantum
fluctuations. While quantum fluctuations of various fields
give nonvanishing individual contributions to �, the sum
of all contributions to � vanishes due to dilatation sym-
metry at the fixed point. The general arguments why in the
presence of symmetries the size of individual contributions
cannot be taken as an indication for the natural size of the
full quantity can be found in Ref. [3].

The essence of the self-tuning mechanism which is at
work in our case relies both on dilatation symmetry and the
presence of higher dimensions. It can be understood from
the discussion of the quantity W in the introduction.
Dilatation symmetry assures that any extremum of W has
to occur for W0 ¼ 0 and therefore � ¼ 0. In turn, the

higher-dimensional setting provides the flexibility that an
extremum of W exists independently of the precise values
of couplings in �. This holds since W is a functional of
higher-dimensional fields and for very generic situations
extrema of functionals exist. In a four-dimensional lan-
guage, the presence of an infinity of four-dimensional
fields overcomes the difficulties of a self-tuning mecha-
nism for a finite number of fields.
As an example, we discuss the simplest situation where

the contribution of the higher curvature terms �F to the
asymptotic solution of the field equations can be neglected.

The tuning concerns then the effective constant ~Q in the

four-dimensional potential (25). As we have seen, for ~G �
0 quasistatic solutions exist only for ~Q ¼ 0, and they lead
to a vanishing cosmological constant, � ¼ 0.

In general, ~Q depends on the geometry of internal space
and a possible warping, as well as on the configuration of

�̂. We have assumed that ~Q is evaluated for all fields except

gð4Þ��, l, and �� taking values corresponding to partial ex-
trema of the action. In other words, it is given by a solution
of the field equations for these other fields. Let us inves-
tigate this issue in some more detail and consider first the
case of one particular degree of freedom �, reflecting some

particular variation of internal geometry, warping, or �̂.
Then the extremum condition for � reads

@ ~Qð�Þ
@�

j�0
¼ 0; (74)

while the existence of a quasistatic solution requires

~Qð�0Þ ¼ 0: (75)

The coincidence of the extremum with a zero of ~Qð�Þ
requires a specific form of ~Q, and this is understood by
tuning or adjustment. If we make an arbitrary small change

of the function ~Qð�Þ, the two conditions (74) and (75) are
no longer obeyed simultaneously.
The situation looks more complicated if we include

infinitely many degrees of freedom, as appropriate for a

higher-dimensional theory. Assume that ~Q is a functional
of �ðyÞ, where y are coordinates of internal space

~Q ¼ ~R½�ðyÞ�: (76)

The extremum condition for � appears now in the form of
the field equations

� ~R

��ðyÞ ¼ 0: (77)

If ~R contains derivative terms, as in our case, the most
general local solution of the field equation �0ðyÞ will
depend on free integration constants �i, i.e. �0ðy;�iÞ. It
seems now more plausible that an appropriate choice of the
integration constants leads to

~R½�0ðy;�iÞ� ¼ 0; (78)
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such that quasistatic solutions with ~Q ¼ 0 become
possible.

The existence of solutions in the flat phase that we have
established in Sec. II in the absence of a higher-
dimensional dilaton potential for the most general dilata-
tion symmetric effective action, shows that suitable inte-
gration constants �i can indeed always be found. It is an
interesting question to understand ‘‘how large’’ is the space
of solutions in the flat phase, or what is the space of
integration constants �i consistent with Eq. (78). In the
accompanying paper [13] we discuss in detail spaces with
warping, where the integration constants �i appear directly
as integration constants of specific higher-dimensional
solutions. There we find explicitly that suitable values of
the integration constants �i can indeed be found.

The existence of integration constants �i obeying
Eq. (78) holds for an arbitrary choice of the couplings of
the higher-dimensional theory. The tuning� ¼ 0 therefore
requires no special choice of parameters. What remains to
be investigated are two questions: if the choice of �i which
leads to � ¼ 0 corresponds to an acceptable extremum of
the effective action, and if other choices with � � 0 are
equally acceptable. We find in Ref. [13] that � ¼ 0 is
indeed singled out as an acceptable extremum, a result
which is in close connection to the observation that (for
~G � 0) quasistatic solutions only exist in this case.
This generalizes to a very generic form of the dilatation

symmetric effective action and generic solutions. It is now
sufficient that an extremum of the functional W½�ðyÞ�
exists in order to assure � ¼ 0. As we have discussed in
the Introduction, extrema ofW correspond to extrema of �.

VI. DILATATION SYMMETRY WITH HIGHER
ORDER CURVATURE TERMS

In this section we discuss the role of higher order cur-
vature invariants for the properties of extrema of the dila-
tation symmetric effective action. We thus consider the
general form, Eq. (1), and first assume that F is a poly-
nomial of the curvature tensor and its derivatives. We will
later abandon the restriction to polynomial F. As discussed
in Sec. II, the most general form of F is then a polynomial

of the irreducible tensors R̂, Ĥ�̂ �̂ and Ĉ�̂ �̂ �̂ �̂ and their

covariant derivatives. Indices are contracted with the met-
ric—we omit parity violating contractions with the 

tensor.

