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There are quasiconformal theories, like the minimal and ultraminimal technicolor models, which may

break dynamically the gauge symmetry of the standard model and at the same time are compatible with

electroweak precision data. The main characteristic of this type of models is their fermionic content in one

or more higher dimensional representations; therefore it is not immediately known which model leads to

the most attractive channel or the minimum vacuum energy state. We discuss the effective potential for

composite operators for these models, verifying that their vacuum energy values are different, with the

ultraminimal model having a deeper minimum of energy.
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The nature of the Higgs boson is one of the most
important problems in particle physics, and there are
many questions that may be answered in the near future
by the LHC experiments, such as the following: Is the
Higgs boson, if it exists at all, elementary or composite,
and what are the symmetries behind the Higgs mechanism?
The possibility that the Higgs boson is a composite state
instead of an elementary one is more akin to the phenome-
non of spontaneous symmetry breaking that originated
from the effective Ginzburg-Landau Lagrangian, which
can be derived from the microscopic BCS theory of super-
conductivity describing the electron-hole interaction (or
the composite state in our case). This dynamical origin of
the spontaneous symmetry breaking has been discussed
with the use of many models, the technicolor (TC) model
being the most popular one [1].

Unfortunately we do not know the dynamics that form
the scalar bound state, which should play the role of the
Higgs boson in the standard model symmetry breaking.
Most of the models for the spontaneous symmetry breaking
of the standard model based on the composite Higgs boson
system depend on specific assumptions about the dynamics
responsible for the bound state formation [2], and the work
in this area tries to find the TC dynamics dealing with the
particle content of the theory, in order to obtain a techni-
fermion self-energy that does not lead to phenomenologi-
cal problems as in the scheme known as walking
technicolor [3]. These are theories where the incompati-
bility with the experimental data has been solved, making
the new strong interaction almost conformal and changing
appreciably its dynamical behavior. We can obtain an al-
most conformal TC theory, when the fermions are in the
fundamental representation, introducing a large number of
TC fermions (nF), leading to an almost zero� function and
flat asymptotic coupling constant. The cost of such a
procedure may be a large S parameter [4] incompatible
with the high precision electroweak measurements.

TC models with fermions in other representations than
the fundamental one, as happen in the minimal [5] (MWT)
and ultraminimal [6] (UMT) TC models, are possible
viable models without conflict with the known value for
the measured S parameter, which may be calculated as-
suming valid the perturbative expressions for such a pa-
rameter. These models have some phenomenological
differences [7], although their fermionic content is not
totally different and it is possible to have even more
extensions of this type of models [8]. They also have a
different number of composite scalar particles as well as
different couplings among themselves [9].
There is a striking difference between models based on

fundamental or composite scalar bosons. In the case of a
fundamental scalar boson we just have a scalar potential
with a mass and coupling constant conveniently adjustable
to provide the correct gauge symmetry breaking of the
standard model. In the case of a composite scalar we do
have a gauge theory at some energy scale with some
fermionic content, and everything should be calculable in
terms of these quantities, although, due to the nonpertur-
bative aspects of the symmetry breaking, it is much more
difficult to obtain precise evaluations of the physical pa-
rameters. In this work we will investigate another charac-
teristic of these models, which is the value of the state of
minimum energy (the most attractive channel), i.e. to dis-
cover which model leads to the tightest bound states. This
type of information can be obtained with the use of an
effective potential for composite operators [10], and this is
a more involved quantity to compute when the theory has
fermions in several (and higher dimensional) representa-
tions, because it is not just a matter of comparing Casimir
operator eigenvalues as is usually performed for a gauge
group with a unique fermionic representation.
In the sequence we introduce the minimal and ultra-

minimal TC models, discuss the fermionic self-energies
solutions for these models, and compute the vacuum en-
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ergy with these solutions. We also use a standard walking
(WT) theory (by ‘‘standard’’ we mean a theory with fer-
mions only in the fundamental representation) to compare
the different minima of energy of these quasiconformal
theories. The MWT model is based on a SUð2Þ gauge
group with two adjoint fermions [5]

Qa
L ¼ Ua

Da

� �
L
; Ua

R; Da
R; a ¼ 1; 2; 3; (1)

where a is the SUð2Þ adjoint color index and the left-
handed fields correspond to three [SUð2ÞL] weak doublets.
The UMT model is based on a two colors group with two
fundamental Dirac flavors SUð2ÞL �Uð1ÞY charged, de-
scribed by [6]

TL ¼ U
D

� �
L
; UR; DR; (2)

and also two adjoint Weyl fermions indicated by �f with
f ¼ 1, 2, where these fermions are singlets under
SUð2ÞL �Uð1ÞY .

