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We analyze the 5� difference between the CP asymmetries of the B0 ! Kþ�� and Bþ ! Kþ�0

decays within the soft collinear effective theory. We find that in the standard model, such a big difference

cannot be achieved. We classify then the requirements for the possible New Physics models, which can be

responsible for the experimental results. As an example of a New Physics model we study minimal

supersymmetric models, and find that the measured asymmetry can be obtained with nonminimal flavor

violation.
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I. INTRODUCTION

The first observation of CP violation was in the neutral
kaon system in 1964, which was consistent with Cabibbo-
Kobayashi-Maskawa (CKM) mechanism and with its sim-
plicity. In the last years, experiments at B-factories have
established CP violation in B0

d decay. Although the stan-

dard model (SM) is able, until now, to account for the CP
violating experimental results, CP violation is one of the
most interesting aspects and unsolved mysteries of the SM.
There are strong hints of additional sources ofCP violation
beyond the phase in the CKMmixing matrix. The strongest
motivation for this suggestion is that the strength of CP
violation in the SM is not sufficient to explain the cosmo-
logical baryon asymmetry of our Universe. Therefore, it is
expected that a sizeable contribution from New Physics
(NP) to CP violation in B-meson decays may be probed.

Indeed, there are some discrepancies between the SM
expectations and the experimental measurements of the
following parameters: sin2�s extracted from the mixing
CP asymmetry in B ! J=c� decay [1], sin2� extracted
from the mixing CP asymmetry in B ! K� and B ! K�0
decays [2], and the direct CP asymmetries of B ! K�
decays. Of these, the B ! K� anomaly remains a potential
hint for NP that emerges from rare B decays. The current
world averages for the branching ratios (BRs) and CP
asymmetries of B ! K� [2] are summarized in Table I.
These results confirm the existence of a nonvanishing
difference between the asymmetries of Bþ ! Kþ�0 and
B0 ! Kþ�� beyond 5�:

ACPðBþ ! Kþ�0Þ �ACPðB0 ! Kþ��Þ
¼ ð14:8� 2:7Þ%: (1)

It is well known that within the SM, all CP violating
processes should be accommodated by the single phase of
the CKM, which is the only source of CP violation in the
quark sector. This implies tight relations among the CP
asymmetries of different processes, which allow stringent
tests of the SM, and may therefore lead to the discovery of

NP. Indeed, the SM results for the CP asymmetries of B !
K�, with naive factorization or ‘‘improved’’ Beneke-
Buchalla-Neubert-Sachrajda QCD factorization [3]
(QCDF), indicate that the above-mentioned two asymme-
tries are essentially equal [4]. This inconsistency is known
as B ! K� puzzles and has been considered as a possible
hint for physics beyond the SM, with a new source of CP
violation. There has been tremendous work over the last
few years in order to understand this puzzle of CP asym-
metries in B ! K� decays.
In this paper, we perform a detailed analysis for the CP

asymmetries and branching ratios of B ! K� decays in
the framework of soft collinear effective theory (SCET)
[5,6]. In Ref. [6], the SM contributions to the branching
ratios and the CP asymmetries of B ! K� have been
studied in the frame of the SCET. It was concluded that a
small CP asymmetry for Bþ ! Kþ�0 is predicted and the
large discrepancy between the CP asymmetries of B0 !
Kþ�� and Bþ ! Kþ�0 is difficult to explain in the SM
with SCET and a possible new source of New Physics in
order to account for these results. Motivated by this con-
clusion and also by the fact that the difference between
these two asymmetries has now reached 5�, we study the
New Physics, in particular, supersymmetry, contributions
to these processes and analyze the conditions that may
allow for producing the recent experimental results.
The SCET provides a systematic and elegant method for

calculating B decays with several relevant energy scales
[5–11]. It is based on the fact that the decay of heavy

TABLE I. The latest average results for the BRs and CP
asymmetries of B ! K� decays.

Decay channel BR� 10�6 ACP

Kþ�� 19:4� 0:6 �0:098� 0:012
Kþ�0 12:9� 0:6 0:050� 0:025
K0�þ 23:1� 1:0 0:009� 0:025
K0�0 9:8� 0:6 �0:01� 0:1
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hadrons to highly energetic light hadrons includes three
distinct energy scales: the hard energy scale�mb, the hard

collinear scale �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
and the hadronic soft scale

��QCD. Thus, the matching of the weak effective

Hamiltonian into the corresponding SCET gauge invariant
operators requires two-step matching [11]. First the effec-
tive weak Hamiltonian is matched to the corresponding
weak Hamiltonian in what is called SCETI, by integrating
out at the hard modes with momentum of order mb.
Second, the SCETI weak Hamiltonian is matched onto
the weak Hamiltonian SCETII by integrating out the
hard-collinear modes with p2 �mb�QCD. Accordingly,

the SCET is improving the factorization, obtained from
expansion in powers of �QCD=mb, by generalizing it to

allow each of the above-mentioned scales to be considered
independently. We will show explicitly that, as in the
QCDF approach, the SM results for CP asymmetries of
B ! K� in SCET are typically not consistent with the
observed measurements. This confirms the conclusion
that NP is required in order to accommodate the experi-
mental measurements of B ! K� CP asymmetries. We
will analyze the type of NP needed to resolve the B ! K�
puzzle and show that it must induce new source of CP
violation. As an interesting example of NP, we consider the
supersymmetric (SUSY) extension of the SM, using the
mass insertion approximation (MIA) in order to perform a
model independent analysis.