A. Field equations and condition for � ¼ 0

The field equations for the higher-dimensional metric
derived from Eq. (1) can be written in the form

�2

�
R̂�̂ �̂ � 1

2
R̂ĝ��

�
¼ Tð�Þ

�̂ �̂ þ TðFÞ
�̂ �̂; (79)

while the field equation (10) for � is not affected by the F

term. The ‘‘scalar part’’ Tð�Þ
�̂ �̂ of the energy momentum

tensor is given by

Tð�Þ
�̂ �̂ ¼ �@�̂�@�̂�� �

2
@�̂�@�̂�ĝ�̂ �̂ þD�̂D�̂�

2

� D̂2�2ĝ�̂ �̂; (80)

while the ‘‘curvature part’’ TðFÞ
�̂ �̂ obtains from the variation

of the F term

TðFÞ
�̂ �̂ ¼ 2

�F

�ĝ�̂ �̂
� Fĝ�̂ �̂: (81)

The scalar field equation implies for constant nonzero �0

that the curvature scalar must vanish, R̂ ¼ 0. In turn, the
contraction of the gravitational field equation with ĝ�̂ �̂

implies T̂ðFÞ
�̂ �̂ĝ

�̂ �̂ ¼ 0. What remains is the field equation

for the traceless part

�2
0Ĥ�̂ �̂ ¼ 2

�F

�ĝ�̂ �̂
� Fg�̂ �̂: (82)

We may write

�F

�ĝ�̂ �̂ ¼ l�d
0 A�̂ �̂ þ 1

2
Fĝ�̂ �̂; ĝ�̂ �̂A�̂ �̂ ¼ 0: (83)

If A�̂ �̂ ¼ 0 one finds Ĥ�̂ �̂ ¼ 0 and the solution reads

R̂ �̂ �̂ ¼ 0; � ¼ �0: (84)

On the other hand, for a nonvanishing traceless part of the
energy momentum tensor, A�̂ �̂ � 0, one also finds a non-

vanishing Ĥ�̂ �̂ ¼ 2��2
0 l�d

0 A�̂ �̂. With Ĥ�̂ �̂ � l�2
0 one may

relate the scales �0 and l0 in this case, l0 � ��ðð2Þ=ðd�2ÞÞ
0 .

For all extrema of the effective action which define a
four-dimensional geometry according to Eq. (5), the value
of � at the extremum obeys

�0 ¼
Z
x
ðgð4ÞÞ1=2Wð0Þ

F ; (85)

with Wð0Þ
F given by Eq. (9)

Wð0Þ
F ¼

Z
y
ðgðDÞ

0 Þ1=2�2
0F0: (86)

Here g0Þ0 , �0, and F0 are evaluated for the extremum. In

other words, the first two terms in Eq. (1) do not contribute.
This follows from the scalar field equation, together with
the extremum condition

Z
y
@�̂ðĝ1=2�@�̂�Þ ¼ 0: (87)

For regular spaces Eq. (87) is obeyed automatically, while
for singular spaces it guarantees that � is an extremumwith
respect to variations � ! �ð1þ 
ðxÞÞ, where 
 is local in
four-dimensional space [12,13].
As we have seen, the vanishing of �0 implies a vanishing

cosmological constant for any consistent local four-
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dimensional effective gravity. We thus conclude that F0 ¼
0 implies � ¼ 0, while for F0 � 0 also � will differ from
zero. This yields a simple condition for a vanishing four-
dimensional cosmological constant in case of a dilatation
invariant effective action: The value of the invariant F,
evaluated for an extremum of the effective action, must
vanish

F0 ¼ F½gð0Þ�; �
ð0Þ� ¼ 0: (88)

For consistency, F0 has to be evaluated for flat four-
dimensional space, i.e. for a metric

ĝ �̂ �̂ ¼ ����; 0
0; g�

� �
; (89)

where the internal metric g� and the warp factor �

depend on the internal coordinates. We emphasize that
for the relation F0 ¼ 0 $ � ¼ 0 a polynomial form of F
is not necessary.

B. Polynomial action and simple solutions

In this section we concentrate on a polynomial form of F
in terms of the curvature tensor and its derivatives. The
resulting solutions with a vanishing cosmological constant
may serve as instructive examples. They can also serve as
starting points for ‘‘deformations’’ of the effective action
where F no longer has a polynomial form. If we disregard
parity violating contractions with the 
 tensor, no polyno-
mial dilatation invariant F can be constructed in odd
dimensions. Thus for d odd and a restriction to polynomial
F the case F ¼ 0 is the only relevant case. For even d the
most general polynomial dilatation invariant F can be built
from powers of the curvature tensor and its covariant
derivatives. More precisely, it must involve d

2 �m powers

of R̂�̂ �̂ �̂ �̂, with m the number of covariant derivatives

which must be even. In principle, there may also be poly-
nomials with one power of � and d

4 þ 1
2 �m powers of

R̂�̂ �̂ �̂ �̂. This is only possible for d ¼ 2mod 4. We exclude

here such invariants by imposing a discrete symmetry � !
��. We also disregard a total derivative ðD̂2Þðd�2Þ=2R̂—
therefore F contains at least two powers of the curvature
tensor.

As we have argued in Sec. II, this implies that the direct
product solutions with geometry M4 �F D, with F D a
flat D-dimensional space (e.g. a torus) and constant �, are
an extremum of the effective action. For