The near conformal behavior for these models can be
observed looking at the zero of the two-loop �ðg2Þ func-
tion, which is given by�ðgÞ ¼ ��0

g3

ð4�Þ2 � �1
g5

ð4�Þ4 , where
�0 ¼ ð4�Þ2b ¼ 11

3 C2ðGÞ � 4
3TðRÞnFðRÞ and �1 ¼

½343 C2
2ðGÞ � 20

3 C2ðGÞTðRÞnF � 4C2ðRÞTðRÞnF�, where

C2ðRÞI ¼ Ta
RT

a
R, C2ðRÞdðRÞ ¼ TðRÞdðGÞ, dðRÞ is the di-

mension of the representation R, and G indicates the
adjoint representation. It is interesting to compare the
leading term of the � function for the different models
(indicated, respectively, by bmi and bum, while the one of a
simple walking TC theory is denoted by bw). In the case of
an SUð2Þ gauge group with 8 Dirac fermions we have bw ¼
2=16�2, while in the minimal walking model we obtain the
same coefficient with only 2 fermions (bw ¼ bmi). The
main difference among these models appears when we
compute the S parameter whose perturbative expression
(in the massless limit) is

S ¼ 1

6�

nF
2
dðRÞ: (3)

The data require the value of the S parameter to be less than
about 0.3. According to the ‘‘naive’’ perturbative estimate
of Eq. (3) this requirement is indeed met for MWT (and
also for UMT). Early models, with fermions only in the
fundamental representation, needed a quite large nF to
have a walking behavior, giving a perturbative estimate
of S in contradiction with data. Sannino and collaborators
have extensively advocated the advantage of working with
higher dimensional fermionic representations. In Refs. [5–
7,11,12] walking TC models are introduced with the ad-
vantage of a small number of technifermions and in con-
formity with high precision standard model data.

In Ref. [13] we introduced a very general ansatz for the
technifermion self-energy that interpolates between all
known forms of technifermionic self-energy. As we vary

one parameter (�) in our ansatz for the technifermionic
self-energy, we go from the standard operator product
expansion (OPE) behavior of the self-energy to the one
predicted by the extreme limit of a walking technicolor
dynamics. The form of this ansatz is reproduced below:

�Aðp2Þ ��TC

�
�2

TC

p2

�
�½1þ a lnðp2=�2

TCÞ���: (4)

In this expression the standard OPE behavior for �ðp2Þ is
obtained when � ! 1, whereas the extreme walking tech-
nicolor solution is obtained when � ! 0. We identify a �
bg2TC, � � �TC cosð��Þ with �TC ¼ � ¼ 3c=16�2b, and
c is the quadratic Casimir operator given by c ¼ 1

2 �½C2ðR1Þ þ C2ðR1Þ � C2ðR3Þ�. C2ðRiÞ are the Casimir op-
erators for technifermions in the representations R1 and R2

that condensate in the representation R3, and b is the
coefficient of the g3 term in the technicolor �ðgÞ function.
The TC scale (�TC) is related to the technicolor con-

densate by h �c c iTC � �3
TC, and we can describe the TC

scale in terms of measurable quantities and of group theo-
retical factors of the strong interaction responsible for
forming the composite scalar boson. In the extreme limit
of a walking technicolor dynamics we expect to have [14]

�TC ¼ v

�
8�2að2�� 1Þ

NTCnF

�
1=2

; (5)

where v� 246 GeV is the standard model vacuum expec-
tation value (VEV).
The effective potential for composite operators is given

by the following expression [10]:

VðS;DÞ ¼ �{
Z d4p

ð2�Þ4 TrðlnS�1
0 S� S�1

0 Sþ 1Þ

þ V2ðS;DÞ; (6)

where S and D are the complete propagators of fermions
and gauge bosons and S0, D0, are the corresponding bare
propagators. The function V2ðS;DÞ is the sum of two-
particle irreducible vacuum diagrams, which, in the lead-
ing Hartree-Fock approximation, is depicted in Fig. 1.
V2ðS;DÞ can be represented analytically by

{V2ðS;DÞ ¼ �1
2 Trð�S�SDÞ; (7)

where, for simplicity, we have not written the gauge and
Lorentz indices, as well as the momentum integrals, and
we represent the fermion proper vertex by �.
We want to determine the VEVobtained with the fermi-

onic self-energy that is given by Eq. (4), when � � 0, for

FIG. 1. Leading order contribution to V2ðS;DÞ.
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the MWT, UMT, and WT models. However, it is better to
compute the vacuum energy density, which is given by the
effective potential calculated at minimum subtracted by its
perturbative part, which does not contribute to dynamical
mass generation [10,15]

h�i ¼ VminðS;DÞ � VminðSp;DpÞ; (8)

where we indicate in the expression above the perturbative
counterparts of S and D, respectively, by Sp and Dp.