It is important to note that in order to have significantCP
violating effects from SUSY contributions without exceed-
ing the experimental limits of the electric dipole moment
(EDM) of electron and neutron, one should consider a
SUSY model with nonminimal flavor. In this class of
models, like for instance scenarios of nonuniversal trilinear
couplings, there are new sources of CP and flavor violation
that may lead to significant impacts on theCP asymmetries
of B ! K�, without violating the experimental limits of
the electric dipole moment (EDM) of electron or neutron
[12]. It has been emphasized in Refs. [4,13] that these
phases are crucial in providing a natural explanation for
the B ! K� puzzle. Indeed, this new source of SUSY CP
violating phases induces CP violating phases associated
with the electroweak penguins, which are essential with
large strong phase in order to resolve the apparent discrep-
ancies between the CP asymmetry of Bþ ! Kþ�0 and
B0 ! Kþ��.

The paper is organized as follows. In Sec. II we discuss
the B ! K� process in the SCET and present generic
expressions for the amplitudes in terms of the Wilson
coefficients. Section III is devoted to analyzing the SM
contribution to the branching ratios andCP asymmetries of
B ! K� decays. We show that the branching ratios can be
consistent with the experimental data if a large charm
penguin contribution is assumed. Nevertheless, the CP
asymmetries measurements cannot be accommodated. In
Sec. IV we explore the NP effects and possible types of NP

that may resolve the puzzle of B ! K�. We emphasize
that a generic feature of any of this NP is that it must
introduce a new source of CP violation. In Sec. V we focus
our discussion on SUSYextension of the SM.We show that
the gluino contribution to the electroweak penguin plays a
crucial role in resolving the B ! K� puzzle. Finally we
summarize our conclusions in Sec. VI.

II. B ! K� IN SCET

The full effective weak Hamiltonian H�B¼1
eff for �S ¼ 1

transitions can be expressed via the operator product ex-
pansion as

H�B¼1
eff ¼ GFffiffiffi

2
p X

p¼u;c

�ðsÞ
p

�
C1Q

p
1 þ C2Q

p
2 þ

X10
i¼3

CiQi

þ C7�Q7� þ C8gQ8g

�
þ ðQi ! ~Qi; Ci ! ~CiÞ;

(2)

where �ðsÞ
p ¼ VpbV

?
ps, with Vij the unitary CKM matrix

elements. Ci � Cið�bÞ are the Wilson coefficients at low-
energy scale �b ’ OðmbÞ. The operators Qi can be found
in Ref. [14]. The operators Qp

1;2 refer to the current-current

operators, Q3–6 to the QCD penguin operators, and Q7–10
to the electroweak penguin operators, while Q7� and Q8g

are the electromagnetic and the chromomagnetic dipole

operators, respectively. The operators ~Qi are obtained from
Qi by the chirality exchange. It is important to note that the
electroweak penguins and the electromagnetic penguin are
the only source of isospin violation, which is indicated by
the K� puzzle.
The calculation of B ! K� decays involves the evalu-

ation of the hadronic matrix elements of related operators
in the effective Hamiltonian, which is the most uncertain
part of this calculation. In the limit in which mb � �QCD

and neglecting QCD corrections in 	s, i.e. in the naive
factorization (NF) approach, the hadronic matrix elements
of B decays into K and � can be factorized as

hK�jQijBiNF ¼ hKjj1jBi � h�jj2j0i
þ h�jj1jBi � hKjj2j0i; (3)

where j1;2 represent bilinear quark currents of local opera-

tor Qi. Therefore, the hadronic matrix element can be
usually parametrized by the product of the decay constants
and the transition form factors.
In QCDF the hadronic matrix element for B ! K� in

the heavy quark limit mb � �QCD can be written as

hK�jQijBiQCDF ¼ hK�jQijBiNF
�

�
1þX

n

rn	
n
s þO

�
�QCD

mb

��
: (4)

It is clear that in QCDF, the higher order corrections in 	s
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break the simple factorization. These corrections can be
calculated systematically in terms of short-distance coef-
ficients and meson light-cone distribution functions.
However, it turns out that the calculation of the hard
spectator interactions and the annihilation amplitude suffer
from end-point divergences in this factorization approach.
The divergences are parametrized by complex parameters
with magnitudes less than one and unconstrained phases.
Such parameters are the main source of large theoretical
uncertainties in the QCDF mechanism.

The SCET is an interesting framework to study the
factorization at hard OðmbÞ and hard-collinear

Oð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb�QCD

q
Þ scales. The SCET Lagrangian is obtained

at tree level by expanding the full theory Lagrangian in
powers of � ¼ �QCD=mb. This would allow to prove or

disprove the factorization to all orders in the strong cou-
pling constant for some B decays into light and energetic
particles. Many theoretical works have been done in the
SCET, in particular, the matching of QCD ! SCETI !
SCETII and the derivation of the amplitudes for the B
decay into light mesons [5–10]. For B ! K�, the SCET
amplitude can be written as

A SCET
B!K� ¼ �ihK�jHSCET

eff jBi
¼ ALO

B!K� þA

B!K� þAann

B!K� þAc:c
B!K�

(5)

where ALO
B!K� denotes the leading-order amplitude in the

expansion 1=mb (including correction of order 	s),
A


B!K� denotes the chirally enhanced penguin amplitude,
Aann

B!K� denotes the annihilation amplitude and Ac:c
B!K�

denotes the long- distance charm penguin contributions.
The leading-order amplitude, ALO

B!K�, is given by

ALO
B!K� ¼ GFm

2
Bffiffiffi

2
p

�
fK

�Z 1

0
dudzTKJðu; zÞ�B�J ðzÞ�KðuÞ

þ �B�
Z 1

0
duTK� ðuÞ�KðuÞ

�
þ ðK $ �Þ

�
: (6)

The hard kernels TðK;�Þ� and TðK;�ÞJ are calculable in terms

of the Wilson coefficients Ci and can be found in Ref. [15].