R̂ �̂ �̂ �̂ �̂ ¼ 0; � ¼ const; (90)

one obviously finds F0 ¼ 0, and therefore � ¼ 0 for the
effective four-dimensional theory which obtains if F D has
finite volume. The field equations are obeyed for Eq. (90)

since TðFÞ
�̂ �̂ must be at least linear in R̂�̂ �̂ �̂ �̂ if � is at least

quadratic. Furthermore, for a regular spaceF D there are no
additional ‘‘brane constraints’’ [12] and the solution of the

field equations is sufficient to guarantee that the configu-
ration (90) is indeed an extremum. In case of isometries of
F D and finite volume �D the gauge couplings in the
effective four-dimensional gauge theory are nonzero and
finite.
As we have mentioned already, this simple finding es-

tablishes that a very wide class of higher-dimensional
dilatation symmetric effective actions has extrema for
which � ¼ 0 in the effective four-dimensional gravity
theory after dimensional reduction. The phase with � ¼
0 (in the language of Sec. III) is not empty. In fact, the only
thing needed for the existence of the extremum (90) is the
absence of a higher-dimensional dilatation symmetric po-

tential Vð�Þ � �2d=ðd�2Þ.
In the presence of higher-dimensional dilatation sym-

metry and the absence of a fractional potential Vð�Þ the
issue is therefore not the existence of ‘‘compactifications’’
with � ¼ 0. The interesting question rather concerns an
investigation regarding how ‘‘extended’’ is the phase with
� ¼ 0, and if it contains spaces with phenomenologically
interesting four-dimensional non-Abelian gauge
symmetries.
We next address possible Ricci-flat extrema

R̂ �̂ �̂ ¼ 0; � ¼ const; (91)

while R̂�̂ �̂ �̂ �̂ and Ĉ�̂ �̂ �̂ �̂ may differ from zero. The con-

figuration (91) obeys the field equations if F contains at

least two powers of R̂�̂ �̂. In this case TðFÞ
�̂ �̂ is at least linear

in R̂�̂ �̂ and therefore vanishes by virtue of Eq. (91). Then

one also finds F0 ¼ 0 and therefore � ¼ 0. Possible ex-
trema are direct product spaces M4 �RD, with RD a
Ricci-flat internal space. (The flat spacesFD are a subclass
ofRD.) We note that the configuration (91) is a solution of
the field equations for arbitrary warped geometries, not
necessarily of the direct product type. For spaces with
singularities we have to guarantee, however, that the brane
constraints are obeyed [12]. In Ref. [13] we discuss the
general case of warped spaces with metric (5), where
internal space exhibits the isometry SOðDÞ. In this case
no warped solutions with finite �D are extrema of �, such
that only spaces M�RD remain as candidates. It is not
known to us if the solution (91) contains warped extrema
with a smaller isometry group.
We finally observe that any possible extremum of F with

respect to variations of the metric must occur for F ¼ 0.
This follows directly from the scaling of F under dilata-
tions, F ! ��dF, as we have discussed in the
Introduction. For any metric corresponding to an extre-

mum of F one therefore finds that TðFÞ
�̂ �̂ vanishes. We may

ask if an extremum of F is also an extremum of �. In this
case the field equations are the same as in the absence of F.
However, the possible solutions should be, in addition,
extrema of F. This may impose conditions on the most
general solution of the field equations in the absence of F.
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For the example of an extremum of � with constant � the
extremum of F should occur for a Ricci-flat geometry.

We recall, however, that there is no need for an extre-
mum of � to be an extremum of F. In the Appendix we

discuss an explicit example of a solution with R̂�̂ �̂ � 0 for

which TðFÞ
�̂ �̂ does not vanish. Nevertheless, the extremum of

the effective action occurs for �0 ¼ 0, F0 ¼ 0 and there-
fore belongs to the flat phase with a vanishing four-
dimensional cosmological constant. The example admits
an SOðEþ 1Þ isometry, resulting in a non-Abelian gauge
symmetry of the effective four-dimensional theory. This
demonstrates incidentally that solutions with non-Abelian
gauge symmetries are compatible with a dilatation sym-
metric effective action that leads to � ¼ 0 independently
of the precise choice of parameters.

VII. DILATATION ANOMALY

If a dilatation symmetric ultraviolet fixed point exists
and is reached for � ! 1, the quantum effective action
may still contain terms that violate dilatation symmetry for
finite values of �. From the point of view of the fixed point
they arise from small deviations from the exact fixed point
corresponding to ‘‘relevant’’ or ‘‘marginal’’ directions in a
renormalization group language. We may interprete such
terms as a ‘‘dilatation anomaly,’’ since the quantum theory
exhibits an explicit breaking of the dilatation symmetry.
For � ! 1 the dilatation anomaly vanishes. In this section
we discuss a particularly simple setting for how a dilatation
anomaly may be generated by quantum fluctuations.

For the understanding of the issue of a possible dilata-
tion anomaly we first discuss a Weyl scaling of the higher-
dimensional effective action. This amounts to field reded-
ications

ĝ �̂ �̂ ¼ w2~g�̂ �̂; w ¼ Md�
�ðð2Þ=ðd�2ÞÞ; (92)

and

� ¼
�
� þ 4fd

ðd� 2Þ2
�
1=2

lnð�=Mðd�2Þ=2
d Þ: (93)

Expressed in terms of ~g�̂ �̂ and � a scale invariant effective

action

� ¼ Md�2
d

2

Z
~g1=2f� ~Rþ @�̂�@�̂�g; (94)

[which corresponds to Eq. (1) with F ¼ 0] becomes

� ¼
Z

ĝ1=2
�
� 1

2
�2R̂þ �

2
@�̂�@�̂�

�
: (95)

After Weyl scaling, the effective action (94) depends on
� only through derivative terms. This generalizes for all
dilatation symmetric actions, as, for example, Eq. (1) with

FðR̂�̂ �̂ �̂ �̂Þ � 0. The action exhibits now a symmetry with

respect to global shifts

� ! �þ c�: (96)

