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The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed

by large-volume cosmological surveys. The structure is characterized by galaxies distributed along

filaments, the filaments connecting in turn to form a percolating network. Our objective here is to

quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By

combining percolation-based analyses with N-body simulations of gravitational structure formation, we

elucidate how the network has its origin in the properties of the initial density field (nature) and how its

contrast is then amplified by the nonlinear mapping induced by the gravitational instability (nurture).

DOI: 10.1103/PhysRevD.81.103006 PACS numbers: 98.65.�r, 98.65.Dx, 98.80.�k, 98.80.Bp

I. INTRODUCTION

Observations of the large-scale distribution of galaxies
have been underway for several decades [1]. Going well
beyond early ‘‘slice’’ views, recent observations reveal a
nontrivial three-dimensional structure [2,3]. Two key fea-
tures of the structure are immediately apparent: (i) a
considerable departure from local isotropy towards fila-
mentlike concentrations of galaxies and (ii) a tendency of
the filaments to connect into a single percolating network
spanning the entire region of observation. (A nice visual-
ization of the large-scale structure as observed by the Sloan
Digital Sky Survey can be found in Ref. [4].) Avery similar
picture also emerges from cosmological N-body simula-
tions of the gravitational instability, the root cause of
structure formation in the cosmological standard model
(Fig. 1).

Many statistics have been suggested and used to char-
acterize cosmological structures. The galaxy two-point
correlation function and its Fourier analog, the power
spectrum, have been used extensively since the late
1960s [5,6]. As a way of studying the amplitude of density
fluctuations, these two-point statistics are observationally
robust and relatively straightforward to measure (in prin-
ciple), as well as to predict theoretically (see, e.g., Ref. [7],
and citations therein). However, being insensitive to
phases, they do not contain shape information and cannot
be used to probe the overall geometry and topology of the
large-scale structure. The full hierarchy of n-point corre-
lation functions, or the corresponding n-spectra, does carry
complete information about the spatial distribution of gal-
axies. But n-point functions are difficult to measure as well
as to predict. Furthermore, the desired information can be
spread in a highly nontrivial manner over the space of
n-point correlation functions. For these reasons, the use
of higher-point statistics has been mainly restricted to the

perturbative regime (hð��R= ��Þ2i1=2 & 1) corresponding to
smoothed fields with a relatively large smoothing scale,

R * 5h�1 Mpc [ �� is the mean density and ��R is the
density fluctuation smoothed on a scale R as defined in
Eq. (2) below]. Because of the lack of a single obvious way
to proceed (and depending on the particular application in
mind) many different statistics have been suggested for
analyzing large-scale structure observations and simula-
tions. These include counts in cells, two- and higher order
correlation functions [6], the Euler characteristic or equiv-
alently the genus curve [8], global and partial Minkowski
functionals [9], the void probability function [10], minimal
spanning tree [11], and many others.

FIG. 1 (color online). Demonstration of filamentary structure
in N-body simulations. The projected density field is shown for a
�CDM cosmology, with a box size of 64h�1 Mpc.
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In this work, we use percolation statistics to directly
address the issue of connectedness of superclusters of
galaxies resulting in the emergence of the cosmic web.
Our approach is attractive for two reasons: (i) The fact that
simple scaling relations can be used to describe the perco-
lation properties of cosmic density fields and (ii) that—as
we show below—particle methods can also be conven-
iently folded into the analysis.

The existence of the cosmic web in cosmological
N-body simulations is certainly manifest (Fig. 1). In search
of a more analytic understanding of the dynamical origin of
the network topology, most theoretical approaches start by
invoking an idea due to Zel’dovich [12,13]: approximate
the full evolution by a mapping from initial Lagrangian (q)
coordinates to the final Eulerian (x) state, via

x ðq; tÞ ¼ qþDðtÞsRðqÞ: (1)

Here x are the comoving coordinates, related to physical
coordinates r as x ¼ r=aðtÞ, where aðtÞ is the scale factor
describing the uniform expansion of the universe. The
vector field sRðqÞ is determined by the density fluctuations
smoothed on a scale R at the initial time ti,

�Rðq; tiÞ � ð�R � ��Þ= �� ¼ �DðtiÞrsR (2)

and the monotonically growing functionDðtÞ describes the
growth of density fluctuations in the linear regime.
Additional information present in the initial conditions
may also be exploited, e.g., by employing the deformation
tensor dik ¼ �@si=@qk and higher-order tensorial deriva-
tives [14].

The dynamical mapping (1) is single-valued during the
early (linear) phase of the evolution, becoming multivalued
after orbit-crossing (nonlinear phase). The initial cosmic
density field is a realization of a Gaussian random process,
specified completely by the associated power spectrum,
PðkÞ. The choice of cosmological model fixes aðtÞ, DðtÞ,
and PðkÞ. We choose to set the smoothing of the initial
perturbations to the present scale of nonlinearity, R � Rnl,

such that the linear rms density fluctuation �ðRnlÞ �
h�2

Rnl
i1=2 ¼ 1 at the present epoch. This choice of the

smoothing scale is based on the observation (made in
N-body simulations) that the large-scale density field is
mainly determined by the linear power spectrum on the
scales that have just become nonlinear, i.e., with k & R�1

nl

[15]. It has also been shown that eliminating the perturba-
tions on scales k * R�1

nl by truncation of the initial spec-

trum [16] or by smoothing with a Gaussian filter [17]
removes structures at small scales but does not have
much of an effect at large scales.