The parameters �BðK;�Þ, �BðK;�ÞJ are treated as hadronic
parameters that can be determined through the fit to the
nonleptonic decay data. The current data can be used to
determine �B�, �B�J . However these data are not sufficient
to determine �BK and �BKJ and hence we assume �BKJ ¼
�B�J and �BK ¼ �B� in the limit of exact SUð3Þ. One may
expect about 10%–20% deviation in the values of these
parameters in case of SUð3Þ breaking.

It is important to note that as long as the logarithms of
the ratios of the hard scale (mb) to the soft-collinear (�mb)
and soft (�) scales are not resummed, the QCDF and SCET
factorization formulas are identical. Therefore, Eq. (6) for
the expression of ALO

B!K� includes as well the end-point
singular contribution mentioned above in QCDF scheme.

In fact, the form factors �B�
J ðzÞ, which are extracted from

the data, could be expressed as end-point singular convo-
lutions between the pion and B-meson light-cone wave
functions.
Chiraly enhanced penguins amplitude A


B!K� is gen-
erated through including corrections of order 	sð�hÞ�
ð�M�=m2

bÞ where �M is the chiral scale parameter. �M

is defined as the ratio of the squared meson mass to the sum
of its constituent quark masses. For kaons and pions�M �
Oð2Þ GeV and hence chiraly enhanced terms can compete
with the order 	sð�hÞð�=mbÞ terms. The chiraly enhanced
amplitude for B ! K� decays is given by

A

�B!K�

¼ GFm
2
Bffiffiffi

2
p

�
��KfK

3mB

�B�
Z 1

0
duRKðuÞ�K

ppðuÞ

��KfK
3mB

Z 1

0
dudzRJ

Kðu; zÞ�B�J ðzÞ�K
ppðuÞ

���fK
6mB

Z 1

0
dudzR


Kðu; zÞ�B�
 ðzÞ�KðuÞ

þ ðK $ �Þ
�
: (7)

The hard kernels RK, R�, R
J
K, R

J
�, R



K and R


� depend also
on Ci, as shown in [10].
Annihilation amplitudes Aann

B!K� have been studied in
Refs. [16–19]. In the framework of SCET, the annihilation
contribution becomes factorizable and real at leading or-
der, Oð	sðmbÞ�=mbÞ. Complex annihilation contributions

may occur at higher order, Oð	2
sð

ffiffiffiffiffiffiffiffiffiffi
mb�

p Þ�=mbÞ [20]. In
our numerical analysis, we will not include the contribu-
tions from penguin annihilations, since they are real, at the
order we consider, and are quite small with large uncer-
tainty [10,20]. It is worth mentioning that there are some
question marks related to the SCET result for Aann

B!K�. It is
expected that the approach adopted in computing the LO
expression may lead to a divergent annihilation contribu-
tion, which therefore requires a reintroduction of complex
parameter as in QCDF. This discussion is beyond the scope
of this paper, especially in the case of neglecting the
annihilation amplitude.
The long-distance charm penguin amplitude Ac:c

B!K� is
given as follows:

A c:c
B!K� ¼ jAc:c

B!K�jei
cc (8)

where 
cc is the strong phase of the charm penguin. The
modulus and the phase of the charm are fixed, through the
fitting with nonleptonic decays, namely B ! ��, assum-
ing Ac:c

B!K� ¼ Ac:c
B!��, as follows [21]:

jAc:cj ¼ ð46� 0:8Þ � 10�4; 
c:c ¼ 156o � 6o: (9)

The charm penguin can be considered as one of the main
differences between SCET and QCDF. In QCDF, it is
factorized in the limit of 1=mb. However, in SCET, since
mc �mb=2 there may be configurations, where the charm

NEW PHYSICS CONTRIBUTION TO B ! K� . . . PHYSICAL REVIEW D 81, 095008 (2010)

095008-3



penguin implies a long-distance effect. Thus, it has been
parametrized and fitted from the data. It is also worth
noting that in SCET the charm penguin is the main source
of strong phases in the decay amplitudes. All strong phases
for other terms vanish at the leading order.

The unitarity of the CKM matrix allows to write the

amplitude of any B-decay as A ¼ �ðfÞ
u Au þ �ðfÞ

c Ac, where

�ðfÞ
p ¼ V�

pbVpf. Thus, one can generally parametrize the

contributions to the amplitudes of B ! K� as follows:

AðBþ ! K0�þÞ ¼ �uAþ �cP;ffiffiffi
2

p
AðBþ ! Kþ�0Þ ¼ �uðT þ Cþ AÞ þ �cðPþ PEWÞ;
AðB0 ! Kþ��Þ ¼ �uT þ �cðPþ PC

EWÞ;ffiffiffi
2

p
AðB0 ! K0�0Þ ¼ �uC� �cðP� PEW þ PC

EWÞ; (10)

where the real parameters, T, C, A, P, PEW, and PC
EW,

represent a colored allowed tree, a color-suppressed tree,
annihilation, QCD penguin, electroweak penguin, and sup-
pressed electroweak penguin diagrams, respectively. The
four B ! K� decay amplitudes are related by the follow-
ing isospin relation:ffiffiffi
2

p
AðB0 ! K0�0Þ þ AðBþ ! K0�þÞ
� ffiffiffi

2
p

AðBþ ! Kþ�0Þ þ AðB0 ! Kþ��Þ ¼ 0: (11)

The explicit dependence of these parameters on the corre-
sponding Wilson coefficients can be found in Refs. [5,7–
10]. Fixing the experimental inputs and the SM parameters
to their center values, one finds the following dependence
of these parameters on the Wilson coefficients (at NLO in
	s expansion of SCETþ SUð3Þ flavor symmetry):

Â ¼ �ð0:0003þ 0:0005iÞC1 � 0:0134C10 þ ð0:0233� 0:0009iÞC3 þ 0:0268C4 þ 0:0113C5 þ 0:034C6 � 0:0057C7

� 0:017C8 � ð0:012� 0:0005iÞC9 � 0:0009C8g;

