PHYSICAL REVIEW D 81, 099903(E) (2010)

Erratum: Decays of charmed mesons to *PV* final states [Phys. Rev. D 79, 034016 (2009)]

Bhubanjyoti Bhattacharya and Jonathan L. Rosner (Received 7 May 2010; published 25 May 2010)

DOI: 10.1103/PhysRevD.81.099903 PACS numbers: 13.25.Ft, 11.30.Hv, 14.40.Lb, 99.10.Cd

We wish to correct several errors in Ref. [1].

- (1) The two center-of-mass 3-momenta for $D^0 \to \eta \omega$ and $D^0 \to \eta \phi$ were accidentally interchanged in Table V. They should be 648.1 MeV/c and 488.8 MeV/c, repectively.
- (2) Two branching fractions, quoted in Ref. [2], were omitted in Ref. [1]. They are $\mathcal{B}(D^0 \to \eta \omega) = (0.221 \pm 0.023)\%$ [3] and $\mathcal{B}(D^0 \to \eta \phi) = (1.4 \pm 0.5) \times 10^{-4}$ [4]. (We do not use a preliminary branching fraction [3] $\mathcal{B}(D^0 \to \eta \phi) = (2.1 \pm 0.1 \pm 0.2) \times 10^{-5}$.)
- (3) In the expression for the amplitude for $D^+ \to \eta \rho^+$ in Table V, $1/\sqrt{6}$ should be replaced by $1/\sqrt{3}$. The corrected lines in Table V are shown below:

Meson	Decay mode	Representation	B [4] (%)	p* (MeV)	<i>A</i>
D^0	$\eta \omega$	$-\frac{1}{\sqrt{6}}(2C_V'+C_{P'}+E_{P'}+E_{V'})$	0.221 ± 0.023	648.1	1.07 ± 0.11
	$\eta\phi$	$\frac{1}{\sqrt{3}}(C_{P}'-E_{P}'-E_{V}')$	0.014 ± 0.005	488.8	0.41 ± 0.15
D^+	$\eta \rho^+$	$\frac{1}{\sqrt{3}}(A_V' + A_P' + 2C_V' + T_P')$	< 0.7	656	

- (4) In Table VI, the second-largest contribution to χ^2 for the solution A5 comes from the decay $D^0 \to K^{*0} \bar{K}^0$, not a D^+ mode.
- (5) The corrections to Table V lead to the following corrected lines in Table VII:

Meson	PV decay mode	Experimental \mathcal{B} (%)	Predicted \mathcal{B} (%)	
	·	•	Solution A1	Solution A2
$\overline{D^0}$	ηω	0.221 ± 0.023	0.33 ± 0.02	0.30 ± 0.02
	$\eta\phi$	0.014 ± 0.005	0.040 ± 0.004	0.059 ± 0.004
D^+	ηho^+	< 0.7	0.0035 ± 0.0079	0.011 ± 0.026

(6) With the inclusion of the branching fractions for $D^0 \to \eta \omega$ and $D^0 \to \eta \phi$, the solution A1 is favored over A2. Both solutions overestimate $\mathcal{B}(D^0 \to \eta \phi)$, but A1 predicts this branching fraction to be $(4.0 \pm 0.4) \times 10^{-4}$ while A2 predicts it to be $(5.9 \pm 0.4) \times 10^{-4}$.

This work was supported in part by the United States Department of Energy through Grant No. DE FG02 90ER40560.

- [1] B. Bhattacharya and J. L. Rosner, Phys. Rev. D 79, 034016 (2009).
- [2] H.-Y. Cheng and C.-W. Chiang, Phys. Rev. D 81, 074021 (2010).
- [3] R. Kass (BABAR Collaboration), presented at EPS2009, Krakow, Poland, http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=84.
- [4] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008), and partial 2009 update for the 2010 edition.