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We perform a global Bayesian fit of the phenomenological minimal supersymmetric standard model

(pMSSM) to current indirect collider and dark matter data. The pMSSM contains the most relevant 25

weak-scale MSSM parameters, which are simultaneously fit using ‘‘nested sampling’’ Monte Carlo

techniques in more than 15 years of CPU time. We calculate the Bayesian evidence for the pMSSM and

constrain its parameters and observables in the context of two widely different, but reasonable, priors to

determine which inferences are robust. We make inferences about sparticle masses, the sign of the �

parameter, the amount of fine-tuning, dark matter properties, and the prospects for direct dark matter

detection without assuming a restrictive high-scale supersymmetry breaking model. We find the inferred

lightest CP-even Higgs boson mass as an example of an approximately prior-independent observable.

This analysis constitutes the first statistically convergent pMSSM global fit to all current data.
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I. INTRODUCTION

There is currently an expectation that with the start of
the Large Hadron Collider (LHC), high energy physics will
soon enter a new phase highly dominated by new data that
could imply physics beyond the standard model (SM).
Over the past years, low-energy supersymmetry (SUSY)
has become the standard approach to study the potential
physics beyond the SM, mostly because of its natural
power to address the hierarchy problem. The 124
Lagrangian parameters of the minimal supersymmetric
extension of the SM (for a recent review, see [1]) makes
its phenomenological study impractical. It may well be that
the mechanism that mediates SUSY breaking to the ob-
servable sector provides relations between many of these
parameters. Unfortunately, however, there are many differ-
ent mediation mechanisms in the literature, with no one
clearly preferred.

In order to extract computable information, many works
have reduced the number of parameters by truncating to a
handful of soft-breaking parameters at a high energy scale.
The remaining set of parameters are used as boundary
conditions for renormalization group equations (RGE),
which are run down to the weak scale. A large number of
minimal supersymmetric standard model (MSSM) based
studies have been carried out in the way described above.
Most of them were performed in the context of the con-
strained MSSM (CMSSM, also sometimes called
mSUGRA for minimal supergravity) setup, which have
only four independent non-SM parameters (and a sign

choice). Many groups have been pursuing a program to
fit this model and identify regions in parameter space that
might be of interest with the forthcoming LHC data. See,
for instance, [2–7]. Complete scans over up to eight free
parameters of CMSSM with a combined treatment of like-
lihoods from different experimental constraints were pos-
sible with Markov chain Monte Carlo (MCMC) sampling
techniques [5,8–14]. However, the truncation to a handful
of parameters in the CMSSM is at best a very strong
assumption, and most likely overrestrictive.
There are two directions that can be followed to properly

study low-energy supersymmetric models. The top-down
approach has been tried over the years by deriving the
otherwise free parameters from an ultraviolet extension
of the MSSM. Models of unification, different sources of
SUSY breaking, such as gravity and gauge mediation, and
classes of string compactifications [15–23] have been used
to provide high energy expressions for the soft-breaking
parameters. Soft SUSY-breaking terms can be computed at
energies as high as the grand unified theory (GUT) scale of
�1016 GeV, and renormalization group running to the TeV
scale allows contact to be made with potential quantities of
interest such as sparticle masses. Recent progress in mod-
uli stabilization in string theory has made this approach
more concrete and calculable with explicit results for some
classes of models. This is very encouraging but usually the
string derived models fill only a small subset of the full
CMSSM parameter space, which could make them impos-
sible to differentiate from the CMSSM. The proliferation
of SUSY-breaking mechanism setups mean that analyses
where only one is picked tend to be very specific, with a
rather limited range of applicability. It is desirable to side-
step such extreme model dependence with a different
approach.
Alternatively, one can use a bottom-up approach to low-

energy SUSY. In this case the soft-breaking parameters are
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considered at the SUSY scale without referring to their
high energy origin. All the parameters can in principle be
varied over the experimentally allowed range and com-
pared with potential observations at the LHC and other
experiments. It is a formidable task to consider all the
124 parameters, due mostly to computing limitations. An
interesting compromise is the phenomenological MSSM
(pMSSM) [24], which we consider here. In this model, the
number of free parameters is 20 soft-breaking parameters
(and a�1 parameter) plus 5 SM ones, and they are selected
by the requirements of consistency with unobserved flavor
changing and CP violating processes. However, even this
simplified version of the MSSM requires a lot of computer
power to be analyzed in and details. The ability of future
collider measurements to constrain the pMSSM has been
estimated using MCMC methods in Refs. [25,26].

At present, SUSY forecasts for the LHC necessarily
contain large uncertainties. In particular, there is a strong
model dependence on the mechanism for SUSY breaking.
Realistic predictions need guidance from direct and precise
(collider and other related) experimental data. Inter-
estingly, the converse is also very important: the experi-
ments need unbiased phenomenological guidance about
the expected nature or properties of SUSY. This is what
we aim to accomplish, eventually.

The purpose of this article is to perform a global fit of the
pMSSM and make SUSY forecasts for collider and dark
matter search experiments using Bayesian statistics meth-
ods. For given prior probability and likelihood densities,
Bayes’ theorem provides the way to extract the posterior
probability density for the parameters. It can also be used
for model comparison when enough data are available.
This formalism has been used in many fields of science,
including cosmology (see [27,28] for recent reviews).
MCMC and related techniques have recently begun to be
used to perform Bayesian inference on supersymmetric
models. The increasing access to large scale computing
power and improved methods of calculation are making
these techniques more manageable with time, and we have
been able to tackle the relevant parameters of the pMSSM.

The complete and simultaneous scan of the 25 parame-
ters and a sign1 for the pMSSM construction was per-
formed using the MULTINEST program [29,30]. At the
heart of the algorithm is the nested sampling technique
[31] that revolutionized computational Bayesian inference
by prioritizing a computation of the Bayesian evidence
rather than solely on computing the posterior probability
distribution function (PDF) of model parameters (although
the latter is obtained at no additional cost), as is the case in
traditional Monte Carlo algorithms (e.g. MCMC method).
We will review the nested sampling method in the

Appendix. In simple terms, similar to the MCMC method,
nested sampling is an iterative Monte Carlo method that,
starting with a relatively small number of points (a few
thousand in our case), it produces a list of a large number of
points (107–108 in our case) ordered in increasing like-
lihood. We used it here because it computes both the
evidence and the posterior PDF, as opposed to traditional
MCMC methods, which calculate only the posterior PDFs.
Further, the MULTINEST algorithm is efficient in handling
complicated problems with multimodal/degenerate poste-
rior distributions.
We emphasize that the current situation with no direct

sparticle measurement data yet from LHC makes the issue
of prior dependence critical. For this reason, it is expected
that extraction of prior-independent information of our
analysis will be difficult. Interestingly, however, we find
some results with approximate prior independence. In
order to illustrate the issue of prior dependence of results,
we consider priors that are flat in the parameters them-
selves (‘‘linear’’) and flat in the logarithm of the parame-
ters (‘‘log’’) priors. As is usual in Bayesian statistics, prior
dependence should not be understood as a drawback but as
a positive feature that can be used to determine when
enough data are available to unambiguously make infer-
ences. It is expected that, if SUSY is discovered, the
addition of LHC sparticle mass data will relax any prior
dependence, and so an analysis along the lines of ours
could be used to extract prior-independent information.
The amount of work related to this project required very

efficient algorithms and access to high performance com-
puting. We used the University of Cambridge supercom-
puters: COSMOS from the Department of Applied
Mathematics and Theoretical Physics (DAMTP) and the
Darwin cluster from the High Performance Computing
Service (HPC). The final run was made in terms of 60
twelve-hour jobs, each corresponding to a cluster of 128
CPUs on HPC, and 40 eight-hour jobs, each corresponding
to a cluster of 64 CPUs, on COSMOS (making a total of
more than 15-year standard CPU time). Some results of
complete and independent (from the one we present here)
runs with fewer experimental constraints were presented
by one of us (S. S. A) at the SUSY 2008 conference and
reported in Ref. [32]. While we were upgrading our analy-
sis, a study of randomly scanned pMSSM points appeared
[33], similar in philosophy to Ref. [4]. In the conclusions,
we contrast the aims and methodologies of our work with
these.
In order to make a self-contained presentation, we

briefly describe Bayesian inference and relevant terminol-
ogies in Sec. II. We construct the elements needed for
inference in the context of the pMSSM in Sec. III. The
experimental constraints or observables used are described
in Sec. III B. The sampling procedure and the different
high energy physics software used to predict the observ-
ables are presented in Sec. III D. In Secs. IV and V we

1Where we refer to 25 parameters, we shall really mean 25
continuously varying parameters plus the one discrete sign
choice.
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analyze our results and then conclude. In the Appendix we
briefly review the nested sampling method and how the
MULTINEST program works.

II. BAYESIAN INFERENCE

Bayesian inference fits and plays an important role in the
scientific process of data collection and modeling. It par-
ticularly deals with the steps that involve model fitting to
data and the technique of assigning preferences to alter-
native models (model comparison). This subject is very
important especially with the imminent start of the LHC
experiments. Here we will give a short review of the basics
of Bayesian statistics that are useful in our work.

A. Bayes’ theorem

Consider a given model or hypothesis H (we shall take
H to be the pMSSM) defined by some set of parameters (in
our case, 25 parameters) �. We wish to know the PDF
Pð�jD; HÞ of the parameters � given the data D and the
model setup H. Pð�jD; HÞ, being the parameters’ PDF
after confrontation with data, is called the posterior PDF.
The likelihood, PðDj�; HÞ � Lð�Þ, is a measure of how
well a model point � predicts data set D. In order to
calculate the posterior from the likelihood, one must assign
some prior PDF to the parameters Pð�jHÞ � �ð�Þ to
parametrize our uncertainty in them before the model is
confronted with data. Bayes’ theorem then describes how
one may obtain the posterior from the other two PDFs and
a normalization constant PðDjHÞ � Z, the Bayesian evi-
dence for the model in light of the data:

Pð�jD; HÞ ¼ PðDj�; HÞPð�jHÞ
PðDjHÞ � Lð�Þ�ð�Þ

Z
: (2.1)

The Bayesian evidence is given by

Z ¼
Z

Lð�Þ�ð�ÞdN�: (2.2)

Here N is the dimensionality of the parameter space; N ¼
25 for the pMSSM. Since the Bayesian evidence does not
depend on the parameter values �, it is usually ignored in
parameter estimation problems, and posterior inferences
are obtained by exploring the unnormalized posterior using
standard MCMC sampling methods. However, the evi-
dence plays a central role in our discussion.

A useful feature of Bayesian parameter estimation is that
one can easily obtain the posterior PDF of any function f of
the model parameters �. Since

PðfjDÞ ¼
Z

Pðf;�jDÞd� ¼
Z

Pðfj�;DÞPð�jDÞd�

¼
Z

�ðfð�Þ � fÞPð�jDÞd�; (2.3)

where the probability chain rule is employed for the second
equality and � is the Dirac delta function, one simply needs
to compute fð�Þ for every Monte Carlo sample and the
resulting sample will be drawn from PðfjDÞ. We make use
of this feature in Secs. IV and V where we present the
posterior probability PDFs of various observables used in
the analysis of the pMSSM.
Before proceeding to discuss prior distributions, we first

briefly address2 the difference between the Bayesian and
the frequentist approaches to inference. Bayesian inference
(using Bayes’ theorem) is a robust technique for updating
prior knowledge or belief based on new data. It is unlike
the frequentist approach where observations are viewed as
random draws from some pool of possible observations
such that the probability of an observation is the frequency
observed with a large number of repeated measurements.
Frequentists usually focus on the likelihood and argue that
the Bayesian approach is too subjective because of the use
of priors. Bayesians reply that when many examine fre-
quentist statistics, they are actually implicitly using priors
anyway. If one thinks of a region of parameter space with
the lowest chi-squared values as being more likely than a
region of parameter space with much higher chi-squared
values, one is implicitly using some vague prior. The two
approaches are asking different questions. Bayesians ask,
‘‘how likely is a given parameter value given the data?’’,
while frequentists ask, ‘‘how probable are the data, given
certain parameters?’’ In situations where the data are very
informative, the two approaches give the same results. We
are interested in PDFs of parameters and so we use
Bayesian statistics. By comparing results from different
but reasonable priors, we obtain an estimate of how robust
an inference is given current data.

B. Priors

The prior probability of the model parameters is a PDF
that gives a subjective measure of our initial knowledge or
ignorance about the values of the parameters of the model
before the data are taken. Symmetries and physical obser-
vations or expectations are usually a good guide to which
priors to take. Information theory also provides a way of
selecting priors by favoring those that maximize the en-
tropy of the distributions. Some commonly used prior
PDFs Pð�jHÞ are the following:

Pð�jHÞ / const� the linear prior, flat in � (2.4)

Pð�jHÞ / 1

�
� the Jeffreys prior, flat in logð�Þ (2.5)

Pð�jHÞ / e�ð�� ��Þ2=2�2 � the Gaussian prior: (2.6)

The linear priors are often used for translational (like time

2We follow the description in: http://www.dsg.port.ac.uk/
valiviitaj/Lectures2006/CrittendenCMB2003.pdf
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and location) parameters, where there is no information to
suggest that one value is preferred over others. The Jeffreys
prior, also referred to as logarithmic (log) prior, is uniform
in the logarithm of the parameter. These two priors are
improper since they diverge when integrated over an infi-
nite range. Our log and linear priors will be bounded by the
requirements of perturbativity of the model, by passing
previous direct sparticle search constraints, and by the
requirement of not too large fine-tuning in the Higgs
potential parameters. These three criteria are sufficient to
bound all 20 non-SM input parameters to a finite range.
The Gaussian prior, on the other hand, is proper and
integrable but requires previous experimental knowledge

on � and ��. This is indeed the case for our five SM input
parameters, and we use Gaussian priors for them (see
Sec. III A).