One line of attack is to consider the evolution in a given
realization of the initial conditions as a deterministic map,
and derive the properties of the network by studying ge-
neric singularities formed during nonlinear evolution
[13,14] using the deformation tensor, as well as higher
order tensorial derivatives. Alternatively, one can employ

a probabilistic approach, investigating network properties
as determined by conditional multipoint correlation func-
tions between certain parameters (e.g., the shear tensor)
related to the deformation tensor at linear density peaks
[18]. These approaches have led to valuable insights, yet
neither address the global properties of the cosmic network
directly. Both focus primarily on the structural building
blocks (halos, filaments, pancakes) and may be loosely
characterized as ‘‘local,’’ even though the characteristic
scales of interest may reach tens of Mpc.
In this paper, we take up the idea of identifying the

cosmic network with percolating regions in the density
field at the present time [19,20], and apply percolation
statistics as a quantitative global measure of the network
structure [21] at both early and late times. In cosmological
applications of percolation, one studies the properties of
overdense and underdense excursion sets (ES), i.e., regions
where the density is greater than some value (� > �c) or
less (� < �c). Of particular interest are the connectivity
properties of the excursion sets as the threshold �c is
varied.
Previous studies of percolation regions in the initial

Gaussian and nonlinear fields—for two spatial dimen-
sions—assumed the dynamics described by the
Zel’dovich approximation and showed that the percolation
region identified at the initial stage in the linear field
became a part of the percolation region identified at the
nonlinear stage [22]. The major reason for this conclusion
was the continuity of the mapping described by the
Zel’dovich approximation. Here, we investigate the rela-
tionship between percolating regions in the initial (linear,
Gaussian) and late-time evolved (nonlinear, non-Gaussian)
density fields using N-body simulations of a �CDM cos-
mology. Our results establish the close—although not per-
fect—connection between the percolating regions in the
linear and nonlinear stages of the evolution, as well as
provide an understanding of the network structure based
on percolation concepts.
Studies of the percolation properties of density fields

obtained in cosmological N-body simulations with scale-
free initial power spectra (PðkÞ / kn) both in linear and
nonlinear regimes have been conducted previously [23,24].
In Ref. [23] a suite of N-body simulations in the Einstein-
de Sitter universe (with n ¼ �2, �1, 0, 1) was used to
measure the percolation transition in the mass density field
at four stages of dynamical evolution. It was shown that
percolation transitions in overdense and underdense excur-
sion sets experience shifts in opposite directions from that
of the initial Gaussian state (where they are obviously
identical due to the symmetry of Gaussian fields with
respect to the sign of the field). In general, the percolation
transition in the overdense phase occurs at lower than the
Gaussian values while in the underdense phase it takes
place at higher values of the volume fraction (by volume
fraction we mean the fraction of the total volume in the
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corresponding phase). The dynamical evolution of the
density field results in shrinking the percolating region in
the overdense phase. At the same time the percolating
region in the underdense phase gains considerably in vol-
ume. It is important to keep in mind that these are two
independent statements since the overdense and under-
dense percolating regions have different boundaries in
three-dimensional space. A statistically significant trend
was found relating the spectral index n to percolation:
the greater the spectral index, the greater the delay in
percolation as measured by larger values of fp ¼
ðVES=VtotÞat percolation, or a correspondingly lower density

threshold for percolation, �p=�. These results were in

qualitative agreement with Ref. [24] which used a set of
larger N-body simulations (n ¼ �2, �1, 0). In the latter
work, the authors investigated the topology of the over-
dense and underdense excursion sets at the corresponding
percolation thresholds in the density fields smoothed at
various scales. They also measured percolation thresholds
in the initial Gaussian fields and found the thresholds to be
different for density fields with different power spectra.

Our work differs from previous studies in several re-
spects. First, we focus on the observationally realistic case
of the �CDM model where the linear power spectrum
cannot be described by a single power law (previous stud-
ies of percolation in specific cosmological models do exist,
e.g., Ref. [25], however those models have since been ruled
out observationally). Second, our simulation volume (both
in terms of size and number of realizations) is significantly
larger than considered previously. This helps to control
finite size effects and reduces the statistical errors signifi-
cantly. Finally, and most importantly, we consider a com-
pletely new dynamical problem—how does the (initial)
linear percolating cluster map to the (final) nonlinear per-
colating cluster? By quantifying the accuracy of the map-
ping, we are able to distinguish between two key aspects
that underlie the structure of the cosmic web—an already-
present conspicuousness of the percolating region in the
initial Gaussian field, which we refer to as nature, and the
enhancement due to the gravitational instability, which we
term nurture.

In this paper, we examine the correspondence between
percolating regions in the matter density fields at the linear
and nonlinear stage. Three-dimensional structure in the
Universe is observed, however, via the distribution of
galaxies in redshift catalogs obtained from cosmological
surveys such as 2dF or SDSS. According to the modern
theory of galaxy formation, galaxies are embedded in dark
matter halos, with the galaxy properties and number being
related to the mass and evolution history of the host dark
matter halos. The host halos are known to be good, albeit
biased, tracers of the underlying mass field. On the larger
length scales considered here (with respect to the typical
galaxy separation), percolation regions in both galaxy and
dark matter distributions should be very similar.

To compute the predicted percolation properties of the
galaxy distributions themselves in the�CDMmodel or for
galaxy redshift surveys requires mock catalogs generated
from either a statistical approach such as that of the halo
occupancy distribution (HOD) or using semianalytic mod-
els of galaxy formation [26]. Aside from fundamental
issues, such as how to best map the galaxy distribution
into a smooth field, or to use a point-process technique
(e.g., a friend-of-friends cluster finder) as a proxy for a
threshold-based percolation analysis, observational issues
also enter. These include such problems as dealing with
observational issues such as magnitude limited catalogs,
nonuniform sky coverage, etc. It is not our purpose here to
present a complete scheme for how to do a percolation
analysis from a galaxy catalog. Nevertheless, we note that
several observational studies have been carried out that
have succeeded in measuring a significant signal of fila-
mentarity in redshift catalogs [27].
An additional theoretical complication is related to the

fact that real galaxy distributions are available only in
redshift space. Although mapping the structure from real
to redshift space is numerically simple it requires an addi-
tional elaboration of the technique. Redshift space is fun-
damentally anisotropic in the sense that the statistical
properties of the large-scale structure are different along
the line of sight and in the orthogonal directions [28]. This
will require additional refining of the technique discussed
here; we therefore reserve the analysis of galaxy catalogs
in redshift space for future work.
The rest of the paper is organized as follows: we first

describe the cosmological models used in the study and
then present results from percolation analysis of linear
(Gaussian) density fields. After this we discuss the results
of the percolation analysis of the evolved nonlinear (non-
Guassian) density fields (filtered with the same window as
the linear density fields). In the last step, we study the
accuracy of the mapping of the linear percolating cluster
into the nonlinear percolating cluster, and end with a
summary of the main results.

