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We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic

Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence

sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our

heavy-quark action and as a guide to understanding the discretization errors associated with the heavy

quark. Our results are in good agreement with experiment within our systematics. For the�cc, we find the

isospin-averaged mass to be M�cc
¼ 3665� 17� 14þ0

�78 MeV; the three given uncertainties are statis-

tical, systematic, and an estimate of lattice discretization errors, respectively. In addition, we predict the

mass splitting of the (isospin-averaged) spin-1=2 �cc with the �cc to be M�cc
�M�cc

¼ 98� 9� 22�
13 MeV (in this mass splitting, the leading discretization errors are also suppressed by SUð3Þ symmetry).

Combining this splitting with our determination ofM�cc
leads to our prediction of the spin-1=2 �cc mass,

M�cc
¼ 3763� 19� 26þ13

�79 MeV.
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I. INTRODUCTION

Experimental and theoretical studies of charmed and
bottom hadrons have been the focus of vigorous research
over the last several years [1–4]. In particular, singly and
doubly heavy baryon spectroscopy has received significant
attention, mainly due to the recent experimental discov-
eries of both new charmed (SELEX) [5,6] and bottom
baryons by D0 [4] and CDF [7]. In addition to these
discoveries, there are still many states of heavy and doubly
heavy baryons remaining to be discovered. The new
Beijing Spectrometer (BES-III), a detector at the recently
upgraded Beijing Electron Positron Collider (BEPCII), has
great potential for accumulating large numbers of events to
help us understand more about charmed hadrons. The
antiProton ANnihilation at DArmstadt (PANDA) experi-
ment, a GSI future project, and the LHCb are also expected
to provide new results to help experimentally map out the
heavy-baryon sector. For these reasons, lattice quantum
chromodynamic (QCD) calculations of the spectrum of
heavy baryons are now very timely and will play a signifi-
cant role in providing theoretical first-principles input to
the experimental program.

Lattice QCD is now a mature field capable of providing
accurate results that can be directly compared to experi-
ment, with calculations in the light-quark sector being well
established. Although the study of heavy quarks requires
careful treatment of discretization errors, significant ad-
vances have been made in this sector as well. Lattice heavy
quarks haveOððmQaÞnÞ errors, wheremQ is the mass of the

heavy quark and a is the lattice spacing. Lattice spacings
for typical, currently accessible dynamical ensembles are

still too coarse (a�1 � 2 GeV) to make such systematic
errors small. To assert better control over the discretization
errors for heavy quarks on the lattice, several heavy-quark
approaches have proven useful. For example, nonrelativ-
istic QCD (NRQCD) [8], which is an expansion of the
lattice quark action in powers of 1

amQ
, is commonly applied

to bottom quarks. However, the charm-quark mass is not
heavy enough to justify the use of NRQCD. Relativistic
heavy-quark actions [9–12] systematically remove
OððmQaÞnÞ terms and are better suited to charm-quark

calculations. Recent updates on the state of heavy-quark
physics on the lattice can be found in several reviews [13–
18] and references therein.
Up to now, there have been a few lattice charmed-baryon

calculations using the quenched approximation. In some
cases an OðaÞ-improved light-quark action is used on
isotropic or anisotropic lattices with a single lattice spac-
ing: Bowler et al. [19] used a tree-level clover action for
both light and heavy quarks to calculate the singly charmed
baryons spectrum of spin 1=2 and 3=2. Later, Flynn et al.
[20] updated this project with nonperturbative clover ac-
tion and extended the calculation to doubly charmed bary-
ons. Chiu et al. [21] used a chiral fermion action for the
charm quarks and calculated both the positive and negative
parity spectrum for singly and doubly charmed baryons.
Such calculations using light-quark actions to simulate
heavy quarks introduce large systematic errors propor-
tional to ðamQÞ2, which must be carefully addressed. One

calculation has used a higher-order improved fermion ac-
tion: Lewis et al. [22] performed a calculation on both
doubly and singly charmed baryons using D234-type fer-
mion action (which would leave a leading error of Oða3Þ)
for both light and heavy quarks but on a coarse anisotropic
ensemble (with anisotropy � ¼ 2). Finally, heavy-quark*lxliux@wm.edu
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effective theory was applied to charm calculation: Mathur
et al. [23] continued to use anisotropic lattices, adding two
more lattice spacings, but changed the heavy-quark action
to NRQCD, which reduces the lattice-spacing discretiza-
tion effects. For all of these calculations, the quenched
approximation remains a significant source of systematic
error that is difficult to estimate.

