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We compute masses, trilinear self-couplings, and decay widths into weak bosons of the scalar

composite bosons in the case of the minimal and ultraminimal technicolor models. The masses, computed

via the Bethe-Salpeter equation, turn out to be light, and the trilinear couplings smaller than the one that

would be expected when compared to a fundamental standard model scalar boson with the same mass.

The decay widths into electroweak bosons of the ultraminimal model scalars bosons are much smaller

than the one of the minimal model.
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I. INTRODUCTION

The understanding of the gauge electroweak symmetry
breaking mechanism is one of the most important problems
in particle physics at present. One of the explanations of
this mechanism is based on new strong interactions usually
named technicolor (TC). The early technicolor models [1]
suffered from problems like flavor changing neutral cur-
rents and contribution to the electroweak corrections not
compatible with the experimental data, as can be seen in
the reviews of Ref. [2]. However, the TC dynamics may be
quite different from the known strong interaction theory,
i.e. QCD, this fact has led to the walking TC proposal [3],
which are theories where the incompatibility with the
experimental data has been solved, making the new strong
interaction almost conformal and changing appreciably its
dynamical behavior. We can obtain an almost conformal
TC theory, when the fermions are in the fundamental
representation, introducing a large number of TC fermions
(nF), leading to an almost zero � function and flat asymp-
totic coupling constant. The cost of such procedure may be
a large S parameter [4] incompatible with the high preci-
sion electroweak measurements.

Recently, minimal (MWT) [5] and ultraminimal (UMT)
[6] TC models were proposed where the presence of TC
fermions in representations other than the fundamental one
led to viable models without conflict with the known value
for the measured S parameter. An effective Lagrangian
analysis indicates that such models also imply in a light
scalar Higgs boson [5–8]. This possibility was investigated
and confirmed by us through the use of an effective poten-
tial for composite operators [9] and through a calculation
involving the Bethe-Salpeter equation (BSE) for the scalar
state [10]. The BSE approach to compute the scalar masses
is a straightforward one, and our purpose in this paper is to
complement the studies of dynamical symmetry breaking
of Refs. [9,10] in the case of the specific minimal and
ultraminimal TC models. Moreover, in Refs. [9,11] we
also estimated the trilinear scalar self-coupling which

also could be measured in the case of light Higgs bosons
[12]. Our main result is a table where we indicate the scalar
masses, trilinear self-couplings, and decay widths into
electroweak bosons for these models which can be con-
fronted with the experiment in the case that a TC compos-
ite scalar boson is found at LHC.
This paper is organized as follows: In Sec. II we specify

the fermionic content and we obtain the fermionic
Schwinger-Dyson equations, or gap equation, for the mini-
mal and ultraminimal TC models. In Sec. III we compute
for these models masses, trilinear self-couplings, and de-
cay widths into weak bosons of the scalar composite
bosons. In Sec. IV we draw our conclusions.

II. FERMIONIC SCHWINGER-DYSON
EQUATIONS FOR THE MWTAND UMT MODELS

The minimal TC model is based on a SUð2Þ gauge group
with two adjoint fermions [5],

Qa
L ¼ Ua

Da

� �
L
; Ua

R; Da
R; a ¼ 1; 2; 3; (1)

where a is the SUð2Þ adjoint color index and the left-
handed fields correspond to three [SUð2ÞL] weak doublets.
The ultraminimal TC model is based on a two colors group
with two fundamental Dirac flavors SUð2ÞL �Uð1ÞY
charged described by [6]

TL ¼ U
D

� �
L
; UR; DR; (2)

and also two adjoint Weyl fermions indicated by �f with
f ¼ 1; 2, where these fermions are singlets under
SUð2ÞL �Uð1ÞY .
The near conformal behavior for these models can be

observed looking at the zero of the two-loop �ðg2Þ func-
tion, which is given by

�ðgÞ ¼ ��0

g3

ð4�Þ2 � �1

g5

ð4�Þ4 ; (3)
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where

�0 ¼ ð4�Þ2b ¼ 11

3
C2ðGÞ � 4

3
TðRÞnFðRÞ; (4)

and

�1 ¼
�
34

3
C2
2ðGÞ �

20

3
C2ðGÞTðRÞnF � 4C2ðRÞTðRÞnF

�
;

