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The observed angular correlation function of the cosmic microwave background has previously been

reported to be anomalous, particularly when measured in regions of the sky uncontaminated by Galactic

emission. Recent work by Efstathiou et al. presents a Bayesian comparison of isotropic theories, casting

doubt on the significance of the purported anomaly. We extend this analysis to all anisotropic Gaussian

theories with vanishing mean (h�Ti ¼ 0), using the much wider class of models to confirm that the

anomaly is not likely to point to new physics. On the other hand if there is any new physics to be gleaned,

it results from low-‘ alignments which will be better quantified by a full-sky statistic. We also consider

quadratic maximum likelihood power spectrum estimators that are constructed assuming isotropy. The

underlying assumptions are therefore false if the ensemble is anisotropic. Nonetheless we demonstrate

that, for theories compatible with the observed sky, these estimators (while no longer optimal) remain

statistically superior to pseudo-C‘ power spectrum estimators.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) by the Wilkinson Microwave Anisotropy Probe
(WMAP; e.g. [1,2]) are widely interpreted as confirming
the standard model of cosmology in which inflation gen-
erates a homogeneous and isotropic background and seeds
isotropic, nearly scale-free perturbations. Yet a variety of
tests suggest that, on large scales, something may be amiss
[3–10]. (For a wide-ranging assessment of such anomalies
in the 7-year WMAP data see Ref. [11].) The interpretation
of these results is complicated by the a posteriori nature of
anomaly hunting: any large data set will contain statistical
flukes which, in isolation, can be made to look unaccept-
able. This is a particularly pernicious problem in the con-
text of large-scale cosmology: with only one sky to
observe, frequentist statistics are almost impossible to
interpret.

Frequentist results can be made into more concrete
Bayesian statements by considering specific alternative
CMB theories or classes of theories (see e.g. Refs. [12–
14]). But a single, fixed data set can still contribute over-
whelming evidence in favor of or against the very same
theory, depending on the alternatives against which we are
judging (for an elucidation of this point, see Ref. [15],
Sec. 5.5). In other words there is no unique way to ascribe
significance to departures from the standard theory.

This does not imply we should abandon critical evalu-
ations of WMAP and other data: if we simply accept we
have an ‘‘unlikely’’ realization of our favored theory, we
might miss the opportunity to discover new physics (or
instrumental systematics). Thus frequentist results cannot

be dismissed out-of-hand; but we would advocate their
interpretation as pointers to interesting areas of work,
rather than quantifiable death-knells of existing models
or theories.
In the present work, we will consider a long-standing

debate about the nature of the angular correlation function
Cð�Þ of the CMB. The argument is usually phrased in terms
of the statistic Scut

1=2, which traces the extent to which

temperature fluctuations (outside a Galactic mask) are
correlated between points separated by 60� or more. For
a quantitative definition, see Sec. II. A number of recent
works have attempted to assess the significance of the
purportedly anomalous value of Scut

1=2, reaching essentially

contradictory conclusions. In particular, the frequentist
P-value [10] suggests the observed sky is highly anoma-
lous, while a Bayesian analysis of the optimally recon-
structed sky by Efstathiou et al. suggests the opposite [16];
see also Ref. [11]. However, any Bayesian result pivots
crucially on the alternative models considered; the assump-
tions in Ref. [16] mean that only isotropic models are
considered. This is a significant omission, since it leaves
open the possibility that suboptimal estimates of S1=2

formed from cut-sky data can be reframed as useful mea-
sures of anisotropy.
The present work rectifies that omission. The anomaly is

analyzed from within harmonic space, and then anisotropic
theories which make our CMB realization more probable
are considered. The Scut

1=2 anomaly is found to be uninfor-

mative in the following two senses:
(1) The trivial maximum likelihood anisotropic

Gaussian theory for our observed sky1 does not
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1Namely, that with covariance matrix C ¼ aay where a is the
observed sky data vector.
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lead to substantially better likelihoods for the single
statistic Scut

1=2;

(2) Theories constructed specifically to maximize the
likelihood of Scut

1=2 (ignoring the rest of the informa-

tion on the sky) also yield little gain.
These failures arise from the large variance inherent in
using a statistic, such as Scut

1=2, which is quartic in the data.

Overall, then, the present work reinforces the view that the
frequentist ‘‘unlikeliness’’ of the observed sky must be
regarded as a statistical fluke.

Some broader results arise from our study. First, we
consider the effect of an anisotropic theory on quadratic
maximum likelihood (QML) estimates of the power spec-
trum. The QML estimators are derived under the (in this
context false) assumption of isotropy; despite this, they
typically remain superior to pseudo-C‘ approaches to
power spectrum estimation (Sec. II, with detail in
Appendix A 5). Second, we present an extremely fast
method for finding the maximum angular momentum di-
rection of a CMB map (Appendix E). Third, we demon-
strate that cut-sky correlation functions can be exactly
reproduced from the pseudo-C‘ power spectrum
(Appendix B). This final result, applicable also for
weighted data, has been reported previously [17] but
ignored by recent work; to our knowledge no proof appears
in the existing literature.

The paper is structured as follows. Section II introduces
the necessary background and notation. In Sec. III we
consider, from a harmonic-space perspective, the origin
of the low observed Scut1=2. Anisotropic, Gaussian theories

which reproduce this result are considered in Sec. IV, and
show that even the best conceivable fit to the observed
CMB makes no substantial improvement to the Scut1=2 like-

lihood. Finally, the work is summarized in Sec. V. Further
details and discussion are contained in appendixes.

II. BACKGROUND AND NOTATION

In this section we set out the various definitions needed
in our work. Let us start by defining the observed tempera-
ture correlation function Cð�Þ as

C ð�Þ ¼ Tðn̂1ÞTðn̂2Þ; (1)

where the overbar denotes averaging over all observed
line-of-sight vector pairs n̂1, n̂2 satisfying n̂1 � n̂2 ¼
cos�. We further define

C ‘ � 1

2‘þ 1

X
m

ja‘mj2; (2)

where the a‘m’s are the spherical harmonic coefficients of
the temperature field on the observed sky. A calligraphic C‘
thus denotes the observed power, distinguished from the
theoretical variances C‘ which we regard as defined by the
relation

C‘ ¼ hC‘i (3)

for isotropic and anisotropic theories alike.
There is an exact relationship between Cð�Þ and C‘,

namely

C ð�Þ ¼ 1

4�

X
‘

ð2‘þ 1ÞC‘P‘ðcos�Þ; (4)

where P‘ are the Legendre polynomials. Throughout this
paper in our numerical calculations, we use a finite sum
over 2 � ‘ � 30; the lower limit discards any contribution
from the monopole and dipole, while we verified that the
upper limit is high enough for our results to converge.
Result (4) holds regardless of any theoretical constraints

(such as isotropy). Thus the information in the correlation
function is identical to that in the C‘’s observed on the sky.
If desired, one can define the theoretical correlation func-
tion to be the ensemble average of the sky-observed corre-
lation function, Cð�Þ ¼ hCð�Þi.
The purported anomalies relate to the apparent lack of

correlations on large angular scales, quantified by

S 1=2 ¼
Z 1=2

�1
Cð�Þ2 sin�d�: (5)

This quantity is a measure of the extent to which the
temperature from points separated by 60� or more is
correlated. Rather than evaluate (5) directly, it is much
faster and numerically more stable to calculate S1=2 from

the quadratic form

S 1=2 ¼
X
‘‘0

C‘C‘0s‘‘0 ; (6)

where, as above, ‘ and ‘0 range from 2 to 30 in our
numerical calculations and

s‘‘0 ¼
Z 1=2

�1
P‘ðxÞP‘0 ðxÞdx; (7)

which may be computed using well-known recursion rela-
tions (e.g. Appendix C.2 of Ref. [18]; see also Ref. [10]).
If one does not trust information inside a specified mask

(for instance due to suspected Galactic contamination), one
may calculate the correlation function using only the points
outside the mask,

C ð�Þcut � Tðn̂1ÞTðn̂2ÞjMðn̂1Þ¼Mðn̂2Þ¼1; (8)

where Mðn̂Þ is a masking function (equal to 0 or 1 in each
pixel), so that the angular average denoted by the overbar is
over all point pairs (with n̂1 � n̂2 ¼ cos�) which lie outside
the mask. This procedure is mathematically identical to
calculating the Legendre sum over the pseudo-C‘ (PCL)

estimates for the power spectrum (which we denote ĈPCL
‘ ;

see Appendix A for a precise definition):

C ð�Þcut ¼ 1

4�

X
‘

ð2‘þ 1ÞĈPCL
‘ P‘ðcos�Þ: (9)
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While this result has been reported before [17], an explicit
proof does not appear to exist in the literature, so we
provide one in Appendix B.

It is clear that, if Ĉ‘ are any unbiased estimates for C‘,
then forming their Legendre sum (4) yields an unbiased
estimator for Cð�Þ. Thus if one wishes to find maximum
likelihood estimates for Cð�Þ on the full sky from cut-sky
information, by linearity one simply substitutes the maxi-

mum likelihood Ĉ‘ estimates in place of the PCL esti-
mates. For our purposes, the estimates provided by the
QML estimator technique [19] are close enough to the
exact maximum likelihood to remove the need for any
nonlinear techniques [20].

There are two somewhat subtle points to be appreciated
here. First, reservations have been expressed about the use
of the QML estimator, since it uses prior information on
the power spectrum and therefore appears to make strong
assumptions about the form of the underlying theory. Copi
et al. [10] express concern about use of the QML estimator
in circumstances where one is questioning the validity of
the concordance model. In fact, this unease turns out to be
unwarranted; one may explicitly show that QML estimates
remain superior to PCL estimates—even in cases where the
estimates for the covariance matrix are not correct.