Given the progress on the experimental side, it is time to
revisit these charmed baryon calculations using dynamical
gauge ensembles and improve the calculations with the
current available computational resources. Although more
dynamical ensembles are available these days, not many
charmed baryon calculations have been published so far,
only a few proceedings [24–26].

In this work, we extend our previous calculation [26] to
higher statistics and compute the ground-state spectrum of
the spin-1=2 singly and doubly charmed baryons. We use
the Fermilab action [9] for the charm quarks and domain-
wall fermions for the light valence quarks on gauge con-
figurations with 2þ 1-flavor Kogut-Susskind fermions
and a range of quark masses resulting in pion masses as
light as 290 MeV. We nonperturbatively tune the fermion
anisotropy and two input bare masses for charm
quarks, setting the remaining parameters to tree-level tad-
pole improved coefficients. Our results are extrapolated
to the physical light-quark masses using both heavy-
hadron chiral perturbation theory (HH�PT) as well as
HH�PT-inspired polynomial extrapolations.

II. LATTICE FORMULATION

A. Light-quark action

In this work we employ the ‘‘coarse’’ (a ’ 0:125 fm)
gauge configurations generated by the MILC Col-
laboration [27] using the one-loop tadpole-improved gauge
action [28], where both Oða2Þ and Oðg2a2Þ errors are
removed. For the fermions in the vacuum, the asqtad-
improved Kogut-Susskind action [29–34] is used. This is
the Naik action [35] (Oða2Þ improved Kogut-Susskind
action) with smeared links for the one-link terms so that
couplings to gluons with any of their momentum compo-
nents equal to �=a are set to zero.

For the valence light quarks (up, down and strange) we
use the five-dimensional Shamir [36,37] domain-wall fer-
mion propagators [38] calculated by the NPLQCD
Collaboration [39]. The domain-wall fermion action intro-
duces a fifth dimension of extent L5 and a mass parameter
M5; in our case the values L5 ¼ 16 and M5 ¼ 1:7 were
chosen. The physical quark fields, qð ~x; tÞ, reside on the 4-
dimensional boundaries of the fifth coordinate. The left and
right chiral components are separated on the corresponding
boundaries, resulting in an action with chiral symmetry at
finite lattice spacing as L5 ! 1. We use hypercubic-
smeared gauge links [40–43] to minimize the residual
chiral symmetry breaking, and the bare quark-mass pa-

rameter ðamÞdwfq is introduced as a direct coupling of the

boundary chiral components.
The calculation we have performed, because the valence

and sea quark actions are different, is inherently partially
quenched and therefore violates unitarity. Unlike conven-
tional partially quenched calculations, to restore unitarity,
one must take the continuum limit in addition to tuning the
valence and sea quark masses to be degenerate. This pro-
cess is aided with the use of mixed-action chiral perturba-
tion theory [44–49]. Given the situation, there is an
ambiguity in the choice of the valence light-quark masses.
One appealing choice is to tune the masses such that the
valence pion mass is degenerate with one of the staggered
pion masses. In the continuum limit, the Nf ¼ 2 staggered

action has an SUð8ÞL � SUð8ÞR �Uð1ÞV chiral symmetry
due to the four-fold taste degeneracy of each flavor, and
each pion has 15 degenerate partners. At finite lattice
spacing this symmetry is broken and the taste multiplets
are no longer degenerate, but have splittings that are
Oð�2

sa
2Þ [29–31,34,50]. The propagators used in this

work were tuned to give valence pions that match the
Goldstone Kogut-Susskind pion. This is the only pion
that becomes massless in the chiral limit at finite lattice
spacing. As a result of this choice, the valence pions are as
light as possible, while being tuned to one of the staggered
pion masses, providing better convergence in the �PT
needed to extrapolate the lattice results to the physical
quark-mass point. This set of parameters, listed in
Table I, was first used by LHPC [51,52] and recently to
compute the spectroscopy hadrons composed of up, down
and strange quarks [53].

B. Heavy-quark action

For the charm quark we use the Fermilab action [9],
which controls discretization errors of OððamQÞnÞ.
Following the Symanzik improvement [54], an effective
continuum action is constructed using operators that are
invariant under discrete rotations, parity-reversal and
charge-conjugation transformations, representing the
long-distance limit of our lattice theory, including leading
finite-a errors. Using only the Dirac operator and the gluon
field tensor (and distinguishing between the time and space
components of each), we enumerate seven operators with

TABLE I. The parameters of the configurations and domain-
wall propagators used in this work. The subscript l denotes light
quark, and s denotes the strange quark. The superscript ‘‘dwf’’
denotes domain-wall fermion.