(5)

where C2ðRÞI ¼ Ta
RT

a
R, C2ðRÞdðRÞ ¼ TðRÞdðGÞ, dðRÞ is

the dimension of the representation R and G indicates the
adjoint representation. It is interesting to compare the
leading term of the � function for the different models
(indicated, respectively, by bmi and bum, while the one of a
simple walking TC theory is denoted by bw). In the case of
an SUð2Þ gauge group with eight Dirac fermions we have
bw ¼ 2=16�2. In the minimal walking model we obtain
the same coefficient with only two fermions (bw ¼ bmi).
The main difference among these models appears when we
compute the S parameter whose perturbative expression (in
the massless limit) is

S ¼ 1

6�

nF
2
dðRÞ: (6)

The data requires the value of the S parameter to be less
than about 0.3. According to the ‘‘naive’’ perturbative
estimate of Eq. (6), this requirement is indeed met for
MWT (and also for UMT). However, early models have
fermions only in the fundamental representation of SUð2Þ
or SUð3Þ. Then one needs quite a large nF to make the
theory walking, and therefore the perturbative estimate of
S contradicts with data.

The main difficulty in TC lies in the small knowledge
that we have about the chiral symmetry breaking pattern of
such strongly interacting theories. In the models that we
will discuss here, most of the information about the chiral
symmetry breaking comes from the use of effective theo-
ries [5,6] and the effective potential generated by them [8].
Another way to unravel the symmetry breaking pattern in
TC theories is through the effective potential for composite
operators as computed recently in Ref. [9]. It is also
possible to obtain information on the spectrum of TC
theories simply looking at the gap equations and their
possible solutions; this is the simplest approach and the
point of view to be followed here using some of the results
of Ref. [10]. Of course, all these attempts involve a rea-
sonable uncertainty typical of nonperturbative theories, but
the full set of results may be able to corner the main
characteristics of the broken TC theory, i.e. masses and
couplings.

In order to discuss masses and couplings, as performed
in Refs. [9,10], we need to know the solution of the
fermionic Schwinger-Dyson equations, or gap equation,
for the minimal and ultraminimal TC models. The two
basic parameters that define the gap equation are the �

function coefficients appearing in the coupling constant
and the Casimir operators resulting from the fermion-
gauge boson vertex. The gap equation, for fermions in
the representation R, can be written as

�ðkÞ ¼ 3C2ðRÞ
16�2

�
g2ðk2Þ
k2

Z k2

0

p2dp2�ðp2Þ
p2 þm2

þ
Z 1

k2

dp2g2ðp2Þ�ðp2Þ
p2 þm2

�
; (7)

where the coupling constant g2ðp2Þ behaves as

g2ðp2Þ ¼ g2ðm2Þ
1þ bg2ðm2Þ lnðp2

m2Þ
; (8)

and where m � �TC is the dynamical mass scale that is
assumed to be equal to the TC scale. The factor b in Eq. (8)
is the one that comes out from the full behavior of the �
function in Eqs. (3)–(5) (i.e., including all fermionic rep-
resentations). Equation (7) may not be the full equation
that reflects all the possible Schwinger-Dyson equation
(SDE) solutions. There are possible contributions that
may modify this equation. For instance, there may be
strong nonperturbative effects at short distances, generated
by extended technicolor or other new interactions, that may
produce effective four fermion interactions leading to a
behavior that we call ‘‘extreme walking,’’ which is the one

that reduces the anomalous dimension of the operator ���
to 1, and which has been termed as a Nambu-Jona-Lasinio
(NJL) limit. Unfortunately, it is nowadays known that the
gap equation cannot explain even the QCD’s chiral sym-
metry breaking (Ref. [13] discusses the importance of
confinement for this symmetry breaking). For example, if
we consider the most recent QCD lattice simulations lead-
ing to infrared finite gluon propagators, we certainly do not
obtain chiral symmetry breaking from the gap equation at
all. Taking this fact (finite gauge boson propagators) into
account when we consider TC theories, we observe that the
gauge boson mass scale erases the strength necessary for
the chiral symmetry breaking [14], and only in the NJL
limit can we obtain chiral symmetry breaking in the gap
equation for fermions in the fundamental representation. It
is also interesting to notice that dynamical gauge boson
masses also imply the existence of a nontrivial fixed point
[15], which may be in agreement to some extent with the
expected behavior of a ‘‘walking’’ theory, but all these
points are missing in all TC gap equation calculations.
Therefore our approach will be a phenomenological one,
and, in the sequence, when we discuss any solution for the
fermionic SDE we mean all possible solutions of Eq. (7)
with the addition of all possible corrections due to some
unknown dynamics. A quite general solution for Eq. (7) is
[9,16]