Let us outline why this should be so. A full derivation is
given in Appendix A 5, in which the QML estimator is
written entirely within harmonic space. The estimation
procedure can be seen to down-weight high variance
modes and up-weight low variance modes before calculat-
ing the power spectrum of the weighted cut sky. The
resulting power spectrum is then correctly deweighted
and deconvolved.2 The overall effect is to minimize the
cross talk from the mask-induced mode-coupling.
Accordingly the QML estimator will be close to optimal
in reconstructing skies from any theory where the power in
each ‘ is close to that predicted in concordance models.
Since the observed power spectrum is very close to the
�CDM theoretical prediction, any serious candidate the-
ory must satisfy this criterion. Indeed, only if the true
theory has a power spectrum closer to flat than to the
concordance model will the PCL estimator typically per-
form better than the QML. A corollary is that the PCL and
QML estimators become identical for a theory with flat
power spectrum3 (equal C‘’s).

Efstathiou et al. [16] make a different rebuttal of the
sensitivity-to-assumptions concern by showing that full-
sky maps (albeit band-limited) can be made from the cut-

sky data (see also Ref. [7]). The difficulty with full-sky
reconstructions is that they rapidly become unstable as the
sky cut increases (unless the data are strictly band-limited,
which is not true of the CMB). Furthermore they introduce
a dependence on the underlying theory so that their con-
ceptual benefits over the QML estimator are not clear
(although, as shown in Ref. [16], the sensitivity to the
assumed covariance may be rather weak). For this reason
we will not consider explicit sky reconstructions further in
the present work.
However the second subtlety is that one may not, in fact,

want to optimally reconstruct the full-sky correlation func-
tion. If we are interested in using a cut-sky correlation
function not to remove localized contamination, but in-
stead as a distinct quantity in its own right, the efficiency of
the QML estimator at reconstructing the full sky becomes a
hindrance. Starting instead from definition (8)—the corre-
lation of pixel pairs in a finite region of the sky—gives us a
transparent interpretation. Therefore it remains of interest
to examine carefully the PCL-derived Cð�Þcut, not because
the QML estimator technique is in doubt as a way of
extracting reliable full-sky information, but because the
PCL technique explicitly extracts information which is
different.

III. WHY IS Scut
1=2 IS SMALL?

In this section, we discuss the well-established result
that Scut

1=2 is unexpectedly low (and much smaller than the

full-sky value), and consider the origin of this observation
from a harmonic-space perspective. Known aspects of the
full-sky realization are found to be behind the result,
namely, (a) the low amplitude, planarity and rough
Galactic alignment of the quadrupole; and (b) the planarity
and alignment of the octupole.
Combining Eqs. (6) and (9) shows that the value of Scut

1=2

derived from pixel-pair averages on the cut sky is

S cut
1=2 ¼

X
‘‘0

ĈPCL
‘ ĈPCL

‘0 s‘‘0 : (10)

It is not clear why various groups have seen differences
(albeit minor) in Scut

1=2 measured numerically on the sky and

Scut
1=2 defined by Eq. (10), but it probably relates to diffi-

culties in designing stable numerical schemes which esti-
mate Cð�Þ directly from pixel pairs.
To understand the origin of the observed Scut

1=2 value, let

us first note that, in a typical realization of the isotropic
�CDM model, the primary driver of the ratio Scut

1=2=S
full
1=2 is

the ratio ĈPCL
2 =Cfull2 . This reflects the fact that, substituting

the theory C‘’s in Eq. (6), the dominant contribution is
from the term quadratic in C2. However, due to the low
amplitude of the full-sky quadrupole in our particular
realization, the ‘ ¼ 2 mode becomes subdominant in de-
termining S1=2. C3 then gives the dominant contribution on

2This interpretation of the QML estimator’s operation is a
harmonic-space equivalent to the pixel-space ‘‘high-pass filter’’
interpretation given by Tegmark [19].

3Closely related to this is the better-known result that PCL
estimators for high ‘’s are nearly optimal for moderate sky cuts.
Such cuts imply that the reconstruction is only sensitive to a
finite window ‘��‘, over which the high-‘ �CDM power
spectrum is nearly flat.
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the full sky, so that ĈPCL
3 =Cfull3 determines the magnitude of

Scut
1=2=S

full
1=2.

Now the octupole of the observed realization happens to
be somewhat planar (although, as quantified below, not
‘‘anomalously’’ so). Its preferred plane is, in turn, very
roughly aligned with the Galactic plane. When the octu-
pole is masked using one of the standard WMAP tempera-
ture analysis masks such as KQ75y7 (usable sky fraction
fsky ¼ 70:6%) or KQ85y7 (fsky ¼ 78:3%), a significant

amount of power in the octupole is hidden due to this

approximate alignment, leading the recovered ĈPCL
3 to be

an under-estimate of the full-sky value. Thus, according to
the considerations above, Scut

1=2 drops sharply in response.

Figure 1 illustrates this further by showing (top plot,
solid line) the value of Scut

1=2 derived from the seventh-year

WMAP [21] Internal Linear Combination map (ILC7) as
the sky coverage of an equatorial, azimuthal mask is
increased from 0 to 40% (i.e. fsky drops from 100% to

60%). When the sky is unmasked, the PCL and QML

power spectrum reconstructions reduce to the full-sky
estimate, so that all results agree for the nil cut. For the
moment we will focus on the behavior of the PCL recon-
structions, returning to the QML cases (dashed and dash-
dotted lines) momentarily.
As described above, the rapid decline in Scut1=2 as a func-

tion of increasing mask width is largely due to the corre-

sponding decline in ĈPCL
3 (illustrated in the lowermost

right-hand panel of Fig. 1), which in turn can be linked
to the progressive masking of the planar-concentrated
power (see also the 20% sky-cuts illustrated in the CMB
projections on the left of the Figure). The known planarity
of the quadrupole is also important, in that the cut-sky

estimates ĈPCL
2 decline with increasing mask area (central

right-hand panel) and so do not regain dominance over the
octupole contribution.
The described properties of multipoles ‘ � 3 are not

quite enough, on their own, to account for the low Scut
1=2.

Working with an azimuthal mask of 20%, if we use the cut-
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FIG. 1 (color online). An illustration of the low value of Scut
1=2 and its origin. The upper left-hand panels show the pattern of ILC7

temperature fluctuations in ‘ ¼ 3, 5 and 7 modes from top downwards; the larger panel underneath shows the sum, in which
anticorrelations between the modes cause power near the poles to be small. The shaded regions bounded by solid and dashed lines
represent a 20% azimuthal mask in the Galactic and ‘ ¼ 3 angular momentum planes, respectively, (defined in text). The large
uppermost panel on the right-hand side shows the values of Scut

1=2 for a variable width Galactic azimuthal mask (solid line). The dashed

line shows the same result using QML, rather than PCL, reconstruction techniques; the dotted line shows the QML result when the
mask is applied in the ‘ ¼ 3 angular momentum plane, demonstrating that full-sky power can be efficiently hidden even from the QML
estimator. The two right-hand panels underneath the main plot show the corresponding estimated values Ĉ2 and Ĉ3. Plotted points
show the results from using the WMAP team’s KQ85y7 and KQ75y7 masks for PCL (circles) and QML (crosses) estimators,
respectively, exhibiting the QML estimator’s relative sensitivity to mask shape.
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sky values ĈPCL
‘ for ‘ � 3 and the full-sky values C‘ for

‘ > 3, we calculate a value of Shybrid
1=2 ¼ 3327 �K4. The

true cut-sky value for the same mask is Scut
1=2 ¼ 1529 �K4.

We can account for this discrepancy by noting that the PCL
reconstructions of two other multipoles, ‘ ¼ 5 and ‘ ¼ 7,
are also rather low.

The overall situation is illustrated in Fig. 2, where we
have plotted (as circles) the difference between full-sky

and cut-sky power spectra (ĈPCL
‘ � C‘) at fsky ¼ 80%;

these are calculated from the ILC7 map and scaled by
the concordance theory C‘’s [22]. The differences at ‘ ¼
3, 5, 7 are all somewhat outside the 1� variance (illustrated
by the grey jagged band).4

The reason for the shortfall in reconstructed power in
‘ ¼ 5 and 7 is not immediately clear from inspecting their
individual patterns on the sky (small panels near top left of
Fig. 1). Only when all the odd multipoles at ‘ � 7 are
summed does the power become visually planar (see the
larger Mollweide projection at the bottom left of Fig. 1).
Thus cancellations between the ‘ ¼ 3, 5, 7 modes in the
polar regions effectively hide power from estimators once
the sky is masked. (We note that even-‘ modes have no
effect on the odd-‘ reconstruction and vice versa, since
these are decoupled when adopting an equatorially sym-
metric mask.)

A. Behavior of the QML estimator

Having established the origin of the low Scut
1=2, let us turn

to the effect of using a QML, rather than PCL, estimator in
reconstructing the full sky. It has been commented else-
where [16] that, for KQ85y7 masks, the QML estimator
reconstructs most of the power in the full-sky octupole;

SQML
1=2 is close to Sfull

1=2 even for the larger KQ75y7 mask. We

have reproduced these results; QML outputs are plotted as
crosses in the panels of Figs. 1 and 2. As discussed above
(Sec. II), the QML estimator reweights its input maps to
extract full-sky information as efficiently as possible;
hence the improvement is not surprising. Recall that,
even when considering anisotropic theories, the QML es-
timates for the full sky are expected to be superior (this is
further reinforced in Sect. IV below).