VminðS;DÞ is obtained substituting Eq. (4) into Eq. (6),
assuming � � 0. The complete fermion propagator S is
related to the free propagator by the equation S�1 ¼ S�1

0 �
�, with S0 ¼ {=p6 , and in the chiral limit Sp ¼ S0. We

chose to work in the Landau gauge for simplicity, and after
going to Euclidean space, we find that �min � h�i and is
equal to [15]

�min ¼ �2NTCnF
Z d4p

ð2�Þ4
�
ln

�
p2 þ�2

p2

�
� �2

p2 þ �2

�
:

(9)

We can still expand �min in powers of �2=p2 so that

�min � �NTCnF
Z d4p

ð2�Þ4
�4

p4
: (10)

To obtain an analytical formula for the vacuum energy

density, we will make the substitution x ! p2

�2
TC

in Eqs. (4)

and (10) and use the following Mellin transform [16]:

½1þ � lnx��� ¼ 1

�ð�Þ
Z 1

0
d�e��ðxÞ������1 (11)

that will simplify considerably the calculation. In this
Mellin transform we identified � ¼ a and � ¼ 4�. Then,
after we substitute Eq. (4) into (10) and perform the
integration, we obtain for � � 0 [13]

�min ¼ � �4
TC

16�2a

NTCnF
ð4�� 1Þ

�
1� 4�

a

1

ð4�� 2Þ
þOð�2Þ . . .

�
: (12)

In Table I we show the values of the coefficients a ¼
bg2TC and �i, for technifermions in the fundamental repre-

sentation (i ¼ F) or adjoint (i ¼ G), obtained for the
MWT model and for a conventional WT model based on
SUð2ÞTC.

In the case of the UMT model we cannot apply straight-
forwardly Eq. (5), because in this case we have two scalar
composite bosons that appear as mixed states formed by
fermions in the fundamental and adjoint representation. In
this model only the lightest composite boson, which is
mostly formed by technifermions in the fundamental rep-
resentation, is the one that couples to the particles of the
standard model. The UMT gap equation has two contribu-
tions, one with a Casimir operator for fermions in the
fundamental representation and another with a different
Casimir operator for fermions in the adjoint representation,
while it is the same � function that governs the running of
the coupling in the two contributions.
It is opportune to remember that the gap equation leads

to different chiral symmetry breaking scales when the
fermions are in different representations; this has been
observed, for instance, in QCD with quarks in the adjoint
representation [17], where the chiral transition may be
slightly different from the confinement transition, which
coincides with the chiral one for fermions in the funda-
mental representation. We can expect that the masses and
composite scalar wave functions will show a mixing but
with scales quite close to the TC scale (�TC), and therefore
in the case of the UMT model we can suppose that
�TCðUMTÞ � �TCðMWTÞ; with this approximation (i.e.
we assume the same scales for the different models) we
sum the contributions of the two different representations
of the UMT model in order to compute Eq. (12).
It is also possible to relate the TC scale associated with

the standard walking TC model [�TCðWTÞ] with the scale
of the minimal model considering Eq. (5), which scales
with the term between brackets,

�TCðWTÞ
�TCðMWTÞ

¼ ðað2��1Þ
nF

Þ1=2WT

ðað2��1Þ
nF

Þ1=2MWT

: (13)

Based on the above relation we can compute Eq. (12) for
all models considering only a single scale [�TCðWTÞ], and
we can define for SUð2ÞTC the following quantity:

�ð�minÞ � 8�2�min

�4
TCðWTÞ

: (14)

The value of Eq. (14) is plotted in Fig. 2 as a function of
the � parameter. In this figure the solid line corresponds to
�ð�minÞ obtained for the standard walking TC model, the
dashed line represents the corresponding result for the
MWT model, whereas the dot-dashed line is the result
obtained for the UMT model.
We have seen that the walking behavior can be obtained

in many ways, for example, assuming a large number of
technifermions in the fundamental representation or con-
sidering a small number of technifermions in higher di-
mensional representations. In this work we consider three
different models that lead to the walking behavior and take
the same form for the technifermion self-energy. However,

TABLE I. Values for the coefficients a and � obtained for
MWT, UMT and WT models. In this table we denoted by nFðDÞ
and nFðWÞ respectively the number of Dirac and Weyl fermions.

Model a �F �G nFðDÞ nFðWÞ
WT 0.21 9

8 0 8 0

MWT 0.08 0 3 2 0

UMT 0.09 27
40

18
10 2 2
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analyzing Fig. 2 we verify that these three models have
different values for the vacuum energy density. This result
can be understood as follows, as in the case of QCD with
quarks in higher representations of SUð3Þc [18]: technifer-
mions in higher representations of SUð2ÞTC naturally in-

teract more strongly than conventional technifermions and
therefore lead to the deepest state of energy. These models
can lead to a similar phenomenology that in principle may
be tested at the LHC; therefore, it is interesting to consider
a criterion that could be used to select which of these
approaches may be the most promising to promote the
standard model symmetry breaking. Sannino and collabo-
rators have extensively advocated the advantage of work-
ing with higher dimensional fermionic representations; in
particular, in Refs. [5–7,11,12] are introduced the MWT
and UMT models with a small number of technifermions
and in conformity with high precision standard model data.
In this work we proposed a mechanism to select the most

probable walking technicolor dynamics assuming an en-
ergy criterion. We show that the ultraminimal walking TC
models lead to a lower value for the minimum of the
effective potential, or the formation of tightest bound
states, with the advantage of a small number of
technifermions.
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