P̂ ¼ ð�0:0004� 0:0003iÞC1 � 0:013C10 þ ð0:0234� 0:0009iÞC3 þ 0:027C4 þ 0:0113C5 þ 0:034C6 � 0:006C7

� 0:017C8 � ð0:012� 0:0005iÞC9 � 0:0009C8g � ð0:004� 0:002iÞ;
P̂C
EW ¼ 0:017C7 þ 0:051C8 þ ð0:035� 0:0014iÞC9 þ 0:04C10;

P̂EW ¼ �0:016C7 þ ð0:056� 0:0014iÞC8 þ ð0:068� 0:0014iÞC9 þ ð0:066� 0:0013iÞC10;

Ĉ ¼ ð0:017� 0:0004iÞC1 þ ð0:039� 0:001iÞC10 þ 0:022C2 � ð0:023� 0:0009iÞC3 � 0:027C4 � 0:011C5

� 0:034C6 � 0:027C7 þ ð0:022� 0:0014iÞC8 þ 0:0009C8g þ ð0:045� 0:0005iÞC9;

T̂ ¼ ð0:027� 0:001iÞC1 þ 0:027C10 þ ð0:023� 0:001iÞC2 þ ð0:024� 0:001iÞC3 þ 0:027C4 þ 0:011C5 þ 0:034C6

þ 0:0113C7 þ 0:034C8 � 0:0009C8g þ ð0:024� 0:001iÞC9;

(12)

where X̂ is defined as X̂ ¼ ffiffiffi
2

p
X=GFm

2
B with X � A, T, C,

P, PEW, PC
EW. The above results correspond to the total

amplitudes including the chirally enhanced penguin with
inclusion of the charm penguin as a nonperturbative con-
tribution fitted from the experimental data. Note that the
charm penguin contributes only to the QCD penguin P, and
it is fixed from the data of B ! �� processes.

Here a few comments are in order: (i) At leading order,
the only source of the strong phases is the charm penguin,
however at next-to-leading-order correction, small strong
phases may emerge. (ii) In the combined SCETþ SUð3Þ,
one finds that C� T, hence there is no color suppression.
(iii) There is no undetermined strong phase in the ampli-
tudes T, C, PEW, P

C
EW, unlike the QCDF. Thus, the relative

sign of CP asymmetries is predicted. (iv) The amplitudes
PEW and PC

EW receive contributions through the electro-

weak penguin operators O7–10. Unlike the gluonic pen-
guins, the electroweak (�- and Z- mediated) penguins
distinguish the up from the down quark pairs in the final
state. Therefore, if they are not suppressed, they may
account for the difference between the CP asymmetries
in the two isospin related decays of Eq. (1).

III. SM CONTRIBUTION TO THE CP
ASYMMETRY OF B ! K�

In this section we reappraise the SM predictions for the
CP asymmetries of B ! K� decays in SCET [6]. In the
NDR scheme taking 	sðmZÞ ¼ 0:118, mt ¼ 170:9 GeV,
and mb ¼ 4:7 GeV, the Wilson coefficients are given by

C1–10ðmbÞ ¼ f1:078;�:177; :012;�:0335; :0095;�:040;

1� 10�4; 4:2� 10�4;�9:7� 10�3;

1:9� 10�3g;
C7�ðmbÞ ¼ �:316; C8gðmbÞ ¼ �0:149:

(13)

As can be seen from these values, the SM contributions to
the electroweak penguins C7–C10 are quite suppressed.
Thus, one expects that the EW penguins in the SM are
negligible, hence the B ! K� asymmetries are dominated
by the QCD penguins, which give universal contributions
to the four-decay channel. Accordingly, it is expected that
the SM results for the CP asymmetries of different B !
K� channels are very close. Since the SM Wilson coef-
ficients are real, one can rewrite the amplitude of B ! K�
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in Eq. (10) as

AðBþ ! K0�þÞ ¼ �ðsÞ
c P½1þ rAe

ið
A��Þ�;
AðB0 ! Kþ��Þ ¼ �ðsÞ

c P½1þ ðrCEWei
C
EW þ rTe

ið
T��ÞÞ�;ffiffiffi
2

p
AðBþ ! Kþ�0Þ ¼ �ðsÞ

c P½1þ ðrEWei
EW þ rTe
ið
T��Þ

þ rCe
ið
C��Þ þ rAe

ið
A��ÞÞ�;ffiffiffi
2

p
AðB0 ! K0�0Þ ¼ �ðsÞ

c P½�1þ ðrEWei
EW � rCEWe
i
C

EW

þ rCe
ið
C��ÞÞ�; (14)

where the parameters 
J, with J stands for T, C, A, EW,
EWC, are the CP conserving (strong) phase and rJ are
defined as

rTe
i
T ¼

��������
�ðsÞ
u

�ðsÞ
c

��������
T

P
; rCe

i
C ¼
��������
�ðsÞ
u

�ðsÞ
c

��������
C

P
;

rAe
i
A ¼

��������
�ðsÞ
u

�ðsÞ
c

��������
A

P
; rEWe

i
EW ¼ PEW

P
;

rCEWei

C
EW ¼ PC

EW

P
:

(15)

As can be seen from Eq. (10), P is dominated by the large
charm penguin. Therefore, one finds that all the above
ratios are quite suppressed and also have one single strong

phase, which is essentially 
c:c. Namely, one obtains the
following results:

rTe
i
T ¼ 0:06e�2:91i; rCe

i
C ¼ 0:05e�2:92i;

rAe
i
A ¼ 0:006e0:54i; rEWe

i
EW ¼ 0:08e0:23i;

rCEWei

C
EW ¼ 0:04e0:2i:

(16)