�ðpÞ ¼ m

�
m2

p2

�
�
�
1þ bg2 ln

�
p2

m2

����ð�Þ
; (9)
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where �ð�Þ ¼ � cosð��Þ and

� ¼ 3c

16�2b
:

c is the quadratic Casimir operator given by

c ¼ 1
2½C2ðR1Þ þ C2ðR2Þ � C2ðR3Þ�; (10)

where C2ðRiÞ, are the Casimir operators for fermions in the
representations R1 and R2 that form a composite boson in
the representation R3. If R1 ¼ R2 ¼ R and R3 is the singlet
state c is simply reduced to C2ðRÞ. The only restriction on
this solution is � > 1=2 [17]. This solution can be under-
stood as one ansatz that maps all possible behavior of the
gap equation as we vary �, since the standard operator
product expansion (OPE) behavior for �ðp2Þ is obtained
when � ! 1, whereas the ‘‘extreme walking’’ TC solution
is obtained when � ! 0. As explained at length in
Refs. [9,16] most of the calculations can be performed
with the expression of Eq. (9) and afterward we consider
the ‘‘extreme walking’’ (or NJL) limit � ¼ 0. Note that
this is the only possible solution that is naturally able to
reproduce the top quark mass [16]. In the minimal TC
model we have fermions in the adjoint representation and
R1 ¼ R2 ¼ G in Eq. (10), while in the ultraminimal TC
model the factor c, and consequently �, have to change in
order to consider the Casimir operators of the Dirac fer-
mions in the fundamental representation (cF) and the Weyl
fermions in the adjoint representation (cG), with conden-
sation occurring in the TC singlet channel.

III. THE SCALAR BOSON MASSES, TRILINEAR
COUPLINGS, AND DECAY WIDTHS IN THE MWT

AND UMT MODELS

In Ref. [10] we obtained the scalar boson mass in the
case of an ‘‘extreme walking’’ TC theory through a calcu-
lation based on the BSE, which is given by [see Eq. (26) of
Ref. [10] ]

M2ð0Þ
H � 4v2

�
8�2bg2ðmÞð2�� 1Þ

NTCnF

�
A; (11)

where

A ¼
�
1

4

bg2ðmÞð2�� 1Þ
ð1þ bg2ðmÞð2��1Þ

2 Þ
�

and v� 246 GeV is the standard model vacuum expecta-
tion value (vev) and we are considering a SUðNTCÞ group.
This equation depends only on the electroweak group vev
and on the group theoretical factors and number of fermion
flavors. Note that Eq. (11) indicates that the scalar masses
are lowered in quasiconformal gauge theories as a conse-
quence of the BSE normalization condition as discussed in
Ref. [10].

It is interesting to verify if extended technicolor (ETC)
can change our predictions for the scalar masses. ETC does

introduce some chiral symmetry breaking in the TC sector
(current technifermion masses mTC � 0), which may af-
fect strongly the technipion spectra (through Dashen’s

relation mTCh ��TC�TCi ¼ m2
�F

2
�) when we take into ac-

count specific details of the complete model. However, the
scalar masses in dynamical symmetry breaking models are
more related to the dynamical masses than to the current
technifermion mass, i.e.

MH � 2mTC
dynA:

This relation of the scalar mass with the dynamical one
(apart from the factor A) goes back to the work of Nambu
and Jona-Lasinio and was shown to work in QCD by
Delbourgo and Scadron [18]. The factor A takes into
account the normalization of the Bethe-Salpeter equation
that was neglected until recently [10]. We can therefore
assume that mTC

dyn is the full dynamical mass self-generated

by TC with the addition of a current mass generated
through ETC, i.e. the Schwinger-Dyson equation (SDE)
for the dynamical mass can be written as

�0ðk2Þ ¼ �TCðk2Þ þ ��ðk2Þ; (12)

where ��ðk2Þ denotes the ETC contribution to the TC
fermion mass, whose SDE can be approximated by

��ð0Þ � 3cETC�ETC

4��2
ETC

Z �2
ETC p2dp2�TCðp2Þ

p2 þ �2
TCðp2Þ : (13)

We have cut the integral at the asymptotic limit �2
ETC.