However, the QML estimator’s ability to make an effi-
cient recovery of our full-sky results does depend on the
shape of the mask.5 For an azimuthal mask covering a sky
fraction * 20%, even the QML estimator starts to under-

estimate the power on the full sky (illustrated by the dotted
lines in the right panels of Fig. 1; the lower panel shows

that the falling SQML
1=2 tracks a drop in the power of the

reconstructed octupole ĈQML
3 ). These results show that, if

the power is sufficiently localized within the mask, it
cannot be reconstructed by any technique.
This interpretation of the results is confirmed by apply-

ing an azimuthal mask in the plane (as defined below) of
the octupole (dotted lines in all panels of Fig. 1). The
octupole plane is defined by rotating the map until the
‘‘angular momentum dispersion’’ statistic [23] for quanti-
fying the planarity of multipole ‘ is maximized:

L2
‘ ¼

P
‘
m¼�‘ m

2ja‘mj2
‘2

P
‘
m¼�‘ ja‘mj2

: (11)

(This maximization is achieved using a fast method de-
scribed in Appendix E.) Now the octupole is masked from

the map very efficiently, and ĈQML
3 drops sharply as a

consequence. In response, SQML
1=2 becomes a severe under-

estimate, at large sky cuts becoming even worse than the
Galactic azimuthal-masked PCL estimator.

B. Summary of the frequentist result

The preceding material has shown that the small mea-
sured value of Scut

1=2 is attributable to a series of somewhat

5 10 15 20

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

C
cu

t
fu

ll
/C

co
n

c

PCL

QML

Var PCL

Var QML

FIG. 2 (color online). The difference between the cut-sky
estimates Ĉ‘ and the full-sky measured values C‘ on the ILC7
map, expressed for ease of viewing as a fraction of the fiducial
theoretical best-fit C‘’s published by the WMAP team [22]. The
results from a PCL and QML estimator for a 20% azimuthal sky-
cut are shown by dots and crosses, respectively. The shaded
bands show the expected deviation of the cut-sky from the full-
sky values. The larger, outer band represents the PCL deviation
while the smaller, inner band (with dotted edges) represents the
QML deviation. The low value of Scut

1=2 arises because the PCL

power spectrum reconstruction for l � 8 typically falls below,
never significantly above, the full-sky value.

4The standard deviation illustrated in Fig. 2 is defined as
hðĈ‘ � C‘Þ2i1=2, i.e. it is the ‘‘cut-induced’’ variance introduced
in Appendix A 3, Eq. (A15). We should note in passing that the
variance is close to diagonal—i.e. correlations between the
estimates for different ‘ are small in both PCL and QML cases.

5The PCL estimator is less sensitive to the exact shape of the
cut than the QML estimator; this is to be expected given the
simplicity of the former method (which, to a close approxima-
tion, measures the power on the cut sky and scales it by the
appropriate sky fraction).
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unlikely aspects of the observed realization. We now recap
and discuss briefly the frequentist statistical significance of
Scut
1=2.

The primary contribution is the low (254 �K2) quadru-
pole amplitude (with a P-value of 4% given the best-fit
power spectrum). The planarity of the octupole can be
assessed by considering the rotation-maximized value of
Eq. (11), which on the ILC7 map is 0.926. The P-value
computed from 10 000 isotropic realizations for observing
L2
3 > 0:926 is�15%, i.e. our realization is not particularly

unusual. The approximate alignment of this somewhat
planar octupole with the Galactic cuts typically used in
CMB data analyses can reasonably be regarded as purely
coincidental (P-value 21%). A consistent picture is found
from assessing Fig. 2, in which the ‘ ¼ 3 PCL reconstruc-
tion deviates from the mean by about�1:5�. Similarly the
shortfall of PCL-reconstructed power in the ‘ ¼ 5 and 7
modes is a fluctuation of around �2�. None of these
observations on their own look particularly unusual; the
statistical anomaly arises instead because all of the low-‘
PCL estimates are low. Despite its suboptimal nature the
PCL estimator is unbiased, and the reconstructions at
different ‘’s are only weakly correlated, so one would
have expected as many over- as under-estimates.

The frequentist significance of the Scut
1=2 result is con-

nected, then, to a series of coincident minor anomalies in
our realization. Only when combined in a specific way do
these observations raise frequentist alarm. Of course, this
simply shows that we have found a way to ‘‘factor’’ the low
P-value of Scut

1=2, which does not by itself determine

whether the anomaly might point to theories beyond the
concordance model. Therefore in the next section, we
consider the feasibility of finding theories which are sta-
tistically preferred to the concordance theory in a Bayesian
comparison of Scut

1=2.

IV. ANISOTROPIC THEORIES

We have shown in the previous section that the low
observed Scut1=2 can be attributed to the fortuitous alignment

of power in the ‘ ¼ 3, 5 and 7 modes of the CMB (along
with the planarity, and small full-sky amplitude, of the
quadrupole).

Broadly, one can imagine three distinct ways in which
the small observed cut-sky power in the ‘ ¼ 3, 5 and 7
modes could look less anomalous in an alternative theory:

(1) the ĈPCL
‘ estimates could turn out to be biased in the

ensemble mean of the true theory;

(2) the ĈPCL
‘ estimates could have a larger variance in

the ensemble of the true theory, making the depar-
tures from the mean less significant;

(3) the true theory could correlate ĈPCL
‘ estimates so

that the likelihood of small cut-sky power in ‘ ¼ 5,
7 is greater once the small cut-sky power in ‘ ¼ 3 is
known.

Our main focus in what follows will be on (1); possibilities
(2) and (3) will be mentioned where relevant.
Given a true covariance matrix C related to the con-

cordance isotropic theory by C ¼ Cconc þA, one may
explicitly calculate the bias,

Bias ‘ ¼ hĈ‘ � C‘i (12)

and the variance

V‘‘0 ¼ hðĈ‘ � hĈ‘iÞðĈ‘0 � hĈ‘0 iÞi; (13)

where the false covariance matrix Cconc is used in con-
structing estimators, but the true covariance matrix C is
employed in taking the final ensemble average. For alge-
braic expressions the reader is referred to Appendix A 3.
To gain a feel for how alternative theories can influence

the recovered power spectrum on the cut sky, let us con-
sider the following specific cases.
(i) Galactic contamination, i.e. residual errors in the

Galactic signal subtraction. This is modeled by cre-
ating a template map of possible errors, taking 1% of
the difference of the WMAP7 ILC map with the V-
band map (after smoothing to a common resolution
of 1�). The map gives us a rough handle on the form
of the residual contamination to be expected (albeit
with an unknown amplitude). In the ensemble, the
template map is simply added to the observed CMB
sky, yielding equivalent results to a theory with
anisotropic Gaussian correction A ¼ ggy, where g
represents the spherical harmonic coefficients of the
contamination map. It has already been shown in
Ref. [24] that this kind of contamination cannot
improve the likelihood of Scut

1=2, but the model re-

mains helpful for our discussion below.
(ii) Bianchi VIIh template. Using the algorithms of

Refs. [25,26] we calculate a temperature anisotropy
template for the Bianchi VIIh vector mode case with
an amplitude of 35 �K according to the best-fit
parameters of Ref. [27]. In the ensemble this is added
to the concordance CMB as with the templates con-
sidered above. Physically, such a setup can be moti-
vated by the existence of anisotropic Bianchi modes
which are well behaved at the initial singularity,
although such models are fine-tuned.

(iii) Quadrupolar modulation. A strong quadrupolar
modulation6 of the temperature field is known to
reproduce the coplanarity of quadrupole and octu-
pole [30]. The modulation is required to have a very
large amplitude, yet be confined to low multipoles.

6Attention has also been given in the past to dipolar modu-
lations. In the case of an equatorial azimuthal mask this can have
only second order effects on power spectrum reconstruction,
since it couples ‘ to ‘� 1 while the mask couples ‘ to ‘�
2n. A different quadrupolar anisotropy, that of the inferred
primordial power spectrum, has also been reported [12,13,28].
However, Hanson et al. [29] have identified WMAP beam
asymmetries as the origin of this unconnected effect.

ANDREW PONTZEN AND HIRANYAV. PEIRIS PHYSICAL REVIEW D 81, 103008 (2010)

103008-6



Dvorkin et al. [31] discuss how any early universe
model of such a modulation must be carefully tuned
in harmonic space to avoid the leakage of modulated
power to high multipoles through projection effects.
We approximate these considerations by modulating
only the quadrupole and octupole of isotropic real-
izations. Since a quadrupolar modulation of a multi-
pole ‘ couples power to ‘� 2, on the full sky our
modulation only has an effect on multipoles ‘ � 5.

(iv) Picture and designer theories. These are specific
theories designed to investigate the best possible
statistical gains to be made from anisotropic theories
over the concordance case. We will describe them in
detail in Sec. IVB, below.

The left panel of Fig. 3 exhibits the biases induced by
each of these theories [defined by Eq. (12)]; the right-hand
panel shows the diagonal part of the variance [defined by
Eq. (13)]. In both panels, the results from the PCL estima-
tors are plotted as solid lines, while the QML results are
shown by dashed lines. The sky cut imposed for these
calculations is a 20% Galactic azimuthal mask.