From these results, one notices that in SCET the ratio
between the color-suppressed tree and color-allowed tree
is enhanced, so jC=Tj � 1, unlike the corresponding ratio
in QCDF. This enhancement is due to the suppression of T,
not because enhancement of C. In this approach, one finds
rT � rC and rEW � rCEW, which means there is no color
suppression. However, even if the color-suppressed tree
and electroweak penguin ðC;PC

EWÞ are enhanced and be-
come of the order of the color-allowed tree and electro-
weak penguin ðT; PEWÞ, it is not possible to resolve the
puzzle B ! K� CP asymmetry in the framework of the
SM, due to a lack of CP violation as emphasized in
Ref. [4]. Because of the dominance of Ac:c: in P, hence
rJ 	 1, the following relation between the amplitudes of
different channels is established:

AK0�þ ’ AKþ�� ’ ffiffiffi
2

p
AKþ�0 ’ ffiffiffi

2
p

AK0�0 : (17)

The branching ratio of B ! K� is given by

BR ðB ! K�Þ ¼ 1

�tot

½ðM2
B � ðmK þm�Þ2ÞðM2

B � ðmK �m�Þ2Þ�1=2
16�M3

B

½jAK�j2 þ j �AK�j2�: (18)

Therefore, the BRs also satisfy the relation:

BR K0�þ ’ BRKþ�� ’ 2BRKþ�0 ’ 2BRK0�0 ; (19)

which is consistent with the data given in Table I. However,
the magnitude of the BR is sensitive to the value of P and
hence to the value of the charm penguin Ac:c. In fact, for
negligible charm penguin, i.e., Ac:c ¼ 0 one finds that BRs
are given by

BR K0�þ ¼ 2:1� 10�6; BRKþ�� ¼ 2:3� 10�6;

BRKþ�0 ¼ 1:4� 10�6; BRK0�0 ¼ 0:9� 10�6:

(20)

These results are smaller than the experimental measure-
ments. Therefore, it is appealing that the large charm
penguin is essential for the consistency of the SCET. For

the value of Ac:c: in Eq. (9), one finds significant enhance-
ment for the BRs and they become close to the experimen-
tal results, namely, they are now given by

BR K0�þ ¼ 20:5� 10�6; BRKþ�� ¼ 21:1� 10�6;

BRKþ�0 ¼ 11:2� 10�6; BRK0�0 ¼ 9:7� 10�6:

(21)

In order to understand the dependence of the CP asym-
metries on different contributions, we will neglect small r2J
corrections. However our numerical results are based on
the complete expressions of the asymmetries, which turn
out to be quite close to the approximated ones. Keeping
linear terms in rJ, one finds that the B ! K� CP asym-
metries can be written as
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ACP
Bþ!K0�þ ¼ 2rA sin
A sin�

1þ 2rA cos
A cos�
;

ACP
�B0!Kþ�� ¼ 2rT sin
T sin�

1þ 2rCEW cos
C
EW þ 2rT cos
T cos�

;

ACP
Bþ!Kþ�0 ¼ 2rT sin
T sin�þ 2rC sin
C sin�þ 2rA sin
A sin�

1þ 2rEW cos
EW þ 2rC cos
C cos�þ 2rT cos
T cos�þ 2rA cos
A cos�
;

ACP
B0!K0�0 ¼ �2rC sin
C sin�

1� 2rEW cos
EW þ 2rCEW cos
C
EW � 2rC cos
C cos�

:

(22)

It is interesting to note that without charm penguin
contribution, although rJ is not suppressed, all the CP
asymmetries of B ! K� decays are quite small, Oð0:01Þ,
which is not consistent with the experimental results re-
ported above in Table I. This is due to the lack of large
strong phases. As mentioned, the charm penguin in SCET
is the main source of strong phases. Therefore these phases
associated with rJ are essentially given by�1=P. This can
be checked in Eq. (15), where one observes the following
relation:

sin
T ¼ sin
C ¼ sin
A ¼ � sin
EW ¼ � sin
C
EW

¼ � sin
P: (23)

It is now clear that the above expression of the CP asym-
metries cannot lead to ACP

Kþ�� and ACP
Kþ�0 with different

signs. In fact, one can approximate these two asymmetries
as follows: ACP

Kþ�� ’ 2rT sin
 sin� and ACP
Kþ�0 ’

2ðrT þ rCÞ sin
 sin�, which lies between ACP
Kþ�� and

2AKþ�� . One can check this conclusion numerically. For
instance, with a charm penguin fixed by B ! �� [6], one
finds the following asymmetries:

ACP
Bþ!K0�þ ¼ �0:01; ACP

B0!Kþ�� ¼ �0:03;

ACP
Bþ!Kþ�0 ¼ �0:04; ACP

B0!K0�0 ¼ 0:02:
(24)

Note that the EW penguins violate the isospin symmetry,
hence they are natural candidates for explaining the dis-
crepancy between ACP

Kþ�� and ACP
Kþ�0 . However, as we have

seen, within the SM, these two asymmetries are not sensi-
tive to the values of rEW and rcEW. This is due to the fact that
the EW penguins are real in the SM and hence they have no
interference with the QCD penguin P. As emphasized in
Ref. [13], a possible solution for the B ! K� puzzle is to
have a new source of CP violation that generates CP
phases for the EW penguins. This possibility can be im-
plemented in supersymmetric models and has been
checked within the framework of QCDF in Refs. [4,13].