Those correspond to the original dilatations which result in
a global multiplicative rescaling of �. The field � is the
Goldstone boson of spontaneously broken dilatation sym-
metry. As it should be, it can only have derivative
couplings.
If we would consider Eq. (94) as a classical action and

compute quantum fluctuations, the global shift symmetry
would be preserved and the effective action would neces-
sarily be invariant under the shift (96). This follows from
the simple observation that a variable transformation in the
functional integral introduces no Jacobian for a linear
variable shift of the type (96). The shift symmetry is there-
fore free of anomalies. The definition of a fundamental
theory along these lines results in a dilatation symmetric
quantum field theory without dilatation anomalies. Such a
combination is always possible, establishing the possibility
to have a dilatation invariant functional measure.
For a fundamental theory without an explicit mass scale

it seems more natural, however, to employ the action, (95)
or (1), for a starting point of a computation of quantum
effects via a functional integral [3]. The functional measure
is then formulated in terms of � and ĝ�̂ �̂. Performing a

variable transformation with a Weyl scaling (92) involves a
nontrivial Jacobian. This is responsible for the dilatation
anomaly.
The Jacobian J can be computed explicitly. Since the

variable � remains unchanged, and the factor w2 in
Eq. (92) depends on � but not on the metric, one finds
formally

J ¼ Y
x̂

½w2ð�ðx̂ÞÞ�~f; (97)

where the product goes over all space-time points and ~f
counts the effective number of metric degrees of freedom.
Writing the functional integral as

Z ¼
Z

D�Dĝ�̂ �̂e
�S ¼

Z
D�D~g�̂ �̂e

�ðSþSð1Þan Þ; (98)

the action after Weyl scaling acquires an anomalous piece

Sð1Þan ¼ � lnJ ¼ �~f
X
x̂

lnw2: (99)

(Here we use ‘‘Euclidean conventions’’ for the action
and functional integral, such that � ¼ Sþ
quantum corrections. Appropriate analytic continuation
between Minkowski and Euclidean signature is
understood.)
A second anomalous piece arises from the variable

transformation from � to � by Eq. (93)
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Z ¼
Z

D�D~g�̂ �̂e
�ðSþSanÞ; San ¼ Sð1Þan þ Sð2Þan ;

Sð2Þan ¼ �X
x̂

ln

�
��

Mðd�2Þ=2
d

�
; � ¼

�
� þ 4fd

ðd� 2Þ2
��1=2

:

(100)

We can combine the anomalous pieces as

San ¼ f

2

X
x̂

½lnð�2=Md�2
d Þ þ const�; (101)

with f > 0 since Sð1Þan dominates over the �-dependent part.
We have to regularize the sum over all space-time points

in Eq. (101). This regularization should preserve diffeo-
morphism invariance which enforces

P
x̂ to be proportional

to the invariant volume

X
x̂

¼ �d
Z
x̂
ĝ1=2: (102)

The scale � indicates that the Jacobian of the variable
transformation violates the scaling symmetry. It is neces-

sary for dimensional reasons since
R
x̂ ĝ

1=2 scales as a

volume�mass�d, and
P

x̂ is dimensionless. The length
scale ��1 sets the units in which the continuous variable x̂
is ‘‘measured.’’

Employing Eq. (102) the anomalous piece in the action
reads

San ¼ f

2
�d

Z
ĝ1=2½lnð�2=Md�2

d Þ þ const�: (103)

By the Weyl scaling (92) it can be expressed in terms of
~g�̂ �̂ and � as

San ¼ f��d
Z

~g1=2 exp

�
� 2d�

d� 2
�

�
ð�þ c�Þ; (104)

with c� an appropriate constant. As it should be, the scale

� is not observable. It can be rescaled arbitrarily by a shift
in � (together with a change in the constant c�).

For the final functional integral over ~g�̂ �̂ and � in

Eq. (98) we therefore have to add to the shift invariant
action (94), the anomalous action San (104). Instead of a
free massless Goldstone boson the field � describes now a
pseudo-Goldstone boson, with potential

Vð�Þ ¼ f��d exp

�
� 2d�

d� 2
�

�
ð�þ c�Þ: (105)

Its effective mass term is given by the second derivative
with respect to �

m2
�

M2
d

¼ 1

2
M�d

d

@2V

@�2
�
�
�

Md

�
d
exp

�
� 2d�

d� 2
�

�
: (106)

We can choose the value of the scale of spontaneous
dilatation symmetry breaking Md such that in the range
of interest � is close to zero. We find then for the mass of

the pseudo-Goldstone boson

m2
� ��d=Md�2: (107)

For a small mass scale of the anomaly � as compared to
the spontaneous symmetry breaking scale Md the mass of
the pseudo-Goldstone boson can be strongly suppressed.
(For d ¼ 4 one recovers the relation familiar for the axion
and other pseudo-Goldstone bosons, m ¼ �2=M.) In the
limit m� ! 0 the functional integral over ~g�̂ �̂ and � pre-

serves the shift symmetry (96) and therefore produces no
further dilatation anomaly. For smallm2

� we can expand the

propagators in loops in powers of m2
�. This generates addi-

tional contributions to the dilatation anomaly. The lowest
order in this expansion will contribute to V a term
�m2

�M
d�2
d and only ‘‘renormalizes’’ the constants appear-

ing in Eq. (105). Higher orders in m2
� are further sup-

pressed. We will therefore take Eq. (103) or (104) as our
final form of the dilatation anomaly.
In this context it may be of interest that the generic form

(101) can also be obtained from a simple one loop calcu-
lation using the action (95) as a starting point. The inverse
propagator P, as given by the second functional derivative
of the action, has the generic form

P ¼ �2 ~Pg; � ~P�g

� ~P�g; ~P�

 !
; (108)

with ~Pg, ~P�;g, and ~P� depending on the metric and involv-

ing derivative operators, but independent of �. The one
loop expression takes the generic form

Sð1loopÞ ¼ � ln
Y
x̂

ðdetPÞ�1=2 ¼ f

2

X
x̂

ðln�2 þL½ĝ�̂ �̂�Þ:

(109)

Here f can be associated with the effective number of
metric degrees of freedom. The simple form of the �
dependence of the one loop expression obtains since
powers of � can easily be factorized out in detP.