Assuming the extreme walking behavior, we can estimate
the behavior of ��ð0Þ, which will result in

��ð0Þ � 1

4

�ETCcETC
�TCcTC

m � 3

4�
�ETCcETCm; (14)

where m / �TCðp2 ! 0Þ. Also assuming the most attrac-
tive channel hypothesis (�TCcTC � �=3) and considering
that �ETC in general is a small number, we see that Eq. (14)
leads to a small correction for the scalar mass. As one
example we could refer to a model proposed by Appelquist
and Schrock [19], where the largest ETC contribution
comes from a third stage of symmetry breaking at one
scale (�ETC ¼ �3 ¼ 10 TeV) and with a coupling�ETC ¼
�3 ¼ 0:4. In this particular case the correction to the scalar
mass is quite small. We investigated other models and
in none of them are the corrections larger than 10%.
Therefore we can neglect ETC corrections to the scalar
mass when compared to the other uncertainties involved in
this problem.
The scalar composite coupling to the ordinary quarks is

determined through Ward identities as discussed in
Refs. [11,20]

{�Hff / �{
gW�ðkÞ
2MW

; (15)

where gW and MW are, respectively, the weak coupling
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constant and gauge boson mass. A formal demonstration of
how such coupling is found can be seen in the papers of
Ref. [21].

With the help of Eq. (15) we can compute the trilinear
self-coupling which is giving by the diagram of Fig. 1. This
diagram is dominated by the heaviest ordinary fermion (the
top quark) and no contribution comes out from the TC
quarks, as discussed in Ref. [9], where the following
coupling was obtained:

�ð0Þ
3H � 9g3W

32�2

mt

bg2ð4�� 1Þ
�
mt

MW

�
3

�
�
1� 4�

bg2ð4�� 2Þ þ � � �
�
; (16)

where mt is the top quark mass.
The decay width into electroweak gauge bosons was

calculated in the second paper of Ref. [10] and, in the
SUð2Þ linear sigma model approximation, is given by

�H!WW � 3m3

4F2
�

; (17)

where the relation m3=F2
� can be written in terms of the

electroweak group vev, the group theoretical factors and
the number of fermion flavors [9,10].

All the above expressions were obtained assuming the
most attractive channel hypothesis (cg2=4� � 1) and that
the technifermions are in a unique representation. They
cannot be applied straightforwardly for the ultraminimal
TC model, because in this case we have two scalar com-
posite bosons, that may appear as mixed states formed by
fermions in the fundamental and adjoint representations.
For instance, the ultraminimal gap equation has two con-
tributions, one with a Casimir operator for fermions in the
fundamental representation and another with a different
Casimir operator for fermions in the adjoint representation,
while it is the same � function that governs the running of
the coupling in the two contributions. It is opportune to
remember that the gap equation lead to different chiral
symmetry breaking scales when the fermions are in differ-
ent representations; this has been observed, for instance, in

QCD with quarks in the adjoint representation [13], where
the chiral transition may be slightly different from the
confinement transition, which coincides with the chiral
one for fermions in the fundamental representation. We
expect that the masses and composite scalar wave func-
tions will show a mixing but with scales quite close to the
TC scale (�TC). The expression for the decay width into
electroweak bosons must also be modified because the
decay is proportional only to the scalar wave function
formed by TC fermions in the fundamental representation,
once the technifermions in the adjoint representation are
singlets under the electroweak group. The scalar bosons
will mix among themselves and quite probably with scalars
formed by technigluons. The determination of the mixing
angle in a problem with two composite (or more) strongly
interacting bosons is a quite difficult problem and it will
not be considered here.
We shall make use of a trick based on the behavior of the

Bethe-Salpeter scalar wave function to estimate the mag-
nitude of masses and decay widths of the ultraminimal
scalar bosons. The Bethe-Salpeter wave function for the
scalar composite boson in the limit that the internal mo-
mentum q� ! 0 can be expressed by

�ðpÞ ¼ SðpÞ�5

�ðpÞ
F�

SðpÞ; (18)

where SðpÞ is the fermion propagator. In this limit this
equation is known to have the same solution as the fermi-
onic self-energy, is dependent on the � function coeffi-
cients and the Casimir operators in the anomalous
dimension, and it is possible to verify that the 0þ wave
functions formed by fermions in the fundamental and
adjoint representation, as happens in the ultraminimal
model, scale with the Casimir operator and, at leading
order, can be related as