Assuming the parameters are independent, the resultant
prior is obtained by the product of all the prior probability
densities for each of the individual parameters. For in-
stance, in the case of pMSSM with 25 parameters,
�1; �2; . . . ; �25,

Pð�jHÞ � �ð�Þ ¼ Y25
i¼1

�ð�iÞ: (2.7)

For our construction and analysis we are going to choose a
linear prior measure for the pMSSM parameters described
in Sec. III A. This is because there is no observational
evidence that hints of giving preference to some parameter
region over others. We are going to determine bounds on
the parameters from the fact that the parameter values have
to be not far away from the TeV scale in order to avoid the
little hierarchy problem. We are going to call such case or
scenario the linear prior. We then check the dependence of
the results in our analysis of prior change by performing
another analysis with a log prior. When we refer to a log
prior, in fact, the Jeffreys prior is used only for all parame-
ters that have only positive bounds. Parameters that are
allowed to take either sign present a problem with Jeffreys
priors since the prior diverges at the origin. Therefore, the
priors of such parameters are always taken to be linear.

For parameter estimation, the priors become irrelevant
once the data employed are powerful enough. This is al-
ready in evidence by comparing Bayesian CMSSM fits
[34] with those in similar supersymmetric models that
have a lower number of free parameters, for example, the
large volume string compactification (LVS) scenario [23].
The LVS scenario has two less free parameters than the
CMSSM, and current indirect data are already enough to
make the result approximately prior independent. We may
expect the addition of two precise, constraining, nonde-
generate measurements (such as sparticle mass measure-
ments from the LHC) to have the same effect upon the
CMSSM.

For model comparison, the dependence on priors always
remains (although with more informative data the degree

of dependence on the priors is expected to decrease; see
e.g. [27]). Indeed this explicit dependence on priors is one
of the most attractive features of Bayesian model selection.
References [13,35] identified prior distributions in high-
scale CMSSM Lagrangian parameters. In particular, a
Jacobian was defined to transform between derived pa-
rameters (such as tan�) and more fundamental
Lagrangian parameters from which they are derived. It is
not our purpose here to find the ‘‘most natural’’ prior
because any such choice is necessarily subjective.
Instead, we shall check the robustness of any inference
under a reasonable variation of the priors. Such a check is
especially required in model comparison hypothesis tests,
which may be particularly sensitive to the particular choice
of prior and its associated metric in parameter space [36].

C. Model comparison

In order to evaluate and rank two alternative models H0

and H1 in the light of data D, one needs to compare their
respective posterior probabilities given the observed data
set D, as follows3: use Bayes’ theorem to relate the plau-
sibility of H1 given the data, PðH1jDÞ, to the predictions
made by the model about the data, PðDjH1Þ, and the prior
plausibility of H1, PðH1Þ. With this procedure one could
construct the following probability ratio:

PðH1jDÞ
PðH0jDÞ

¼ PðDjH1ÞPðH1Þ
PðDjH0ÞPðH0Þ ¼

Z1

Z0

PðH1Þ
PðH0Þ : (2.8)

PðH1Þ=PðH0Þ is the prior probability ratio for the two
models, it measures how much our initial beliefs favor
H1 over H2. It is often set to unity but may occasionally
require further consideration. The other ratio,
PðDjH1Þ=PðDjH0Þ, measures how well the observed data
were predicted byH1 andH0. It can be seen from (2.8) that
the Bayesian evidence takes the center stage in Bayesian
model comparison. This technique was applied in [34] to
compare two CMSSM models: signð�Þ> 0 versus
signð�Þ< 0. We shall perform a similar comparison for
the pMSSM in Sec. IVC. The comparison of different
GUT scale SUSY-breaking models is also interesting [38].
The natural logarithm of the ratio of posterior model

probabilities provides a useful guide to what constitutes a
significant difference between two models:

log�E ¼ log

�
PðH1jDÞ
PðH0jDÞ

�
¼ log

�
Z1

Z0

PðH1Þ
PðH0Þ

�
: (2.9)

In Table I we summarize the conventions we use in this
paper to separate between different levels of evidence.

3Here we follow the description by [37].
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III. THE PMSSM

The MSSM Lagrangian has the form L ¼ LSUSY þ
Lsoft whereLSUSY contains all of the kinetic terms, gauge,
and Yukawa interactions while preserving SUSY invari-
ance. It is based on the gauge group G ¼ SUð3Þc �
SUð2ÞL �Uð1ÞY and superpotential W, constructed with
a particle content in the following chiral superfields shown
with their corresponding G charges:

L: ð1; 2;�1
2Þ; �E: ð1; 1; 1Þ; Q: ð3; 2; 16Þ;

�U: ð3; 1; 23Þ; �D: ð3; 1;�1
3Þ; H1: ð1; 2;�1

2Þ;
H2: ð1; 2; 12Þ:

(3.1)

The superpotential is given by

W ¼ �ab½ðYEÞijLb
i H

a
1
�Ej þ ðYDÞijQbx

i Ha
1
�Djx

þ ðYUÞijQax
i Hb

2
�Ujx þ�Ha

2H
b
1 �: (3.2)

Here we use the convention in [39] and denote the SUð3Þ
color index of the fundamental representation by x, y ¼ 1,
2, 3; the SUð2ÞL fundamental representation indices by a,
b ¼ 1, 2; and the generation indices by i, j ¼ 1, 2, 3. �ab ¼
�ab is the totally antisymmetric tensor, with �12 ¼ 1.

The soft SUSY-breaking part of the Lagrangian consists
of different mass and coupling terms:

L soft ¼ Lgauginos þLsfermions þLtrilinear þLHiggs; (3.3)

where the part including the SUSY-breaking sfermion
masses is

�Lsfermion ¼ ~Q�
ixaðm2

~Q
Þij ~Qxa

j þ ~L�
iaðm2

~L
Þij ~La

j

þ ~uxi ðm2
~uÞij~u�jx þ ~dxi ðm2

~d
Þij ~d�jx þ ~eiðm2

~eÞij~e�j :
(3.4)

Each mass parameter in Eq. (3.4) is a 3� 3 Hermitian
matrix in generation space.

�LHiggs ¼ m2
H1
H�

1aH
a
1 þm2

H2
H�

2aH
a
2

þ �abðm2
3H

a
2H

b
1 þ H:c:Þ (3.5)

gives the SUSY-breaking Higgs masses and bilinear cou-
pling terms. The SUSY-breaking scalar trilinear couplings
are

�Ltrilinear ¼ �ab½ ~Qxa
iL
ðUAÞij~u�jxRHb

2 þ ~Qxb
iL
ðDAÞij ~d�jxRHa

1

þ ~Lb
iL
ðEAÞij~e�jRHa

1 � þ H:c:; (3.6)

where fields with a tilde represent the scalar components of
the corresponding capital letter superfield and the soft
SUSY-breaking A terms, each a complex 3� 3 matrix in
generation space, are defined (no summation on i, j is
inferred) as

ðAU;D;EÞij ¼ ðUA;DA; EAÞij=ðYU;D;EÞij: (3.7)

Finally, writing the bino as ~b, ~wA¼1;2;3 as the
unbroken-SUð2ÞL gauginos and ~gX¼1;...;8 as the gluinos,
then the gaugino-mass part of the Lagrangian is

�Lgaugino ¼ 1

2

�
M1

~b ~bþM2

X3
A¼1

~wA ~wA

þM3

X8
X¼1

~gX~gX þ H:c:

�
: (3.8)

The parameters together make a total of 105 free parame-
ters in Lsoft, before rephasing and Higgs potential minimi-
zation [24,40,41]. In the CMSSM, the SUSY-breaking
scalar masses, the gaugino masses, and trilinear couplings
are collapsed to the flavor independent parameters m0,
M1=2, and A0, respectively, at grand unification scales

MGUT � 2� 1016 GeV. m2
3 and j�j are related to the

Z-boson mass mZ through Higgs potential minimization
conditions. signð�Þ ¼ � and tan�, the ratio of the Higgs
vacuum expectation values (vevs), remain as free parame-
ters. However, in this paper we instead explore the parame-
ters at the weak scale in its phenomenologically most
relevant directions and following Ref. [42] call the setup
the pMSSM. In Sec. III Awe describe how the 25 parame-
ters in the pMSSM setup are derived from the much larger
parameter space of the parent MSSM.

A. Parameters

Sources of CP violation in the MSSM are tightly con-
strained by experimental limits on the electron and neutron
electric dipole moments and from results on the K-meson
system experiments. Assuming that the MSSM soft SUSY-
breaking parameters are real is consistent with such tight
bounds; indeed significant departures from this assumption
usually require a specific cancellation or suppression
mechanism in order to pass the constraints. To suppress
flavor changing neutral current processes, all off-diagonal
elements in the sfermions masses and trilinear couplings
are set to zero and the first and second generation soft terms
are set to be equal. At, Ab, and A� may all change the
likelihood significantly, and we also include Ae ¼ A� be-

cause it is relevant for the computation of the anomalous
magnetic moment of the muon [43]. We set Au ¼ Ac ¼
Ad ¼ As ¼ 0 since these are proportional to the SM
Yukawa couplings, which are very tiny, and so they will

TABLE I. The scale we use for the interpretation of model
probabilities. Here the log represents the natural logarithm.

j log�Ej Odds, Z1=Z0 Probability Remark

<1:0 & 3:1 <0:750 Inconclusive

1.0 �3:1 0.750 Weak evidence

2.5 �12:1 0.923 Moderate evidence

5.0 �150:1 0.993 Strong evidence
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have negligible effect on the likelihood. All the other tri-
linear couplings are set to zero. Our Higgs-sector parame-
ters are specified by ðm2

H1
; m2

H2
Þ, and as discussed above,

we must add tan� and signð�Þ to the list of parameters.
All of the parameters mentioned so far are purely non-

SM. However, some of the SM parameters significantly
affect the likelihood. The relevant SM parameters include

the electromagnetic coupling constant 	emðmZÞMS and the

strong coupling constant 	sðmZÞMS. The values of these
two couplings are taken at the Z-boson pole mass mZ

energy scale evaluated in the MS renormalization scheme.
The tau lepton mass andGF, the Fermi constant, have been
so precisely determined that their uncertainty has negli-
gible error on the likelihood, and so they are fixed at their
global average values: m� ¼ 1:777 GeV and GF ¼
1:166 37� 10�5 GeV�2 [44]. The top and bottom quark
masses are not as precisely known and can have significant
effects on predictions of supersymmetric models. They are
therefore included as parameters with, using the experi-
mental measurements of their central values and uncertain-
ties, Gaussian priors. Despite the fact that the Z-boson
mass, mZ, is precisely determined, we include its uncer-
tainty because one of the observables used for the analysis
(the total decay width of the Z-boson �Z) is proportional to

m3
Z and the pMSSM predicted values can fall outside the

expected experimentally determined range with a sigma
variation in mZ. So adding the SM parameters,

�SM ¼ fmZ;mt;mbðmbÞMS; 	emðmZÞMS; 	sðmZÞMSg;
(3.9)

makes a total of 25 continuously varying parameters in the
pMSSM. These are listed together with their ranges or
Gaussian prior distributions in Table II. These pMSSM
directions make up its parameter space. Our aim is to
eventually construct a detailed map of the parameter space
that could be a help to or a guide for collider and other
SUSY-related experiments. In Sec. III B we briefly de-
scribe the observables considered and summarize the ex-
perimental constraints coming from each.

B. Observables and experimental constraints

The SM fits high precision electroweak data well [46].
However, on the one hand, there are some observables
whose SM predicted values significantly differ from the
corresponding experimental indications. The discrepancies
could be explained by the direct or indirect presence of
supersymmetric particles (or sparticles) in the interactions.
On the other hand, the very precise agreement between the

TABLE II. The 25 parameters of the pMSSM model. The first 20 non-SM parameters are
listed with their corresponding prior range. Gaussian priors are used for the SM parameters,
which are the last five listed, along with their central values and standard deviations.