IV. NEW PHYSICS EFFECTS AND CP
ASYMMETRIES OF B ! K� IN SCET

In this section we analyze the type of general NP beyond
the SM that can account for the CP asymmetries of B !
K� and explain the discrepancy between ACP

Kþ�� and

ACP
Kþ�0 . As mentioned above and discussed in detail in

Ref. [4], this NP must contain a new source of CP violation
beyond the CKM phase. The impact of any NP beyond the
SM appears only in the Wilson coefficients at electroweak
scale. Therefore, the total Wilson coefficients can be writ-
ten as

Ci ¼ CSM
i þ CNP

i ; i ¼ 1; . . . ; 10; 7�; 8g; (25)

where CNP
i are generally complex, i.e., they have a CP

violating phase, unlike the CSM
i . Also the NP is expected to

have relevant contributions to the penguins and not to the
tree processes, which are dominated by the SM effects.
Therefore, one can assume that the color-tree and color-
suppressed parameters remain as in the SM, i.e., T ¼ TSM

and C ¼ CSM, while the penguin parameters are given by

Pei�Pei
P ¼ jPSMjei
c:c þ jPNPjei�P

¼ jPSMj½ei
c:c þ �Pe
i�P�; (26)

PEWei�EW ¼ jPSM
EWj þ jPNP

EWjei�EW

¼ jPSM
EWj½1þ �EWe

i�EW�; (27)

PEWCei�
C
EW ¼ jPSM

EWC j þ jPNP
EWC jei�EWC

¼ jPSM
EWC j½1þ �C

EWe
i�C

EW�: (28)

Here we assume that the only source of strong phase is 
c:c

in PSM. As mentioned in the previous section, a large
charm penguin contribution is very crucial in the SCET
in order to get the branching ratio of B ! K� decays
consistent with the experimental measurements.
Furthermore, it is also needed to allow for a large strong
phase, which is crucial for generating a large CP asymme-
try. In order to generalize the parametrization of B ! K�
in Eq. (14), one should rewrite P as P ¼ jPjei
Pei�P , where

P and �P are the strong (CP conserving) and CP violating
phases associated with P, which can be determined as
follows:


P ¼ tan�1

�
sin
c:c

cos
c:c þ �P cos�P

�
;

�P ¼ tan�1

�
�P sin�P

�P cos�P þ cos
c:c

�
:

(29)
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Similarly, �EW and �CEW can be defined in terms of�EW and
�C

EW. In this case, the ratio between the EW and QCD
penguins can be written as

PEW

P
¼ rEWe

�i
Peið�EW��PÞ;

PC
EW

P
¼ rCEWe

�i
Peið�CEW��PÞ;

(30)

where rEW and rCEW are given by

rEW ¼ ðrEWÞSM
��������

1þ �EWe
i�EW

1þ �Pe
ið�P�
c:cÞ

��������;

rCEW ¼ ðrCEWÞSM
��������

1þ �C
EWe

i�C
EW

1þ �Pe
ið�P�
c:cÞ

��������:
(31)

Note that the strong phases still satisfy the relation in
Eq. (23), as in the SM. This leads to the following parame-
trization for the B ! K� amplitudes:

AðBþ ! K0�þÞ ¼ �ðsÞ
c P½ei�P þ rAe

ið
A��Þ�;
AðB0 ! Kþ��Þ ¼ �ðsÞ

c P½ei�P þ ðrCEWeið�CEWþ
C
EWÞ þ rTe

ið
T��ÞÞ�;ffiffiffi
2

p
AðBþ ! Kþ�0Þ ¼ �ðsÞ

c P½ei�P þ ðrEWeið�EWþ
EWÞ þ rTe
ið
T��Þ þ rCe

ið
C��Þ þ rAe
ið
A��ÞÞ�;ffiffiffi

2
p

AðB0 ! K0�0Þ ¼ �ðsÞ
c P½�ei�P þ ðrEWeið�EWþ
EWÞ � rCEWe

ið�C
EW

þ
C
EW

Þ þ rCe
ið
C��ÞÞ�:

(32)

In this case, one finds that the approximate expressions for the CP asymmetries in Eq. (22) can be generalized as follows:

ACP
Bþ!K0�þ ¼ 2rA sin
A sinð�P þ �Þ

1þ 2rA cos
A cosð�P þ �Þ ;

ACP
�B0!Kþ�� ¼ 2rT sin
T sinð�P þ �Þ þ 2rCEW sin
C

EW sinð�P � �CEWÞ
1þ 2rT cos
T cosð�P þ �Þ þ 2rCEW cos
C

EW cosð�P � �CEWÞ ;

ACP
Bþ!Kþ�0 ¼ 2rEW sin
EW sinð�P � �EWÞ þ 2½rT sin
T þ rC sin
C þ rA sin
A� sinð�P þ �Þ

1þ 2rEW cos
EW cosð�P � �EWÞ þ 2½rT cos
T þ rC cos
C þ rA cos
A� cosð�P þ �Þ ;

ACP
B0!K0�0 ¼ �2rEW sin
EW sinð�P � �EWÞ þ 2rCEW sin
C

EW sinð�P � �CEWÞ � 2rC sin
C sinð�P þ �Þ
1� 2rEW cos
EW cosð�P � �EWÞ þ 2rCEW cos
C

EW cosð�P � �CEWÞ � 2rC cos
C cos�P þ �
:

(33)

If one assumes rC � rT , and neglects the small rA, then the CP asymmetries ACP
Kþ�� and ACP

Kþ�0 , which are not consistent

with the SM results, can be written as:

ACP
Kþ�� ’ 2 sin
P½�rT sinð�P þ �Þ þ rCEW sinð�P � �CEWÞ�

1þ 2rT cos
P cosð�P þ �Þ þ 2rCEW cos
P cosð�P � �CEWÞ
;

ACP
Kþ�0 ’ 2 sin
P½rEW sinð�P � �EWÞ � 2rT sinð�P þ �Þ�

1þ 2rEW cos
P cosð�P � �EWÞ þ 4rT cos
P cosð�P þ �Þ :
(34)

Therefore, the difference between these two asymmetries is now given by

ACP
Kþ�0 � ACP

Kþ�� ’ 2 sin
P½rEW sinð�P � �EWÞ � rT sinð�P þ �Þ � rCEW sinð�P � �CEWÞ�: (35)