Ensemble � aml ams amdwf
l amdwf

s Ncfgs Nprops

m007 6.76 0.007 0.050 0.0081 0.081 461 2766

m010 6.76 0.010 0.050 0.0138 0.081 636 3816

m020 6.79 0.020 0.050 0.0313 0.081 480 1920

m030 6.81 0.030 0.050 0.0478 0.081 563 1689
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dimension up to five. By applying the isospectral trans-
formations [55], the redundant operators are identified and
their coefficients are set to appropriate convenient values.
The lattice action then takes the form

S ¼ S0 þ SB þ SE; (1)

with

S0 ¼
X
x

�QðxÞ
�
m0 þ

�
�0r0 � a

2
40

�

þ �
X
i

�
�iri � a

2
4i

��
QðxÞ; (2)

SB ¼ �a

2
cB
X
x

�QðxÞ
�X
i<j

�ijFij

�
QðxÞ; (3)

SE ¼ �a

2
cE
X
x

�QðxÞ
�X

i

�0iF0i

�
QðxÞ; (4)

where a is the lattice spacing, r0 and ri are first-order
lattice derivatives in the time and space directions, 40 and
4i are second-order lattice derivatives, and F	� is the

gauge field strength tensor. The spectrum of heavy-quark
bound states can be determined accurately through j ~pja
and ðamQÞn for arbitrary exponent n by using a lattice

action containing m0, �, cB, and cE, which are functions
of amQ.

The coefficients cB and cE are different due to the
broken space-time interchange symmetry, which can be
computed in perturbation theory by requiring elimination
of the heavy-quark discretization errors at a given order in
the strong coupling constant �s. We use the tree-level
tadpole-improved results obtained by using field transfor-
mation (as in Ref. [55]):

cB ¼ �

u30
; cE ¼ 1

2
ð1þ �Þ 1

u30
; (5)

where u0 is the tadpole factor

u0 ¼
�
1

3

X
p

TrðUpÞ
�
1=4

; (6)

and Up is the product of gauge links around the fundamen-

tal lattice plaquette p. The remaining two parameters m0

and � are determined nonperturbatively. The bare charm-
quark massm0 is tuned so that the experimentally observed
spin average of the J=� and 
c masses

Mavg ¼ 1
4M
c

þ 3
4MJ=� (7)

is reproduced; see Sec. IVB for further details. The value
of � must be tuned to restore the dispersion relation E2

h ¼
m2

h þ c2p2 such that c2 ¼ 1. Since the values of � and m0

are coupled, one needs to iterate the tuning process in order
to achieve a consistent pair of values. To do this, we
calculate the single-particle energy of 
c, J=�, Ds, and

D at the six lowest momenta (with unit of a�1): 2�L ð0; 0; 0Þ,
2�
L ð1; 0; 0Þ, 2�

L ð1; 1; 0Þ, 2�
L ð1; 1; 1Þ, 2�

L ð2; 0; 0Þ, 2�
L ð2; 1; 0Þ.

For each ensemble, the energy levels are calculated at
two charm-quark masses (denoted m1 ¼ 0:2034 and m2 ¼
0:2100) and extrapolated to the physical charm-quark mass
(as described below). The values of c2 are obtained by
fitting the extrapolated energy levels to the dispersion
relation. We tune � using the dispersion relation of 
c.
As one can see from Table II, the dispersion relations for
either the charmonium J=� or the charm-light mesons
(D and Ds) are generally consistent with c2 ¼ 1 to within
1–2%.

III. CHARMED HADRON SPECTRUM:
NUMERICAL RESULTS

The interpolating operators we use for the J ¼ 1=2
singly and doubly charmed baryons are

�c: �
ijkðqiTu C�5q

j
dÞQk

c;

�c: �
ijkðqiTu C�5q

j
sÞQk

c;

�c: �
ijkðqiTu C�5Q

j
cÞqku;

�0
c:

1ffiffiffi
2

p �ijk½ðqiTu C�5Q
j
cÞqks þ ðqiTs C�5Q

j
cÞqku�;

�c: �
ijkðqiTs C�5Q

j
cÞqks;

�cc: �
ijkðQiT

c C�5q
j
uÞQk

c;

�cc: �
ijkðQiT

c C�5q
j
sÞQk

c;