Parameter Description Prior range

M1 Bino mass [� 4 TeV, 4 TeV]

M2 Wino mass [� 4 TeV, 4 TeV]

M3 Gluino mass [� 4 TeV, 4 TeV]

m~eL ¼ m ~�L
1st/2nd generation LL slepton [100 GeV, 4 TeV]

m~�L 3rd generation LL slepton [100 GeV, 4 TeV]

m~eR ¼ m ~�R
1st/2nd generation ER slepton [100 GeV, 4 TeV]

m~�R 3rd generation ER slepton [100 GeV, 4 TeV]

m~uL ¼ m~dL
¼ m~cL ¼ m~sL 1st/2nd generation QL squark [100 GeV, 4 TeV]

m~tL ¼ m~bL
3rd generation QL squark [100 GeV, 4 TeV]

m~uR ¼ m~cR 1st/2nd generation UR squark [100 GeV, 4 TeV]

m~tR 3rd generation UR squark [100 GeV, 4 TeV]

m~dR
¼ m~sR 1st/2nd generation DR squark [100 GeV, 4 TeV]

m~bR
3rd generation DR squark [100 GeV, 4 TeV]

At Trilinear coupling for top quark [� 8 TeV, 8 TeV]

Ab Trilinear coupling for b quark [� 8 TeV, 8 TeV]

A� Trilinear coupling for � quark [� 8 TeV, 8 TeV]

Ae ¼ A� Trilinear coupling for � quark [� 8 TeV, 8 TeV]

mH1
Up-type Higgs doublet mass [� 4 TeV, 4 TeV]

mH2
Down-type Higgs doublet mass [� 4 TeV, 4 TeV]

tan� Scalar doublets vevs ratio [2, 60]

mt Top quark mass [45] 172:6� 1:4
mZ Z-boson mass 91:187� 0:021
mbðmbÞMS b-quark mass 4:20� 0:07
1=	emðmZÞMS [44] Electromagnetic coupling constant 127:918� 0:018
	sðmZÞMS Strong coupling constant 0:117� 0:002
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SM prediction and the experimentally determined values
of some other set of observables could be altered by the
presence of non-SM particles. The absence of any signifi-
cant such deviation puts tight constraints on possible new
physics beyond the SM (SUSY in our case); see, for
instance, [47,48], and references therein. The values of
the sparticle masses affect these tendencies. For instance,
the effect of sparticles in loop corrections to electroweak
physics observables (EWPO) decouple if their masses are
much heavier than mZ (300 GeV and above according to
Ref. [49]). Lighter sparticles with masses just above cur-
rent experimental limits will contribute to the discrepancy
between some experimentally determined electroweak
quantities and their corresponding SM predictions—hence
the preference for low-energy (weak-scale) SUSY in ac-
counting for such differences.

For the pMSSM setup we use observables and con-
straints from high precision collider measurements that
are sensitive to effects of new physics via virtual loops.
These include five EWPO: the W-boson mass, mW , the

effective leptonic weak mixing angle, sin2�lepeff , the total

Z-boson decay width, �Z, the anomalous magnetic mo-
ment of the muon, ðg� 2Þ�, and the mass of the lightest

MSSM Higgs boson, mh; five B-physics observables:
branching ratios BRðB ! Xs
Þ, BRðBs ! �þ��Þ,
BRðBu� ! ���Þ, BRðBu ! K�
Þ, and the Bs mass-
mixing parameter�MBs

; and the cosmological observable,

dark matter relic density from WMAP5 results. We next
briefly describe each of these physical observables and
state the corresponding experimental constraints. We first
discuss constraints from EWPO and end the section with
discussion of sparticle mass limits.

(i) W-boson mass, mW : The CDF Run II electroweak
public results cited the W-boson mass measurement
as the single most precise measurement to date and
quotes [50]

mW ¼ ð80:399� 0:025Þ GeV: (3.10)

Theoretically the mass can be calculated from

mW ¼ �	emffiffiffi
2

p
GFð1�m2

W=m
2
ZÞð1��rÞ ; (3.11)

where 	em is the fine structure constant at the mZ

renormalization energy scale, GF is the Fermi weak
coupling constant, and �r includes all radiative cor-
rections to the mass (see e.g. [51,52], and references
therein). The high precision in this measured quan-
tity constrains any radiative corrections from new
physics effects. The experimental precision is very
high to the extent that measurements can be sensitive
even to two-loop effects involving sparticles. We
include a theoretical uncertainty of 10 MeV on mW

by adding it in quadrature with the experimental
uncertainty. We use SUSYPOPE [53,54] to calculate
the W-boson mass mW and the other EWPO. The

most complete available SM two-loop corrections
and the dominant results for two-loop SUSY correc-
tions as implemented in SUSYPOPE currently give
the most accurate predictions within the MSSM.

(ii) Z-boson decay width, �Z: The partial Z-boson de-
cay width in the massless fermion limit (m2

f=m
2
Z !

0) is given by [55]

�Z!f �f ¼ Nf
c
GFm

3
Z

6
ffiffiffi
2

p
�
�QCDð �gðfÞ2v þ �gðfÞ2a Þ þ�ew=QCD;

(3.12)

where �gv;a are the neutral weak coupling constants

modified to include electroweak (EW) radiative
effects, �QCD parameterizes the QCD corrections,

and �ew=QCD includes some nonfactorizable EW

contributions. The color factor Nf
c is 1 for leptons

and 3 for quarks. The current experimental value for
the total decay width is [50]

�Z ¼ ð2:4952� 0:0023Þ GeV: (3.13)

Theoretically

�Z ¼ �l þ �h þ �inv; (3.14)

where �l;h are the decay widths into SM leptons and

quarks. �inv is for the decays into invisible particles
(neutrinos and possibly, if they are light enough,
neutralinos). Supersymmetric contributions enter
via virtual corrections to the partial decay widths
into leptons and quarks.

(iii) Effective mixing angle, sin2�
lep
eff : The effective elec-

troweak mixing angle depends only on the ratio of
the effective weak couplings

Re ðgv=gaÞ ¼ 1� 4sin2�
lep
eff (3.15)

for the vertex that couples the Z boson and leptons l

in the Lagrangian: il
�ðgv � ga
5ÞZ�l. It is de-

termined from various asymmetry measurements
around the Z-boson peak from eþe� colliders after
removing QED effects [56]. We use the experimen-
tal estimate corresponding to the flavor inclusive
forward-backward asymmetry [50]

sin 2�lepeff ¼ 0:2324� 0:0012: (3.16)

(iv) Z-pole asymmetry parameters from eþe� ! f �f
processes: The results from the LEP and SLC
eþe� colliders on Z-boson properties (its mass,
partial and total widths, and couplings to fermion
pairs) are in good agreement with the SM predic-
tions [56]. The precision is high enough to probe
loop-level predictions where both SM and beyond
the SM corrections are absorbed into effective cou-
pling constants. The LEP data consist of hadronic
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and leptonic cross sections, leptonic forward-
backward asymmetries, � polarization asymme-
tries, b �b and c �c partial widths, and forward-
backward asymmetries. The Z-boson parameters
derived from the data that we employ for our analy-
sis include the ratios Rl (which we assume to be the
average of Re, R�, and R�), Rb, and Rc. These are

defined as

Rb ¼ �ðZ ! b �bÞ
�ðZ ! hadronsÞ ;

Rc ¼ �ðZ ! c �cÞ
�ðZ ! hadronsÞ ;

Rl ¼ �ðZ ! lþl�Þ
�ðZ ! hadronsÞ

(3.17)

and are constrained to be

Rb ¼ 0:216 29� 0:000 66;

Rc ¼ 0:1721� 0:0030; and

Rl ¼ 20:767� 0:025:

The Z boson interacts with fermions through a
mixture of vector and axial-vector couplings. This
makes the strength of the interaction between left-
and right-handed fermions unequal and leads to the
production of polarized Z bosons at the eþe� col-
liders. As a result, there are measurable asymme-
tries (such as a forward-backward asymmetry) in
the angular distributions of the final-state fermions
f �f. The forward-backward asymmetry is related to
the probability that the �f travels in the same (for-
ward) or opposite (backward) direction to the inci-
dent e� direction and is quantified by

AFB ¼ �F � �B

�F þ �B

; (3.18)

where �F ð�BÞ is the cross section in the forward
(backward) directions. In terms of the effective
vector and axial-vector neutral current couplings,
gVf and gAf, respectively, other Z-pole asymme-

tries are

A0;f
FB ¼ 3

4
AeAf; Af � 2gVfgAf

g2Vf þ g2Af
: (3.19)

Here Af gives a measure of the asymmetry for the
different possible final-state fermions. At LEP the

Z-pole forward-backward asymmetries A0;b
FB and

A0;c
FB were precisely measured for the final states

b �b and c �c, respectively. We impose A0;b
FB ¼

0:0992� 0:0016 and A0;c
FB ¼ 0:0707� 0:0035 for

our analysis.

Using polarized beams, the Stanford Large
Detector experiment made a direct and precise
measurement of the parameter Ae from the left-
right asymmetry

ALR ¼ �L � �R

�L þ �R

; (3.20)

where �L and �R are the eþ e� production cross
sections for Z bosons produced with left- and right-
handed electrons, respectively. The same parame-
ter, Ae, is also indirectly constrained by LEP experi-
ments. Using the measurements of Ae, the
parameters A�, A�, Ab, and Ac can then be inferred
from AFB measurements at LEP. Hence, the LEP
and SLC results form a complete set of the Af

parameter measurements. The asymmetry parame-
ter constraints we use are Ab ¼ 0:923� 0:020,
Ac ¼ 0:670� 0:027, and Al ¼ 0:1513� 0:0021 ¼
Ae.

(v) Muon anomalous magnetic moment, �a�: The

world average for the muon anomalous magnetic
moment as determined from eþe� !
hadrons-based experiment at Brookhaven [57] is
a
exp
� � 1

2 ðg � 2Þ� ¼ 1 165 920:80 � 0:63 � 10�9.

Other results from experiments based on the � lep-
ton decay to hadrons [58–60] differ slightly, and we
are not using those here.4 The experimental results
are around 3� deviation from the SM prediction
[62] aSM� ¼ 1 165 917:85� 0:61� 10�9 giving

�a� ¼ a
exp
� � aSM� ¼ 29:5� 8:8� 10�10: (3.21)

SUSY is a good new physics candidate that can
explain this deviation. For sparticles all of mass
MSUSY, their contribution to a� is of order [63]

aSUSY� � 13� 10�10

�
100 GeV

MSUSY

�
tan� signð�Þ:

(3.22)

We use micrOMEGAs [64–67] to predict a�, cor-

recting it with ��, which includes contributions

from the dominant QED-logarithmic piece, some
dominant two-loop corrections [61], and the re-
cently computed tan�-enhanced term (see [68],
and references therein)

aSUSY� ¼ aSUSY;1L�

�
1� 4	

�
log

MSUSY

m�

��
1

1þ ��

�
þ 2-loop terms: (3.23)

For our analysis we add in quadrature a theoretical

4See [61] for a recent review.
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error of 2:0� 10�10 to the 8:8� 10�10 error above
and use the average value �a� ¼ ð30:2� 9:2Þ �
10�10.
�a� is somewhat smaller if one uses it from � lepton

decay rather than eþe� experiments to infer the
hadronic contributions [69]. With � data, there is
still a 1:9� discrepancy between the SM prediction
and the measured value of ðg� 2Þ�. We expect the

sparticles involved (particularly the smuons, light
charginos, and neutralinos) to therefore be slightly
heavier on average if one used the � data instead.
However, we do not expect a large change if we
instead used the � data to extract a�.

(vi) Lightest Higgs boson mass, mh: The SM Higgs
mass is constrained to mh 	 114:4 GeV by LEP
direct search experiment (see e.g. [70], and refer-
ences therein). The predicted Higgs mass can be
parametrized by ghZZ=g

SM
hZZ, the ratio of the MSSM

Higgs coupling to two neutral Z bosons to the
equivalent SM coupling. In the MSSM
ghZZ=g

SM
hZZ ¼ sin2ð�� 	Þ, so we use the above

LEP mass limit for sin2ð�� 	Þ> 0:95 and use
the MSSM Higgs mass limit mh 	 89:7 for
sin2ð�� 	Þ< 0:95.

(vii) Branching ratio (B ! Xs
): The experimental
value of the decay rate of the flavor changing
process B ! Xs
 agrees to high precision with
the SM prediction. This stringently constrains
new physics models that may contribute to the
process. For SUSY the leading contributions
come from loops with charged Higgs bosons (these
interfere constructively with the SM contributions)
and charginos. Loops with neutralinos are small
(see, for instance, [71]). A recent theoretical esti-
mate for the SM contribution to the branching ratio
of B ! Xs
, which we call BRðb ! s
Þ at next-
to-next-to leading order (NNLO) in QCD, is
BRðb ! s
ÞSM ¼ ð3:28� 0:23Þ � 10�4 [72–75],
where a 1.6 GeV lower energy cut is applied to
the photon. The central value is �1� lower than a
world-average experimental value from the Heavy
Flavor Averaging Group (HFAG) [76]5:

BRðB ! Xs
Þexp ¼ ð3:55� 0:22þ0:09
�0:10 � 0:03Þ

� 10�4: (3.24)

The values predicted for this observable at differ-
ent parameter points are constrained by combining
in quadrature the experimental and SM prediction
errors:

BR ðB ! Xs
Þexp ¼ ð3:55� 0:42Þ � 10�4:

(3.25)

The branching ratio therefore constrains non-SM
contributions. We use SUPERISO2.0 [77] to predict
the MSSM plus SM branching ratio.6

(viii) Branching ratio (Bs ! �þ��): The branching
fraction for the flavor changing process Bs !
�þ�� is predicted to be ð3:42� 0:54Þ � 10�9

within the SM [79]. In the MSSM, interactions
involving neutral Higgs bosons can enhance the
branching fraction by several orders of magnitude
at high tan�. The branching ratio is experimen-
tally bounded from above by recent CDF II re-
sults, implying

BR ðBs ! �þ��Þ< 5:8� 10�8 (3.26)

at 95% C.L. [80]. We apply a continuous like-
lihood constraint derived from CDF II data upon
the MSSM prediction [81]. The resulting penalty
is shown in Fig. 1.