�ðpÞF �
�ðcFÞ�F

ðcGÞ�G

�
�ðpÞG; (19)

where �ðpÞi, with i ¼ F;G, indicates the 0þ scalar wave
function formed by TC fermions in the fundamental (i ¼
F) or adjoint (i ¼ G) representation. Equation (19) relates
the Bethe-Salpeter wave function for fermions in different
representations of the same gauge group. The Bethe-
Salpeter equation (BSE) in the ladder approximation for
the scalar (or pseudoscalar) channel is formally identical to
the fermionic Schwinger-Dyson equation (SDE). In these
equations the interaction strength is proportional to the
Casimir operator (c), which is the only factor that is differ-
ent for the fundamental and adjoint representations in these
equations. The factor c will appear in front of the integral
equation, and, considering our ansatz in Eq. (9), it also
appears in the exponent �ð�Þ. For both representations we
will perform an integration (of the SDE or BSE) in the limit
� ! 0 and the result is less dependent numerically on the
factor c in the exponent than it depends on this factor that is

FIG. 1. Top quark (fermionic internal lines) contribution to the
trilinear composite (3H) Higgs boson coupling. The gray blobs
are proportional to the effective ttH coupling.
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in front of the integral, i.e. as a rough approximation we
can assume that for the same gauge group the different
wave functions scale with c, in such a way that we can
approximately obtain the fundamental wave function from
the adjoint one just changing the c factors.

We now make the strong assumption that the magnitude
of the condensates (or bound states) generated in the
minimal (mi) and ultraminimal (um) models at one scale
�TC and with fermions in the adjoint representation are the
same, as long as the gauge group is the same (no matter we
have Dirac or Weyl fermions), implying that we can expect
the following relation for the scalar wave functions:

�ðpÞGum � �ðpÞmi: (20)

With this and Eq. (19) we may write

�ðpÞFum �
�ðcFÞ�F

ðcGÞ�G

�
um
�ðpÞmi: (21)

The ultraminimal model has two composite scalar bo-
sons whose masses, in principle, would be given by
Eq. (11), one formed by TC fermions in the fundamental
representation and the other formed by technifermions in
the adjoint representation. We expect that the two scalar
masses are not far apart, but following our previous rea-
soning we will not compute them directly, but just say that
the masses generated in the ultraminimal model can also be
related to the one of the minimal model. Therefore, after
we consider Eq. (20) and the normalization condition of
the BSE we can estimate that the mass generated for the
composite boson formed by TC fermions in the adjoint
representation in the ultraminimal model, which we denote
by Mum

H1
, is approximately the mass generated for the

composite boson in the minimal model

Mum
H1

� Mmi
H ; (22)

where Mmi
H is determined from Eq. (11). The mass of the

composite boson formed by TC fermions in the fundamen-
tal representation can be obtained in a similar way.
Equation (21) allows us to obtain

Mum
H2

� Mmi
H

�ðcFÞ�F

ðcGÞ�G

�
um
; (23)

and in this case we indicate by Mum
H2

the mass of the H2

boson, which is the mass obtained by the lightest compos-
ite boson, which is the one that couples to the particles of
the standard model. Note that a factor ½ðcFÞ4�F=ðcGÞ4�G�um
should also be introduced in the calculation of �3H2

. The

origin of the 4th power in this factor can be understood
looking at Appendix B of [9], where we have shown that
�3H / �4 [see Eq. (B4) of that reference], resulting from
the couplings to the Bethe-Salpeter wave function in the
limit that the internal moment q ! 0, giving 3H � factors,
remembering that � / �, and an extra factor comes from
the fermion mass that runs in the loop of Fig. 1 (also

proportional to �), which leads to the scale factor
ðcFÞ4�F=ðcGÞ4�G that we discussed above.
Therefore, based on the fact that the scalar wave func-

tions are proportional to the Casimir operators, and that
fermions in the same gauge group and representation have
similar condensates, we were able to relate the minimal
model and the ultraminimal model and obtain information
on their scalar masses.
Equation (21) also leads to a simple determination of the

decay width of H2 into electroweak gauge bosons in the
case of the ultraminimal TC model. The decay width of the
scalar boson into electroweak gauge bosons comes from a
loop coupling the composite scalar boson to two gauge
bosons, but more precisely to the two scalar wave functions
of the (Goldstone) bosons absorbed by the electroweak
gauge bosons. If the scalar wave functions are related
through Eq. (21), we expect that the loop calculation
only changes due to the different wave function factors
that enter in the loop calculation. The decay width of the
light boson in the ultraminimal model will be reduced by a
factor proportional to a ratio of Casimir factors, and will be
given by

�um
H!WW � �mi

H!WW

�ðcFÞ4�F

ðcGÞ4�G

�
um
ð1�Oðbg2Þ � � �Þ: (24)