Note that the denominators in Eq. (34) can be approxi-
mated to one if large phases are considered to maximize
the asymmetries. According to Eq. (1), this difference
should be of order Oð0:14Þ in order to match the current
experimental results. Thus one finds

rEW sinð�P � �EWÞ � rT sinð�P þ �Þ � rCEW sinð�P � �CEWÞ
’ 0:07

sin
P

: (36)

Moreover, the result of ACP
Kþ�� implies that

� rT sinð�P þ �Þ þ rCEW sinð�P � �CEWÞ � �0:049

sin
P

:

(37)

From these relations, one gets:

rEW sinð�P ��EWÞ� 2rCEW sinð�P ��CEWÞ ’
0:12

sin
P

: (38)

This condition can be fulfilled if one of the following
scenarios takes place:
(i) rEW sinð�P � �EWÞ � 0:12= sin
P, while

rCEW sinð�P � �CEWÞ & Oð0:01Þ, which could be due
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to smallness of rCEW or �P � �CEW. Note that if 
P �

c:c, then rEW sinð�P � �EWÞ � 0:3. In this case, the
required NP should enhance the value of rEW to be
larger than j0:12= sin
Pj and induce CP violating
phases such that sinð�P � �EWÞ �Oð1Þ, i.e.,
�EW ’ �P � �=2. The phase �P can be fixed from
ACP
Kþ�� which in this scenario is given by

2rT sin
P sinð�P þ �Þ.
(ii) rEW � rCEW and �EW � �CEW. In this case, the re-

quired NP should lead to rEW sinð�P � �EWÞ �
rCEW sinð�P � �CEWÞ � �0:12= sin
P. Therefore,
rEW should also be larger than j0:12= sin
Pj and
sinð�P � �CEWÞ �Oð�1Þ, i.e., �EW � �CEW � �P þ
�=2.

(iii) Another possibility is that rEW sinð�P � �EWÞ &
Oð0:01Þ and rcEW sinð�P � �EWCÞ � �0:06= sin
P.
It may be natural to think that color-allowed con-
tributions should dominate the color-suppressed
ones, therefore this scenario requires a NP
that implies: �P � �EW and sinð�P � �CEWÞ ��0:06=ðrCEW sin
PÞ.

It is important to note that in these three marked scenar-
ios, the new CP violating phases are crucial and play an
important role in modifying the B ! K� CP asymmetries
and moving them towards the experimental measurements.
This could be an interesting test for the correct NP that we
should consider as extension of the SM. In the next section
we will check the possibility that SUSY can resolve the
puzzle of B ! K� as it can do in the QCDF [4], and if it is
so, which scenario of the above three can be implemented
in SUSY models. It is also worth mentioning that if the
denominators of Eq. (33) are less than one, then the value
of the CP asymmetries can be enhanced and smaller values
of CP phases could be sufficient for accommodating the
experimental results of CP asymmetries of B ! K�
decays.

Before concluding this section, it is worth mentioning
that in QCDF there is more than one source of strong
phases, therefore one may adjust the sign of 
EW and

C
EW such that the difference between ACP

Kþ�� and ACP
Kþ�0

can be obtained without any tight relation between the CP
violating phases of the QCD and EW penguins, like those
obtained in SCET. Accordingly, it is expected to be more
difficult for NP to account for the CP asymmetry of B !
K� decays in SCET than in other frames of hadron
dynamics.

V. SUSY CONTRIBUTIONS TO THE CP
ASYMMETRY OF B ! K� IN SCET

Now, we consider SUSYas a potential candidate for NP
beyond the SM and analyze its contribution to the CP
asymmetry of B ! K� in SCET. As mentioned, the impact
of SUSY appears only in the Wilson coefficients at the
electroweak scale. Here we focus on the relevant contribu-
tions that may play an important role in the CP asymmetry

of B ! K�, in particular, the gluino contribution to the

chromomagnetic and EW penguins, namely C~g
8g, C

~g
7 , and

C~g
9 , and, in addition, the chargino contribution to the

Z-penguin C

9 . These can be written in MIA as [22,23]:

C~g
8g ’

8	S�

9
ffiffiffi
2

p
GFVtbV

�
tsm

2
~q

m~g

mb

½ð
d
LRÞ23 þ ð
d

RLÞ23�

�
�
1

3
M1ðxÞ þ 3M2ðxÞ

�
; (39)

C~g
7� ’ �	S

6
ffiffiffi
2

p
GFVtbV

�
tsm

2
~q

N2
c � 1

2Nc

�
�
ð
d

LLÞ23
1

4
P1;3;2ðx; xÞ þ ð
d

RLÞ23
m~g

mb

P1;2;2ðx; xÞ
�
;

(40)

C~g
9 ’ � �	S

6
ffiffiffi
2

p
GFVtbV

�
tsm

2
~q

N2
c � 1

2Nc

ð
d
LLÞ23

1

3
P0;4;2ðx; xÞ;

(41)

C


9 ’ 	

4�
Yt½ð
u

RLÞ32 þ �ð
u
RLÞ31�

�
�
4

�
1� 1

4sin2�W

�
RC þ RD

�
; (42)

where x ¼ m2
~g=m

2
~q and the functions M1;2, Pijk and RC;D

are the corresponding loop functions, which depend on
SUSY parameters through gluino/chargino mass and
squark masses and can be found in Refs. [22,23]. Note
that although ð
d

LRÞ23 and ð
d
RLÞ23 are constrained by the

experimental limits of b ! s� to be less than Oð10�2Þ,
their contributions to C~g