(8)

where qu;d are the up and down quark fields, qs is strange
quark field and Qc is charm quark field.
Using these interpolating fields, we construct the two-

point functions

Chðt; t0Þ ¼
X
x

hOhðx; tÞOhðx; t0Þyi;

whereOh is an interpolating operator of the hadron h. The
correlation functions are calculated with gauge-invariant
Gaussian-smeared sources and point sinks. The smearing
parameters were optimized so that excited-state contami-
nation to the correlators is minimized. The domain-wall
valence propagators were computed with Dirichlet bound-
ary conditions in the time direction, reducing the original
lattices to half their temporal size. Similar to baryons, the
signal for the charmed correlation functions quickly drops,

TABLE II. Speed of light for charmed mesons.

c2

Ensemble 
c J=� D Ds

m007 0.991(4) 0.985(5) 1.021(15) 1.018(9)

m010 0.989(3) 0.958(3) 1.016(10) 0.992(6)

m020 0.997(4) 0.993(5) 1.019(20) 1.004(14)

m030 0.963(5) 0.947(6) 1.029(12) 1.015(10)
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and thus we do not expect the temporal reduction to reduce
the number of useful time points for our analysis. The
sources were located away from the Dirichlet boundary
to minimize contamination from the boundary effects. In
order to enhance our statistical precision, several valence
propagators are taken from each configuration with vary-
ing source location. The resulting correlation functions are
then source averaged on each configuration to produce one
correlator per configuration for each interpolating operator.
The masses of the hadrons are obtained by fitting the
correlation functions to a single exponential

ChðtÞ ¼ Ae�E0t (9)

in a region where the effective mass is observed to exhibit a
plateau. The fitting range is varied by one or two time slices
on either end to estimate the systematics from the choice of
fitting window. In Tables III and IV, we list the value
associated with the listed fitting window. The first uncer-
tainty is statistical and the second uncertainty comes from
the varied fitting windows. For most fits, the resulting �2

per degree of freedom is about one. In Fig. 1 we display

representative effective mass plots and their fitted masses
for both good and poor fits. The results from charmonium
are shown in Table IV.

IV. HEAVY- AND LIGHT-QUARK MASS
EXTRAPOLATION

In order to make contact with experiment, we must
extrapolate our results to infinite volume, continuum limit
and to the physical value of the light- and heavy-quark
masses. Optimally, the extrapolations can be performed in
terms of dimensionless ratios of observable quantities, so
as to minimize contamination from a particular scale-
setting method. In this work, we have chosen to scale our
masses by the calculated value of the pion decay constant
on each ensemble, forming the dimensionless ratios
Mh=f�, where Mh is the mass of a given hadron. We
take the values of f� (and m�) from Ref. [53]; they are
collected in Table V. As can be seen, af� varies by� 15%
over the range of pion masses used in this work, adding
additional chiral curvature. However, the light-quark mass

TABLE III. Charmed baryon masses in lattice units with 2 values ofm0 (indicated asm1 ¼ 0:2034 andm2 ¼ 0:2100) in Eq. (2). The
first uncertainty is statistical and the second is systematic from the different choice of fitting ranges (presented in square brackets).

Hadron m0 m007 m010 m020 m030

�cc m1 2.3578(18)(8)[8–18] 2.3620(14)(9)[10–18] 2.3456(33)(17)[12–18] 2.3333(23)(6)[11–18]

m2 2.3663(18)(8)[8–18] 2.3705(14)(9)[10–18] 2.3542(33)(16)[12–18] 2.3419(23)(7)[11–18]

�cc m1 2.3018(27)(0)[7–13] 2.3120(23)(23)[9–17] 2.3087(33)(3)[8–18] 2.3056(28)(33)[11–18]

m2 2.3104(27)(0)[7–13] 2.3205(23)(23)[9–17] 2.3173(33)(3)[8–18] 2.3142(28)(33)[11–18]

�c m1 1.7216(24)(1)[9–15] 1.7240(24)(5)[12–18] 1.7101(52)(77)[12–16] 1.7160(39)(13)[12–18]

m2 1.7261(24)(1)[9–15] 1.7285(24)(5)[12–18] 1.7146(52)(76)[12–16] 1.7205(39)(13)[12–18]

�0
c m1 1.6754(26)(32)[6–18] 1.6799(29)(43)[9–16] 1.6875(52)(57)[9–16] 1.6881(43)(2)[11–18]

m2 1.6799(26)(32)[6–18] 1.6844(29)(43)[9–16] 1.6920(52)(58)[9–16] 1.6927(43)(2)[11–18]