II. PERCOLATION TRANSITION

A. Cosmological model

The �CDM cosmological model adopted here is speci-
fied by the following parameters: the dimensionless
Hubble constant, h ¼ H0=ð100 km=s=MpcÞ ¼ 0:7, di-
mensionless dark matter and baryon densities �dm ¼
0:259 and �b ¼ 0:02h�2, primordial spectral index n ¼
1, and a PðkÞ normalization set by �8 ¼ �ðRTH ¼
8h�1 MpcÞ ¼ 0:84, where RTH is the radius of the top-
hat filter—the conventional measure of the amplitude of
the initial density fluctuations in cosmology. Our purpose
is not to consider a model that is precisely the one given by
current observations (which in any case would be a moving
target), but is nonetheless close enough to have the same
generic properties.
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Within this cosmology, we used two ensembles dif-
fering in box size and filtering scale: 15 realizations gen-
erated in a 341:3h�1 Mpc box in linear dimension, filtered
at R ¼ 1h�1 Mpc (�CDM1) and 10 realizations in a
3413h�1 Mpc box, filtered at R ¼ 10h�1 Mpc
(�CDM2). The study of the nonlinear dark matter density
field in �CDM1 was carried out by using four statistically
independent realizations of the initial conditions. The par-
ticular choice of the smoothing scale R ¼ 1h�1 Mpc—
somewhat smaller than the scale that just has entered the
nonlinear regime—allows us to probe the appreciably non-
linear regime. Filtering the nonlinear field on a larger scale,
with R ¼ 10h�1 Mpc, approximately extracts the under-
lying linear density field. As mentioned in the Introduction,
the large-scale structure of the density field at any given
epoch is determined basically by the linear power spectrum
on the scales that have just become nonlinear [15–17].

The nonlinear evolution is followed using an N-body
particle-mesh code [29], in a simulation cube of side
341:3h�1 Mpc. The number of particles equals the number
of grid points Np ¼ Ng ¼ 5123, in order to smoothly

sample the density field. (The force resolution is adequate
given that here we are not interested in the small-scale
distribution of matter.) In addition, we also considered two
reference power-law models (n ¼ �2 and n ¼ 4), for each
of which 10 realizations were generated. For all four
ensembles, the filtering scale was 1.5 times the linear
size of a spatial grid cell.

B. Method

Because the initial density field so strongly controls
properties of the structure at late times [15–17], we first
discuss percolation in Gaussian fields with different PðkÞ,
corresponding to four ensemble choices: two with �CDM
PðkÞ (parameters as above) and twowith power-law spectra
PðkÞ / kn with n ¼ �2 and 4. The realizations of the
Gaussian density fields were generated by sampling the
given amplitude distribution [set by PðkÞ] in k-space, and
assuming random phases for individual modes. All the
Gaussian fields were generated on a 5123 spectral grid
and then transformed to real space using a fast Fourier
transform (FFT). The fields have periodic boundary con-
ditions, and their power spectra necessarily have cutoffs at
large (finite mode number) and small wave numbers (finite
box size). In terms of normalization, all fields have h�i ¼ 0

and �� ¼ h�2i1=2 ¼ 1. We note, however, that the perco-
lation properties of Gaussian fields depend neither on the
mean nor on the variance.

The power spectrum in the�CDMmodel is not a simple
power law. Instead, in the limit of small k, PðkÞ / k while
in the opposite limit, P / k�3 lnðk=kcÞ, and at the present
scale of nonlinearity (roughly), P / k�1:5 (Fig. 2). In the
not so distant past the scale of nonlinearity was smaller and
the effective slope was steeper, approximately n ¼ �2; in
principle this evolutionary stage is observable. The choice

of n ¼ 4 corresponds to the so called ‘‘minimal power
spectrum’’ on large scales [30] (this power spectrum would
arise from initial conditions which have power only on
small spatial scales).
Percolating sites are identified using the ‘‘friends-of-

friends’’ algorithm on a cubic mesh (only the six closest
neighbors were considered as immediate friends) for the
(thresholded) density field filtered on a scale R with a
Gaussian window. As the density threshold is reduced
from a high starting value, the volume in the overdense
excursion set increases monotonically until percolation
occurs, therefore the volume fraction of the excursion set
itself can be used as a proxy for the density threshold. (The
same argument also holds for the underdense excursion
set.) For the linear density field, percolation curves were
averaged over overdense and underdense excursion sets
exploiting the exact statistical symmetry of Gaussian
fields. The power spectra in the unsmoothed�CDMmodel
are shown in Fig. 2 along with the power spectra in all
realizations of the �CDM1 and �CDM2 models; a power-
law spectrum with PðkÞ / k�2 is also shown for reference.

C. Linear stage

We first focus on the initial stage of structure formation,
i.e., any epoch after decoupling of baryonic matter and
radiation with only linear density fluctuations on the scales
of interest. For the chosen resolution scales (set by the
particle number and box size), an initial redshift of zi ¼ 50
comfortably satisfies this criterion.
In order to carry out our percolation analysis we used the

volume fraction of the excursion set rather than the density
itself as the relevant parameter. We fit the percolation
curves by the single-variable percolation scaling ansatz
[31]
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FIG. 2 (color online). Power spectra of two �CDM models
with smoothing scales, R ¼ 1 and 10h�1 Mpc, and box-sizes
343.1 and 3431h�1 Mpc, respectively. The unsmoothed �CDM
power spectrum and PðkÞ / k�2 are also shown for reference.
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f1 ¼ AðfES � fpÞ� at fES > fp; (3)

where fES is the volume fraction, i.e., the fraction of the
volume in the excursion set (fES � VES=Vtot), f1, the
volume fraction of the largest region, and, fp, the value

of the volume fraction when the percolation transition
occurs. In Fig. 3, the quantity, f1=fES, as numerically
determined, is plotted as a function of fES, and undergoes
a sudden growth from zero to unity at the percolation
transition.

As is evident, the ansatz (3) provides an excellent fit to
the data for a power-law model with n ¼ 4. Possibly due to
finite-volume effects, the fit becomes increasingly less
accurate with growth of power on large scales i.e., follow-
ing the sequence �CDM2, �CDM1, n ¼ �2. (We have
not been able to identify more rigorous results on percola-
tion in Gaussian fields in the literature.) Establishing pre-
cise percolation thresholds will require larger simulation
boxes and a more careful analysis of finite-size effects
which is beyond the scope of the current paper. However,
for our more limited purposes, it is acceptable to use the
obtained fitting parameters as fiducial values that charac-
terize the percolation differences in the mutually correlated
Gaussian and non-Gaussian fields (the latter having their
origin in the nonlinear stage of gravitational instability in
the expanding universe). The parameters of the fits are
given in Table I.