(ix) Bs- �Bs mass difference,�MBs
: The neutral B-meson

oscillates between particle and antiparticle states
via flavor changing processes. The frequency of
oscillation is proportional to the mass difference
�MBs

. It has been measured to be ð�MBs
Þexp ¼

17:77� 0:12 ps�1 [82]. Its SM prediction can be
obtained from an overall unitarity triangle fit:
ð�MBs

ÞSM ¼ 20:9� 2:6 ps�1 [83]. We use the ra-

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-8 -7.8 -7.6 -7.4 -7.2 -7

ln
(L

)

log10[BR(Bs->µ+µ-)]

FIG. 1 (color online). Likelihood penalty on the predicted
value of BRðBs ! �þ��Þ.

5We note that the most recent central value has shifted slightly
to 3.52: this small change would leave no significant imprint on
our fits.

6The program SusyBSG [78] now contains a more accurate
prediction of this branching ratio to two loops in MSSM pa-
rameters. It could lead to an estimated shift in the predicted
branching ratio of 0:13� 10�4, which may be considered to be
included within our estimate of theoretical error.
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tio of the experimental constraint to the SM pre-
diction,

R
exp
�MBs

¼ ð�MBs
Þexp

ð�MBs
ÞSM ¼ 0:85� 0:11; (3.27)

to constrain the predicted frequencies. Our pMSSM
predicted values are based on the results in [84],
and references therein:

RMSSM
�MBs

¼ ð�MBs
ÞMSSM

ð�MBs
ÞSM

¼ 1� 64�sin2�w
	emM

2
AS0ðm2

t =m
2
WÞ

� mbð�bÞmsð�bÞð�Y tan2�Þ2
½1þ ð�0 þ �YÞ tan��2½1þ �0 tan��2

;

(3.28)

where mb;s are the bottom- and strange-quark

masses evaluated at the MS scale �b ¼ mb;

�0 ¼ � 2	s�

3�m~g

H2

�m2
~qL

m2
~g

;
m2

~dR

m2
~g

�
;

�Y ¼ � Aty
2
t

16�2�
H2

�m2
~qL

�2
;
m2

~uR

�2

� (3.29)

are the effective couplings that parameterize the
correction to the down-type Yukawa couplings,

H2ðx; yÞ ¼ x logx

ð1� xÞðx� yÞ þ
y logy

ð1� yÞðy� xÞ ;
(3.30)

� is the supersymmetric Higgs mass terms and At is
the trilinear soft-breaking term involving the stops.
S0 is given by

S0ðxÞ ¼ 4x� 11x2 þ x3

4ð1� xÞ2 � 3x3 logx

2ð1� xÞ3 :

(x) Branching ratio (Bu ! ��): The purely leptonic
decay Bu� ! ��� proceeds via the annihilation of
b and �u quarks into W�. The SM prediction for the
branching ratio of the process is given by

BRðBu ! ��ÞSM ¼G2
FmBm

2
�

8�

�
1�m2

�

m2
B

�
2
f2BjVubj2�B;

(3.31)

where mB and m� are the B meson and � pole
masses, respectively, and �B is the B�-meson life-
time. For the SM prediction we use the average
of the result from unitarity triangle fits [BRðBu !
��Þ ¼ 0:85� 0:14� 10�4] and the result obtained

from the experimental determination of Vub and

fB
ffiffiffiffiffiffiffiffi
BBd

p
[BRðBu ! ��Þ ¼ 1:39� 0:44� 10�4]7

adding the errors in quadrature to

BR ðBu ! ��ÞSM ¼ 1:12� 0:46� 10�4: (3.32)

For the experimental constraint upon the branching
ratio, we use the average of the Belle and BABAR
experiments, adding their errors in quadrature:

BR ðBu ! ��Þexp ¼ 1:41� 0:43� 10�4: (3.33)

Equations (3.32) and (3.33) are then used to form the
constraint

Rexp
B�� ¼ BRðBu ! ��Þexp

BRðBu ! ��ÞSM ¼ 1:26� 0:41: (3.34)

For the pMSSM predictions we follow [48] and
predict

RMSSM
B�� ¼ BRðBu ! ��ÞMSSM

BRðBu ! ��ÞSM
¼

�
1�

�m2
Bu

m2
H�

�
tan2�

1þ �0 tan�

�
2
; (3.35)

where �0 is the effective coupling defined in
Eq. (3.29), mBu

is the B-meson mass, and mH� is

the charged Higgs boson mass.
(xi) �0�: B ! K�
 Isospin asymmetry: Isospin sym-

metry predicts the amplitudes for the decays �B0 !
�K�0
 and B� ! K��
 to be equal at leading order
in perturbation theory. Isospin-breaking effects in
the process B ! K�
 [85] may therefore provide a
sensitive probe of physics beyond the SM. The
isospin asymmetry for the exclusive process B !
K�
 is defined as

�0� ¼ �ð �B0 ! �K�0
Þ � �ðB� ! K��
Þ
�ð �B0 ! �K�0
Þ þ �ðB� ! K��
Þ :

(3.36)

The world-average experimental value is [44]

�0� ¼ 0:0375� 0:0289: (3.37)

In order to fit this, we use the MSSM prediction
from SuperIso2:0 [77], which contains the
available next-to-leading-order (NLO) contribu-
tions to �0�, including the complete supersymmet-
ric QCD corrections to Wilson coefficient
operators. It also includes some partial NNLO SM
QCD corrections.

(xii) Dark matter relic density: The Wilkinson
Microwave Anisotropy Probe (WMAP) fits to a
cosmological constant plus cold dark matter model

7See ‘‘New Constraints from B and K Rare Decays’’ at http://
www.utfit.org/.
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(�CDM) imply a dark matter relic density of
�DMh

2 ¼ 0:1143� 0:0034, where h is the re-
duced Hubble constant [86]. We assume R parity,
resulting in a stable lightest supersymmetric parti-
cle (LSP). The neutralino, ~�0

1, LSP then has the

correct properties to make up the cold dark matter,
being massive, stable, and neutral, and we con-
strain the prediction of its relic density to lie on the
WMAP5 central value, but inflate the uncertainties
with an assumed error on the theoretical predic-
tion:

�DMh
2 ¼ 0:1143� 0:02: (3.38)

We summarize the experimental constraints used
in our fits in Table III, listing the relevant refer-
ences with each.

C. Direct search mass limits

The absence of sparticle or Higgs boson production at
current collider searches for supersymmetric particles puts
lower bounds on their possible masses [44]. We veto any
pMSSM points that violate the limits. The limits are de-
rived from various experiments that usually a priori as-
sume the validity of a chosen model (usually the CMSSM).
Where possible, we use more appropriate model indepen-
dent limits upon sparticle masses coming from searches.
SUSY particles may be pair produced at colliders that have
sufficient energy, then undergo subsequent decay into SM
particles and neutralino LSP. Hard jets or leptons associ-
ated with missing energy coming from the neutralino then
constitute SUSY direct search signatures. Constraints on

sparticle of mass m are often dependent upon the mass
difference �m ¼ m�mLSP, which is correlated with the
energy of visible sparticle decay products [24,98]. The
sparticle mass limits derived then depend on this energy,
depending upon whether �m is low (5–10 GeV) or higher.
The mass limits we impose on the sparticles and the light-
est Higgs boson are summarized in Table IV [44].
A recent random scan study of the pMSSM [33] found

that a CDF/D0 bound [99,100] was quite restrictive on
their pMSSM parameter-space random sample points
when the relic density constraint was applied only as an
upper bound (i.e. allowing for additional extra-MSSM
sources of dark matter). The bound states that, for m~��

1
�

m~�0
1

 50 MeV, m~��

1
	 206jU1wj2 þ 171jU1hj2 GeV at

95% confidence level. Here jU1wj and jU1hj are the Wino
and Higgsino content of the lightest chargino, respectively.
We did not use this bound in our MULTINEST sampling
procedure, but we have checked retrospectively that it
would not have significantly changed our fits since only
less than 1% of the posterior probability density fails this
constraint.

D. Sampling procedure

In this section we summarize the Bayesian inference
elements (briefly reviewed in Sec. II) for the pMSSM
and the sampling procedure we employ for fitting it to
the indirect collider and cosmological data. All of the
pMSSM parameters, �, listed in Table II, are varied simul-
taneously, our calculation being driven by MULTINEST and
the high energy physics software mentioned in the follow-
ing paragraphs. MULTINEST is described in the Appendix.

TABLE III. Summary of constraints on predictions.
Theoretical uncertainties have been added in quadrature to the
experimental uncertainties quoted.

Observable Constraint Th. source Ex. source

mW [GeV] 80:399� 0:027 [54] [87]

�Z [GeV] 2:4952� 0:0025 [53] [56]

sin2�
lep
eff 0:2324� 0:0012 [54] [56]

�a� ð30:2� 9:0Þ � 10�10 [88–91] [57,58,60]

R0
l 20:767� 0:025 [53] [56]

R0
b 0:216 29� 0:000 66 [53] [56]

R0
c 0:1721� 0:0030 [53] [56]

Ab
FB 0:0992� 0:0016 [53] [56]

Ac
FB 0:0707� 0:035 [53] [56]

Al ¼ Ae 0:1513� 0:0021 [53] [56]

Ab 0:923� 0:020 [53] [56]

Ac 0:670� 0:027 [53] [56]

BrðB ! Xs
Þ ð3:55� 0:42Þ � 10�4 [72–74,92] [76]

BrðBs ! �þ��Þ see Fig. 1 [64–67] [80]

R�MBs
0:85� 0:11 [83] [82]

RBrðBu!��Þ 1:26� 0:41 [84,93,94] [95–97]

�0� 0:0375� 0:0289 [77] [44]

�CDMh
2 0:11� 0:02 [64–67] [86]

TABLE IV. The lower bounds applied to MSSM particle
masses.

Condition Sparticle mass Lower bound/GeV

sin2ð	� �Þ> 0:95 mh 114

sin2ð	� �Þ 
 0:95 mh 89.7

m~�1 �m~�0
1
> 10 GeV m~�1 87

m~�1 �m~�0
1

 10 GeV m~�1 73

m~eR �m~�0
1
> 10 GeV m~eR 100

m~eR �m~�0
1

 10 GeV m~eR 73

m ~�R
�m~�0

1
> 10 GeV m ~�R

95

m ~�R
�m~�0

1

 10 GeV m ~�R

73

m~�e
�m~�0

1
> 10 GeV m~�e

94

m~�e
�m~�0

1

 10 GeV m~�e

43

m~��
> 300 GeV m~��

1
43

m~��

 300 GeV m~��

1
92.4

� � � m~�0
1

50

m~t �m~�0
1
> 10 GeV m~t 95

m~t �m~�0
1

 10 GeV m~t 65

m~t �m~�0
1
> 10 GeV m~b 95

m~t �m~�0
1

 10 GeV m~b 59

� � � m~q 318

� � � m~g 195
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Each point is passed in SUSY Les Houches Accord
(SLHA) format [101] to the different particle physics soft-
ware we use to predict the observables described in
Sec. III B. For each set of parameters MULTINEST selects,
the following steps are followed:

(1) The (input) parameters are passed to
SOFTSUSY2:0:18 [39], which produces the
MSSM sparticle masses and couplings. Unphysical
points are flagged by the program to have one or
some combination of the following properties: ab-
sence of electroweak symmetry breaking, the pres-
ence of a tachyon, a nonperturbative point where the
calculation can no longer be trusted, or the lack of
numerical convergence (which usually occurs close
to a boundary of good electroweak symmetry break-
ing). If any of these properties are flagged, then the
point is discarded before any further computations
and the parameter point is given a zero likelihood. In
addition to this, sparticle spectra that violate mass
limits, shown in Table IV, from sparticle searches or
that have a non-neutralino LSP are also discarded.

(2) Physical parameter points are passed in SLHA for-
mat to micrOMEGAs3:2 [64–67], which calculates
the neutralino dark matter relic density, the branch-
ing ratio BRðBs ! �þ��Þ, and the anomalous
magnetic moment of the muon �a�. The physical

point is then passed to the computer program
SuperIso2:0 [77] and other subroutines. The for-
mer calculates BRðB ! Xs
Þ and the isospin asym-
metry in B meson decays �0�, while the latter
computes the B-physics ratios RBu!�� and R�MBs

.

(3) We then use SUSYPOPE [53,54] to calculate the
W-boson mass mW , the effective leptonic mixing

angle variable sin2�lepeff , the total Z-boson decay

width �Z, and the other electroweak physics observ-
ables listed in Table III to two loops.