�c m1 1.6076(82)(86)[12–18] 1.6078(48)(54)[12–18] 1.6167(40)(9)[8–18] 1.6120(41)(47)[12–17]

m2 1.6121(82)(87)[12–18] 1.6123(48)(55)[12–18] 1.6211(40)(9)[8–18] 1.6163(41)(48)[12–17]

�c m1 1.6157(50)(38)[7–17] 1.6252(55(0))[9–15] 1.6446(56)(0)[8–16] 1.6661(43)(70)[10–18]

m2 1.6203(50)(38)[7–17] 1.6298(55)(0)[9–15] 1.6491(56)(0)[8–16] 1.6706(43)(69)[10–18]

�c m1 1.4974(71)(47)[6–13] 1.523(16)(3)[12–18] 1.5571(55)(22)[8–18] 1.572(5)(18)[12–17]

m2 1.5018(71)(48)[6–13] 1.527(16)(3)[12–18] 1.5615(55)(22)[8–18] 1.577(5)(18)[12–17]

TABLE IV. Charmonium masses in lattice units with m1 ¼ 0:2034 and m2 ¼ 0:2100.

Hadron m m007 m010 m020 m030


c m1 1.8783(4)(0)[14–19] 1.8804(3)(0)[12–19] 1.8687(4)(1)[12–19] 1.8598(3)(2)[8–15]

m2 1.8866(4)(1)[14–19] 1.8887(3)(1)[12–19] 1.8771(4)(1)[12–19] 1.8683(5)(0)[8–15]

J=� m1 1.9390(7)(0)[14–18] 1.9421(4)(0)[10–19] 1.9296(6)(1)[12–19] 1.9198(6)(2)[11–19]

m2 1.9470(7)(0)[14–18] 1.9501(4)(1)[10–19] 1.9376(6)(1)[12–19] 1.9278(6)(3)[11–19]

�c0 m1 2.1660(54)(21)[9–16] 2.1803(33)(6)[6–17] 2.1652(55)(50)[6–18] 2.1626(54)(2)[6–18]

m2 2.1741(54)(20)[9–16] 2.1883(35)(6)[6–17] 2.1733(55)(49)[6–18] 2.1705(54)(2)[6–18]

�c1 m1 2.2092(69)(24)[9–18] 2.2234(52)(35)[9–16] 2.2123(40)(8)[4–17] 2.2004(44)(25)[4–17]

m2 2.2171(69)(24)[9–18] 2.2312(52)(35)[9–16] 2.2199(40)(9)[4–17] 2.2081(44)(25)[4–17]

hc m1 2.2224(64)(86)[6–18] 2.2386(32)(24)[4–18] 2.2205(45)(21)[4–17] 2.2151(63)(26)[5–18]

m2 2.2301(65)(85)[6–18] 2.2463(32)(25)[4–18] 2.2282(46)(19)[4–17] 2.2226(63)(25)[5–18]
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dependence of f� is well understood [56,57], and so this
variation can be accounted for.

Ultimately, one would like to use heavy-hadron chiral
perturbation theory (HH�PT) [58–64] to perform both the
charm-quark mass extrapolation and the chiral extrapola-
tion of the charmed hadron masses, allowing a lattice
determination of not just the spectrum but also the low-
energy constants entering the effective field theory. There
are several reasons we cannot perform a thorough extrapo-
lation in this manner. First, we only have results at four
independent values of the light-quark mass, and at only one
value of the strange mass. Second, in this work, we only
have results for the J ¼ 1=2 baryons, and a proper chiral
extrapolation requires also the spectrum of J ¼ 3=2

charmed baryons; the states are related by the heavy-quark
symmetry, and therefore the mass splittings are small
(similarly, the extrapolation of the heavy meson masses
requires the J ¼ 1 states as well as J ¼ 0). Third, our
calculation is mixed-action, thus requiring either a contin-
uum extrapolation or the use of mixed-action �PT [44–49].
The mixed-action effective field theory can be trivially
constructed from the partially quenched theories for heavy
hadrons [65–67] by following the prescription in Ref. [48].
However, this work only utilizes one lattice spacing, and so
one can not perform the full mixed-action analysis. With
these caveats in mind, we proceed with our analysis.