VIII. COSMOLOGICAL RUNAWAYAND DARK
ENERGY

The dilatation anomaly adds to the effective four-
dimensional action a contribution to the potential V

Van ¼ ~�d’�D
l ½lnð’2

�’
D
l = ~�

d�2Þ þ v0�; (110)

where lD ¼ ’�D
l arises from the volume of internal space

and we have absorbed constants into a redefinition of the

anomaly scale ~�. For ~F ¼ ~Q ¼ 0, as required by asymp-
totic solutions in the flat phase, this is the only contribution
to V.
If we assume that a cosmological solution settles to a

constant ratio ’�=’l the potential decays for large ’�,

V � ~�d’�D
� : (111)
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Thus ’� will not reach a stable value and we expect

cosmological solutions where ’� moves to infinity. For

large time the dimensionless ratio

V

’4
�
�
�
�

’�

�
d

(112)

can become very small. In the asymptotic limit, the anom-
aly�� can be neglected. In this limit we may consider the
solution as static, since also the ‘‘driving force’’ for the
motion of ’�, i.e. the derivative @V=@’�, becomes very

small. In the asymptotic limit we can then neglect the
dilatation anomaly and look for quasistatic solutions for
an effective action with dilatation symmetry. This is pre-
cisely the setting for the investigations of the present paper.

For finite cosmological time a cosmological solution
will only approach the dilatation symmetric asymptotic
solution. If we associate ’� (or more generally �) with
the present value of the (reduced) Planck mass, the present
value of V sets the scale of the dark energy [1]. For a
demonstration of the leading behavior we neglect the
logarithmic dependence,

V ¼
�
��

’�

�
d
’4

�: (113)

This corresponds to an anomaly which is a simple higher-
dimensional cosmological constant [1]. After a Weyl scal-
ing to the four-dimensional Einstein frame the effective

potential reads ( ~F ¼ ~Q ¼ ~G ¼ 0)

V4 ¼
�
��

’�

�
d
M4: (114)

A kinetic term for ’� of the form (68) (with @�! ¼ 0)

becomes in the Einstein frame [1]

Lkin;4 ¼ M2

2
ðZ� þ 6Þ@� ln

�
’�

��

�
@� ln

�
’�

��

�
: (115)

The cosmon field ’ with a canonic kinetic energy is
proportional M lnð’�=MÞ,

’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z� þ 6

q
M ln

�
’�

��

�
: (116)

In consequence, the cosmon potential (114) has an expo-
nential shape

V4 ¼ M4 exp

�
��

’

M

�
; � ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z� þ 6
p : (117)

We note that �may take values substantially larger than 1,
in particular, for negative values of Z� close to the ‘‘con-

formal value’’ Z� ¼ �6. Exponential potentials have been
the first candidates for a dynamical dark energy or quin-
tessence and lead to cosmological scaling solutions [1]
where V4 and the dark energy density decrease �t�2.
This could explain why dark energy is of the same order

as dark matter. The fraction in homogeneous early dark
energy is given by [1] (for matter dominating radiation)

�h ¼ 3

�2
: (118)

For realistic cosmologies such a scaling solution has to be
ended by some cosmological event, as for growing neu-
trino quintessence [6].
We observe that an additional logarithmic dependence

as in Eq. (110) multiplies the cosmon potential by a factor

A ¼ �vþ ðd� 2Þ lnð’�= ��Þ ¼ �vþ d� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z� þ 6

p ’

M

¼ �vþ
�
1� 2

d

�
�
’

M
: (119)

The cosmological effects of such a factor may best be
visualized by defining a ’-dependent �ð’Þ,

V4 ¼ AM4 exp

�
��

’

M

�
¼ M4 exp

�
��ð’Þ ’

M

�
;

�ð’Þ ¼ ��M

’
lnAð’Þ ¼ ��M

’
ln

�
�vþ

�
1� 2

d

�
�
’

M

�
:

(120)

This leads to a decrease of �ð’Þ as ’ increases with
cosmological time, and therefore to an increase of the
dark energy fraction �h. Realistic present values of the
dark energy density require a present value of the cosmon
field given by �ð’Þ’=M 	 276. This implies �ð’Þ 	 �
up to small corrections.
We may define by �0 the present value of � and by ’0

the present cosmon field. Using �0’0=M ¼ 276 we can
give the quantitative value of the scale �� which character-
izes the dilatation anomaly�

��

’�;0

�
d ¼

�
��

M

�
d ¼ V0

M4
¼ 10�120;

�� ¼ 10�ðð120Þ=ðdÞÞM 	 1018�ðð120Þ=ðdÞÞ GeV:
(121)

For d ¼ 10ð18Þ this would amount to a high energy scale
�� ¼ 106ð1011Þ GeV.

IX. CONCLUSIONS

In general, the quantum effective action �½ĝ�̂ �̂; �� for
gravity coupled to a scalar field � has a complicated form.
We explore here the possibility of a simple scaling limit for
large � and small ĝ�̂ �̂. More precisely, we investigate the

scaling with a multiplicative power of a dimensionless
parameter � and define

��½ĝ�̂ �̂; �� ¼ �½��2ĝ�̂ �̂; �
ððd�2Þ=ð2ÞÞ��: (122)

Our hypothesis is a simple limiting behavior of �� for � !
1. In particular, we investigate a possible fixed point [1,5]
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lim
�!1�� ¼

Z
x̂
ĝ1=2

�
� 1

2
�2R̂þ �

2
@�̂�@�̂�

�
: (123)

As appropriate for a fixed point, Eq. (123) states that ��

becomes independent of � for � ! 1. In this limit the
effective action is therefore invariant with respect to
dilatations.