In the first case, that of Galactic contamination, the
‘‘bias’’ reflects the added power from the Galaxy, visible

in the full sky C‘’s but naturally invisible to reconstructions
made from the cut sky (in which the Galaxy is masked
away). Both the PCL and QML estimators therefore be-
come equally ‘‘biased,’’ but this is, in fact, a desirable
feature: they are rejecting the contamination. Note that
the zig-zag pattern in the bias arises from the rough equa-
torial symmetry of the Galaxy, which results in a much
stronger coupling to even, rather than odd, ‘’s. On the other
hand the zig-zag in the biases actually observed (Fig. 2) is
larger at odd, rather than even, ‘’s. Finally, the apparent
biases and extra variance of spatially localized contamina-
tion tends to grow towards high ‘ as a fraction of the full-
sky power, whereas the observed discrepancies are con-
fined to low ‘.
The second case (Bianchi contamination) is similar in

that it adds a template to the concordance covariance; but
because the power is not localized within the mask, it is
now visible even on the cut sky. As expected from our
earlier considerations, the QML estimator in this regime
reconstructs the full sky C‘ power with a smaller bias and
variance than the PCL case. The increased variance (of
order 20% of the cosmic variance) is more significant than
the bias (of order 2% of the power spectrum). This can be
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understood by noting that, since the Bianchi signal has a
small rms power of �12 �K2, the individual elements of
the template covariance contribution A are much smaller
than the elements of the concordance covariance matrix
Cconc. Expanding an expression for the variance (A14)
highlights the existence of cross terms in Cconc and A; it
is these leading order contributions which give the larger
variance.

Let us now turn away from additive modifications to the
concordance theory, and instead discuss the quadrupolar
modulation. When analyzed on the cut sky, the power at
low multipoles is hidden from the PCL estimator (but less
so from the QML estimator), leading to a negative bias.
The modulation also couples ‘� 2, creating power on the
full sky in ‘ ¼ 4, 5; this accounts for the spike at these
multipoles in the variance of the estimators. The extra
power is further spread to higher ‘ by mode-coupling
resulting from the masking operation. The result is that
the PCL estimator overestimates power in multipoles 5<
‘ < 15; note that, because the power spectrum is rapidly
decreasing, a small leakage of power to high ‘ from the low
multipoles can result in a substantial bias. Once again the
QML estimator fares better, more efficiently confining the
contamination to low ‘.

The quadrupolar modulation behaves qualitatively as
expected, hiding power at low ‘; this is the right sort of
effect to reproduce the low Scut

1=2 and therefore produces a

small increase in the likelihood of the observed value.
However, Fig. 3 shows that the biases from this theory
are rather small. Therefore, rather than focus on this model,
we can go one stage further and consider tuning Gaussian
models to fit the value of Scut

1=2 as closely as possible. These

theories are less transparent in their physical meaning, but
are guaranteed to give a better fit to the observed properties
of the sky.

A. Picture theory

Consider the theory which exactly matches the observed
CMB; it has covariance matrix C ¼ aay where a repre-
sents the observed ILC a‘m’s. Because C has zero variance
in any direction orthogonal to the observed data, it has an
infinite likelihood (or, more correctly, a likelihood
bounded from above only by noise in the experiment).

The ensemble for this theory is a series of pictures of our
own CMB sky (represented here by the ILC map), scaled
by a Gaussian random amplitude of unit variance.

Consequently the biases exactly match the values of Ĉ‘ �
C‘ for our observed sky (see Fig. 3). However, because
there is only one mode (the amplitude scaling of the entire
sky), the variances become extremely large. To build in-
tuition, consider the cosmic variance of the concordance
model, in which the variance on C‘ decreases as 2‘þ 1.
This arises solely because of the additional modes avail-
able at increasing ‘; in the picture theory all modes are

perfectly correlated, so the cosmic variance does not de-
cline in this way.
In spite of the divergently large likelihood for the picture

theory, the variance means that our observed value of Scut
1=2

has a finite likelihood which can be calculated by
Monte Carlo simulation of the ensemble. In Fig. 4 we
plot the log likelihood for the concordance �CDM model
(solid line), the picture theory (dash-dotted line) and the
designer theory (dashed line), the last of which we will
return to momentarily.
The improvement in the log likelihood of Scut

1=2 for the

picture model (over the isotropic concordance case) is
� lnL ¼ 3:7. This disappointingly modest improvement
can be seen to result from the large cosmic variance in a
theory with only one degree of freedom: while it peaks near
the observed value, the Scut

1=2 likelihood function for the

picture theory is extremely broad. The broadness in turn
impacts upon the peak value because the likelihood must
be normalized to one.

B. Designer theory

We have examined the picture theory in which the like-
lihood of our own observed CMB is, by design, divergently
large. The Scut

1=2 likelihood was shown to barely favor the

theory because the variance on this value is so large. In this
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FIG. 4 (color online). The likelihoods for Scut
1=2 compared be-

tween three theories: the isotropic concordance theory (solid
line), the ‘‘designer’’ theory (dashed line) and ‘‘picture’’ (dash-
dotted line) theory. The latter two are specifically designed to
reproduce low Scut

1=2. The improvement in the log likelihood over

the concordance cases are, respectively, 4.2 and 3.7, which are
very small improvements given the fine-tuning involved. Since
these theories should produce the greatest possible gains in
likelihood, the value of the observed Scut

1=2 statistic is not a strong

objection to the concordance theory.
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section we search for a theory with similar properties to the
observed sky, but allow power to be spread through many
more modes, so that the variance in high-order statistics
such as Scut

1=2 is better controlled.

A full explanation of the mathematical construction is
given in Appendix C. Our search is over all positive-
definite covariance matrices C, corresponding to all
Gaussian theories with zero mean (h�Ti ¼ 0), subject to
two sets of constraints. First, the covariance matrix is
required to have full-sky theory C‘’s [defined by Eq. (3)]
equal to the observed ILC values (C‘ ¼ CILC‘ ). Second, the

PCL estimator applied to the theory on the 20% azimu-
thally masked sky is required to find zero power in ‘ ¼ 2,
3, 5 and 7 (i.e. Bias‘ ¼ �C‘ at these ‘’s). In order to satisfy
these results simultaneously, our technique naturally intro-
duces anisotropic correlations between different multi-
poles. Substantial freedom remains, which we use to
minimize the cosmic variance of the final theory (see
Appendix C). The freedom is truncated at ‘max ¼ 10; we
adopted the concordance covariance for all ‘ > ‘max, but
verified that our conclusions are insensitive to this choice.

The CMB projection labeled ‘‘designer’’ in Fig. 3 illus-
trates an actual realization from this model (although only
the ‘ ¼ 3, 5 and 7 modes are plotted). One can see that the
theory is very efficient at localizing power in modes con-
fined within our specified 20% mask (while keeping the
full-sky power spectrum to the specified values). The bias
panel for this theory shows that, accordingly, no power is
detected by the cut-sky PCL estimator in ‘ ¼ 3, 5 and 7.
(The plot shows that some of the biases are actually smaller
than �C‘, which is as expected since CILC‘ > C‘ at the

corresponding multipoles.) At low ‘, the variance on the

Ĉ‘’s is smaller than for the concordance model (�V‘‘ < 0),
because the reconstructed power in these modes remains
close to zero in all realizations. For ‘ * 10, there is a spike
of larger variance arising from the mask-induced contami-
nation similar to that described for the modulation model.
At large ‘, the variance tends to the standard concordance
variance for the estimators (�V‘‘ ¼ 0). Once again, the
QML estimator performs better in minimizing both bias
and variance compared to the PCL case at nearly all ‘.

We can now return to Fig. 4 which displays, as a dashed
curve, the likelihoods for our designer theory. We de-
scribed above how the power localization at low ‘ favors
a low Scut

1=2; accordingly the peak likelihood (at

log10Scut
1=2=�K4 ¼ 3:6) is considerably smaller than the

equivalent value for the concordance theory
(log10Scut

1=2=�K4 ¼ 4:6). However, despite being mini-

mized by spreading power through more degrees of free-
dom, the variance of the designer Scut

1=2 remains large and

consequently the improvement in likelihood is modest
(� lnL ¼ 4:2) despite the dramatic increase in the number
of degrees of freedom needed to construct this theory.

It is clear from Fig. 4 that to obtain significant gains in
likelihood for Scut

1=2, one needs to achieve far smaller cos-

mic variance on Scut
1=2. But the designer theory plausibly

gives near the smallest possible variance on this quantity.
In particular, Appendix C derives a minimum bound on the
variance of Scut

1=2. The lower bound can be understood as

arising from a suitable isotropic limit (which is unattain-
able in practice, but provides a provable lower limit for
attainable theories); isotropic theories minimize the cosmic
variance for a given power spectrum, because they max-
imize the number of independent modes and spread power
through these modes as evenly as possible. The lower
bound calculated from the appropriate isotropic test-case
is �2

minðScut
1=2Þ ¼ 1:7� 107 �K8, compared with the vari-

ance on the designer theory of�2ðScut
1=2Þ ¼ 2:9� 107 �K8.

Thus the designer theory detailed in this section almost
saturates the variance limit; we may be confident that no
Gaussian theory can have a significantly more peaked
likelihood.

C. Summary and discussion

The two theories we have discussed in the preceding two
sections (the first giving an infinite likelihood for the
observed sky; the second tuned as far as we can to give a
large likelihood for the single value Scut

1=2) strongly suggest

that no anisotropic Gaussian theory can improve the like-
lihood of the observed Scut

1=2 by more than � lnL ’ 5.

Because of the careful fine-tuning of these models, they
form a plausible upper bound for the statistical gain
available.
How can we interpret this very modest likelihood gain?