A. Scale setting with f�

The light-quark mass expansion of a heavy-hadron mass
is given by1

Mh ¼ M0 þ cð2Þh

4�

2Bml

f0
þ � � � (10)

5 10 15
1.50

1.55

1.60

1.65

1.70

5 10 15
1.65

1.70

1.75

1.80

1.85

5 10 15
2.30

2.32

2.34

2.36

2.38

2.40

5 10 15
1.4

1.5

1.6

1.7

1.8

FIG. 1 (color online). Sample effective-mass plots and corresponding fits to the correlation functions. The smaller error bands are
statistical and the larger error bands are statistical and systematic (determined by varying fit range) added in quadrature.

TABLE V. Values of m� and f� calculated in Ref. [53]. For all
ensembles the staggered strange-quark mass is ams ¼ 0:050
while the domain-wall strange-quark mass is amdwf

s ¼ 0:081.

ensemble:
�
aml

6:76
0:007

6:76
0:010

6:79
0:020

6:81
0:030

am� 0.1842 0.2238 0.3113 0.3752

af� 0.0929 0.0963 0.1026 0.1076

m�=f� 1.983 2.325 3.035 3.489

1Here we are presenting an SUð2Þ extrapolation formula with
the operator normalization of Ref. [68] such that the coefficient
cð2Þh is dimensionless.
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At this order, we are free to make the replacements f0 !
f� and 2Bml ! m2

�, with corrections appearing atOðm4
�Þ.

The dots represent terms of higher order in the chiral
expansion, with the first nonanalytic (in the quark mass)
corrections appearing as corrections which scale as �m3

�.
As stated above, we are scaling our masses with f� to form
dimensionless ratios for extrapolation,

Mh

f�
¼ M0

f�
þ cð2Þh

4�

m2
�

f2�
þ � � � (11)

When performing an extrapolation in this manner, it is
important to realize we cannot approximate M0=f� as a
constant, since the chiral corrections to f� are Oðm2

�Þ and
thus are the same order as the term with coefficient cð2Þh .

Rather, the chiral expansion of f� is given by [56] (with the
normalization f0 � 130 MeV)

f� ¼ f0

�
1� 2m2

�

ð4�f�Þ2
ln

�
m2

�

	2

�
þ 2l4ð	Þm

2
�

f2�

�
þ � � �

� f0½1þ �fðm�=f�Þ� þ � � � (12)

In this expression, we have made use of perturbation theory

to replace all terms appearing at next-to-leading order with
their (lattice) physical values. Similarly, we have rescaled
the renormalization scale 	 ! ~	f� to express the chiral
corrections as purely a function of m�=f�. Again, the
corrections to this rescaling first appear at next-to-next-
to-leading order. In order to perform our chiral extrapola-
tions using Eq. (11), we must determine l4, which captures
the chiral corrections of f�. The mixed-action formula for
f� is known [44], but again, only useful if one has data for
at least two lattice spacings. Since we currently only have
results at one lattice spacing, we perform a continuum
chiral extrapolation analysis of the af� in Table V. The
results are collected in Table VI.
The resulting extrapolations are plotted in Fig. 2. In this

figure, the (blue) filled circles are the lattice data, and the
error bands represent the 68% confidence intervals. The
(red) star denotes the physical value converted to lattice
units using a�1 ¼ 1588 MeV [69]. We assign an addi-
tional 2% error to this point to estimate the uncertainty in
the scale setting method. In Fig. 2(a) we display the fit to
the lightest two points and in (b) the fit to all four points.
Note that the extrapolation describes the values of f� very
well. Additionally, one sees that using f� or r1 to set the
scale results in agreement in the extrapolated values, as
first observed in Ref. [70].2

B. Charm-quark mass extrapolation

To tune the charm-quark mass we use the spin-averaged
J=�-
c mass. We use the lattice spacing determined by
MILC (a�1 ¼ 1588 MeV [69]) on the m007 ensemble to
estimate the two charm-quark masses used for our charm

TABLE VI. Values of l4 needed for chiral extrapolations of
Mh=f�. The different values of l4 are determined through the
different choices of fitting range, also listed.

range m007–m010 m007–m020 m007–m030

l4ð	 ¼ f�Þ 0.0307(27) 0.0293(6) 0.0302(4)

0.0 0.1 0.2 0.3 0.4 0.5
0.075

0.080

0.085

0.090

0.095

0.100

0.105

0.110

m 2 2 f

a
f
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0.105

0.110

m 2 2 f

a
f

(b)(a)

FIG. 2 (color online). The (blue) filled circles represent the lattice data and the (red) star is the physical point, converted to lattice
units using a�1 ¼ 1588 MeV with a 2% error bar added for the scale setting. The error bands are the 68% confidence intervals in the
resulting chiral extrapolation from the lightest two points (a) and a fit to all four lattice points (b).