If a fixed point (123) exists, it may be used for a
definition of quantum gravity, with a nonperturbative re-
normalization similar to the asymptotic safety scenario
[14,15]. Quantum fluctuations are expected to modify the
simple asymptotic form of the effective action by adding
for finite � additional terms to the right-hand side of
Eq. (123). Such terms typically violate the dilatation sym-
metry and will then be treated as ‘‘dilatation anomalies.’’
An example would be a cosmological constant

�ð ��Þ ¼
Z
x̂
ĝ1=2 ��d: (124)

Its contribution to �� indeed vanishes for � ! 1

�ð ��Þ
� ¼ ��d

Z
x̂
ĝ1=2 ��d: (125)

One may imagine a nonlinear functional flow equation
for the � dependence of �� [at fixed ĝ�̂ �̂, � and besides the

trivial linear one following from the definition (122)],

�@���½ĝ�̂ �̂; �� ¼ F ½ĝ�̂ �̂; ��; (126)

with a functional F typically involving �� and its func-
tional derivatives. One could then define quantum gravity
by a solution of this flow equation with the ‘‘boundary
condition’’ or ‘‘initial value’’ (123). The fixed point would
be an ‘‘ultraviolet fixed point’’ in the sense of � ! 1.
Effective actions which are close to this fixed point for
finite �may then be treated in the standard renormalization
group formalism for relevant and marginal directions.

The fixed point may become important for late time
cosmological solutions. This happens if �ðtÞ increases

and ĝ1=2ðtÞ decreases for increasing time, such that the
field equations, which obtain from the functional deriva-
tives of � with respect to ĝ�̂ �̂ and �, have to be evaluated

for values of the fields where the limit ��!1 becomes
relevant. In Sec. VIII we have discussed an explicit ex-
ample for this type of ‘‘runaway cosmology.’’ The ap-
proach to the fixed point leads to an interesting candidate
for dynamical dark energy, where the potential energy of
an appropriate scalar field vanishes only asymptotically for
t ! 1.

The fixed point (123) may exist for an arbitrary dimen-
sion d > 2, including d ¼ 4. In this paper we are interested
in higher-dimensional theories. Indeed, for d > 6 no poly-
nomial potential for � is consistent with dilatation symme-
try. This may add to the plausibility of a fixed point
effective action without a potential Vð�Þ. On the other
hand, the vanishing of the higher-dimensional cosmologi-

cal constant is, in general, not sufficient to guarantee a
vanishing effective four-dimensional cosmological con-
stant after ‘‘spontaneous compactification’’ of the internal
dimensions. The curvature of internal space or a nontrivial
warping may generate such an effective cosmological con-
stant. One of the important findings of the present paper is a
statement about the most general ‘‘compactified’’ higher-
dimensional solutions of the field equations derived from
the fixed point action (123): all stable solutions with maxi-
mal four-dimensional symmetry and finite effective four-
dimensional gravitational constant must have a vanishing
four-dimensional cosmological constant. This asymptotic
vanishing of the cosmological constant can be understood
by a self-adjustment mechanism for infinitely many de-
grees of freedom, as discussed in Sec. V.
Consider now stable cosmological runaway solutions

which drive the fields into a region where the fixed point
effective action (123) becomes relevant, and which allow
for an effective four-dimensional gravity. Such solutions
lead to a vanishing four-dimensional cosmological con-
stant for t ! 1, thus solving the ‘‘cosmological constant
problem.’’ Furthermore, since the Universe is very old (in
units of the Planck time), but not infinitely old, a small
amount of homogeneous energy density remains present in
the effective four-dimensional Universe. This could give an
explanation for the observed dark energy. Because of the
huge age of the Universe (in Planck units) we expect that
the present geometry of the Universe is very close to the
asymptotic geometry, which is a quasistatic solution of the
field equations derived from Eq. (123).
It is easy to find candidates for such asymptotic solu-

tions—the simplest being a direct product of four-
dimensional flat space and an internal d� 4-dimensional
Ricci-flat space with finite volume, accompanied by a
constant value of the scalar field �. If internal space admits
isometries, the gauge couplings of the resulting four-
dimensional gauge interactions become time-independent
for large t. This solution has a vanishing four-dimensional
cosmological constant � and exists for all values of � in
Eq. (123). On the other hand, we have shown that all
possible stable quasistatic solutions of the field equations
derived from the effective action (123), which are consis-
tent with four-dimensional gravity, must have a vanishing
four-dimensional constant � ¼ 0. Stable asymptotic solu-
tions approaching de Sitter or anti–d Sitter space (� � 0)
are not possible. This singles out a vanishing cosmological
constant for the asymptotic behavior for t ! 1 and may be
the basis for the solution of the cosmological constant
problem.
Furthermore, we have extended our discussion to a more

general form of a fixed point effective action. It includes
dilatation symmetric higher curvature invariants for the
metric. In the absence of a potential for � our conclusions
remain essentially unchanged. Finally, we have presented a
simple estimate of the dilatation anomaly and discussed the
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qualitative behavior of the corresponding runaway cosmol-
ogy. It approaches a zero cosmological constant for infinite
time, and has a dynamical dark energy component of
similar size as dark matter.