The data shown in Fig. 3 clearly demonstrate that per-
colation occurs at lower volume fractions with growth of
power on large scales, in qualitative agreement with
Ref. [24]. The corresponding density threshold reaches
its (lower) limiting value (�p ¼ �, fp ¼ 0:157), following

a conjecture due to Ziman [32] who suggested that the
percolation transition should occur exactly at the � ¼ �

level, for Gaussian fields with dominating small-scale
power. At the other extreme considered here, PðkÞ / k�2,
where the field is dominated by large-scale power, fp ¼
0:072, and corresponds to the highest value of the density
threshold �p=� ¼ 1:46. This is slightly lower than

�p=� ¼ 1:6� 0:1 as found in Ref. [24]. The minor dis-

agreement may be due to how the percolation threshold
was determined in the two cases, as well as due to finite-
volume limitations. [It is also worth noting that our set of
fields includes models with nonpower law PðkÞ.] Each
parameter in Table I varies monotonically with increase
of power on large scales: fp decreases while all the rest

increase.
From the results of Fig. 3 it is clear that the percolation

transition becomes more gradual as the (effective) spectral
index n decreases, deviating from the percolation scaling
ansatz at small f1=fES. Therefore the fit given by Eq. (3)
becomes less accurate and fp determined by this method

becomes less reliable. This suggests that even larger vol-
umes than the ones used here may be necessary to study
such cases. Other factors that may affect the accuracy of
the determination of the percolation threshold are discrete-
ness, accuracy of computing the volume of the excursion
set, filtering, and the properties of the largest cluster. As the
present study is not devoted to an accurate calculation of
percolation thresholds in Gaussian fields, we leave these
questions to future work.
For scale-free power spectra, PðkÞ / kn, the dependence

of the percolation transition in Gaussian fields on the
power spectrum was observed and qualitatively discussed
in Ref. [23] and then quantified in Ref. [24]. Here, along
with two types of scale-free fields, we also study the
Gaussian field corresponding to the �CDM model
smoothed at two different scales (Fig. 2). As mentioned
earlier the large-scale structure at the nonlinear stage is
mainly determined by the initial power spectrum on scales
with k & R�1

nl [15–17] and therefore can be approximately

characterized by the effective slope at this scale. It is thus
interesting to investigate how well the effective slope at the
scales contributing most to the variance of the field deter-
mines the percolation transition in the linear regime.
As a first candidate, we study �2ðkÞ � k3PðkÞ, which

represents the contribution of power to the variance of the
density field, per unit logarithmic interval in k. In particu-
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FIG. 3 (color online). Percolation transitions in Gaussian den-
sity fields. Results for power-law spectra PðkÞ / kn with n ¼ �2
(extreme left) and n ¼ 4 (extreme right), �CDM—the two
interior curves—smoothed at R ¼ 1 (left) and R ¼ 10h�1 Mpc
(right). Smooth curves are fits to the percolation ansatz (3); error
bars are 1� (statistical).

TABLE I. Values for the percolation ansatz (3) parameters (A
and �) for Gaussian fields, the percolation density threshold �p

corresponds to fp, the volume fraction at percolation.

Model fp A � �p=�

n ¼ 4 0.157 0.61 0.38 1.006

�CDM2 0.111 0.66 0.51 1.22

�CDM1 0.089 0.75 0.62 1.36

n ¼ �2 0.072 0.89 0.76 1.46
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lar, the position of the maximum of �2ðkÞ corresponds to
the wavelength with maximum contribution to the variance
of the field. Figure 4 shows that the maximum contribution
arises from k � 0:65 and 0:09h Mpc�1 for the �CDM1

and �CDM2 models, respectively. The initial i.e., un-
smoothed spectrum has the corresponding effective slopes
neff ¼ d logP=d logk � �2:2 and �1:4 at these wave
numbers. The Gaussian field with power-law spectrum n ¼
4 is generated by Fourier waves in a narrow range of k due
to the steep falloff in�2ðkÞ at small wave numbers�2ðkÞ /
k7, and Gaussian filtering at small scales.

Referring to Table I, two subsets of the models repre-
sented there—one subset consisting of the power-law
model with n ¼ �2, �CDM2 with neff ¼ �1:4, and the
power-law model with n ¼ 4, the other consisting of
�CDM1 with neff ¼ �2:2, �CDM2 with neff ¼ �1:4,
and the power-law model with n ¼ 4, both demonstrate
monotonic growth of the percolation volume fraction with
increase of effective slope: fp ¼ 0:07, 0.11, 0.16 and fp ¼
0:09, 0.11, 016, respectively. However, percolation in the
�CDM1 model with neff ¼ �2:2 formally takes place at a
higher value of the volume fraction, fp ¼ 0:09, than for the

power-law model with n ¼ �2, where fp ¼ 0:07.

Regardless of the limited accuracy inherent in measuring
the values of fp from the percolation ansatz (3), it does

appear reliable to conclude directly from the data points of
Fig. 3 that the percolation transition in the power-law
model with n ¼ �2 occurs at a lower volume fraction
than in the �CDM1 model. Additionally, the data in
Fig. 2 show that the effective slope of the unsmoothed
�CDM model is slightly more negative than n ¼ �2 at
k � 0:9h Mpc�1 (where �2ðkÞ peaks for the n ¼ �2
power spectrum). A more robust measure of the percola-

tion transition threshold is the volume fraction of the
excursion set when the volume of the largest cluster com-
prises half of the excursion set. Table III demonstrates a
monotonic decrease of this measure in the order n ¼ 4,
�CDM2, �CDM1, and n ¼ �2.
An alternative possibility is to use the power per equal

interval in k rather than in logk, i.e., EðkÞ ¼ k2PðkÞ instead
of �2ðkÞ ¼ k3PðkÞ; the former choice being widely used in
the theory of turbulence [33]. Again, by finding the maxi-
mum of EðkÞ and then the effective slope in the un-
smoothed spectra at these points, one finds that all four
models listed in ascending order of fp (i.e., n ¼ �2,