2The scale of r1 is determined through the static-quark potential by solving for r21Fðr1Þ ¼ 1; the values of r1=a can be found in
Ref. [71].
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quark propagator calculations.3 These same two charm
quark masses, m1 and m2, were used on all ensembles.
On the MILC ensembles, the value of �was slightly varied
for the different light-quark masses. Therefore, the corre-
sponding value of the critical mass changes from ensemble
to ensemble, leading to a slightly different charm-quark
mass tuning. This can be clearly seen in the left panel of
Fig. 3, where we display the spin-averaged J=�-
c mass
as a function of the light-quark mass, determined with the
a�1 ¼ 1588 MeV scale setting. Ensembles m007 and
m010 share the same value of � and therefore the differ-
ence in these points (the left-most two sets of masses) is
due entirely to light-quark contributions, whereas the
m020 and m030 ensembles each have a different value
of �, so that the variation of the spin-averaged mass is due
both to light-quark effects as well as a shifted value of the
critical mass.

In the right panel of Fig. 3, we display our preferred
method of determining the charm-quark mass using f� to
set the scale. On each ensemble, we take the spin-averaged
J=�-
c mass and divide by the corresponding value of flatt�

calculated on that ensemble. We then use the value of l4
determined in Sec. IVA to scale these values to determine

the ratio with fphys� ,

M
c
þ 3MJ=�

4fphys�

¼ 1þ �fðmlatt
� =flatt� Þ

1þ �fðmphys
� =fphys� Þ

M
c
þ 3MJ=�

4flatt�

:

(13)

It is these scaled values that are plotted in the right panel of
Fig. 3 and which we use to extrapolate our spectrum
calculation to the physical charm-quark mass point, which
we take to be

Mphys

c

þ 3Mphys
J=�

4fphys�

¼ 23:47; (14)

with
m

phys
�

f
phys
�

¼ 1:056: (15)

Here, m
phys
� is taken to be the isospin-averaged pion mass,

while f
phys
� is taken to be the charged-pion decay constant

[72]. On each ensemble, we linearly extrapolate the spin-

averaged J=�-
c mass (scaled by f
phys
� ) to the experimen-

tal value to determine the parameter m0 ¼ m
phys
c (the

masses of all hadrons are then extrapolated linearly to
this charm-quark mass on each ensemble). The uncertain-
ties of the extrapolated hadron masses are evaluated using
the jackknife method. As a check of systematics, we per-
form the same procedure using the lattice spacing a�1 ¼
1588 MeV to perform the linear charm-quark mass ex-
trapolation. Using this second approach, the resulting
charmed baryon spectrum is consistent with that of our
preferred charm-quark mass-tuning method.
To test the viability of our choice of mixed-action and to

gauge the discretization errors, we compute both the
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FIG. 3 (color online). Spin-averaged mass of 
c and J=� on the different ensembles. The blue points and purple points indicate the
masses at m1 and m2, respectively. The red line indicates the experimental value. The left panel displays the results from the lattice
spacing a�1 ¼ 1588 MeV used on all ensembles. This method was used to tune the charm-quark mass on the m007 ensemble. The

right panel displays the masses scaled by f� on the lattice and extrapolated to f
phys
� , as discussed in the text.

3At the time this work was almost completed we became
aware of an updated value for the lattice spacing determined
by MILC [71]. As a result the tuned charm quark mass is
reduced, consequently the charmed hadron masses in lattice
units will be reduced. However, the reduced lattice spacing
will compensate this effect by an increase of the masses in
physical units. The overall effect of mass shifting in the final
baryon masses is estimated to be less than 1%, well within our
systematics. Further, in our final analysis, the MILC scale setting
is only used as a check on our systematics.
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J=�-
c hyperfine mass splitting as well as the low-lying
charmonium spectrum of the �c0, �c1 and hc. The inter-
polating fields used for these charmonium states are4

�c0 ¼ �QcQc; (16)

�i
c1 ¼ �Qc�

i�5Qc; (17)

hic ¼
X3
j¼1

X3
k¼j

�ijk �Qc�
j�kQc; (18)

To extrapolate these charmonium masses to the physical
light-quark mass values, we use Eq. (11) both in quadratic
(in m�) as well quartic form, i.e.