Our main conclusion is simple: if the quantum effective

action for large � and small ĝ1=2 shows a limiting fixed
point behavior (123), or a similar dilatation symmetric
behavior without a potential term for �, and if a stable
cosmological runaway solution approaches this field re-
gion for large t, the cosmological constant problem can be
solved without any fine tuning of parameters or initial
conditions.

APPENDIX: CURVED GEOMETRIES WITH
VANISHING COSMOLOGICAL CONSTANT

In this Appendix we present an instructive example for a

geometry with a nonvanishing Ricci tensor R̂�̂ �̂, that

nevertheless implies a vanishing cosmological constant.

We restrict F to be a polynomial of R̂, Ĥ�̂ �̂ and their

covariant derivatives. We have already found that in this
case all Ricci-flat geometries Rd are acceptable extrema,

R̂ ¼ 0; Ĥ�̂ �̂ ¼ 0; � ¼ �0: (A1)

With Rd ¼ M4 �RD, and RD a Ricci-flat
D-dimensional space with finite volume, the effective
four-dimensional physics exhibits finite nonzero values
for the gravitational constant, as well as for the gauge
couplings in case of isometries. In this Appendix we are
interested in possible additional solutions with non-Ricci-
flat geometries, where

Ĥ �̂ �̂ � 0; R̂ ¼ 0; � ¼ �0: (A2)

Let us consider d ¼ 2 mod 4 and write

F ¼ f1ðR̂2; H2ÞR̂þ f2ðR̂2; H2ÞH3 þ F3 þ F4; (A3)

with

H2 ¼ H�̂ �̂Ĥ
�̂ �̂; H3 ¼ Ĥ�̂

�̂Ĥ�̂
�̂Ĥ�̂

�̂: (A4)

The term F3 contains contractions of the indices of Ĥ�̂ �̂

where at least four powers of Ĥ are involved, like H4 ¼
Ĥ�̂

�̂Ĥ
�̂
�̂Ĥ

�̂
�̂ Ĥ

�̂
�̂ , or terms involving higher powers of H3.

Finally, F4 contains covariant derivatives of R̂ and Ĥ�̂ �̂.

In d ¼ 2mod 4 a term involving onlyH2 is forbidden. The
invariant H2 has dimension mass4, and a polynomial in-
volving only H2 scales, therefore, �mass4n, n 2 N.
Dilatation symmetry requires that any polynomial scales
�massd. For d ¼ 2mod 4 at least one term with dimension

mass 2m, m odd, is needed, as R̂ or H3, or covariant
derivatives must be involved. The dimensionless functions

f1 and f2 contain p powers ofH2 and q powers of R̂2, with
pþ q ¼ ðd� 2Þ=4 for f1 and pþ qþ 1 ¼ ðd� 2Þ=4 for
f2. The form (A3) for F constitutes for d ¼ 2 mod 4 the

most general polynomial dilatation symmetric effective

action not involving Ĉ�̂ �̂ �̂ �̂.

As an example of an extremum that leads to a vanishing
four-dimensional cosmological constant we consider the
direct product

M 4 �RD1�4 � SE � NE; (A5)

with RD1�4 a Ricci-flat D1 � 4 dimensional space (D1 ¼
d� 2E) with finite volume, while SE is the E-dimensional
sphere with radius a and Ricci tensor obeying

R̂ �� �� ¼ E� 1

a2
ĝ �� ��: (A6)

The E-dimensional space NE has negative curvature with a
Ricci tensor opposite to SE,

R̂ �
 �� ¼ �E� 1

a2
ĝ �
 ��: (A7)

For this ansatz, the curvature scalar vanishes, R̂ ¼ 0,

while Ĥ�̂ �̂ ¼ R̂�̂ �̂ remains different from zero. A simple

computation yields

H2 ¼ 2EðE� 1Þ2
a4

; H3 ¼ 0: (A8)

Indeed, for Ĥ�̂ �̂ we find nonzero values only for the

2E-dimensional subspace SE � NE, with indices �; � ¼
1 . . . 2E and ĝ�� ¼ diagðĝ �� ��; ĝ �
 ��Þ. Correspondingly, one
obtains for the contraction H�̂

�̂Ĥ�̂ �̂ the nonzero entries

Ĥ �
�̂Ĥ�̂� ¼ ðE� 1Þ2

a4
ĝ��: (A9)

This explains the vanishing of Hn>2. In consequence F3

vanishes for the ansatz (A5), as well as the pieces involving

f1 and f2. Furthermore, all covariant derivatives of Ĥ�̂ �̂

vanish, D�̂Ĥ�̂ �̂ ¼ 0, and @�̂R̂ ¼ @�̂H2 ¼ 0. Thus F4 also

vanishes. If the ansatz (A5) solves the field equations, we

are granted that FðR̂�̂ �̂ �̂ �̂Þ vanishes. The four-dimensional

cosmological constant must therefore be zero.
It remains to be shown that the ansatz (A5) solves the

field equations. Since it corresponds to a regular geometry,
solutions of the field equations are guaranteed to corre-

spond to an extremum of the action. For � ¼ �0, R̂ ¼ 0,
the scalar field equations are solved. For deriving the field
equations for the metric we use the identities for variations

�ðĝ�̂ �̂Ĥ�̂ �̂Þ ¼ �Ĥ�̂
�̂ ¼ �Ĥ�

� þ �Ĥ	
	 ¼ 0; (A10)

and

�H3 ¼ 3Ĥ�̂
�̂Ĥ

�̂
�̂�Ĥ

�̂
�̂ ¼ 3ðE� 1Þ2

a4
�Ĥ�

�: (A11)