�CDM1, �CDM1, and n ¼ 4) correspond to monotoni-
cally increasing effective slopes, neff ¼ �2, �1:97, �1:1,
and 4. The difference in neff between the power-law model
with n ¼ �2 and the �CDM1 model is obviously mar-
ginal, but the effective slopes at the maxima of EðkÞ do
appear to correspond better to the volume fractions at
percolation. The maxima of EðkÞ are obviously shifted to
smaller k with respect to the maxima of �2ðkÞ, therefore
EðkÞ takes into account power on slightly smaller scales
than the scales of the maxima of �2ðkÞ. A more detailed
evaluation of this issue is a topic for further study and
beyond the scope of the current work.
Despite the qualifications in the above discussion, the

�CDM percolation curves do display trends qualitatively
similar to those seen in the bracketing power-law cases.
Filtering the density field at smaller scales corresponds to a
greater negative effective spectral slope than that due to
filtering at larger scales (Fig. 2), the effect of the moving
cutoff in k-space leading therefore to a higher density
threshold and lower volume fraction at percolation, as
demonstrated by the two interior curves in Fig. 3. In
particular, this means that the structure formed earlier at
greater redshifts was formed from the Gaussian field per-
colating better than the field corresponding to the current
structure.
The dependence of the percolation transition parameters

on the power spectrum of a Gaussian field shows that such
fields can differ not only locally (e.g., in the shape of peaks,
etc. [34]) but also globally. The higher percolation thresh-
old, �p, or equivalently lower value of fp, indicates that

Gaussian fields with relatively more power on large scales
have a greater degree of connectedness. Therefore, the
relatively large negative slope of the linear power spectrum
at the scale of nonlinearity in the �CDM cosmology is an
important factor determining the origin of the cosmic web.
Because this feature is already present in the initial con-
ditions, later to be amplified by the gravitational instability,
we refer to it as the ‘‘nature’’ factor influencing the for-
mation of the cosmic web.

D. Nonlinear stage

Next we turn to a percolation transition analysis of
the nonlinear, and therefore non-Gaussian, density field
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FIG. 4 (color online). The function �2ðkÞ ¼ k3PðkÞ plotted for
the power spectra shown in Fig. 2. The power-law spectra with
n ¼ �2 and n ¼ 4 are smoothed with the same window as the
�CDM1 model. The normalization of �2ðkÞ is not important
since it determines only the variance of the field �.
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at z ¼ 0 for the �CDM1 model. As shown in Fig. 5, the
percolation threshold for the overdense excursion set at the
nonlinear stage (as measured by the volume fraction) is
remarkably lower than that for the initial Gaussian field:
fpðz ¼ 0Þ ¼ 0:035 while fpðz ¼ 50Þ ¼ 0:089. This result

is as expected from the Zel’dovich approximation [22].
The evolution of the density field results roughly in com-
pression of overdense regions and expansion of underdense
regions. This qualitatively correct feature is complicated
by the fragmentation of the dense regions into gravitation-
ally bound halos that might make percolation more diffi-
cult. However, the relative strength of both effects strongly
depends on the power spectrum of the initial Gaussian
field. This study suggests that despite the strong fragmen-
tation of the linear percolating region, the overall spatial
distribution of the fragments markedly preserves the topol-
ogy of the linear percolating region, at least in the impor-
tant case of �CDM. The rightmost curve in Fig. 5 shows
that the percolation transition in the underdense excursion
set occurs at considerably greater volume fraction than in
the initial Gaussian field: fpðz ¼ 0Þ ¼ 0:23 while fpðz ¼
50Þ ¼ 0:089.

The parameters of the fitting curves are given in Table II.
It is worth noting that the percolation transitions in all four
tested Gaussian fields are significantly greater than the

percolation threshold—measured by volume fraction—
for the over-dense phase but smaller than that for the
under-dense phase of the nonlinear density field generated
by the gravitational instability. Expanding the study of
percolation to n ! �3 is relatively difficult, therefore
whether the above result holds in this limit remains to be
seen. It is also worth pointing out that the values of the
exponent � are similar for both overdense and underdense
excursion sets, approximately coinciding with the value of
� obtained for the scale-free Gaussian field with n ¼ �2.
The amplitude A is different in all three cases, however.
Compared to the linear case, the density threshold for

percolation in the nonlinear regime is significantly larger.
(The mean values and standard deviations are obtained
from four realizations of the nonlinear stage and 30 real-
izations of the linear Gaussian field.) A visual comparison
can be made by comparing the nonlinear and linear perco-
lating clusters. These are shown in Figs. 6 and 7. Each
figure shows a superposition of two stages: linear at z ¼ 50
and nonlinear at the present time i.e., at z ¼ 0. In each
figure, blue and yellow represent initial (z ¼ 50) and final
(z ¼ 0) distributions of mass, respectively. In Fig. 6, the
cluster that percolates at z ¼ 50 (blue) is transformed into
disjoint clumps (yellow) in the course of gravitational
evolution as it reaches the present epoch at z ¼ 0. The
cluster that percolates at z ¼ 0 is shown in Fig. 7 in yellow
while the distribution of its mass at the linear stage is
shown in blue. The masses in the yellow and blue struc-
tures are the same in each figure. However, the total mass
in the nonlinear percolating cluster—a portion of which is
shown in Fig. 7—is about 15 times greater than that in the
corresponding linear cluster (shown in Fig. 6): the mass
fractionM1 � 0:25 at z ¼ 0, whileM1 � 0:018 at z ¼ 50.

III. MAPPING ACCURACY

Standard Eulerian perturbation theory at linear order
does not move particles. However, if one takes the perco-
lating cluster in the linear density field, smooths it at the
scale of nonlinearity, and maps it using the Zel’dovich
approximation then in effect one has a (linear theory)
prediction for the nonlinear percolating cluster.

TABLE III. Values of fES for the fiducial values of f
ðfÞ
1 , (i.e., at

the threshold level when fðfÞ1 ¼ 0:5fES) for the four Gaussian

fields and underdense and overdense sets of the evolved non-
linear density fields at z ¼ 0.