From a Bayesian perspective, correlations between the
primary temperature (from the high-z last scattering sur-
face) and the integrated Sachs-Wolfe signal (from local
structure) are implied in any model aligning low-‘ power
[16,31,32]. Therefore any realistic physical prior probabil-
ity is very small relative to the isotropic �CDM cosmog-
ony; the posterior probability ratios will still vastly favor
the latter theory.
An alternative argument is as follows. Up to ‘max ¼ 10

(and excluding monopole and dipole), the anisotropic the-
ory has approximately 6900 degrees of freedom compared
to the isotropic case with 8 degrees of freedom. Thus the
improvement in log likelihood per degree of freedom is of
order 10�3. While this is not a strictly Bayesian interpre-
tation, it does suggest that our statistical gain has been
achieved only with enormous fine-tuning.
Both of these lines of reasoning suggest strongly that the

observed value of Scut
1=2 can never constitute strong evi-

dence in favor of any Gaussian theory posited as an alter-
native to �CDM. One escape route from this result is to
consider, rather than the absolute value of Scut

1=2, the ratio

Scut
1=2=S1=2. In the case of the picture theory, for instance,

one then has an infinite likelihood for the observed value of
the ratio (because the one available random degree of
freedom—the amplitude—cancels between numerator
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and denominator). This immediately demonstrates that
there is no upper bound to the likelihood gain for such a
statistic. We would suggest, however, that the existence of
an upper bound for the original statistic, Scut

1=2, is an attrac-

tive property—precisely because it allows for an under-
standing of the Bayesian theoretical improvements
available without detailed physical modeling. The most
convincing way to show that the observed sky is anomalous
would therefore be to find a statistic encapsulating the
planarity and correlation of power which has large, but
not trivially infinite, likelihood gains available. Starting
from the results of Sec. III, such a statistic might be
developed from physical considerations on the full sky.

V. CONCLUSIONS

There is a classic difficulty in understanding large and
complex data sets such as those produced by WMAP and,
in the future, Planck: they contain so much information
that statistical anomalies can be found without any diffi-
culty. We have taken as an example the purported anoma-
lous aspects of the angular correlation function. Some
previous work claims that, after considering these anoma-
lies, the entire cosmological paradigm is to be doubted
[10]; other authors claim that apparent anomalies can be
dismissed as the product of a posteriori analysis [16]. Yet
a posteriori reasoning must be allowed in science, since
otherwise wewould rarely, if ever, recognize failings of our
existing knowledge.

The contrary statistical claims relating to Scut1=2 are rec-

onciled by appreciating that, without an alternative theory
to test against, there is no unambiguous significance to any
anomaly. We have therefore presented an alternative ap-
proach to this puzzle: we examined the origin of the low
Scut1=2 in harmonic space, and then attempted to find theories

that reproduce the required patterns.
In the process we noted that the cut-sky correlation

function contains identical information to the PCL power
spectrum estimates. We therefore used the PCL estimates
for the majority of our results, but also demonstrated that
the standard QML techniques provide more reliable recon-
structions of the full sky, even when anisotropy is sus-
pected. We informed our intuition about the behavior of
the estimators by considering simple anisotropic modifica-
tions to the concordance models (contamination, Bianchi
and quadrupolar modulation theories). This showed explic-
itly that the QML estimator biases introduced by aniso-
tropic theories were smaller than or comparable to the PCL
case.

Then, by attempting to construct anisotropic Gaussian
theories which improve the likelihood of the low Scut

1=2, we

demonstrated that no significant gains in likelihood for this
single statistic are available. Since there is no suggestion in
the observed sky that the underlying ensemble is signifi-
cantly non-Gaussian [33], it is implausible that post-

Gaussian corrections would substantially change our re-
sults. We therefore conclude that the Scut

1=2 anomaly is not

likely to point to new physics.
If it does have any meaning, the Scut

1=2 anomaly (and the

underlying shortfall of power seen by PCL estimators)
does not indicate a vanishing large-scale correlation func-
tion, but rather is related to alignments of low-‘ power on
the full sky (Sec. III). It is likely that full-sky statistics can
be constructed which capture these unexpected correla-
tions better than Scut

1=2—and these could evade our like-

lihood limits. However, we argued that more trivial
modifications (such as taking the ratio Scut

1=2=S1=2) which

sidestep our constraint by attaining an infinite likelihood
under the ‘‘picture’’ theory (C ¼ aay) are not helpful; see
Sec. IVC. In other words it is highly desirable to choose
statistics, such as Scut

1=2, that do allow for a finite limit to be

placed on the Bayesian statistical gain available under a
wide class of alternative straw-man models. Considering
the magnitude of that limit is then, in our view, a plausible
way to probe the significance of a posteriori anomalies.
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APPENDIX A: QUADRATIC ESTIMATORS: SOME
USEFUL RESULTS

In this Appendix, we summarize some technical details
omitted from the main paper alongside useful results per-
taining to the two most common quadratic power spectrum
estimators: the pseudo-C‘ and quadratic maximum like-
lihood estimators. These will be introduced and compared
in a single quadratic estimator framework to gain insights
into their similarities and differences. Since we work in
harmonic space, we first explain the sky-masking
operation.

1. Cutting the sky

It is standard practice in CMB analysis to remove re-
gions of the sky in which contamination from the Galaxy
(or other undesirable sources) is suspected. This is accom-
plished by masking the temperature field and then con-
structing measurements based solely on the masked data.
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In harmonic space, the masked temperature expansion
coefficients ~a‘m are related to the unmasked a‘m via

~a ‘m ¼ K‘m‘0m0a‘0m0 ; where (A1)

K‘m‘0m0 ¼
Z

d�Y	
‘mð�ÞY‘0m0 ð�ÞMð�Þ: (A2)

Here Mð�Þ is 0 within the masked region and 1 outside.
[See Appendix D for a brief discussion of a hidden nu-
merical pitfall in Eq. (A2).] We can write expression (A1)
compactly as the linear transformation

~a ¼ Ka; (A3)

where a is a vector composed of the a‘m’s.
It will be helpful to note that K is both idempotent

(K2 ¼ K) and Hermitian (Ky ¼ K). These identities
may both be derived straightforwardly from Eq. (A2);
together they allow much flexibility in manipulating cer-
tain equations. In these appendixes, the addition of a tilde

will represent masked quantities and operators; thus ~b ¼
Kb for any data vector b, while for any matrixM we write

~M ¼ KMK; (A4)

implicitly taking advantage of the Hermitian property. For
most of our numerical results we have assumed the mask is
azimuthally symmetric, Mð�;�Þ ¼ Mð�Þ. This is a rea-
sonable approximation to true Galactic masks, and results
in enormous computational simplification because K be-
comes sparse,

K‘m‘0m0 ¼ Km
‘‘0�mm0 ðno sumÞ: (A5)

However all algebraic results are obtained with no such
assumptions and are applicable to any type of mask.

Since the estimators considered here are quadratic in the

cut-sky ~a‘m’s, we may write for a generic estimate Ĉ‘:

Ĉ ‘ ¼ ~ayR‘~a (A6)

for some set of matrices R‘. Before explicitly defining
these matrices, we describe a helpful notational trick and
discuss a couple of generic features of quadratic
estimators.

2. A helpful notational trick

Recall that in Sec. II the power spectrum C‘ observed in
our single realization of the full sky was defined as

C ‘ � 1

2‘þ 1

X
m

ja‘mj2; (A7)

and the theoretical power spectrum C‘ was taken to be the
expectation value of Eq. (A7), C‘ ¼ hC‘i. We will hence-
forth use a shorthand for such expressions, writing

C ‘ � ay�‘a

2‘þ 1
; (A8)

C‘ � TrC�‘

2‘þ 1
; (A9)

where C ¼ haayi is the theory covariance matrix and the
elements of the �‘ matrices are

ð�‘Þ‘0m0;‘00m00 ¼ �‘
‘0�

‘
‘00�m0m00 ðno sumÞ: (A10)

Thus�‘ is the projection operator into the spin-‘ subspace.
The following two properties of �‘ are useful:

Tr�‘ ¼ ð2‘þ 1Þ; (A11)

� ‘�‘0 ¼ �‘‘0�
‘ ðno sumÞ: (A12)

Introducing the set of matrices �‘ produces considerably
more compact and readable equations at later stages.

3. Expectation and variances

Given the cut-sky power spectrum estimates Ĉ‘ defined
by Eq. (A6), we have, respectively,

hĈ‘i ¼ Tr~CR‘; (A13)

V‘‘0 � hĈ‘Ĉ‘0 i � hĈ‘ihĈ‘0 i ¼ 2Tr~CR‘ ~CR‘0 (A14)

for the expectation and variance, where ~C ¼ h~a~ayi ¼
KCK is the cut-sky harmonic covariance matrix.
The estimator variance V‘‘0 characterizes the random

error associated with estimating the ensemble quantity C‘

from a single masked realization. This is the appropriate
quantity for most results in the paper and appendixes.
However, occasionally one wants a measure of the extent
to which the cut-sky estimators accurately predict the full
sky (rather than ensemble-averaged) power. A suitable
quantification is given by the following, which might be
termed the ‘‘cut-induced variance’’ (since it is necessarily
zero on the full sky):

CIV ‘‘0 � hðĈ‘ � C‘ÞðĈ‘0 � C‘0 Þi ¼ 2TrCZ‘CZ‘0 ;

(A15)

where Z‘ ¼ ~R‘ � �‘

2‘þ 1
: (A16)

The diagonal part of the cut-induced variance for a 20%
azimuthal sky cut is plotted as a band in Fig. 2. It may be
verified that CIV‘‘0 � V‘‘0 ; expanding expression (A15)
shows that the cut-induced variance is equal to the sum of
the cut-sky and full-sky cosmic variances minus a unique
cross term.