Here the index 	 stands for the coordinates of the Ricci-flat

d� 2E dimensional subspace, and we note that �Ĥ	
	 does

not vanish in general. Furthermore, the nonvanishing var-
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iations are (for R̂ ¼ 0)

�Ĥ�
�

�ĝ�	
¼ ��Ĥ�0

�0

�ĝ�	
¼ b1Ĥ�	;

�Ĥ�0
�0

�ĝ��
¼ ��Ĥ�

�

�ĝ��
¼ b2Ĥ��:

(A12)

[For simplicity, we omit here the contributions from terms

in F3 which have the form Hððd�2Þ=ð4ÞÞ�k
2 H2kþ1, k � 2, and

therefore vanish for the ansatz (A5).] This yields for the
ð�; 	Þ component of the gravitational field equations�

�2
0 �

�
2 �f1 þ 3b1 �f2

2E

�
Hððd�2Þ=ð4ÞÞ

2

�
Ĥ�	 ¼ 0; (A13)

where we have defined

f1ðR̂ ¼ 0; H2Þ ¼ �f1H
ððd�2Þ=ð4ÞÞ
2 ;

f2ðR̂ ¼ 0; H2Þ ¼ �f2H
ððd�6Þ=ð4ÞÞ
2 :

(A14)

The field Eq. (A13) is obeyed for the Ricci-flat subspace

M4 � RD1�4 since Ĥ�	 ¼ 0.
Similarly, the field equations for the ð�; �Þ components

are �
�2
0 �

�
2 �f1 þ 3b2 �f2

2E

�
Hððd�2Þ=ð4ÞÞ

2

�
Ĥ�� ¼ 0: (A15)

For a nonzero Ĥ�� the bracket has to vanish. This fixes H2

and therefore the characteristic scale a for the
2E-dimensional subspace as a function of �0, according to

Hððd�2Þ=ð4ÞÞ
2 ¼ 2E�2

0

4E �f1 þ 3b2 �f2
: (A16)

Provided that 4E �f1 >�3b2 �f2 the ansatz (A5) indeed sol-
ves the field equations. No tuning of parameters is neces-
sary, and the cosmological constant vanishes for a wide
range of parameters �f1, �f2.
In order to have an acceptable four-dimensional gravity

we also need a finite nonzero value of the effective gravi-
tational constant. With �D the finite volume of the D ¼
d� 4 dimensional internal space and an expansion of H3

in powers of the four-dimensional curvature tensor Rð4Þ,
H3 ¼ Hð0Þ

3 þ b3H
ð0Þ
2 Rð4Þ, one finds

�2 ¼ �D½�2
0 � 2ð �f1 þ b3 �f2ÞðHð0Þ

2 Þððd�2Þ=ð4ÞÞ�

¼ ��D
�f2ðHð0Þ

2 Þððd�2Þ=ð4ÞÞ
�
2b3 þ 3b2

2E

�
: (A17)

Positivity of �2 restricts the sign of �f2 according to the sign
of the combination 2b3 þ 3b2=ð2EÞ. Finiteness of �2 re-
quires finite�D�

2
0. The gauge couplings of the SOðEþ 1Þ

gauge symmetry corresponding to the isometries of SE are
also finite and nonzero if �D is finite.
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187 (2009); 671, 162 (2009).

[8] V. Rubakov and S. Shaposhnikov, Phys. Lett. 125B, 139
(1983).

[9] C. Wetterich, Nucl. Phys. B255, 480 (1985).

[10] S. Randjbar-Daemi and C. Wetterich, Phys. Lett. 166B, 65
(1986).

[11] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[12] C. Wetterich, Phys. Rev. D 78, 043503 (2008).
[13] C. Wetterich, this issue, Phys. Rev. D Phys. Rev. D 81,

103508 (2010).
[14] S. Weinberg, in General Relativity: An Einstein Centenary

Survey, edited by S.W. Hawkings and W. Israel
(Cambridge University Press, Cambridge, 1979) p. 790.

[15] M. Reuter, Phys. Rev. D 57, 971 (1998); D. Dou and R.
Percacci, Classical Quantum Gravity 15, 3449 (1998); O.
Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2001).

C. WETTERICH PHYSICAL REVIEW D 81, 103507 (2010)

103507-22

http://dx.doi.org/10.1016/0550-3213(88)90193-9
http://dx.doi.org/10.1016/0370-2693(87)91191-9
http://dx.doi.org/10.1016/0370-2693(87)91191-9
http://dx.doi.org/10.1103/PhysRevD.77.103505
http://dx.doi.org/10.1103/PhysRevLett.102.141303
http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1103/PhysRevD.78.023015
http://dx.doi.org/10.1016/j.physletb.2007.08.060
http://dx.doi.org/10.1016/j.physletb.2007.08.060
http://dx.doi.org/10.1016/j.physletb.2008.11.054
http://dx.doi.org/10.1016/j.physletb.2008.11.054
http://dx.doi.org/10.1016/j.physletb.2008.11.041
http://dx.doi.org/10.1016/0370-2693(83)91254-6
http://dx.doi.org/10.1016/0370-2693(83)91254-6
http://dx.doi.org/10.1016/0550-3213(85)90148-8
http://dx.doi.org/10.1016/0370-2693(86)91156-1
http://dx.doi.org/10.1016/0370-2693(86)91156-1
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1103/PhysRevD.78.043503
http://dx.doi.org/10.1103/PhysRevD.81.103508
http://dx.doi.org/10.1103/PhysRevD.81.103508
http://dx.doi.org/10.1103/PhysRevD.57.971
http://dx.doi.org/10.1088/0264-9381/15/11/011
http://dx.doi.org/10.1103/PhysRevD.65.025013