Model fES � �fES

NL underdense 0:251þ0:006
�0:006

n ¼ 4 0:1625þ0:0002
�0:0002

�CDM2 0:1198þ0:0005
�0:0006

�CDM1 0:102þ0:002
�0:003

n ¼ �2 0:094þ0:003
�0:007

NL overdense 0:044þ0:002
�0:0025
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FIG. 5 (color online). �CDM1 percolation transitions (filter
scale set to R ¼ 1h�1 Mpc). Nonlinear stage: overdensity (blue/
left) and underdensity (red/right) excursion sets at z ¼ 0; linear
(Gaussian) stage (green/middle) at z ¼ 50. Solid curves are
percolation ansatz fits (cf. Eqn. (3) and Table II).

TABLE II. Values for the percolation ansatz (Eqn. (3)) pa-
rameters for underdense and overdense excursion sets at the
nonlinear stage of evolution, the percolation density threshold �p

corresponds to fp.

Model fp A � �p

NL underdense 0.228 1.80 0.76 �0:80
NL overdense 0.035 0.73 0.75 3.31
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Intuitively, one may expect that the percolating cluster in
the linear field should approximately map into the exact
nonlinear percolating cluster, but the accuracy of this
proposition has not been directly tested. In this section,
we focus on whether the linear percolating cluster indeed
maps onto the nonlinear percolating cluster.
We begin by considering the mapping from the initial,

linear stage of the evolution (z ¼ 50), to the final nonlinear
stage (z ¼ 0), the forward map. This requires two addi-
tional steps. First, we choose a fiducial value for the density

threshold, �ðfÞ, to carry out the percolation analysis. We set
this to correspond to the point where the largest percolating
region occupies 50% of the excursion set volume, i.e.,

fðfÞ1 =fES ¼ 0:5. With this choice, the percolation region

is well developed, yet not completely dominating the ex-
cursion set. This definition is different from that used in the
previous analysis (which followed the conventional prac-
tice in percolation theory). Therefore the values of fES for

this choice of fðfÞ1 (see Table III) are a little higher than the

values of fp in Tables I and II as expected. The reason for

this change is dictated by the fact that at the (conventional)
percolation transition, the percolating cluster occupies an
infinitesimal volume (f1=fES ! 0). This means that in a
finite box its volume is much smaller than the volume of
the box and is thus subject to very large fluctuations. Our
choice makes the definition of the percolating cluster more
robust and less subject to the precise ‘‘turn-on’’ of perco-
lation (cf. Figs. 3 and 5).
The second step involves multiple back and forth

switching from density fields defined on an invariant spa-
tial grid to particles subject to dynamic motion. Although
the percolation analysis can be carried out on a set of points
it is numerically more efficient on a regular grid. In this
study we used a very fast algorithm that detects the perco-
lation transition by performing the cluster analysis on the
grid [31]. In particular, it defines the percolating cluster as
a set of grid sites. In order to study the forward mapping of
the initial percolating cluster (identified as a set of grid
sites), we first need to determine the set of particles that are
associated with it. Following the motion of these selected
particles will allow us to study how the initial percolating
region maps into the nonlinear stage.
As a definition, the initial percolating set is taken to be

all those particles lying within a distance smaller than half
a grid unit (along all three orthogonal axes) from any grid
site that belongs to the initial percolating region. After
mapping particles to the final nonlinear state we find all
the sites on the grid that satisfy the very same criterion. The
set of these new sites at z ¼ 0 approximates the map of the
initial percolating cluster and can be analyzed by the same
fast method. We stress that this forward mapping of the
linear percolating cluster comprises only a relatively small
fraction of particles in the nonlinear percolating cluster
because a fundamental feature of the nonlinear evolution is
the crossing of orbits and the resulting formation of multi-

FIG. 6 (color). Forward mapping of the linear percolating
cluster. The mapping takes the percolating region identified in
the linear regime at z ¼ 50 (blue) to the final forward-mapped
region at z ¼ 0 (yellow, see text). Note the fragmentation of the
initial percolating region after the mapping. For visual clarity, a
70h�1 Mpc thick slab cut out of the full simulation cube is
shown.

FIG. 7 (color). Backward mapping of the percolating region
identified in the nonlinear regime at z ¼ 0 (yellow) to the initial
stage at z ¼ 50 (blue). In contrast to the case of the forward map,
the backwards map takes a percolating region into another
percolating region. The slab is the same as in Fig. 6.
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stream flow regions. The forward mapping of the percolat-
ing cluster found in the linear density field forms only a
fraction of those streams, and many others come from
regions beyond it. In a similar manner, by starting with
the nonlinear percolating cluster at z ¼ 0, we introduce a
backward mapping that finds all sites at z ¼ 50 that were
mapped to z ¼ 0 and formed the nonlinear percolating
cluster.

With the particle-based definition of percolation applied
to the �CDM1 cosmology, we find that the particles in the
initial percolating set make up 4.6% of the total number of
particles in the excursion set—quite close to the volume
fraction of the percolating region as defined on the grid
(0.045). The small excess is due to the higher than mean
density in the percolating region: the two definitions of a
percolating region (on grid and by particles) are not iden-
tical. But we do expect them to be very similar during the
linear stage of the evolution. To verify this expectation we
go back from the selected particles to the grid by identify-
ing every grid site closer than half a grid unit to any particle
from the percolating set. We then perform a cluster analy-
sis on these sites. Ideally we would find exactly the same
grid sites as in the initial percolating cluster. The actual
results show good but not perfect correspondence between
the two procedures.

Figure 6 illustrates the forward mapping of the initial
percolating set (blue) into the nonlinear stage (yellow).
Both structures are displayed in comoving coordinates to
scale out the uniform Hubble expansion. To avoid exces-
sive projections, every tenth particle is shown in a
70h�1 Mpc thick slab cut out of the simulation cube.
The mapping obviously results in a large reduction of the
volume as expected, therefore the nonlinear (yellow) clus-
ter is much smaller by volume than the corresponding
linear cluster (blue). A closer look also suggests that the
initially connected structure at z ¼ 50 becomes frag-
mented after nonlinear mapping to z ¼ 0. We discuss this
in more detail below.

