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We show that a massive black hole binary might resonantly trap a small third body (e.g. a neutron star)

down to a stage when the binary becomes relativistic due to its orbital decay by gravitational radiation.

The final fate of the third body would be quite interesting for relativistic astrophysics. For example, the

parent binary could expel the third body with a velocity more than 10% of the speed of light. We also

discuss the implications of this three-body system for direct gravitational wave observation.
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I. INTRODUCTION

The orbital period of Pluto is 3=2 times that of Neptune,
and their mutual stability is maintained by this simple
commensurability (termed the mean motion resonance).
In addition to this well-known fact, the Solar System has
various forms of the mean motion resonances [1].
Furthermore, more than 8 exoplanet systems are known
to have two planets in mean motion resonances. One of the
notable properties here is that once two planets are trapped
in a stable resonance relation, they often keep the state for a
long time. For example, recent numerical studies showed
that some resonant trappings are strong enough to be
preserved against planet migration during which orbital
radii of two planets decreased by more than 1 order of
magnitude [2].

Black hole (BH) binaries are considered as fascinating
sources of broad astrophysical phenomena, and, at the
same time, their inspirals and mergers are promising tar-
gets for a gravitational wave (GW) observation that would
also provide us with ideal opportunities to test fundamental
aspects of gravity. As in the case of planetary systems, a
massive BH binary might resonantly trap a small body, e.g.
through interaction with its surrounding disk, and shrink its
orbit by dissipative processes. In this paper we call this
kind of three-body system a resonant multiple inspiral
(RMI) and study the evolution and the final fate of an
RMI, including the post-Newtonian effects. We find that
a BH binary has potential to keep a third body down to a
stage when the binary becomes relativistic due to its orbital
decay by gravitational radiation. We also mention impacts
of RMIs on relativistic astrophysics and future GW
observation.

II. STABLE EQUILIBRIUM POINTS

We study the evolution of RMI using a circular restricted
three-body problem, namely, analyze the motion of a test
particle trapped by a BH binary in a circular orbit with
masses ð1��ÞM and �M [M: total mass of the binary,
�ð� 0:5Þ: the mass ratio]. We use the geometrical unit

G ¼ c ¼ M ¼ 1with which the Schwarzschild radii of the
two BHs are 2ð1��Þ and 2�, respectively. If necessary,
we intentionally recover the mass parameterM to show the
actual scales of physical quantities. We introduce a pa-
rameter rb for the binary separation.
In this paper, we concentrate on 1:1 mean motion reso-

nances as tractable but intriguing examples (see, e.g. [3] for
recent related studies). In this case the test particle moves
around the equilibrium points L4 or L5. The two points are
at almost equilateral positions relative to the parent binary
on its orbital plane. After the pioneering work by Lagrange
in 1772, various properties have been theoretically inves-
tigated for the two points. In the real Universe, the Sun-
Jupiter system (�� 10�3) has a large number of asteroids
known as Trojans around its L4 and L5 (first discovered in
1906) [1,4], and their origin is still on active debates [4,5].
Similar objects have been found, e.g. for the Sun-Mars
(�� 2� 10�7) or Saturn-Tethys (�� 10�6) systems [1].
Here Tethys is the fifth largest moon of Saturn.
In order to describe the motion of a test particle around

L4 or L5, it is convenient to introduce a normalized frame
ðXN; YN; ZNÞ that is corotating with the parent binary
around its barycenter. In this frame, the larger BH is at
ð�; 0; 0Þ, the smaller one is at ð�ð1��Þ; 0; 0Þ, and their
separation is unity. The ZN axis is the rotation axis of the
parent binary and normal to its orbital plane [6].
Meanwhile, the positions of the two equilibrium points
L4 and L5 are given by ðXL;�YL; 0Þ and ðXL; YL; 0Þ with

XL ¼ � 1

2
þ�þ 5ð�1=2þ�Þ

4rb
þ oðr�1

b Þ; (1)

YL ¼
ffiffiffi
3

p
2

þ 6�ð1��Þ � 5

8
ffiffiffi
3

p
rb

þ oðr�1
b Þ; (2)

where the terms / r�1
b represent the first-order post-

Newtonian (1PN) corrections [7,8].
We briefly summarize the results of the linear stability

analysis for a test particle around the equilibrium points L4

and L5 [1,9]. In Newtonian mechanics, small perturbations
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around these points are given by the superposition of two

stable oscillating modes for �<�1 ¼ 1=2� ffiffiffiffiffiffi
69

p
=18 ¼

0:038 521 [9]. They are known as the epicyclic motion with
the frequency !E and the libration motion with !Lð<!EÞ
[1]. The two frequencies are given by

!E;L ¼ !BN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 27�ð1��Þpq
ffiffiffi
2

p ; (3)

with the orbital frequency of the parent binary !BN �
ðM=r3bÞ1=2 defined at the Newtonian order (correspondence
of signs, !E:þ and !L:� ) [1]. The two frequencies
degenerate at � ¼ �1. For a larger mass ratio �>�1,
the perturbation becomes unstable.