8g and C~g
7 are enhanced by a large

factor of m~g=mb. On the other hand, the mass insertion

ð
u
RLÞ32 is free from any stringent constraints, and it can be

of order one.
As advocated in the Introduction, SUSY models include

new CP violating phases beyond the SM phase 
CKM.
These phases arise from the complex soft SUSY breaking
terms. In MIA, the SUSY CP violating phases lead to

complex mass insertions ð
u;d
ABÞij, hence complex SUSY

Wilson coefficients, unlike in SM. A SUSY model with
nonuniversal A-terms, which can be obtained in most of
SUSY breaking scenarios, is the natural framework for
inducing new SUSY sources of CP and flavor violation
that yield observable effects in the low-energy CP viola-
tion experiments without exceeding the experimental EDM
limits [12]. For m~g ¼ 300 GeV and m~q ¼ 500 GeV, the

SUSY contributions to QCD and EW penguins can be
approximated by

ðP̂ÞSUSY ¼ ð�0:004þ 0:0002iÞð
d
LLÞ23 � 0:36ð
d

LRÞ23
� 0:36ð
d

RLÞ23 � 0:00004ð
u
RLÞ32; (43)
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ðP̂EWÞSUSY ¼ ð0:025� 0:0005iÞð
d
LLÞ23

þ 0:00031ð
u
RLÞ32; (44)

ðP̂C
EWÞSUSY ¼ ð0:013� 0:0005iÞð
d

LLÞ23
þ 0:00013ð
u

LRÞ32: (45)

Recall that the SM contribution to these parameters is
given by

ðP̂ÞSM ¼ �0:006þ 0:0016i; (46)

ðP̂EWÞSM ¼ �0:0005þ 0:0001i; (47)

ðP̂C
EWÞSM ¼ �0:0002þ 0:0001i: (48)

From the b ! s� constraints, one can fix the relevant
mass insertions as follows:

ð
d
LLÞ23 ¼ ei	

d
1 ; ð
d

LRÞ23 ¼ ð
d
RLÞ23 ¼ 0:01ei	

d
2 ;

ð
u
RLÞ32 ¼ 1ei	

u
;

(49)

with unconstrained CP violating phases: 	d
1;2 and 	u. It is

clear that the QCD penguin is dominated by the SM con-
tribution, which is essentially the charm penguin effect.
However, the EW penguins, which are quite suppressed in
the SM, receive significant contributions in the SUSY
models, in particular, due to the gluino contribution to
the EW penguin with photon mediation. In this case, one
can approximate rEW and rCEW as

rEW ¼ ðrEWÞSM
��������

1� 46:5ei	
d
1 � 0:58ei	

u

1þ ð0:65þ 0:13iÞei	d
1 þ ð1:64þ 0:41iÞei	d

2

��������; (50)

rCEW ’ ðrCEWÞSM
��������

1� 50:7ei	
d
1 � 0:52ei	

u

1þ ð0:65þ 0:13iÞei	d
1 þ ð1:64þ 0:41iÞei	d

2

��������: (51)

From these expressions, it is clear that the magnitudes of
rEW and rCEW can be significantly enhanced and reach up to
tens of the SM results. As we concluded in the previous
section, a large value of rEW and/or rCEW, besides non-
vanishingCP violating phases �EW and �CEW, is an essential
condition for resolving the B ! K� puzzle. Also one
notes that the chargino exchange gives subdominant
contribution.

One can also notice that the relation rEW � 2rCEW re-
mains valid in SUSY models, as in the SM. Furthermore,
since the mass insertion ð
d

LLÞ23 gives the dominant con-
tributions to PEW and PC

EW, one gets sinð�P � �EWÞ �
sinð�P � �CEWÞ. Therefore, the condition of accounting
for the discrepancy in B ! K� CP asymmetries,
Eq. (38), leads to

rEW sinð�P � �EWÞ
�
1� 2rCEW

rEW

�
’ 0:12

sin
P

� 0:4; (52)

where sinð�P � �EWÞ �Oð1Þ and ð1� 2rEW=r
C
EWÞ �

Oð0:1Þ. Therefore, the CP asymmetries of B ! K� can
be accommodated if rEW 
 Oð1Þ, which can be obtained
as shown in Eq. (50).

As an example, one can check that the following values
of the mass insertion phases, 	d

1 ¼ 2:1 rad, 	d
2 ¼ 1:5 rad,

and 	u ¼ 0, lead to rEW ’ 1:7 and rCEW ¼ 0:9. This means
that both rEW rCEW are enhanced from the SM result by a
factor of 20. Also, in this case, one finds the SUSY CP
violating phases as follows: �EW ¼ �2:25 rad and �CEW ¼
�2:27 rad. These results imply that theCP asymmetries of
B ! Kþ�0 and B ! Kþ�� are given by

ACP
Kþ�0 ¼ 0:06; ACP

Kþ�� ¼ �0:09; (53)

which are in agreement with the experimental measure-
ments reported in Table I. It is important to note that since
rEW 	 1, one must use the complete expression for the CP
asymmetries to get the correct results.

VI. CONCLUSIONS

In this work, we have studied the large discrepancy in
the experimentally measured asymmetries of B ! K� in
the SCET framework. We conclude that in the standard
model, one cannot accommodate all the experimental re-
sults in the SCET framework.
We have considered the possibility that New Physics

could satisfy the measured asymmetries. We have classi-
fied the properties of New Physics needed to bring the
theoretical results to an experimentally acceptable level
in the SCET scenario. A general feature is that a new
source of CP violation must emerge. As an example of a
New Physics model, we studied supersymmetric models
with minimal particle content in a model independent
fashion by utilizing mass insertion approximation. We
found that the gluino contribution to the electroweak pen-
guin is essential. In our analysis we let trilinear A-terms
vary freely, in which case we can find an experimentally
allowed region in the parameter space.
Therefore, if SCET is a reliable way to treat hadronic

matrix elements, the present experimental results indicate
New Physics. Supersymmetric models remain a viable
candidate for such New Physics, if nonminimal flavor
violation is allowed.
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