In the first step of the analysis, we compute the fraction
of particles from the initial percolating set that end up in
the final percolating region, as defined on the grid at

various thresholds, and shown for the fiducial �ðfÞ ¼ 2:76
in Fig. 7 in yellow. (We determine whether a particle
belongs to the percolating region at z ¼ 0 using the same
criterion of proximity of particles to grid sites as above,
filtering the nonlinear density field also at R ¼ 1h�1 Mpc.)
The fraction of particles from the initial percolating set
transported into the final percolating region is plotted as a
function of the ratio f1=fESðz ¼ 0Þ, characterizing the size
of the percolating cluster at z ¼ 0, in Fig. 8. This fraction
grows monotonically from about 40% at f1=fESðz ¼ 0Þ �
0:22 to more than 95% at f1=fESðz ¼ 0Þ � 0:8 reaching

about 80% at the fiducial value fðfÞ1 =fESðz ¼ 0Þ ¼ 0:5. The
point of this result is that the progenitor of the ‘‘cosmic
web’’ defined as the percolating cluster of the initial

Gaussian density field, is a fair, albeit not perfect, ‘‘back-
bone’’ of the web at a later, nonlinearly evolved stage.
It is also of interest to investigate the percolation prop-

erties of the initial set of percolating particles at the final
stage of evolution. Using the criterion described above, we
generated the set of grid sites at z ¼ 0 close to the selected
particles (those representing the percolating cluster at z ¼
50) after they had moved to their final positions at z ¼ 0.
We find that these sites comprise a fraction of less than
0.003 of the total volume. This should be compared with
their initial volume occupation fraction of 0.045 at z ¼ 50,
resulting in a compression factor of about 15 on average.
This compression reflects the fact that overdense regions
tend to collapse and therefore more than one particle
becomes associated by the proximity criterion to the
same site at the nonlinear stage. This is clearly seen in
Fig. 6. By z ¼ 0, the initially connected region fragments
into large numbers (� 2:5� 104) of isolated regions and
none of them percolates. The largest such region has a
volume of�2000h�3 Mpc3. Although this volume is quite
large by astronomical standards (albeit much smaller than
that set by the scale of homogeneity which has a linear
dimension of�70h�1 Mpc), it comprises only 0.017 of the
volume occupied by the particles from the initial percolat-
ing set after they are mapped to z ¼ 0. These numbers
illustrate the prolific fragmentation of the linear percolat-
ing cluster in the course of the nonlinear mapping.
We now take the percolating region at z ¼ 0, shown in

Fig. 7 in yellow, back to the linear stage—the backward
map (blue region in Fig. 7 with every twentieth particle
plotted). As an example, we select the percolating region
built from the smoothed density field at �f ¼ 2:76 corre-

sponding to fðfÞ1 =fESðz ¼ 0Þ ¼ 0:5. This occupies 8:4�
105h�3 Mpc3 or 0.02 of all grid sites or equivalently about
0.02 of the volume of the box. The remaining half of the
excursion set consists of �2� 104 isolated regions. It is
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worth stressing that approximating the percolating region
at the nonlinear stage by the particle set as described above,
we find that the two representations (particle vs grid) differ
considerably more than they do in the linear regime. This is
because the particle representation has a significantly
higher resolution than the smoothed density field on the
grid. In any case, the backward map must be applied using
the particle representation; inverse mapping the particles
from the largest percolating set back to the linear stage, we
find that they occupy about a quarter of the total volume
and also form a percolating region (in contrast to the case
of the forward map).

IV. SUMMARY

We now summarize our key results. We began by con-
firming—with some minor discrepancies—earlier findings
of the dependence of the percolation threshold in Gaussian
random fields on the power spectrum. However, the main
purpose of our study is to establish the existence of strong
percolation in the initial/linear density field in the �CDM
cosmological model—the nature factor in the formation of
the cosmic web. This factor is determined exclusively by
the density (or density contrast) field, � � ð�� ��Þ= �� in
Eulerian linear theory.

We found that the nonlinear mapping from the linear
stage of cosmic evolution (z ¼ 50) to the final nonlinear
stage at the current epoch (z ¼ 0) results in a considerable
amplification of percolation features: the percolation vol-
ume fraction reduces from fpðz ¼ 50Þ � 0:09 to fpðz ¼
0Þ � 0:035, the half-fill volume of the percolating cluster
at the fiducial percolation volume fraction reduces from

fðfÞ1 ðz ¼ 50Þ � 0:05 to fðfÞ1 ðz ¼ 0Þ � 0:02, while its mass

greatly increases from mðfÞ
1 ðz ¼ 50Þ � 0:025 to mðfÞ

1 ðz ¼
0Þ � 0:25. All these parameter values indicate that the
cosmic web becomes considerably thinner and more con-
spicuous than its progenitor in the linear density field. We
call this dynamical influence of the gravitational instabil-
ity, the nurture factor in the formation of the cosmic web
because it was not present in the initial field and results
entirely from the mapping itself. Conventional linear the-
ory does not consider mapping at all; the Zel’dovich ap-
proximation suggests that the initial displacement field,
s ¼ �@�lin=@q smoothed at the current scale of nonline-
arity determines the dominant features of the mapping.

We conclude that the robust contrast of network struc-
ture—so characteristic of N-body simulations—is deter-
mined by a combination of two factors: the already-present
conspicuousness of the percolating region in the initial
Gaussian field (nature) and the effects of nonlinear map-

ping (nurture). The first is quantified by the relatively high

density threshold (�ðfÞ ¼ 1:27�) and low volume fraction

of the excursion set (fðfÞ � 0:1) at the percolation transi-
tion. This is directly related to the character of the linear
power spectrum—a relatively large negative effective
slope in the relevant range of scales from k ¼ 0:1 to
1h Mpc�1. The second factor is measured by the further

decrease of the volume fraction (fðfÞ � 0:05) at percola-
tion. The percolation threshold in the density field filtered

on R ¼ 1h�1 Mpc is �ðfÞ ¼ 2:76 with the percolating
region containing about a quarter of the total mass. We
conclude that the nurture factor arising from the dynamical
mapping itself is more important for explaining the con-
spicuousness of the cosmic web.
The topology of the web can also be quantified by the

Euler characteristic, but is not equivalent to percolation
statistics [35]. In particular, the density of the Euler char-
acteristic, �, as a function of the level, � ¼ �=�� has the
universal shape, n� ¼ N�ð�2 � 1Þ expð��2=2Þ for all

Gaussian fields regardless of the power spectrum [36].
The power spectrum determines only its amplitude,