4. The reconstruction matrices

Let us now turn to specific reconstruction methods. The
R‘ matrices for the PCL case (e.g. Ref. [18]) read

R ‘
PCL ¼ X

‘0
ðM�1ÞPCL

‘‘0 �
‘0=ð2‘0 þ 1Þ; (A17)
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with MPCL
‘‘0 ¼ Tr�‘ ~�‘0=ð2‘0 þ 1Þ; (A18)

where the 2‘0 þ 1 normalization on each of these expres-
sions is conventional. It may readily be verified that these
form unbiased estimates for the full-sky, ensemble-
averaged C‘’s in an exactly isotropic theory since the
covariance matrix C may be written as

C ¼ X
‘

C‘�
‘: (A19)

In this isotropic case one can write the covariance matrix
on the cut sky

~C ¼ X
‘

C‘
~�l; (A20)

showing that our harmonic space ~�‘ plays the role of P‘ in
the notation of Tegmark’s pixel-space exposition of the
QML estimator [19]. Accordingly, the QML reconstruction
matrices are written7:

R ‘
QML ¼ X

‘0
ðM�1Þ‘‘0 ~C�1 ~�‘0 ~C�1; (A21)

where MQML
‘‘0 ¼ Tr~C�1 ~�‘ ~C�1 ~�‘0 : (A22)

In these expressions it is possible to substitute for C a false
covariance matrix Cconc which differs from the true theory
matrix used in expressions (A13)–(A15). This represents
the state of affairs when an incorrect assumption is made
by an analyst about the isotropy (or some other aspect) of
the underlying theory, as simulated in Sec. IV above and
Appendix A 5 below. In numerical construction of the
QML estimators we assumed a variance on the monopole
and dipole of 1000 �K2. This effectively projects out
information which is contaminated by cross talk from the
monopole and dipole, and is likely to be overcautious, but
residual foregrounds make it hard to quantify the uncer-
tainty in the WMAP zeroing of these quantities. (See also
the discussion in Ref. [19].) We verified the results were
not sensitive to the precise variance assumed on ‘ ¼ 0, 1.

As for the PCL case, the QML estimates are unbiased

(hĈQML
‘ i ¼ C‘) if both C and Cconc are isotropic. If C ¼

Cconc they are also optimal in the sense that no unbiased
estimator (quadratic or otherwise) can start from the cut
sky ~a‘m’s and produce C‘ estimates with a smaller covari-
ance ellipsoid [19].

However the QML estimator has sometimes been
criticized for the dependence of its optimality on the
assumed covariance matrix—it appears to rely on the
structure of the assumed underlying theory in a way that

the PCL estimator does not. [No C matrices appear in
expressions (A17) and (A18).] When the covariance matrix
assumed may be incorrect, is it safer to use the PCL
estimator? The answer is ‘‘no’’; in fact the anisotropy-
induced errors in QML estimates are typically smaller
than those in PCL estimates. We now explain why this
should be the case.

5. The relationship between QML and PCL estimators

By examining the relationship between QML and PCL
estimators, it is possible to show that QML estimators
(derived on the assumption of isotropy) are statistically
superior even if the underlying theory breaks isotropy in an
unknown way. In outline, the QML estimator can be under-
stood as minimizing the cross talk from variance in neigh-
boring ‘ modes. It can only do this by having prior
information about the shape of the spectrum in the region
of the ‘ estimate under construction. But since the ob-
served sky—regardless of its isotropy—has a C‘ power
spectrum with a very similar shape to the theoretical
model, the QML estimator is expected to be superior to
the PCL estimator under any model compatible with the
observed sky.
This argument does rely on the QML estimator not

placing undue weight at given ‘ on any particular
m-mode. The full-sky estimator by definition gives even
weight to each m [see expression (A7)]. To accurately
reproduce power spectra, cut-sky estimators must trade
off equal weighting of the m modes against down-
weighting modes which are particularly contaminated by
mask mode-coupling. Derived on the assumption of an
isotropic theory, it is not clear whether the QML estimator
will do a better or worse job than the PCL estimator in this
limited sense. A calculation shows, however, that the QML
is superior—it actually weights the full-skym-modes more
evenly than the PCL estimator. This is illustrated in Fig. 5,
which shows the weight given to each m mode on the full
sky under the composite operation of masking-then-
estimating. The weights are flatter for the QML estimator
(dashed line) than for the PCL estimator (thick solid line).
It is actually a fortuitous result of the shape of the con-
cordance power spectrum that this is true; otherwise the
reliability of the QML estimator would depend more sen-
sitively on the underlying anisotropic theory.
We now demonstrate the crucial result that the PCL and

QML estimators become identical for a flat power spec-
trum. The covariance matrix is then proportional to the
identity,C ¼ �I, so that the QML reconstruction matrices
reduce to

R ‘
QML ¼ ��2M�1

‘‘0
~�‘0 ¼ ��2M�1

‘‘0K�‘0K; (A23)

M QML
‘‘0 ¼ ��2 Tr ~�‘ ~�‘0 ¼ ��2 Tr�‘ ~�‘0 ; (A24)

where the final expression for MQML is obtained by ex-

7In Eq. (A21) and below we adopt the convention of assuming
the existence of an inverse for the singular matrix ~C. Practically
speaking one can regularize the matrix using an additive nu-
merical noise term, or simply use the pseudoinverse, since ~C�1

always appears conjugated by K, the null directions of which
lead to the uninvertibility.
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panding the masked expressions ( ~�‘ ¼ K�‘K) and using
the condition K2 ¼ K obtained in Sec. A 1.

By rewriting Eq. (A6) as Ĉ‘ ¼ ayKR‘Ka, it follows
that the R‘ appearing in any statistical expression must
arise in the combination KR‘K. This means that one can,
without loss of generality, dispense with the explicit mask-
ing K matrices in expression (A23), again relying on the
identityK2 ¼ K. Finally, the �2 factors in Eqs. (A23) and
(A24) may be mutually canceled, since M appears only in
the expression for R. Thus we may write

R ‘
QML �M�1

‘‘0�
‘0 ¼ R‘

PCL; (A25)

where M‘‘0 ¼ Tr�‘ ~�‘0 ; (A26)

where the � symbol should be read as ‘‘yields identical
estimates to’’—i.e. it denotes an equivalence relation, not
an approximate equality of the matrix elements. To verify
this, compare the above with Eqs. (A17) and (A18), noting
that the missing factors of 2‘0 þ 1 are conventional nor-
malizations which exactly cancel between the two lines.

This demonstrates that, if C ¼ �I, QML estimates are
identical to PCL estimates. The result does not rely on any
assumptions about the Galactic cut being small. However,

for a small Galactic cut, the mask operation K acquires a
narrow banded structure at high-‘ such that each ‘ is
effectively coupled only to a finite range of ‘0 from ‘�
�‘ to ‘þ�‘. Thus, even though the concordance covari-
ance matrix is not proportional to the identity, at high ‘ its
relevant, local structure can be adequately approximated as
such. This demonstrates the equivalence of the QML and
PCL estimators in this regime.
To understand the difference between QML and PCL

estimators one can reverse the argument above [i.e. one

replaces �‘0 by ~�‘0 in Eq. (A17) then compares with
Eq. (A21), finding the latter simply preweights the data].
It follows from all this that the QML estimator can,

roughly speaking, be expected to remain superior to the
PCL estimator for any theory compatible with our sky. To
demonstrate this explicitly, we draw random covariance
matrices with power spectrum equal to that of the observed
ILC, but taking a random distribution of power between
different m modes. Explicit calculations for each of these
theories show that the QML biases (A13) and variances
(A14) are significantly smaller than their PCL counter-
parts. A specific illustration is given in Fig. 6, where we

plot a histogram of the biases on ĈPCL
5 (solid line) and

ĈQML
5 (dashed line) for 200 000 random theories. The PCL

estimator has a significantly broader distribution of biases
than the QML estimator, showing that the QML technique

−3 −2 −1 0 1 2 3

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
as

k-
an

d
-e

st
im

at
e 

re
sp

o
n

se
 (

R
)

 estim ators, 20% azim uthal m ask

PCL

QML

full sky

FIG. 5 (color online). The weighting which different estima-
tors give to full-sky modes of differing m in estimating the C‘’s
(here illustrated for ‘ ¼ 3 with a 20% azimuthal mask). The full-
sky estimator (thin solid line) by definition weights each m
equally; see Eq. (A7). Masking the sky then using the QML
estimator (dashed line) comes close to reproducing this weight-
ing, despite the loss of information associated with the first
operation. The action of masking the sky then estimating ‘ ¼
3 power using the PCL technique (thick solid line) favors jmj ¼
2 and m ¼ 0 while down-weighting jmj ¼ 3 modes, thus giving
a less reliable estimate of the full-sky power. Similar trends are
seen at other ‘.
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FIG. 6 (color online). An example of how the QML estimator
typically remains superior to the PCL estimator is given by
comparing, for 200 000 random anisotropic theories, the bias
on the cut-sky power spectrum estimates (here illustrated for ‘ ¼
5 with a 20% azimuthal mask). The width of the curves show
that, for a given theory, the QML estimator (dashed curve) is
typically significantly less biased than the PCL estimator (solid
curve). Similar results hold at other ‘’s and for the extra variance
induced by the anisotropy.
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typically produces more reliable estimates of the full-sky
power.

In conclusion, for any anisotropic theory which is com-
patible with our observed sky, estimates for the power
spectrum formed using the QML technique (despite being
derived assuming isotropy) are expected to be superior to
PCL estimates for the same quantity.