To obtain the decay width for the ultraminimal model, we
consider cF ¼ 3=4, cG ¼ 2 with �i ¼ ð3ciÞ=ð16�2bumÞ,
for i ¼ F;G. The scaling factor in Eq. (24) appears be-
cause �HWW / g2HWW and g2HWW / �4 [see Eq. (6) of the
first paper in Ref. [20] ]. The decay width will be decreased
considerably and only the composite boson formed by
nonsinglet technifermions under the electroweak group
contribute to the decay. The result of this calculation is in
Table I ( � 17 GeV). If the calculation of the H2 decay
width were performed with Eq. (17) the result would be
slightly different ( � 24 GeV), indicating that the hypoth-
eses about the scalar wave functions and mass relations are
quite reasonable.
Our results for the Higgs masses are in rough agreement

with previous estimates. For instance, Ref. [22] contains an
extensive discussion about the scalar masses. Different

TABLE I. Scalar composite masses, trilinear couplings, and
decay widths into electroweak bosons of the minimal and ultra-
minimal TC models. In the ultraminimal model we show only
the mass of the lightest Higgs (H2). For comparison we also
include the same values for an ordinary SUð2Þ walking theory
with eight Dirac fermions in the fundamental representation. The
H1 boson mass is approximately the same one of the minimal
model.

TC model MH (GeV) �3H (GeV) �H!WW (GeV)

Walking 142 19 � � �
Minimal 414 16 109

Ultraminimal (H2) 250 2.4 17

SCALAR BOSONS IN MINIMAL AND ULTRAMINIMAL . . . PHYSICAL REVIEW D 81, 095014 (2010)

095014-5



arguments about the light scalar masses in these types of
models can be found in Sec. IV of Ref. [23], and in
Appendix E of the second reference in [2]. Finally, a light
Higgs can help to unitarize pi-pi scattering in these models
(even though the Higgs contribution is not necessary) [24].
Our results for the scalar bosons masses, trilinear cou-
plings, and decay widths in the minimal and ultraminimal
TC models are displayed in Table I. For comparison we
also add the mass and coupling of an ordinary walking
SUð2ÞTC with eight Dirac fermions in the fundamental
representation. The trilinear self-coupling turns out to be
much smaller than the one that we could expect when
comparing with a fundamental standard model scalar bo-
son (where the coupling is � ¼ 3M2

H=v).

IV. CONCLUSIONS

To conclude, we presented a discussion about the scalar
composite masses, couplings, and decay widths in the case
of the minimal and ultraminimal TC models. To determine
the mass generated for the Higgs boson in these models, we
consider the BSE approach developed in Ref. [10] so that
we complement the results obtained in that work. We also
estimated the trilinear scalar self-coupling for these models
following the calculation of Ref. [9]. Our results are shown
in Table I. These light scalar bosons can be produced at the
LHC through the gluon-gluon fusion mechanism.
Although the isolated scalar production may be copious
due to the small scalar mass, the possibility to observe pair
production, which has a substantial contribution from the
trilinear coupling [12], is not so favored due to the small
values of this coupling when compared to the one of an
elementary scalar boson.

The composite scalars, being light, can also be produced
in association with aW=Z gauge boson and these channels

can be both enhanced and feature more distinct final state
distributions in walking technicolor models such as the
minimal and ultraminimal, as compared to the standard
model [25]. The ultraminimal model also includes decays
into uneaten Goldstone bosons leading to very interesting
invisible decays [26]. Note that our results were obtained
without considering the mixing of the scalars, which can,
in principle, be computed with the help of an effective
potential for composite operators, and this may still be
complicated by the mixing with scalars formed by techni-
gluons, which is a problem far from being solved even in
the QCD case.
The minimal and ultraminimal scalar masses are not so

different. This is not surprising because both models are
based in the SUð2Þ gauge group and most of the TC chiral
symmetry breaking is triggered by adjoint technifermions,
and the ultraminimal model contains an extra contribution
coming from TC fermions in the fundamental representa-
tion. The Higgs boson formed by TC fermions in the
fundamental representation is light and is the one that
couples to the electroweak gauge bosons. The decay width
into electroweak bosons in the ultraminimal model is quite
different of the width obtained from the minimal model,
because in the ultraminimal model the adjoint fermions are
singlets under the electroweak coupling and only the scalar
bound state that is formed with fundamental fermions
contributes to this decay.
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