N� ¼ 2ðhk2i=3Þ3=2=ð2�Þ2, where hki2 ¼ R
k2PðkÞk2dk=R

PðkÞk2dk [34]. Thus, the standard diagnostics used in

cosmology for characterization of the structure: ‘‘meatball
shift’’, ��, ‘‘number of voids’’, AV , and ‘‘number of
clusters’’, AC (see e.g., Ref. [37]) designed for studies of
non-Gaussian features of the structure are unable to detect
the ‘‘nature’’ factor in structure formation.
We note that the mapping of the linear percolating

cluster into the nonlinear stage is not flawless. The perco-
lating region at the nonlinear stage taken at the half-fill
percolation volume fraction contains about 80% of the
percolating region found in the linear density field, also
taken at the half-fill percolation volume fraction. This is
close, though not perfect, correspondence. The half-fill
linear percolating cluster makes up about 5%, while the
nonlinear one about a quarter, of the total mass, i.e., 5 times
greater. The initial percolating region fragments in the
course of evolution into a large number (more than 2:5�
104 in the current simulation) of isolated clumps by z ¼ 0,
none of which percolates at z ¼ 0.
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N. Katz, and C.G. Lacey, Astrophys. J. 593, 1 (2003).

[27] Ya. B. Zel’dovich, J. Einasto, and S. F. Shandarin, Nature
(London) 300, 407 (1982); J. Einasto, A.A. Klypin, J.
Saar, and S. F. Shandarin, Mon. Not. R. Astron. Soc. 206,
529 (1984); S. F. Shandarin and C. Yess, Astrophys. J. 505,
12 (1998); S. Bharadwaj, S. P. Bhavsar, and J. V. Sheth,
Astrophys. J. 606, 25 (2004); M. Einasto et al., Astron.
Astrophys. 476, 697 (2007); Astrophys. J. 685, 83 (2008);
T. Sousbie et al., Astrophys. J. 672, L1 (2008); N. A.
Bond, M.A. Strauss, and R. Cen, arXiv:0903.3601;
B. J. T. Jones, F. van de Weygaert, and M.A. Aragon-
Calvo, arXiv:1001.4479; E. Choi et al., arXiv:1003.3239.

[28] N. Kaiser, Mon. Not. R. Astron. Soc. 227, 1 (1987); S.
Shandarin, J. Cosmol. Astropart. Phys. 02 (2009) 031.

[29] K. Heitmann, P.M. Ricker, M. Warren, and S. Habib,
Astrophys. J. Suppl. Ser. 160, 28 (2005).

[30] A. G. Doroshkevich and Ya. B. Zel’dovich, Astrophys.
Space Sci. 35, 55 (1975).

[31] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor and Francis, London, 1992), Ch. III and
associated references.

[32] J.M. Ziman, Models of Disorder (Cambridge University
Press, Cambridge, England, 1979).

[33] A. S. Monin and A.M. Yaglom, Statistical Fluid
Mechanics: Mechanics of Turbulence (The MIT Press,
Cambridge, MA, 1975), Vol. 2.

[34] J.M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay,
Astrophys. J. 304, 15 (1986).

[35] V. Sahni, B. S. Sathyaprakash, and S. F. Shandarin,
Astrophys. J. 476, L1 (1997).

[36] A. G. Doroshkevich, Astrophys. J. 6, 320 (1970).
[37] J. R. Gott III, Y. Y. Choi, C. Park, and J. Kim, Astrophys. J.

695, L45 (2009).

ORIGIN OF THE COSMIC NETWORK IN �CDM: . . . PHYSICAL REVIEW D 81, 103006 (2010)

103006-11

http://dx.doi.org/10.1086/156198
http://dx.doi.org/10.1086/156198
http://dx.doi.org/10.1086/157123
http://dx.doi.org/10.1086/157123
http://dx.doi.org/10.1086/184625
http://dx.doi.org/10.1086/177300
http://dx.doi.org/10.1086/177300
http://dx.doi.org/10.1086/518864
http://dx.doi.org/10.1086/518864
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://dx.doi.org/10.1046/j.1365-8711.2001.04902.x
http://dx.doi.org/10.1088/1367-2630/10/12/125015
http://dx.doi.org/10.1088/1367-2630/10/12/125015
http://arXiv.org/abs/0812.1052
http://dx.doi.org/10.1086/164347
http://dx.doi.org/10.1086/164347
http://dx.doi.org/10.1046/j.1365-8711.2003.06642.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06642.x
http://dx.doi.org/10.1103/RevModPhys.61.185
http://dx.doi.org/10.1103/RevModPhys.61.185
http://dx.doi.org/10.1080/03091928208209001
http://dx.doi.org/10.1038/380603a0
http://dx.doi.org/10.1038/380603a0
http://dx.doi.org/10.1103/PhysRevLett.52.1488
http://dx.doi.org/10.1103/PhysRevLett.52.1488
http://dx.doi.org/10.1086/177397
http://dx.doi.org/10.1086/177397
http://dx.doi.org/10.1103/PhysRevLett.85.5515
http://dx.doi.org/10.1103/PhysRevLett.85.5515
http://dx.doi.org/10.1086/172975
http://dx.doi.org/10.1086/172975
http://dx.doi.org/10.1086/376517
http://dx.doi.org/10.1038/300407a0
http://dx.doi.org/10.1038/300407a0
http://dx.doi.org/10.1086/306135
http://dx.doi.org/10.1086/306135
http://dx.doi.org/10.1086/382140
http://dx.doi.org/10.1051/0004-6361:20078037
http://dx.doi.org/10.1051/0004-6361:20078037
http://dx.doi.org/10.1086/590374
http://dx.doi.org/10.1086/523669
http://arXiv.org/abs/0903.3601
http://arXiv.org/abs/1001.4479
http://arXiv.org/abs/1003.3239
http://dx.doi.org/10.1088/1475-7516/2009/02/031
http://dx.doi.org/10.1086/432646
http://dx.doi.org/10.1007/BF00644823
http://dx.doi.org/10.1007/BF00644823
http://dx.doi.org/10.1086/164143
http://dx.doi.org/10.1086/310492
http://dx.doi.org/10.1088/0004-637X/695/1/L45
http://dx.doi.org/10.1088/0004-637X/695/1/L45