APPENDIX B: ESTIMATORS FOR Cð�Þ AND S1=2

In this section we demonstrate that the pixel-based cut-
sky correlation function,

C ð�Þcut �
R
dn̂1dn̂2Mðn̂1ÞMðn̂2ÞTðn̂1ÞTðn̂2Þ��R

dn̂1dn̂2Mðn̂1ÞMðn̂2Þ��

; (B1)

where �� ¼ �ðn̂1 � n̂2 � cos�Þ, is identical to the PCL-
based estimator8

C ð�ÞPCL � 1

4�

X
‘

ð2‘þ 1ÞĈPCL
‘ P‘ðcos�Þ: (B2)

This has been stated before [17] and is implicit in other
works [34,35], but an explicit demonstration has not, to our
knowledge, appeared in the literature. The argument holds
for any weighting function Mðn̂Þ: if M takes values other
than 0 and 1 the harmonic-space matrixK [still defined by
Eq. (A2)] is no longer idempotent, but no part of the proof
below is affected by such a change.

Equation (B1) may be expressed

C ð�Þcut ¼ 1

Fð�Þ
X
‘

2‘þ 1

4�
~C‘P‘ðcos�Þ; (B3)

where Fð�Þ, equal to the denominator of (B1), is a normal-

izing function dependent only on Mðn̂Þ. Here ~C‘ is the
power spectrum of the masked (or weighted) sky,

~C ‘ ¼
~ay�‘~a

2‘þ 1
¼ MPCL

‘‘0 Ĉ
PCL
‘0 ; (B4)

where MPCL is defined by Eq. (A18). A power spectrum
can be calculated from Cð�Þcut:

Ĉ cut
‘ ¼ 2�

Z 1

�1
Cð�ÞcutP‘ðcos�Þd cos� (B5)

¼ T‘‘0 ~C‘0 ¼ T‘‘0M
PCL
‘0 �‘ ĈPCL

�‘
; (B6)

where the matrix

T‘‘0 ¼ 2‘0 þ 1

2

Z 1

�1

P‘ðcos�ÞP‘0 ðcos�Þ
Fð�Þ d cos� (B7)

depends only on Fð�Þ (and hence only on the sky cut, not
any aspects of the theory or realization).

If we temporarily consider a theory which is isotropic,
we have hCð�Þcuti ¼ Cð�Þ ¼ hCð�ÞPCLi and hence, by line-

arity, hĈcut
‘ i ¼ hĈPCL

‘ i. But then, comparing with expres-
sion (B6), the only possibility is that the matrix T‘‘0 is the
inverse of the matrix MPCL

‘‘0 —in other words that

Ĉ cut
‘ ¼ ĈPCL

‘ : (B8)

We reiterate that neither T nor MPCL depend on either the
underlying theory nor the particular realization in hand,
and therefore this result is independent of isotropy. Finally,
one inverts the Legendre transform to gain the desired
result,

C ð�ÞPCL � Cð�Þcut; (B9)

valid for any theory. It follows immediately that Scut
1=2

derived from expression (10) must be mathematically
equivalent to pixel-based estimates.
The above proof depends on the invertibility ofMPCL

‘‘0 . It

is well known that this matrix is not invertible for all
choices of sky-cut (although for all masks considered in
the present work we have found it to be well behaved).
However, in any limit where detMPCL ! 0, one must have
detT ! 1. According to definition (B7), this will occur if
and only if Fð�Þ ! 0 for some �—in other words if and
only if the cut sky contains, in the limit, no two points
separated by certain values of �. It follows that, whenever
the entire correlation function can be recovered from the
cut sky, the PCL estimates can be made and the relation-
ship proved above holds.

Aside: Scut
1=2 is biased high

We should note in passing that, because S1=2 is quadratic

in the C‘’s, its expectation value does not follow simply by
replacing the C‘’s with the C‘’s in Eq. (6); rather, the full-
sky expectation value reads for the concordance theory

S1=2 � hS1=2i ¼
X
‘‘0

s‘‘0
�
C‘C

0
‘ þ

2C2
‘�‘‘0

ð2‘þ 1Þ
�
: (B10)

The second term in Eq. (B10) contributes very significantly
to the expectation value, which breaks down term-by-term
as S1=2 ¼ ð4:9þ 3:7Þ � 104 ¼ 8:6� 104 �K4 for the

WMAP5 best fit C‘’s. This means that (for instance) the
comparison of our full sky with the theory values in Table 1
of Ref. [10] is not strictly appropriate; with the cosmic
variance term included, the observed S1=2 statistic is made

to look even more discrepant with the theory. The expec-

tation value of Scut
1=2 calculated directly from the cut sky Ĉ‘

is also increased, for similar reasons, but by a larger
amount corresponding to the larger variance on the cut-
sky power spectrum estimates:

hĈ‘Ĉ‘0 i ¼ hC‘C‘0 i � 2C2
‘�‘‘0

ð2‘þ 1Þ þ V‘‘0 ; (B11)
8We are grateful to A. Challinor for initially drawing our

attention to this equivalence.
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where V‘‘0 is the variance of the Ĉ‘’s, given by expression
(A14). This biases cut-sky S1=2 values to be higher than

their full-sky counterparts, for instance by�8300 �K4 for
PCL and �1100 �K4 for QML reconstructions with a
20% azimuthal sky cut.

At face value, such biases make it more surprising that
the measured S1=2 should be so small and Scut

1=2 even

smaller. However, the standard deviation of Scut
1=2 is very

large (� 105 �K4) so that the biases do not have a sig-
nificant impact on the frequentist significances.
Furthermore, and regardless of the magnitude of the bias-
ing, the Monte Carlo techniques used in Refs [10,16] are
anyway valid (they automatically take the biasing into
account). We have therefore included the discussion above
only for pedagogical interest.

APPENDIX C: DESIGNER THEORY

In Sec. IVB we used a theory with covariance matrix C
determined by two considerations:

(1) The full-sky power spectrum is given by C‘ ¼ CILC‘ ,

where CILC‘ is the observed power spectrum on the

full-sky ILC map;
(2) The cut-sky power spectrum (PCL estimator using a

20% azimuthal cut) is biased, i.e. its expectation
value does not equal the full-sky power; instead

we set hĈPCL
‘ i ¼ Ccut

‘ . To reproduce the causes of

our own sky’s low Scut
1=2, we set C

cut
‘ ¼ 0 for ‘ ¼ 2,

3, 5 and 7; at all other ‘, Ccut
‘ ¼ CILC‘ .

Both constraints are linear in the full-sky covariance
matrix [see Eqs. (A9) and (A13)]. While one can construct
a matrix C satisfying these constraints using straightfor-
ward linear algebra, the result is not unique and further-
more it is hard to enforce that C be positive definite (as it
must be to define a valid covariance matrix). Therefore we
adopted the package CVXOPT

9 to find a suitable theory C
within the set of positive-definite matrices. CVXOPT allows
us to find a unique solution by minimizing any convex
quadratic form, for which we chose the function TrC2. The
choice at first appears arbitrary; but schematically, by
considering the eigenvalues of C, one can imagine that
minimizing TrC2 tries to ‘‘equalize power between as
many modes as possible’’. This in turn is motivated by
our attempt to minimize the cosmic variance on Scut

1=2,

leading to the most peaked likelihood function (and hence
best possible likelihood gains over the concordance
theory).

These statements can be made somewhat more mathe-
matically concrete, but we did not find a full proof that
minimizing TrC2 minimizes the cosmic variance of Scut

1=2.

Instead, Sec. IVB gave a strict lower bound on the variance

of Scut
1=2, and stated that our theory comes close to saturating

this limit. The remainder of the present appendix explains
the origin of such a variance floor.
We start by considering, for simplicity, the full sky S1=2.

We also temporarily approximate the C‘ likelihood func-
tion as Gaussian. Both of these simplifications will be
removed in due course; in particular, all of our numerical
results use the exact likelihood. The variance of the S1=2

statistic may be written

hðS1=2Þ2i � hS1=2i2 ¼ 4c>sVfsscþ 2TrsVfssVfs; (C1)

where c is a vector composed of the C‘’s [as defined by
Eq. (A9)], and Vfs represents the full-sky cosmic variance,

Vfs
‘‘0 ¼

2TrC�‘C�‘0

ð2‘þ 1Þð2‘0 þ 1Þ : (C2)

We wish to minimize Eq. (C1) with respect to C while
keeping C‘ constant. Using a standard Lagrange multipler
technique, one obtains

X
‘1‘4

s‘1‘2s‘3‘4ðC‘1C‘4 þ Vfs
‘1‘4

Þ�‘2C�‘3 ¼ 0; (C3)

where ‘2 � ‘3; and

C‘�
‘ ¼ �‘C�‘: (C4)

The most obvious solution to the minimization Eqs. (C3)
and (C4) is the isotropic one,

C ¼ X
‘

C‘�
‘: (C5)

One can verify that the solution (C5) is a minimum (not
maximum) of expression (C1). To demonstrate that no
other minima exist, consider the only alternative to (C5):,
namely, that�‘2C�‘3 � 0 and Eq. (C3) is instead satisfied
by making the numerical coefficient vanish. We consider
the case where this is true for all ‘2, ‘3 (‘2 � ‘3), but the
ideas generalize straightforwardly to the case with only
limited numbers of nonzero off-diagonal terms. The most
general solution is

V‘‘0 ¼ �C‘C‘0 þ
X
i

�iQ
i
‘‘0 ; (C6)

where theQi are symmetric matrices which satisfy sQis ¼
0 (off-diagonal) and

X
i

�iQ
i
‘‘ ¼

2‘þ 3

2‘þ 1
C2
‘: (C7)

The Qi may be found numerically using a singular value
decomposition technique.
Let us consider whether a physical (positive-definite)

solution to Eqs. (C6) and (C7) exists. A necessary condi-
tion is that

9http://abel.ee.ucla.edu/cvxopt/; this package performs convex
optimization within a cone. (The space of positive-definite
matrices is an example of a cone in this sense.)
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jV‘‘0 j � 2C‘C‘0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2‘þ 1Þð2‘0 þ 1Þp : (C8)

This condition is violated by Eq. (C6) with �i ¼ 0, but can
a suitable choice of �i remove the violation? There are far
fewer Qi matrices than degrees of freedom in Vfs, so that
one would need a numerical coincidence to be able to
remove the violation simultaneously at all ‘. We verified
computationally that, for our choice of C‘, this is indeed
not possible.