The various physical observables described in Sec. III B,
which are derived from the input parameters, form the data
set Di, i ¼ 1; . . . ; 19:

D ¼ fmW; sin
2�lepeff ;�Z; �a�; R

0
l ; A

0;l
fb; A

l ¼ Ae; R0
b;c; A

b;c
fb ; A

b;c;BRðB ! Xs
Þ;BRðBs ! �þ��Þ;
�0�; RBRðBu!��Þ; R�MBs

;�CDMh
2g: (3.39)

For each predicted value Oi of observable Di, the corre-
sponding likelihood is

PðDij�; HÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

i

q exp

�
�ðOi ��iÞ2

2�2
i

�
; (3.40)

where �i and �i are the experimental central values and
errors given in Table III. We assume that the observables
are independent and combined the likelihoods to

Lð�Þ ¼ PðDj�; HÞ ¼ Y19
i¼1

PðDij�; HÞLBRðBs!�þ��Þ;

(3.41)

where LBRðBs!�þ��Þ is the likelihood value for the indi-
cated observable (see Fig. 1). The predictions from the
physical points, as enumerated above, are checked against
experimental values and the deviations from this are quan-
tified by the individual likelihood functions Eq. (3.40). The
likelihoods from the different observables are combined
into one overall likelihood, Eq. (3.41), which is then multi-
plied by the prior probability density Eq. (2.7) to produce
posterior probability density Eq. (2.1).

E. Computer resources

We end this section with the presentation of an estimate
of the computing resources used. In the MULTINEST1.3

algorithm we used 4000 live points (see the Appendix
and [29,30] for details) and more than 8:6� 106 likelihood

evaluations for the linear prior and more than 2:1� 107 for
the log prior cases. The overall number of likelihood
evaluations in this work is more than 2:5� 108. The
computing was performed by 79 twelve-hour jobs at the
Darwin cluster of the high performance computing service
(HPC) at the University of Cambridge. Each run used 128
threads or CPUs.We also used around 40 eight-hour jobs at
COSMOS (the U.K. Cosmology supercomputer at
DAMTP). At COSMOS each run used 64 CPUs. The total
run time adds to more than 15 CPU years. However, the
efficiency of the more recent version of MULTINEST has
improved, and these computations could take about half of
the stated time.

IV. RESULTS AND ANALYSIS

We now present the results of the global fit for the weak-
scale pMSSM parameters to indirect collider and cosmo-
logical data. We first give the marginalized one-
dimensional posterior probability distributions for the
25 parameters and sparticle masses in Sec. IVA. The
observable posterior PDFs are discussed in Sec. IVB. In
Sec. IVC we present an implementation of Bayesian
model selection by comparing two different pMSSM hy-
potheses, each with either sign of the � parameter. We
address the case of fine-tuning in the pMSSM parameters
in Sec. IVD.
Results and analysis on neutralino dark matter and its

direct detection prospects are presented in Sec. V. A gen-

ABDUSSALAM et al. PHYSICAL REVIEW D 81, 095012 (2010)

095012-12



eral feature of the results is that they exhibit some amount
of prior dependence. This is clearly shown for the case of
the amount of fine-tuning in the parameters in Sec. IVD,
the muon anomalous magnetic moment (see the �a� plots

in Fig. 4), and the dominant neutralino dark matter anni-
hilation/coannihilation channels addressed in Sec. V. It is
expected that more precise and direct data from the
Tevatron and/or the LHC would lift the prior dependence.
However, interestingly enough, some of the results, such as
the mass of the lightest CP-even Higgs boson mass, are
very similar for the different priors considered.

A. Parameters and sparticle mass posterior PDFs

Our assumptions about the pMSSM priors are presented
in Sec. III A. The priors are updated using the set of differ-
ent experimental measurements explained in Sec. III B via
Bayes’ theorem (see Sec. II A). A measure of the amount of
information in the likelihood can be seen from the results
of the sampling procedure in the form of posterior PDFs.
One-dimensional marginalized posterior PDFs of the pa-
rameters are shown in Fig. 2. Most of the scalar mass terms
in the log prior scenario are much reduced with respect to
the corresponding mass term in the linear prior scenario, as
expected. Changes to the scalar mass priors (in the log
prior case) do change the posterior PDFs of M1 and M2.
This is because the dark matter likelihood is driving the fit,
and dark matter coannihilation requires the mass of the
lightest neutralino (controlled by the smaller of M1 and
M2) to be close to that of the scalar that it is coannihilating
with (see Sec. VB for discussion on the coannihilations in
the pMSSM). On the other hand, M3 shows approximate
prior independence. For linear priors, upper bounds on the
parameters come from a combination of our constraint
upon the prior range and the strongly constraining observ-
ables (mainly �a�) that disfavor heavy sparticle masses.

SinceM3 can take either sign, it is on the list of parameters
whose prior did not change: therefore, the apparent ap-
proximate lack of prior independence is not surprising.8

M1, M2, and M3 have PDFs that tend to zero as the
parameter tends to zero, but a finite bin size means that
this may not be evident in plots. Since mH1

and mH2
may

take negative values, no logarithm was applied to them in
the log-prior case. Thus the apparent prior independence of
mH1

is no surprise. The A terms show a peak structure

because if their magnitudes are too large, the squark mass
becomes tachyonic and thus is disallowed. Radiative cor-
rections to the lightest CP-even Higgs mass involving the
stops imply that they must be quite heavy, above �2 TeV
in order to push the Higgs mass above its direct search
bound. Thus, the log prior only disfavors points at m~tL ¼
m~bL

¼ 4 TeV by a factor of 1=2 compared to the lower

values. In contrast, other sfermion masses, which may be
as low as 200 GeV, obtain a log prior suppression of 1=20
at 4 TeV masses; i.e. the difference between log and linear
priors is much more evident in that case. Thus there is no
large enhancement of the posterior for small m~tL ¼ m~bL

,

which shows approximately identical posterior PDFs for
the two different prior choices.
We display the posterior PDFs of the pole sparticle

masses in Fig. 3 along with the posterior PDF of the �
parameter. The mass distributions can be understood from
the parameter PDFs discussed above, since there is a rough
one-to-one correspondence between the tree-level mass
and a mass parameter for many of the sparticles. For the
third family sparticles, the A terms and � parameter con-
tribute via the large mixing, which is proportional to the
analogous SM fermion mass. The first and second genera-
tion sfermion masses are approximately degenerate, since
the degeneracy is only broken by terms of order the second
generation fermion mass, negligible compared to the sfer-
mion masses. We see approximate prior independence of
m~t1 , m~t2 , m~g, m~b2

, and mA � mH � mH� . Other sfermion

masses show the expected log prior suppression at high
masses.
The MSSM lightest CP-even Higgs mass at tree level is

mh ¼ mZj cos2�j; (4.1)

but it receives large radiative corrections from third gen-
eration particles, of order 30% of its mass. Since the tan�
posterior is similar for both priors, then the tree-level value
of mh will also be similar. An additional small prior
dependence comes mainly from m~tR and m~bR

prior depen-

dence, but really the model itself constrains the Higgs
masses to be largely prior independent. The approximate
mass degeneracy in the heavy Higgs masses and little
dependence on priors can be seen to originate from the
relationships between them. The tree-level MSSM pseu-
doscalar CP-odd Higgs mass is given by

m2
A ¼ 2j�j2 þm2

H1
þm2

H2
; (4.2)

and it receives quite large radiative corrections. There is
only a small prior dependence of mA, and Eq. (4.2) shows
that the approximate prior independence of mA is some-
thing of an accident since m2

H2
and � show some prior

dependence, but this largely cancels in its effect on mA.
Notice that

m2
H ¼ 1

2
ðm2

A þm2
Z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

A �m2
ZÞ2 þ 4m2

Zm
2
Asin

2ð2�Þ
q

Þ;
m2

H� ¼ m2
A þm2

W; (4.3)

and since mA is usually far greater than mW and mZ, then
mA � mH � mH� holds, although loop corrections con-
tribute to a small nondegeneracy, which, however, is not
visible to the eye.

8We leave for a future project to understand and analyze the
effects that lead to having an upper bound on M3—.
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FIG. 2 (color online). Marginalized one-dimensional posterior PDFs for the pMSSM parameters. The soft-breaking scalar mass
terms in the log prior scenario (broken lines) are mostly reduced with respect to the corresponding mass term in the linear prior
scenario (solid lines). All masses are in TeV units and mqL ¼ muL ¼ mdL ¼ mcL ¼ msL .
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FIG. 3 (color online). Marginalized one-dimensional posterior PDFs for the � parameter and pMSSM sparticle masses, all in TeV
units, for log priors (broken lines) and linear priors (solid lines). First and second generation left-handed sleptons, left-handed squarks,
and right-handed squarks are collapsed into single parameters, m~lL

, m~qL , and m~lR
, respectively.
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B. Observables’ PDFs

The observable that most discriminates between the
pMSSM fit points is the anomalous magnetic moment of
the muon, which is a much better fit for the log prior point,
where it receives large corrections from lighter slepton and
gaugino masses. mW and �Z also show a significant differ-
ence between the two points, whereas the other observ-
ables display only a small difference in statistical pulls.
The posterior PDFs for the observables are given in Fig. 4.
Differences between the two prior cases are mostly due to
the fact that the sparticle mass PDFs are larger in the linear
prior, leading to a suppression of SUSYeffects in the loops
of most observables. The B-physics observables tend to
have similar posterior PDFs in the two prior cases. In most
of the EWPO, there are larger differences in the posteriors.
For �a�, there is a particularly large difference between

the central values of the linear and log prior PDFs. The
leading one-loop gaugino contribution at large tan� is
given by [88]

�a� � m2
�� tan�

16�2
ðg21M1F1 þ g22M2F2Þ; (4.4)

where F1 and F2 are positive loop functions proportional to
m�4

SUSY for the case of degenerate sparticles in the loops.

The dominant contributions coming from gauginos and
sleptons therefore lead to an enhanced value of �a�
when they are lighter, as is evident for the log prior fits.
As we shall see in Sec. VB the linear prior fits prefer
Higgsino exchange to be the dominant LSP annihilation
process, as opposed to slepton coannihilation in the log
prior case. This occurs at heavier neutralino LSP masses,
and hence heavier smuon masses (which are always con-
strained to be heavier than the neutralino LSP). �a� is then

relatively badly fit as can be seen in the good-fit point
example where the statistical pull is more than 2�.

C. Signð�Þ comparison

The posterior PDFs in Fig. 3 indicate that the pMSSM
prefers�< 0 compared to�> 0. This is interesting since
in the previous studies of CMSSM �> 0 was seen to be
preferred by the combination of BRðb ! s
Þ and �a�.

One of the statistical tests (a predictive likelihood ratio
test) in Ref. [102] found that the two measurements are
incompatible in the CMSSM, but the other found no strong
evidence for this and so the final conclusion of the analysis
remains unclear. The sign of the SUSY contribution to
BRðb ! s
Þ is dependent upon the sign of �. There are
two dominant SUSY contributions to consider: the first
comes from diagrams involving a charged Higgs boson and
up-type quarks. The second, involving a chargino and up-
type squarks, depends upon the sign of the product At�.
Equation (3.25) indicates that there is a preference for a
positive total contribution at the 1-� level. In the CMSSM,
At is typically negative due to RGE effects. Equation (4.4)
shows that the sign of the non-SM contribution to the muon
anomalous magnetic moment depends upon the sign of
�M1 and �M2. In the CMSSM, M1 and M2 are positive
and so the combination of the ðg� 2Þ� and BRðB ! Xs
Þ
constraints implies a preference for a definite sign of �.
Bayesian analyses [13,34] demonstrated that the current
statistical evidence for �> 0 in the CMSSM is weaker
than many may presuppose.
We have not used the freedom to redefine the phases of

the fields and make M2 positive, for example, and so
negative M2 appears in our fits. As such, in the pMSSM
both At and M1, M2 may take either sign, and so the
preference for �> 0 is broken and we may expect that
the dominant contributions to the observables do not prefer
either sign. On the other hand, there may be some residual
dependence from the subdominant contributions, as well as
subdominant radiative corrections to other observables.
Thus it is still important to check the relative probabilities
for signð�Þ. For the pMSSMwith a linear prior measure we
find the following probability for the two signs of �:

FIG. 4 (color online). Posterior PDF of some of the observables used to constrain the pMSSM. Solid (broken) lines represent plots
for the linear (log) prior case. Prior independence is pronounced most in �a�. The other observables not shown here are either prior

independent or similar to the prior independence in �CDMh
2.
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Pð�> 0Þ ¼ 0:40� 0:01 and Pð�< 0Þ ¼ 0:60� 0:01:

(4.5)

Figure 5 shows the posterior PDF marginalized on the
M2 �� plane. The figure shows that, although opposite
signs for � are allowed, it is constrained to have the same
sign asM2, especially for log priors where ðg� 2Þ� is well

fit. For linear priors, the large volume of parameter space
leading to heavy sparticle masses mean that this tendency
is reduced and there is a small amount of probability that
�M2 < 0, predicting a small negative �a�. Figure 5

clearly shows a symmetry of the fits when one simulta-
neously flips the signs of M2 and �, as should be the case
due to phase redefinition freedom.