With 1PN analysis, the two basic frequencies!E and!L

have the correction terms of Oðr�1
b Þ. It is worth stressing

that the ratio !E=!L now depends not only on the mass
ratio � but also on the separation rb of the parent binary.
The critical mass ratio �1 is given explicitly by �1 ¼
0:038 52� 0:290 56M=rb [7].

III. EVOLUTION OF RMI

An interesting question here is how the resonant trap-
ping changes with the evolution of the parent binary.
Below, we numerically study this issue, as a restricted
circular three-body problem.

For the evolution of the circular parent BH binary, we
can follow its 1PN orbit almost analytically, including the
orbital decay by the radiation of GW (see the Appendix for
formulations and basic numerical scheme). Gravitational
radiation reaction generates a dissipative force starting at
2.5PN order [10]. Below this order, the system is conser-
vative. Since we assume that the mass of the third body
(test particle) is negligible, the dissipative evolution is
controlled by the motion of the parent binary, through the
fifth time derivative of its quadrupole moment. After some
algebra, the decrease of the orbital separation of the parent
binary is described by the standard expression [10]

drb
dt

¼ � 64

5
�ð1��Þ

�
rb
M

��3
: (4)

Accordingly, the rotation cycle N of the binary before the
coalescence is estimated by

N ¼ 1

64��ð1��Þ
�
rb
M

�
5=2

: (5)

Given the positions of the parent binary, we can numeri-
cally follow the evolution of the test particle. Note that the
dissipative acceleration directly works also on the test
particle, as easily understood from the fact that the energy
loss rate is proportional to the square of the GWamplitude
[10]. This effect might induce interesting effects for a 1:1
resonance, due to the apparent phase coherence of the three
particles.

Since we cannot properly handle the strong gravity
around the two BHs with our 1PN equation of motion,
we conservatively terminate our integration when (i) the
separation of the parent BH binary reaches the innermost
stable circular orbit at rb ¼ 6 [10] or (ii) similarly, the test
particle goes into 3 Schwarzschild radii of each parent BH.
As for the initial position and velocity of the test particle,
we simply introduce two small parameters qx and qz
related to its position in the corotating frame
ðXN; YN; ZNÞ as ðXLð1þ qxÞ;�YL; 2XLqzÞ with XL and
YL given in Eqs. (1) and (2) at the 1PN order. Here the
parameter qx sets the perturbation of the third body within
the orbital plane of the parent binary, and another one qz is
related to the inclination with respect to the plane. The
particle is released with an initial velocity with which it is
at rest in the corotating frame. Note that we made pertur-
bative treatment of the 1PN correction terms. Thus, even
with qx ¼ qz ¼ 0, a small initial perturbation of Oðr�2

b Þ is
induced around the equilibrium points due to the truncation
effect (see, e.g. [11] for a similar case).
We hereafter discuss the results only from the L5 region.

We have compared the evolution of the test particles start-
ing from both the L4 and L5 regions, but have not found
notable qualitative differences. In Fig. 1 we show the orbits
of a test particle at three different epochs. This is a typical
example for the evolutionary behavior of the perturbation
around the L5 point. Each figure clearly shows the charac-
teristic profile of a tadpole orbit that is given by the
superposition of the two elliptical motions; the short-
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FIG. 1. Evolution of the orbit of a test particle around the L5

point in the normalized corotating frame ðXN; YNÞ. The mass
ratio of the parent binary is � ¼ 0:027. We show the orbits at
three different separations rb ¼ 200, 95, and 54. Each figure is
given for �8 rotation cycles of the parent binary. The initial
conditions are qx ¼ 0:002, qz ¼ 0:001 at rb ¼ 200. The upper
and bottom figures are shifted toward the vertical direction by
�0:004.
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period epicyclic mode (with the frequency !E) and the
long-period libration mode (with !L) [1].