Now when the Gaussian simplification is abandoned,
expression (C1) picks up extra terms of the form

s‘1‘2s‘3‘4 TrC�‘1 TrC�‘2C�‘3C�‘4 and (C9)

s‘1‘2s‘3‘4 TrC�
‘1C�‘2C�‘3C�‘4 : (C10)

One may verify that with these terms, Eq. (C5) remains a
local minimum of the S1=2 variance. Since there are no

other valid local minima in the Gaussian approximation,
we should not expect to find new local minima appearing in
the non-Gaussian case (the simplification modifies only the
skewness, not the width, of the likelihood). A full analytic
calculation is prohibitive, but the numerical results quoted
in the main paper use the full, non-Gaussian likelihood.

Now let us consider the cut-sky case. The debiased PCL
estimates ĉ are related to the power spectrum of the cut sky
~c by

ĉ ¼ M�1~c (C11)

for the matrix M defined by Eq. (A18). (The ‘‘PCL’’
superscript is dropped for concision.) Because of the exact
relation

S cut
1=2 ¼

X
‘‘0

ĈPCL
‘ ĈPCL

‘0 s‘‘0 ¼
X

‘1‘2‘3‘4

M�1
‘1‘2

M�1
‘3‘4

~C‘2
~C‘4s‘1‘3

(C12)

(see Appendix B) we may define

~s ¼ ðM�1Þ>sM�1; (C13)

so that Eq. (C12) simplifies to

S cut
1=2 ¼

X
‘‘0

~s‘‘0~C‘~C‘0 : (C14)

The cut-sky reasoning then follows through exactly as for

the full-sky case, except with s and C replaced by ~s and ~C,
respectively. For the lower bound theory one obtains

~C ¼ X
‘‘0

M‘‘0C
cut
‘0 �

‘: (C15)

Clearly this ignores the implicit restrictions on ~C arising
from its status as a cut-sky, rather than full-sky, covariance

matrix. (Specifically, a valid ~C must live in the cut-sky

subspace so that ~C ¼ K~CK.) However the set of all valid
~C is, crucially, a subset of the positive-definite matrices

which were considered for the full-sky case. Therefore our
test theory still gives a lower bound for the set of valid
theories.
To actually calculate the lower bound we draw 20 000

sets of ~a‘m’s according to the covariance matrix (C15) and,

for each, calculate the power spectrum ~C‘ and hence Scut
1=2

according to Eq. (C14). Calculating the variance on this
random sample leads to the numerical lower limit quoted in
Sec. IVB.
Finally note that, because M is almost diagonal, our

Monte Carlo results are almost equivalent to those obtained
by calculating S1=2 in an isotropic theory satisfying

C ¼ X
‘

Ccut
‘ �‘: (C16)

This is the justification for our intuitive explanation that the
lower bound on the variance of Scut

1=2 is given by the

variance of S1=2 in an isotropic, full-sky theory with power

spectrum equal to the cut-sky power spectrum of the
designer theory.

APPENDIX D: A NUMERICAL PROBLEM AND
SOLUTION

There is a hidden numerical pitfall in the harmonic-
space masking operation as defined by Eq. (A2). The
matrix K is not band-limited, which means that truncating
at finite ‘ produces cut-sky vectors ~a which retain some
information about the data inside the cut. This garbled
information is visible in maps as low-amplitude ringing
around the edges of the cut. The QML estimator, in par-
ticular, is very efficient at regenerating the full sky from
this trace of unwanted information.
We investigated two methods of mitigating this problem,

both of which generated results in good agreement with
pixel-space techniques. The first is heuristic, simply
smoothing the input (full sky) and output (cut sky) maps
to angular scales larger than 180�=‘max.
The second, which we adopted for our final results,10 is

to use an eigenvector decomposition. For a specified sky
fraction f, we calculate K to finite ‘max and find its
eigenvalues and vectors. We then replace the smallest
eigenvalues (specifically, a fraction f of the eigenvalues)
by zero and all other eigenvalues by one. The final opera-
tion is then guaranteed to be idempotent (unlike the ad hoc
smoothing approach) and also discards exactly the right
fraction of information from the input map. Visually, we
found the maps produced looked almost identical to those
masked in pixel space. As commented above, we verified
that the final estimator results produced from a harmonic-
space analysis were closely compatible with those pro-
duced from a pixel-space analysis. The latter are slow
and cumbersome [they cannot take advantage of simplifi-

10This method was suggested to us by S. Gratton.
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cation (A5)], but do not suffer from the band-limitation
problem and therefore serve as a useful point of
comparison.

APPENDIX E: RAPID CALCULATION OF L2
max

In the main text, we discussed the planarity of ‘ ¼ 2 and
‘ ¼ 3 power in the observed CMB. This is uncovered [5]
by computing the ‘‘angular momentum dispersion’’

L2
‘ ¼

P
m
m2ja‘mj2

‘2
P
m
ja‘mj2

; (E1)

designed to detect ‘‘planarity’’ of power. By maximizing
this quantity across different rotations of the sky, one
produces a preferred direction in which the power is
most planar. Frequentist anomalies are then reported if
the sky-measured maximum values of L2

‘ have small

P-values according to Monte Carlo simulations of statisti-
cally isotropic skies—or if the maximizing directions for
two different ‘’s are coincident.

We will show below that calculating L2
‘ after rotating the

sky by Euler angles11 ð�� �=2;��; 0Þ is equivalent to
forming the quantity

L2
‘ð�;�Þ ¼

ninj
P
mm0

Lmm0
ij a‘ma

	
‘m0

‘2
P
m
ja‘mj2

; (E2)

where the vector n ¼ ðsin� cos�; sin� sin�; cos�Þ and the

matrix elements Lmm0
ij are given explicitly below. Hence,

for a given set of a‘m’s, the problem of maximizing L2
‘

reduces to finding the maximal eigenvector of the 3� 3

real symmetric matrix
P

mm0Lmm0
ij a‘ma

	
‘m0 . This algorithm

is cheaper by orders of magnitude than numerical max-
imization methods that appear to have been used to date.

We now prove relation (E2) and give explicit forms for

the matrix elements Lmm0
ij . Consider the spin-‘ function�‘,

which may be expanded as

�‘ð�;�Þ ¼ X
m

a‘mY‘mð�;�Þ: (E3)

By considering the angular momentum of this function in
the z direction,

ðez � ĴÞ�‘ð�;�Þ ¼ �i@��‘ð�;�Þ ¼ X
m

ma‘mY‘mð�;�Þ;

(E4)

where Ĵ is the fiducial angular momentum operator and ez

is the unit vector in the z direction, one may rewrite
Eq. (E1) as

L2
‘ ¼

h�‘jðez � ĴÞ2j�‘i
‘2h�‘j�‘i

; (E5)

where the inner product is defined as usual:

h�j�i ¼
Z

�	ð�;�Þ�ð�;�Þ sin�d�d�: (E6)

To convert expression (E5) for a single L2
‘ value into the

form (E2), which is claimed to give all possible sky-rotated
values, we first need to see that the following two opera-
tions are equivalent:
(1) rotating the function by angle � about an axis

specified by the vector r, then measuring L2
‘;

(2) rotating the z coordinate direction by angle ��
about r while keeping the function fixed, i.e. replac-
ing ez in Eq. (E5) by the rotated vector e0z.

The equivalence is intuitively clear because the only pre-
ferred direction in expression (E5) is given by the ez vector.
To establish the result more formally, one can use the
commutation relations for the angular momentum opera-
tors applied to an infinitesimal rotation, and then extend, as
usual, to finite rotations by exponentiation.
The result is that

L2
‘ð�;�Þ ¼ h�‘jðn � ĴÞ2j�‘i

‘2h�‘j�‘i
¼ ninjh�‘jĴiĴjj�‘i

‘2h�‘j�‘i
; (E7)

with n defined as above. In harmonic space the operator

ĴiĴj forms the matrix elements appearing in Eq. (E2):

Lmm0
ij ¼ hY‘m0 jĴiĴjjY‘mi ¼

X
m00
Jmm00
i Jm

00m0
j ; (E8)

where the harmonic-space angular momentum operators
are obtained numerically using the relations

Jmm0
z ¼ m0�mm0 ;

Jmm0
x ¼ 1

2
ðJmm0

þ þ Jmm0
� Þ; and

Jmm0
y ¼ 1

2i
ðJmm0

þ � Jmm0
� Þ:

(E9)

Here the matrix elements of the ladder operators Ĵ� obey

Jmm0
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ 1Þ �mðmþ 1Þp
�m�1;m0 : (E10)

Finally we note that analytic moments of the statistical
distributions may be calculated using the above formalism;
however, in practice, the distributions are rather asymmet-
rical at low ‘ and it is conceptually and computationally
easier to use Monte Carlo results—this is extremely fast

using the new algorithm, especially since the Lmm0
ij matrix

elements can be precomputed and cached for each ‘ of
interest.

11We adopt the convention of [36]; an Euler rotation ð�;	; 
Þ
successively rotates the physical sky relative to the fixed, right-
handed coordinate system by ��, �	 and �
 around the z, x
and z axes, respectively. The final z rotation would not affect the
value of L2

‘, so we fix 
 ¼ 0.
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