The SM prediction of ðg� 2Þ� remains somewhat con-

troversial. The hadronic contributions that are extracted
from � and eþe� data disagree, and one obtains quite
different �a� constraints depending upon which data set

is used. To quantify the extent to which our mild preference
for �< 0 depends on the ðg� 2Þ� observable, we made a

separate sampling with all except the ðg� 2Þ� constraints.

We found that �< 0 is still more probable with

Pð�> 0Þ ¼ 0:46� 0:02 and Pð�< 0Þ ¼ 0:54� 0:02:

(56)

Thus, ðg� 2Þ� contributes around 0.06 to the probability

of �< 0, the other observables including BRðB ! Xs
Þ
contributing around 0.04. However, computing the
Bayesian evidence ratios in the two scenarios indicate
that there are no conclusive evidence, based on Jeffreys
scale (see Table I), for one particular signð�Þ over the
other. The odds and logarithm of the evidence ratios are
summarized in Table V.

D. Fine-tuning

The main motivation of weak-scale SUSY is to solve the
technical hierarchy problem, explaining why the Higgs
boson remains at the weak scale despite quantum correc-
tions that are as large as the largest mass scale in the theory
(e.g. the Planck scale). In order for softly broken SUSY to
still provide a resolution of the technical hierarchy prob-

TABLE V. The Bayesian evidence ratios for the pMSSM with �> 0 and �< 0 with the
linear priors measure. ‘‘All observables’’ refers to all the constraints discussed in Sec. IVB. Zþ
and Z� represent the evidence for the hypothesis for the linear prior pMSSM with �> 0 and
with �< 0, respectively. A prior probability of 0.5 is assigned to each hypothesis.

Data considered jloge�Ej Odds, Zþ=Z� Remark

All constraints �0:41� 0:04 0:67� 0:03 Inconclusive

All minus ðg� 2Þ� constraints �0:18� 0:04 0:84� 0:04 Inconclusive
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FIG. 5 (color online). Marginalized 2D posterior PDF ofM2 versus � for a (left) linear prior and (right) log prior. The dark contours
show the 68% and 95% Bayesian credibility regions.
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lem, the SUSY-breaking terms should not be much larger
than the TeV scale; otherwise a priori unnatural cancella-
tions between radiative corrections are required in order to
keep the Higgs boson mass low. Direct SUSY search limits
imply lower bounds on sparticle masses, which already
start to imply that the MSSM parameters must cancel
somewhat in order to separate the electroweak and
SUSY-breaking scales. This is termed the ‘‘little hierarchy
problem’’ [103,104] (see a recent discussion in [105]). We
wish to quantify the necessary amount of fine-tuning in the
pMSSM parameters needed to make the setup consistent
with the imposed sparticle mass bounds.

We follow the approach in [106], quantifying the amount
of fine-tuning in the Z-boson mass prediction coming from
Higgs potential minimization conditions. We consider this
as a measure of fine-tuning in the pMSSM. The tree-level
Z-boson mass is given by

m2
Z ¼ �m2

H1

�
1� 1

cos2�

�
þm2

H2

�
1þ 1

cos2�

�
� 2j�j2;

(4.7)

where

sin2� ¼ 2m2
3

m2
H1

þm2
H2

þ 2j�j2 : (4.8)

The amount of fine-tuning is quantified by considering the
sensitivity of mZ to a variation of a parameter  [107]:

�ðÞ ¼
��������@ logm

2
Z

@ log

��������; (4.9)

where  ¼ m2
H1
, m2

H2
, m2

3, and � are the relevant parame-

ters in the pMSSM. Assuming tan�> 1, from Eqs. (4.7),
(4.8), and (4.9), one derives

�ð�Þ ¼ 4�2

m2
Z

�
1þm2

A þm2
Z

m2
A

tan22�

�
;

�ðm2
3Þ ¼

�
1þm2

A

m2
Z

�
tan22�;

�ðm2
H1
Þ ¼

��������12 cos2�þm2
A

m2
Z

cos2�� �2

m2
Z

��������
�

�
1� 1

cos2�
þm2

A þm2
Z

m2
A

tan22�

�
;

�ðm2
H2
Þ ¼

��������� 1

2
cos2�þm2

A

m2
Z

sin2�� �2

m2
Z

��������
�

��������1þ 1

cos2�
þm2

A þm2
Z

m2
A

tan22�

��������:

(4.10)

�ð�Þ,�ðm2
3Þ,�ðm2

H1
Þ, and�ðm2

H2
Þ are added in quadrature

to obtain an overall measure of fine-tuning, �T :

�T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�Þ2 þ �ðm2

3Þ2 þ �ðm2
H1
Þ2 þ�ðm2

H2
Þ2

q
: (4.11)

Values of �T far greater than unity indicate large fine-
tuning.
The posterior PDF for the amount of fine-tuning in the

pMSSM is shown in Fig. 6. The logarithmic prior scenarios
have lower�T than in the linear prior. This is not surprising
since the SUSY-breaking terms are much reduced in the
former scenarios than in the latter. We see from the figure
that the fine-tuning is most likely low at around �T �
20–30, but there is a tail extending beyond �T ¼ 100.
One could use a prior of 1=�T to encode a belief in less
fine-tuned points in our global fits [11]. Alternatively, one
could place a cut on �T , but the value of such a cut is, of
course, subjective. Eighty-two percent of the high posterior
PDF points, around 4:0� 104 of samples, have �T > 10,
so a hard cut placed at 10 would have a drastic effect on the
fits. Here we decline to change the prior or place cuts, since
we are content with observing that, for most of the proba-
bility mass in the fits, it is not unacceptably large. For the
highest likelihood models the fine-tuning is reduced from
its average. For example, for the good-fit point in the linear
prior sample, �T ¼ 24, whereas for the good-fit point in
the log prior sample, �T ¼ 27.
Notice that in general the amount of fine-tuning we find

is small compared to previous studies of the MSSM that
start at a high scale, running down to the TeV scale using
the RG equations. The reasons for this include, as ex-
plained in Refs. [104,108], that the amount of fine-tuning
is a function of the cutoff scale and tends to decrease with
this scale because the interval of RG running of the soft
parameters induces electroweak symmetry breaking at tree

20 40 60 80 100 120 140 160 180 200
∆

T

Linear prior
Log prior

FIG. 6 (color online). Fine-tuning PDFs in the pMSSM.
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level and the cross talk (through RG running) between
parameters in the Higgs sector and those from the squarks,
gluinos, etc., sectors is drastically reduced such that the
latter parameters can be much heavier than mZ without
disturbing the naturalness of the electroweak scale.9

Reference [108] found some approximate seminumerical
solutions of the RGEs for the case that the boundary
conditions on SUSY-breaking parameters are set at the
GUT scale �1016 GeV. The dominant term in
�ð�ðMGUTÞÞ typically comes from cross talk with the
GUT scale gluino mass M3ðMGUTÞ:

�ð�ðMGUTÞÞ ¼ aðtan�ÞM
2
3ðMGUTÞ
M2

Z

; (62)

where the authors determined the coefficient aðtan�Þ nu-
merically: að2:5Þ ¼ 24 and að10Þ ¼ 12, for example. This
is to be contrasted with the pMSSM in Eq. (4.10), where
the terms in �ð�Þ are set at the SUSY-breaking scale and
are �Oð1Þ, and does not involve the gluino mass, upon
which there are strong empirical lower bounds.

V. NEUTRALINO DARK MATTER

Assuming R-parity conservation, the LSP may be a good
dark matter (DM) candidate. In Ref. [25], a pMSSM study
of the ability of SUSY measurements at future colliders to
constrain dark matter properties was considered. We as-
sume that the neutralino LSP constitutes the DM in the
universe. The DM relic density then depends upon the LSP
mass and, through its composition in terms of gauginos and
Higgsino, its interactions. Two-dimensional marginalized
posterior PDFs showing preferred regions in the relic
density versus LSP mass are shown in Fig. 7. There is a
mild positive correlation between the preferred mass and
the dark matter relic density �CDMh

2 for linear priors that
is not evident for the log priors. It is clear that the LSP mass
is not well constrained by current data, since it is highly
prior dependent. The nature of the neutralino LSP in the
pMSSM is addressed in Sec. VA. The mass difference
between the LSP and the next-to-lightest supersymmetric
particle (NLSP) is important because if it is small, the LSP
may efficiently coannihilate, in the early universe, with the
NLSP, significantly reducing the relic density. The differ-
ent possible NLSPs in the pMSSM with the corresponding
posterior probabilities are listed in Sec. VB. The dominant
(co-)annihilation channels are presented in Sec. VB. We
present the prospects of direct dark matter detection in
Sec. VC.
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FIG. 7 (color online). Marginalized two-dimensional posterior PDFs of the predicted neutralino dark matter relic density
(�CDMh

2 ¼ ��0
1
h2) from spectra points that pass all constraints) against the neutralino mass. Linear priors are on the left-hand

side and log priors on the right. The dark contours show the 68% and 95% Bayesian credibility regions. Note that the feature shown
toward the left-hand side of the linear prior plot is due to the peak in the neutralino mass at around 200 GeV in Fig. 3, which here just
makes it into the 68% region.

9We thank J. R. Espinosa for interesting conversations on this
point and on fine-tuning in general.
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A. Neutralino dark matter composition

The nature of the neutralino LSP determines the (domi-
nant) processes by which it (co-)annihilates into SM par-
ticles and therefore affects its present number density. This
was illustrated using the randomly scanned pMSSM

samples in [4] where it was shown that the nature of the
neutralino LSP depends upon whether one assumes that the
LSP makes up all or only some of the DM relic density.
The neutralino mass matrix is given by 1

2 c
0TMNc

0 þ H:c:

where c 0T ¼ ð�i~b;�i ~w3; ~H0
1; ~H

0
2Þ,

MN ¼
M1 0 �mZc�sW mZs�cW
0 M2 mZc�cW �mZs�cW

�mZc�sW mZc�cW 0 ��
mZs�sW �mZs�cW �� 0

0
BBB@

1
CCCA; (5.1)

cx ¼ cosx, and sx ¼ sinx. The neutralino mass eigenstates
are ~�0

i ¼ Nijc
0
j where N is a unitary transformation that

diagonalizes MN. The LSP neutralino mass eigenstate is
therefore a mixture of bino, wino, and Higgsino:

~� 0
1 ¼ N11

~bþ N12 ~w
3 þ N13

~H0
1 þ N14

~H0
2: (5.2)

Different regions of parameter space give different neutra-
lino LSP compositions. WhenM1 � minðM2; j�jÞ, N11 �
1, and the LSP is dominantly bino. Bino LSPs give a relic
density that is too high for most of the parameter space
unless some specific mechanism (such as efficient coanni-
hilations or annihilations through a resonance) is working.
When M2 <minðM1; j�jÞ, N12 dominates; i.e. the LSP is
dominantly wino and is quasi-mass degenerate with the
lightest chargino. This leads to strong coannihilations be-
tween the LSP and the chargino, and typically the relic
density is much smaller than the WMAP constraint for
wino LSPs. For j�j<minðM1;M2Þ, N13 and N14 are of
order one and the LSP is dominantly Higgsino, and there
may be efficient annihilations into top and weak gauge
boson pairs. In the Higgsino-dominated LSP scenario, ~�0

1,
~�0
2, ~�

�
1 are almost all mass degenerate and are Higgsino-

like. Of course, there exist mixed cases that include several
of these limiting behaviors.

The gaugino/Higgsino mixture PDF of the LSP is shown
in Fig. 8 constructed from the fraction

Zg ¼ jN11j2 þ jN12j2

following [109]. The expression 1� Zg is unity if the

neutralino LSP is fully Higgsino-like and zero if fully
gauginolike. The plot shows that LSP is mostly Higgsino
in the linear prior case, similar to the nonuniversal Higgs
mass scenario [110], and mostly gaugino for the log prior
scenario. Thus, current data do not unambiguously con-
strain the LSP content. The good-fit point from the linear
prior sample has a mixed wino-Higgsino LSP (more pre-
cisely, the point has jN13j � jN14j ¼ 0:7 and N12 ¼ 0:15).
The log prior sample good-fit point has a bino dominated
LSP (jN11j ¼ 0:998), but there are several light sparticles,
allowing sufficient annihilation.

B. (Co-)Annihilations

At early times of the universe the LSP is in thermal
equilibrium with other particles and, ignoring for now
coannihilations, its number density evolution is governed
by the Boltzmann equation

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

log
10

[1 − Z
g
]

Linear prior
Log prior

FIG. 8 (color online). pMSSM neutralino gaugino-Higgsino
admixture fractions. Higgsino domination is at the right-hand
side of the plot and gaugino domination is at the left-hand side.
The chosen scale on the horizontal axis better shows the struc-
ture of the curves especially the double peaks in the log prior
case. The linear prior samples turned out to be mostly Higgsino-
like, unlike the log prior case where the neutralino samples are
mostly gauginolike but also significantly Higgsino-like. This is
due to lower sparticle masses in the log prior pMSSM that allow
various channels for the neutralino annihilation and coannihila-
tions.
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dn~�0
1

dt
¼ �3Hn~�0

1
� h�vifn2

~�0
1

� ðneq
~�0
1

Þ2g: (5.3)

Here H is the Hubble expansion rate of the universe, n~�0
1
is

the number density, and h�vi is the thermally averaged
annihilation cross sections of the neutralino LSP. v is the
relative velocity of the annihilating pair. The LSP annihi-
lation rate is given by �~�0

1
¼ h�vin~�0

1
. At a freeze-out

temperature Tf, the neutralino decouples, �~�0
1
¼ HðTfÞ.