With a simplified Hamiltonian and an associated adia-
batic invariant [12], Fleming and Hamilton [13] analyti-
cally predicted how the migration of Jupiter affects the
orbital evolution of its Trojan asteroids (with Newtonian
mechanics). Since the time scale of gravitational radiation
is much larger than the orbital period of the parent BH
binary (at least for rb given in Fig. 1), their analytical
prediction might fit with our study. Indeed, the evolution
shown in Fig. 1 are close to the predicted scaling behavior

/ r�1=4
b for the trajectories in the normalized corotating

frame. Thus, we can expect a fairly moderate evolution for
the perturbation around the L4 and L5 points during the
inspiral of the circular parent binary, before its separation
becomes small and the unstable modes are generated due to
the PN effect as we see next.

For various mass ratio �, we followed a test particle
initially with qx ¼ qz ¼ 0 at rb ¼ 100, and measured the
binary separation rbu where the distance between the test
particle and the L5 point becomes larger than 0.7 (a some-
what arbitrary value) in the normalized corotating frame.
In Fig. 2, our numerical results are shown by black points.
In addition to these results, we examined the unstable
separation rbu starting from finite (but small) qx and qz,
and obtained similar results (see, e.g. Figs. 3 and 4). We
also studied the evolution by Newtonian equation of mo-
tion, and found that the binary can resonantly hold the test
particle typically down to our termination limit at rb ¼ 6.
In Fig. 2, the solid curve represents the 1PN prediction for
the binary separation rbu where the L4 and L5 points
become unstable (corresponding to the degeneracy condi-
tion !E ¼ !L). At the regime � * 0:025, the unstable
radius rbu shows a reasonable agreement with the analyti-
cal result.

Interestingly, our numerical results in Fig. 2 show a
strong branch around �� 0:02. We found that this is

caused by a resonant instability due to the coupling of
the epicyclic and libration modes around !E ¼ 2!L, cor-
responding to the specific mass ratio� ¼ 0:024 293 for the
Newtonian analysis [14]. With the PN effects, the ratio
!E=!L depends not only on the mass ratio � but also on
the binary separation rb, as mentioned before. Therefore,
even if a parent binary has a mass ratio satisfying
!E=!L > 2 at the Newtonian limit rb ! 1, it could match
the unstable condition !E=!L ¼ 2 at a finite rb due to the
orbital shrink by gravitational radiation. As a result, with
the general relativistic effects, the binary is affected by the
resonant instability for a broader mass range �, in contrast
with a purely Newtonian system.
Figure 2 also shows a branch associated with!E ¼ 3!L

corresponding to the specific mass ratio� ¼ 0:013 516 for
the Newtonian limit [14]. However, this higher-order effect
is relatively weak, and many binaries can safely go through
the unstable separation, as shown in Fig. 2.

IV. FINAL FATE OF RMI

As we have studied so far, with RMI, a third body could
stay around a parent BH binary deeply into the relativistic
regime. Even though careful attention should be paid for
interpreting our 1PN results, they would provide us with
qualitative insights about the potential final fate of the third
body. This issue would be particularly interesting in rela-
tion to GW observation with the Laser Interferometer
Space Antenna (LISA) [15]. In order to make concrete
pictures for LISA, we assume that the total mass of a
parent BH binary isM� 106M�, and the mass of the third
body is �1–10M�. Given the stability condition �<
�1 ¼ 0:038 52 for a 1:1 resonance, the parent BH binary
might be regarded as an intermediate mass ratio inspiral
rather than an inspiral of two comparable BHs. While
abundance of BHs around �104M� is not well known at
present, the actual event rate of the former might be higher
than that of the latter.
The signal-to-noise ratio of GW associated with the

small third body would be much lower than that of the
parent BH binary. However, the stronger GW signal from
the parent BH binary would enable us to easily estimate the
basic parameters of the parent such as the mass ratio � or
the total mass M. Then, for example, from the estimated
masses of a potential parent, we can predict the epoch
when the L4 and L5 points become dynamically unstable
(see Fig. 2). This kind of prior information would consid-
erably help us to make a careful follow-up data analysis
searching for a weaker GW signal by a third body.
Statistical analyses for the final fates of RMIs with

realistic initial conditions would be useful for astrophysical
arguments, but they are far beyond the scope of this paper.
Here, we would rather make qualitative discussions on the
expected destinies. Among our numerical samples, ejec-
tion of a test particle from the parent binary is a frequent
final state. In Fig. 3, we show the trajectory of the test
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FIG. 2. The unstable separation rbu of a parent binary as a
function of its mass ratio �. The points are given from the
evolution of the test particle initially placed around the L5 point
at rb ¼ 100. The solid curve is derived from the stability
condition !L ¼ !E at 1PN and has the asymptotic profile rbu !
1 at � ¼ 0:038 521. The dashed and dot dashed curves are
given for !E ¼ 2!L and !E ¼ 3!L with the critical mass ratios
� ¼ 0:024 293 and � ¼ 0:013 516, respectively.
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particle evolved from Fig. 1. The L5 point becomes dy-
namically unstable around rb � 24:6 and the particle was
soon scattered by the smaller BH at ð�0:973; 0; 0Þ. It
escaped from the binary with a terminal velocity of
�0:14c, which is much larger than the typical kick velocity
by the anisotropic GW emission [16]. For an RMI event,
the third body can be scattered by a relativistic binary, and
this magnitude is not surprising. The third body should be a
neutron star or a black hole for surviving tidal disruption
during the large angle scattering by the smaller BH of the
parent binary.