Substituting HðTfÞ into Eq. (5.3) predicts that the LSP

relic density is inversely proportional to the thermally
averaged annihilation cross section, h�vi. This means
that for the LSP relic abundance today to be in the
WMAP-5 range, Eq. (3.38), there must be a significant
number of annihilations of the neutralino LSP at earlier
times. The possible processes are mostly two-particle final
states that could be a fermion–antifermion pair, combina-
tions of the weak gauge bosons ðW�; Z0Þ, or combinations
of the Higgs bosons ðh0; H0; A0; H�Þ (see e.g. [111]). The
discussion becomes much more involved once coannihila-
tion processes are taken into account, since coupled
Boltzmann equations are required for each relevant
SUSY particle species.

Coannihilation processes dominate in parameter-space
points with NLSP that are almost mass degenerate with the
LSP. At such points the neutralino abundance also depends
strongly on the annihilations of the NLSPs [112,113] and
the number densities of the LSPs and NLSPs are coupled.
A review of different coannihilation studies was presented
in [4]. Here we present and analyze the outcome of the
pMSSM annihilation and coannihilation results for our two
different prior measures. We shall only discuss processes
that contribute 1% or more of the annihilation cross
section.

In Table VI we give a list of possible NLSPs and
corresponding posterior probabilities for each. The proba-
bilities indicate that neutralino-chargino coannihilations

are most likely to be dominant in the pMSSM with a linear
prior measure. For the log prior measure, neutralino-
slepton coannihilations are the most probable. The domi-
nant channels for the linear prior sample good-fit point are
direct neutralino-chargino coannihilation and neutralino
annihilation via chargino exchange into Z- and W-boson
pairs. For the log prior measure good-fit point, the domi-
nating channels are neutralino coannihilations with various
sleptons. Many different processes contribute at the per-
cent level. We present the identities of the dominant chan-
nel, along with its posterior probability in Table VII. The
most likely channel is neutralino-chargino coannihilation
for the linear prior and neutralino annihilation for the log
prior. From the large prior dependence in the results, we
deduce that current data are not sufficient to constrain the
dark matter annihilation properties of the LSP.

C. Direct detection

Many different experiments search for the nature of dark
matter (e.g. see [114], and references therein). Indirect
detection experiments are designed to observe the annihi-
lation products of dark matter particles. We do not address
indirect detection here and save it for future consideration.
Here, we consider direct detection experiments such as
XENON [115], CDMS [116,117], ZEPLIN [118,119],
Edelweiss [120], CRESST [121], WARP [122,123], or
COUPP [124]. Such experiments are designed to observe
the elastic scattering of dark matter particles with nuclei.
The LSP may interact with quarks in target nuclei via
t-channel CP-even Higgs (or Z-boson) exchange or
s-channel squark exchange and with gluons via squark
loop contributions. DM direct detection rates also depend
on the local neighborhood DM density and velocity distri-
bution. The density, which is estimated to lie between
4� 10�25 g=cm�3 and 13� 10�25 g=cm�3 (0:22–
0:73 GeV=cm3), is inferred by fitting observations to mod-
els of galactic halo [125,126]. The velocity is expected to
be around 230� 20 km=s [127]. More modern halo pro-
files exist but give densities ranging in the large range
taken to model theoretical uncertainties. We ask the reader
to bear this factor of 3 uncertainty on the density (and
therefore the rate) in mind when interpreting plots.
The elastic scattering cross section is partitioned into

spin-dependent and spin-independent components. The
spin-independent part is currently the most constraining,

TABLE VI. pMSSM NLSP identity probabilities for linear and
log priors.

NLSP PðNLSPÞLinear PðNLSPÞLog
~�0
2 14% 1%

~��
1 77% 15%

~g 1% 0%

~�e 2% 39%

~�� 0% 4%

~eL 0% 2%

~eR 0% 27%

~�1 0% 7%

~uL 1% 1%

~uR 1% 1%

~sR 1% 1%
~t1 1% 0%
~b1 1% 1%

TABLE VII. Posterior probabilities for dominant annihilation
and coannihilation channels.

(Co-)annihilation Linear prior case Log prior case

~�0
1 ~�

� 35% 5%

~�0
1 ~�

0
1 20% 28%

~�0
1 ~�

0
2 0% 7%

~�0
1 sleptons 0% 23%

FITTING THE PHENOMENOLOGICAL MSSM PHYSICAL REVIEW D 81, 095012 (2010)

095012-21



and we concentrate on it. It is proportional to the square of
the target nucleus atomic number, A2. This enhancement is
because the dark matter wavelength is of the same order as
the size of a nucleus and hence the scattering amplitudes on
individual nucleons add coherently. There is one experi-
mental claim in direct detection experiments of a signal in
the annual modulation rate [128]. This result has not been
confirmed by other experiments and would be incompat-
ible with a neutralino LSP candidate, so we do not use it to
constrain the pMSSM. Aside from this, no positive signal
has been detected to date in dark matter detection experi-
ments. A positive signal would constrain SUSY parameter
space if one assumed a particular local neighborhood DM
density and velocity distribution.

The spin-independent neutralino-nucleus elastic scatter-
ing cross section is given by

� �
4m2

~�0
1

m2
T

�ðm~�0
1
þmTÞ2

ð½Zfp þ ðA� ZÞfn�2

þ ½aVu ðAþ ZÞ þ aVd ð2A� ZÞ�2=64Þ; (5.4)

where mT is the mass of the target nucleus and Z and A are
the atomic number and atomic mass of the nucleus, re-
spectively. fp and fn are the neutralino’s couplings to

protons and neutrons, given by [129]

fp;n ¼ X
q¼u;d;s

fðp;nÞTq
aq

mp;n

mq

þ 2

27
fðp;nÞTG

X
q¼c;b;t

aq
mp;n

mq

;

(5.5)

aq and aVu;d are, respectively, the scalar and vector

neutralino-quark couplings [129–134], and fðp;nÞTq
denote

the quark content of the nucleon. They have been experi-

mentally bounded to be fðpÞTu
� 0:020� 0:004, fðpÞTd

�
0:026� 0:005, fðpÞTs

� 0:118� 0:062, fðnÞTu
� 0:014�

0:003, fðnÞTd
� 0:036� 0:008, and fðnÞTs

� 0:118� 0:062

[135–137]. The first term in Eq. (5.5) corresponds to inter-
actions with the quarks in the target, which can occur
through either t-channel CP-even Higgs exchange, or
s-channel squark exchange. The second term corresponds
to interactions with gluons in the target through a quark/

squark loop. fðpÞTG is given by 1� fðpÞTu
� fðpÞTd

� fðpÞTs
�

0:84, and analogously, fðnÞTG � 0:83. The vector coupling

part in Eq. (5.4) is important for Higgsino-like LSP where
the interaction is mostly via Z-boson exchange.
The direct detection constraints from the cryogenic cold

dark matter search (CDMS) experiments on the pMSSM is
shown in Fig. 9. The large prior dependence of the results
indicates that current data are insufficient to constrain the
direct detection cross sections. One can say that there is
clearly a wide allowed range for the direct detection cross
sections.
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FIG. 9 (color online). Posterior PDF of the neutralino-proton spin-independent scattering cross section for the pMSSM with linear
(left) and log (right) prior measures. The CDMS 90% confidence level upper bound is also shown, assuming a local DM density of
0:3 GeV=cm3. The dark contours show the 68% and 95% Bayesian credibility regions.
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D. Relaxing the purely LSP dark matter assumption

The analysis presented above was done assuming that
the neutralino LSP is the only source of dark matter. It is
known that the LSP relic density is sensitive to the assumed
cosmology. For example, big bang nucleosynthesis expan-
sion rates can enhance the calculated relic density without
affecting other important cosmological quantities [138].
The inclusion of right-handed neutrinos could change the

relic density prediction; see, for instance, [139]. One could
also allow for additional non-neutralino dark matter com-
ponents. In order to see the potential effect of such model
changes, we relax the constraint from the DM relic density
to the case where only �CDMh

2 predictions larger than the
central values are penalized according to the following
likelihoods (shown in Fig. 10):

LCDMð�CDMÞ ¼

8>><
>>:

1

� þ
ffiffiffiffiffiffiffiffiffiffi
�s2=2

p ; if �CDM <�;

1

� þ
ffiffiffiffiffiffiffiffiffiffi
�s2=2

p exp½� ð�CDM��Þ2
2s2

�; if �CDM 	 �;
(5.6)

where � ¼ 0:1143 is the experimental central value
quoted above and s is an inflated error on relic density
that includes theoretical uncertainties in its prediction.

We have made an independent run using Eq. (5.6), i.e.
relaxing the purely LSP DM assumption, i.e. implicitly
assuming some other component of dark matter. We wish
to examine the amount of DM that comes from the LSP.
These runs were performed in Ref. [32], where the relevant
constraints can be found. Linear priors were used on the
parameters, which had a 2 TeV upper bound. We find in
Fig. 11 that the preferred relic density is low compared
with the purely LSP DM assumption: around �CDMh

2 ¼
10�2–10�3. Thus once one allows for an additional com-
ponent of DM to the LSP, the model prefers the additional
component to dominate the relic density.10

VI. CONCLUSIONS AND OUTLOOK

We have presented the first statistically convergent
global fit of the pMSSM model with its 25 independent
continuous parameters plus a discrete parameter,
signð�Þ ¼ �, to the dark matter relic density, indirect
observables, and direct sparticle search constraints. We
have used the entire set of relevant electroweak precision
observables and B-physics data, as well as the anomalous
magnetic moment of the muon as indirect observables.11

The evidence for the linear and log prior measure pMSSM
in light of the data is logeZ ¼ 63:211� 0:033 and logeZ ¼
65:043� 0:042, respectively. We give the evidence values
since they are useful to compare other models to: if a
different model’s properly normalized evidence is calcu-
lated with similar data to those we have used, the model
may be compared to the pMSSM.We have presented good-
fit points in the pMSSM parameter space.

This work constitutes a technical demonstration that
statistically convergent global fits in high dimensions in-

volving curving degeneracies and several modes are now
feasible. This feasibility is due to new sampling algorithms
and improvements in the speed of computation and access
to it. It allows more complete phenomenological studies of
multiparameter models beyond the standard model that
could not have been completed in the past. In particular,
the setup and techniques employed here provide an un-
biased approach to MSSM phenomenology—independent
of the underlying theory, the mechanism to break SUSYor
its mediation—hence it could lead to more robust SUSY
phenomenological studies and guides for LHC SUSY
searches and for dark matter search experiments. As ex-

 0  0.05  0.1  0.15  0.2
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FIG. 10 (color online). Depiction of the likelihood constraint
on the predicted value of �DMh

2 due to the lightest neutralinos,
compared to a simple Gaussian with WMAP5 central value and a
1� uncertainty of 0.02 used in the rest of the paper.

10Some of us hope to return to this issue in future work. We
thank Bryan Webber for suggesting this comparison.
11If the reader is interested in accessing the pMSSM data
(sample points), please contact S. AbdusSalam or B. Allanach.
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pected, the results of this exercise differ significantly from
those of the more studied CMSSM/mSUGRA, and thus the
pMSSM parameter space provides a much richer and
appropriate arena for LHC studies of the MSSM.

For the analysis we consider prior measures either flat in
the parameters (a linear prior) or flat in the logarithm of the
parameters (a log prior) in order to check robustness of
inferences. Given the large number of (the pMSSM) pa-
rameters compared with the (weak constraining power of
the) data available at the moment, it is very interesting that
indeed there are some prior-independent results or infer-
ences. The lightestCP-even Higgs boson mass and the stop
masses fall into this category of robust and prior-
independent results. The other sparticle masses and all
dark matter properties exhibit significant prior dependence
and require more direct and precise data (or more con-
strained models) to make their prediction robust. We em-
phasize that prior dependence is present and it is a positive
feature of Bayesian methods, since its absence signals
when there are enough data to make the fits robust. This
can be used as a guideline for future studies of the experi-
mental implications of the MSSM. In particular, if SUSY is
discovered via sparticle production at colliders and many
sparticle properties are precisely measured, it will be pos-
sible to use the techniques showcased in the present work
to extract pMSSM information. Such information can then
be checked for consistency with more constrained models.

We now contrast our methods with the recent random
points scan analysis of the pMSSM in Ref. [33] and a
similar earlier work in Ref. [4]. These works perform a

pMSSM random parameter scan to find points that pass
direct search and dark matter constraints while being
within 2� of the central values of some indirect con-
straints. All such points are considered on an equal footing,
and as such (as emphasized by the authors) are not a
statistical global fit. We, on the other hand, allow a trade-
off between different observables in a statistically correct
fashion; one may tolerate a moderately bad fit in one
observable if it fits the other observables particularly
well. Our use of Gaussian distributions for the likelihoods
(instead of the 2� top-hat function in [4,33]) is justified by
the central limit theorem and the maximum entropy prin-
ciple [140]. Interesting points with LHC phenomenology
not covered by previous studies of constrained models
were found in Ref. [33], which was the main aim of the
approach (a few thousand points passed the constraints, out
of �107 scanned). We aim to perform a complete and
statistically convergent global fit of the pMSSM. To
achieve this we take advantage of the power of the
MULTINEST algorithm, which provides samples in moder-

ately high dimensional parameter spaces (with curving
degeneracies and different modes) much more efficiently
than in random/grid parameter scans. In [33] there was
more emphasis on direct search limits, which are more
sophisticated than the ones employed in the present paper.
Since the sparticle masses implied by our fits are large, our
results are insensitive to the exact form of the direct search
limits. The density of points in Ref. [33] also shows prior
dependence although the results were not interpreted sta-
tistically (and thus they were not Bayesian nor frequentist).
Another major difference to our approach is that in
Ref. [33], the WMAP constraint is used only as an upper
bound (making viable points much easier to find) and so
the existence of another non-MSSM dark matter particle is
assumed. This changes the character of the points: allow-
ing MSSM points that predict approximately zero LSP
relic density means that a large number of sampled points
have a wino dominated LSP. We, however, assume in most
of our analysis that the neutralino constitutes all of the dark
matter. In Sec. VD we presented an independent run made
using the WMAP constraint only as a lower bound, and our
results (as expected) agree with those of [4,33] in the sense
that, in that case, the LSP contribution tends to be only a
small fraction of the total dark matter.
There are many directions in which this research could

be extended. For each of the tens of thousands of preferred
points in our sample, a detailed calculation of LHC ob-
servables, such as inclusive counts of opposite sign dilep-
ton and trilepton events, could be made using standard
event generators and detector simulators, as has been
done for more constrained models such as the CMSSM
[141]. This would provide a portrait of the signature space
that may eventually be useful in direct SUSY searches. On
a simpler level, one could compute relative probabilities of
various sparticle mass hierarchies. The indirect dark matter
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FIG. 11 (color online). Neutralino relic density assuming
WMAP5 as a Gaussian likelihood constraint or as an upper
bound. For this plot only, a 2 TeV range linear pMSSM with
other parameters as in Ref. [32] was taken.
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detection prospects could also be evaluated, although with
current data they are likely to be highly prior dependent.
The impact of the inclusion of the fine-tuning into the prior
could be analyzed. Assuming a particular parameter point,
the impact of LHC SUSY measurements on our fits could
be evaluated, and an estimate of how much luminosity
would be required in order to make inferences approxi-
mately prior independent.12 In this case, model comparison
between more constrained models and the pMSSM could
be informative. One could determine, for a given LHC
luminosity, which models could be made prior indepen-
dent. The extension of the analysis to the full 124 MSSM
parameter space may still be out of reach at the moment.
Algorithms improving the MULTINEST algorithm may be
required before attempting it. An extension of this work to
include reasonable generalizations of the minimal flavor
violation scenario adding a few extra parameters should be
possible. Also, including R-parity violation to the pMSSM
as well as a phenomenological NMSSM are within reach of
the techniques we used here. Some of us hope to return to
these issues in future work.
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APPENDIX: NESTED SAMPLING AND THE
MULTINEST ALGORITHM

For scanning parameter spaces of large dimensionality
we have to use efficient modern approaches for sampling

the posterior. In such problems, interesting parameter re-
gions are often tiny in some directions, and many direc-
tions are orthogonal to ones along which the likelihood is
degenerately high. In this section we present the procedure,
in the context of the pMSSM, for the Monte Carlo tech-
nique called nested sampling developed by Skilling [31]
and implemented in MULTINEST. It is a general method for
evaluating the integral Eq. (2.2) from which representative
samples from the posterior distribution Eq. (2.1) are ob-
tained as by-product. The method differs from the tradi-
tional approach to inference dating back to Metropolis
et al. (1953) [143] where the emphasis is more on evaluat-
ing the posterior density than in calculating the evidence.
Skilling’s method goes as follows. Exploring the 25-
dimensional coordinate� to evaluate the evidence integral
is impractical. Instead, the prior mass dX ¼ �ð�Þd� can
be used directly to convert the 25-dimensional into a one-
dimensional integral over a unit interval. Let XðLÞ be the
prior mass enclosed within the likelihood contour, Lð�Þ ¼
L in the parameter space. That is,

XðLÞ ¼
Z
Lð�Þ>L

�ð�Þd25�: (A1)

As L increases from zero to infinity, the enclosed prior
mass decreases from Xð0Þ ¼ 1 to Xð1Þ ¼ 0. The inverse
function LðXÞ � L is the contour value (a likelihood value)
such that the volume enclosed is X (see Fig. 12 for an
illustration). Equation (A1) and the definition of its inverse
implies that the evidence Eq. (2.2) can be expressed as

Z ¼
Z

Lð�Þ�ð�Þd25� ¼
Z 1

0
LðXÞdX: (A2)

Given the likelihood values Li ¼ LðXiÞ at a sequence of m
points 0< Xm < � � �<X2 < X1 < X0 ¼ 1, the evidence is
estimated as a weighted sum,

Z ¼ Xm
i¼1

Liwi; (A3)

where for the trapezoidal rule wi ¼ 1
2 ðXi�1 � Xiþ1Þ.

1. Evidence evaluation

The nested sampling procedure for evaluating the evi-
dence starts with the accumulation of N points uniformly
drawn from the prior, the initialization of the evidence,
Z ¼ 0, and the initialization of the prior volume, X0 ¼ 1.
The number, N, of ‘‘live’’ points, �1; . . . ;�N is
preserved throughout the procedure and every point is
associated with its corresponding likelihood value:
Lð�1Þ; . . . ; Lð�NÞ. Each step i ¼ 1; 2; 3; . . . over the iter-
ations is associated with the lowest likelihood Li (or the
largest prior mass, Xi) that defines the contour line (or
shell) Lð�Þ ¼ Li over parameter space. For moving from
the (i� 1)th to the ith iteration a new point is drawn from
the set of points uniformly distributed in ð0; Xi�1Þ, the
parameter-space region with likelihoods L 	 LðXiÞ ¼ Li.

12A Bayesian approach has recently been used to ameliorate the
LHC inverse problem in the MSSM by combining LHC data
with indirect observables [142].
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This is illustrated in Fig. 13. The new point replaces the one
with the lowest likelihood. Xi is set to Xi ¼ expð�i=NÞ,
the weight wi to

1
2 ðXi�1 � Xiþ1Þ, and the evidence Z in-

cremented by Liwi. This procedure is repeated for the
subsequent iterations.

The prior volume shrinkage ratios ti ¼ Xi=Xi�1 are
distributed according to PrðtiÞ ¼ NtN�1

i in ð0; 1Þ where ti
is the largest of N random numbers uniformly distributed
in ð0; 1Þ. Sampling over t represents a geometrical explo-

ration of the parameter space. The mean and standard
deviation of t are

EðlogtÞ ¼ � 1

N
and �½logt� ¼ 1

N
; (A4)

respectively. This justifies the assignment Xi ¼
expð�i=NÞ since each draw of logt is independent, and
after i iterations of the sampling procedure the prior vol-
ume will shrink down according to

logXi � �ði� ffiffi
i

p Þ=N: (A5)

2. Stopping criterion

The nested sampling procedure is terminated after a
preset number of the iterations (as described in Sec. A 1)
or when the largest likelihood taken over the whole cur-
rently (at the instance of check for termination, say, the jth
iteration) available prior mass would not increase the
evidence value by more than some preset fraction f (we
use 0.5 in log evidence). That is, the procedure is termi-
nated if

maxðLð�1Þ; . . . ; Lð�NÞÞXj < fZj:

The integration Z is dominated around the region X �
e�H, wherever the bulk of the posterior mass is to be found.
Here

H ¼ information ¼ �
Z

logðdX=dPÞdP

� X
i

log

�
Li

Z

�
Liwi

Z
; (A6)

and dX=dP is the compression ratio representing the frac-

FIG. 13 (color online). The left shows N ¼ 8 live points uni-
formly distributed in parameter space [or prior volume space
ð0; 1Þ] and sorted according to corresponding likelihood values.
On the right is a picture illustrating the sampling of a new point
(big purple) dot from the live points uniformly distributed in
ð0; x1Þ. Figures are from [37].

FIG. 12 (color online). Likelihood contours over a toy two-parameter space showing the enclosed volume mapped to corresponding
prior mass. A prior mass x ¼ 1

2 is mapped to the likelihood contour that encloses 1
2 of the prior volume. Note the nested nature of the

contour lines. Figures are from [37].
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tion of the prior mass that contains the bulk of the posterior.
dP ¼ pð�Þd� ¼ Z�1Lð�Þ�ð�Þ; d�. Recalling that

Xi � e�i=N , we expect the integration procedure to take

NH� ffiffiffiffiffiffiffiffi
NH

p
steps (iterations) before reaching covering the

bulk of the posterior. Hence another termination condition
could be to continue iterating until the count i is signifi-
cantly greater than NH.

The uncertainty in X translates to a geometrical uncer-

tainty factor expð� ffiffiffiffiffiffiffiffiffiffiffi
H=N

p Þ in the weights wi of the domi-
nating iterates. This in turn gives the uncertainty in the

evidence via Eq. (A3) as devðlogZÞ � ffiffiffiffiffiffiffiffiffiffiffi
H=N

p
so that

logZ ¼ log

�Xm
i¼1

Liwi

�
�

ffiffiffiffiffi
H

N

s
: (A7)

3. Posterior inferences

The posterior distribution pð�Þ is simply the prior dis-
tribution weighed by the likelihood. This can be trivially
extracted from the evidence calculation since the set of
sampled points�1; . . . ;�N is already a posterior represen-
tative provided it is assigned the appropriate importance
weight and normalized by the evidence Z to produce
probability density with unit total. That is, at the ith
iteration the posterior probability density is

pi ¼ Liwi

Z
: (A8)

These are generated from the sequences of discarded points
(the points with the lowest likelihood value at each itera-
tion) during the sampling procedure. From these posterior
sequence properties such as the mean � and standard
deviation � of some Qð�Þ are easily computable:

� ¼ X
i

piQð�iÞ and �2 þ �2 ¼ X
i

piQð�iÞ2: (A9)

Equally weighed samples selected proportionally to pi can
be used to construct marginalized posterior distributions in
�.

For completeness, it is worth mentioning that there are
alternative methods for evaluating the evidence with other
advanced MCMC algorithms like thermodynamic integra-
tion and it is not clear yet which method is best for high
dimensional problems13: dimensions greater than 10.
However, for this paper we implement the nested sampling
algorithm for our purpose using the MULTINEST code [29],
which has the additional quality of being efficient in sam-
pling multimodal posteriors exhibiting curving degenera-
cies (see a summarized account in Sec. A 4).

4. MULTINEST

The most challenging task in implementing the nested
sampling algorithm is drawing samples from the prior
within the hard constraint L > Li at each iteration i.
Employing a naive approach that draws blindly from the
prior would result in a steady decrease in the acceptance
rate of new samples with decreasing prior volume (and
increasing likelihood). The MULTINEST algorithm [29,30]
tackles this problem through an ellipsoidal rejection sam-
pling scheme by enclosing the live point set into a set of
(possibly overlapping) ellipsoids, and a new point is then
drawn uniformly from the region enclosed by these ellip-
soids. The number of points in an individual ellipsoid
and the total number of ellipsoids is decided by an
‘‘expectation-maximisation’’ algorithm so that the total
sampling volume, which is equal to the sum of volumes
of the ellipsoids, is minimized. This allows maximum
flexibility and efficiency by breaking up a mode resem-
bling a Gaussian into a relatively fewer number of ellip-
soids, and if the posterior mode possesses a pronounced
curving degeneracy so that it more closely resembles a
(multidimensional) ‘‘banana’’ then it is broken into a rela-
tively large number of small ‘‘overlapping’’ ellipsoids (see
Fig. 14). With enough live points, this approach allows the
detection of all the modes simultaneously resulting in
typically 2 orders of magnitude improvement in efficiency
and accuracy over standard methods for inference prob-

(a) (b)

FIG. 14 (color online). The ellipsoidal decompositions performed by MULTINEST. The points given as input are overlaid on the
resulting ellipsoids. One thousand points were sampled uniformly from the following: (a) two nonintersecting ellipsoids; and (b) a
torus.

13We thank David Mackay for interesting discussions about
this. See, for example, http://www.inference.phy.cam.ac.uk/
mackay/presentations/nested06/.
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FIG. 15. Flow charts summarizing the sampling procedure: Z refers to the Bayesian evidence, Eqs. (2.2), (A2), and (A3); Xi is the
prior mass, Eq. (A1); and pi is the posterior probability, Eq. (A8). HEP software refers to the different computer programs described in
Sec. III D.
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lems in cosmology and particle physics phenomenology
(see e.g. [32,34,144–146]). The MULTINEST procedure as

applied to our pMSSM fits is summarized by the flow
charts in Fig. 15.
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