Though an electromagnetic wave search for such a high
velocity object would be challenging, we might get a
signature of its ejection by careful analysis of GWs. If
the third body is a white dwarf and tidal disruption occurs,
we might observe a short-period electromagnetic wave
signal before the merger of the parent BH binary. This
might help us to identify its host galaxy and perform
cosmological studies, e.g. constraining dark energy pa-
rameters through the relation between the redshift and
the luminosity distance of the binary [17].

From our numerical samples, we expect that a plunge
into the larger BH would be another likely scenario. Note
that, from a distance of OðrbuÞ, its angular size is much
larger than a degree scale. For a plunge into the smaller
one, we might detect its GW signal by ground-based
detectors, depending on the mass of the BH.

Some of our numerical samples resulted in the dynami-
cal formation of extreme-mass-ratio-inspiral (EMRI) sys-
tems. In Fig. 4, we present the trajectory of a test particle
around the unstable separation rb � 13. After the transi-
tional stage shown in Fig. 4, the test particle almost de-
couples from the evolution of the parent BH binary. When
the binary reach the innermost stable circular orbit rb ¼ 6,
we have an eccentric EMRI system with pericenter dis-

tance �13 and the apocenter distance �50. GW from an
EMRI is a very important target of LISA for directly
probing highly distorted geometry around BHs, although
we need significant effort to detect it due to its complicated
waveform and the limitation of available computational
power [18]. As we commented earlier, the basic parameters
of the parent BH would be estimated by its stronger but
simpler GW signal. Thus, the subsequent EMRI signal
would be detected more easily than a blind EMRI search
as usually assumed. Furthermore, we might, in principle,
use the third body to probe the dynamical gravitational
field caused by the merger of the parent BH binary and to
precisely measure the basic parameters (e.g. mass and
spin) of the merged BH.

V. DISCUSSIONS

Our study for RMIs is based on the 1PN restricted three-
body analysis for a circular parent binary. This simple
treatment can be extended in diverse ways. One of the
principle directions is to include higher-order PN effects
and spins of BHs. A complementary approach would be to
inject a test particle into a numerically evolved BH binary
(for recent breakthrough see [19]). From Newtonian analy-
ses we expect that modest eccentricity ðe & 0:1Þ of the
parent binary would not largely change our basic results
[20], but this should be checked specifically. Meanwhile,
we have regarded the third body as a massless pointlike
particle. Actually, the assumption for the mass would be
largely relaxed for RMIs [9]. For example, Saturn has
stable co-orbital satellites (in a 1:1 resonance), Janus and
Epimetheus, whose masses are comparable (1:0:25) [1].
Furthermore, the internal structure of the third body might
cause interesting astrophysical effects (e.g. for a main-
sequence star or even a gas cloud). Beyond a three-body
problem, a parent BH binary might keep many small
objects around its L4 and L5 points, similar to the Trojan
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FIG. 4. Dynamical formation of an EMRI system around rb ¼
13:0 with � ¼ 0:0025. The initial positions are qx ¼ 0:004 and
qz ¼ 0:08 at rb ¼ 77 (9:9� 104 cycles to rb ¼ 13:0).
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FIG. 3. Ejection of a test particle around the binary separation
rb ¼ 24:6 after N � 1:1� 105 cycles from rb ¼ 200. The ejec-
tion velocity is �0:14c. The initial conditions are the same as
Fig. 1. The larger BH is at (0.027,0,0) and the smaller one is at
ð�0:973; 0; 0Þ. They rotate counterclockwise.
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asteroids of the Sun-Jupiter system. In the case of a 1:1
resonance, we have a severe upper limit �<�1 for the
restricted three-body problem, but a larger mass ratio
might be allowed for resonances other than 1:1.

In addition to these refinements for the evolution of
RMIs, follow-up studies in related fields are worth explor-
ing. More detailed analyses for detectability of GW sig-
natures at various stages of RMIs would be fruitful,
especially for space interferometers such as LISA.
Finally, discussions on the formation mechanism of
RMIs would be an attractive topic on astrophysics (see
e.g. [21] and references there in for related studies).
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APPENDIX: EQUATIONS OF MOTION FOR
PARTICLE SYSTEMS

In this Appendix, we briefly explain the basic equations
applied in our numerical calculations for dynamical evo-
lution of RMI. For the conservative 1PN equations of
motion, we use the Hamiltonian form of the Einstein-
Infeld-Hoffman Lagrangian given for a point-particle sys-
tem with masses ma (a: the label for particles) [10,22]. We
follow the positions xai (i ¼ 1, 2, 3: the label for spatial
directions) in the barycentric nonrotating frame ðx1; x2; x3Þ.
Rather than adopting the standard conjugate momentums
pai, we introduce the new variables

sai � pai

ma

(A1)

that are convenient for dealing with restricted three-body
problems. Our 1PN Hamiltonian is expanded as

H ¼ HN þH1PN; (A2)

with the explicit forms of the Newtonian and 1PN terms

HN ¼ 1

2

X
a

mas
2
a � 1

2

X
a;b�a

mamb

rab
; (A3)

H1PN ¼ � 1

8

X
a

maðs2aÞ2 þ 1

2

X
a;b�a;c�a

mambmc

rabrac

þ 1

4

X
a;b�a

mamb

rab
f�6s2a þ 7sa � sb

þ ðnab � saÞðnab � sbÞg; (A4)

where rab ¼ jxa � xbj and nab ¼ ðxa � xbÞ=rab.
For our new set of variables ðxai; saiÞ, the canonical

equations are modified as follows:

dsai
dt

¼ � 1

ma

@H

@xai
;

dxai
dt

¼ 1

ma

@H

@sai
: (A5)

These are well behaved in the limitma ! 0 for a restricted
problem. Note that with the 1PN terms the simple identity

sai ¼ dxai
dt ð� vaiÞ does not hold, and we have the following

correspondence at the 1PN order [22]:

sai ¼ vai þ vai

�
v2
a

2
þ 3

X
b�a

mb

rab

�

� 1

2

X
b�a

mb

rab
f7vbi þ ðnab � vbÞnabig: (A6)

In this paper, we study circular restricted three-body
problems in which the massless third body is irrelevant
for the evolution of the parent binary (with masses m1 and
m2). The dynamics of the circular parent binary is charac-
terized by the orbital frequency !b as a function of the
binary separation rb � jx1 � x2j, and it is perturbatively
expressed as

!B ¼ !BN þ!B1PN; (A7)

with the Newtonian result

!BN ¼
�
m1 þm2

r3b

�
1=2

: (A8)

Applying the above Hamiltonian for two particles, we
obtain the 1PN correction term as (see e.g. [8])

!B1PN ¼ !BN

m1 þm2

2rb

�
m1m2

ðm1 þm2Þ2
� 3

�
: (A9)

Thus, the motion of the parent binary can be handled
analytically, and we can numerically follow the position
of the third body with the modified canonical equations,
plugging in the analytical information of the parent binary.
Up to now, our 1PN system is conservative and this will

provide us with a good opportunity to check the accuracy
of our numerical code (based on a fifth order Runge-Kutta
integration scheme [23]) for the motions of third bodies
around the Lagrange points. For relevant sets of parameters
ðrb; �; qxÞ, we examined the 1PN version of Jacobi energy
derived for motions of the third body within the orbital
plane of the parent binary [24]. We found that it is typically
conserved by�10�5 level for�105 orbital rotation cycles.
Finally, we summarize the dissipative effects caused by

gravitational radiation. The first equation of (A5) is now
modified as follows:

dsai
dt

¼ � 1

ma

@H

@xai
þ

�
dsai
dt

�
rad
; (A10)

where the second term is due to the radiation, and at the
lowest order it is given by

�
dsai
dt

�
rad

¼ � 2

15
DðVÞ

ij xaj: (A11)
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Here DðVÞ
ij is the fifth time derivative of the quadrupole

moment Dij defined by [10]

Dij �
X
a

mað3xaixaj � x2a�ijÞ: (A12)

For the restricted three-body problem, the moment Dij is

determined only by the parent circular binary (a ¼ 1, 2),
and its fifth time derivative is evaluated analytically with a

standard adiabatic treatment. After some algebra, we ob-
tain the time derivative of the separation rb of the parent
binary as in Eq. (4), and its orbital position is determined
straightforwardly. Then, with a method similar to the pre-
vious conservative case, we can numerically follow the
massless third body. Our numerical results in Sec. III and
IV are obtained in this manner.
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