Mh

f�
¼ M0

f�
þ cð2Þh

4�

m2
�

f2�
þ cð4Þh

ð4�Þ2
m4

�

f4�
: (19)

The results of the extrapolation are displayed in Fig. 4, and
tabulated in Table VII. In the table, the first uncertainty is
statistical and the second is an extrapolation systematic
from the two extrapolation functions used.

A more stringent test of discretization errors is the
calculation of the hyperfine splitting. The hyperfine split-
ting is obtained by fitting the ratio of the two-point corre-
lation functions of J=� and 
c

R ¼ CJ=�ðtÞ
C
c

ðtÞ (20)

to a single exponential

R ¼ Ae��mt; (21)

where �m is the mass splitting between the J=� and 
c.
The splittings are first extrapolated to the physical charm-
quark mass for each ensemble and then extrapolated to the

physical light-quark mass. As with the charmonium spec-
trum, we perform a light-quark mass extrapolation using
both a quadratic and quartic form of Eq. (11). In Fig. 5 we
display this extrapolation, findingMJ=� �M
c

¼ 93ð1Þ	
ð7ÞMeV. The first uncertainty is statistical while the second
is a systematic from the chiral extrapolation.
It is well known that the lattice computations of the

charmonium hyperfine splitting (experimentally measured
to be 117 MeV) are sensitive to the lattice spacing.
Qualitatively, one can understand this by performing a
Symanzik expansion of the heavy quark action, revealing
dimension five operators arising from discretization ef-
fects, which are otherwise identical to the heavy quark
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FIG. 4 (color online). The masses of �c0, �c1, and hc as functions of m�=f�. The blue points are our numerical values. The pink
shaded regions show the standard deviation allowed regions of quadratic fit. The blue shaded regions show the standard deviation
allowed regions of quartic fit. The red points are experimental values.

TABLE VII. Low-lying charmonium spectrum of �c0, �c1 and
hc. The experimental values are taken from the Particle Data
Group [72].

M�c0
(MeV) M�c1

(MeV) Mhc (MeV)

Extrapolated Values 3465(20)(13) 3525(20)(6) 3553(25)(14)

Experimental Values 3415 3511 3526
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FIG. 5 (color online). Extrapolation of the hyperfine splitting.
The blue points are the lattice data. The red point is the
experimental value. The blue band is the quadratic fit with
Eq. (11), while the pink band is the quartic fit with Eq. (11).

4One can also use improved interpolating operators to extract
charmonium states in lattice calculations, especially for the
excited states �c0, �c1, and hc; see, for example, Ref. [73].
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effective theory (HQET) [74–76] operator responsible for
the hyperfine splitting5

L HQET 
 �g �hðþÞ
c

� � B
2mc

hðþÞ
c ! Llatt


 �g �hðþÞ
c

� � B
2mc

hðþÞ
c þ acðamcÞ �hðþÞ

c � �BhðþÞ
c ;

(22)

where hðþÞ
c is the heavy quark field. In the heavy quark

action we are using, the coefficients of the operators SB (3)
and SE (4) have been given their tree-level, tadpole im-
proved values in order to mitigate the effects of this un-
wanted discretization effect. It is known the operator SB (3)
has a significant effect on the hyperfine splitting [9,11,12].
A nonperturbative tuning of the coefficient cB can improve
the hyperfine splitting in a fixed-lattice spacing calculation;
see Ref. [77], in particular, Fig. 3. However, the qualitative
aspects of this effect remain even after tuning the coeffi-
cients. Previous quenched calculations of the hyperfine
splitting have generally been low, being about 80 MeV,
and showed a strong lattice-spacing dependence. Further, a
recent direct calculation of the disconnected diagrams has
ruled out these (or their lack thereof) being the cause of the
discrepancy [78]. Our results are consistent with those of
the Fermilab/MILC Collaboration, which utilized a similar
heavy quark action, the same dynamical ensembles and
staggered light quarks [79]. The Fermilab/MILC Col-
laboration also performed calculations on different lattice
spacings, finding similar lattice-spacing dependence to
Ref. [79]. Therefore, the discrepancy of our calculated
hyperfine splitting with the experimental value is expected.

C. Light-quark mass extrapolation

1. Heavy-hadron �PT extrapolation

To perform the light-quark mass extrapolation, we begin
with a continuum HH�PT extrapolation of the baryon
masses. The mass formula for these baryons containing a
heavy quark was first determined in Ref. [63] and later
extended to partially quenched theories in Ref. [66]. For
doubly heavy baryons, the �PT was formulated in
Ref. [64] and later extended to partially quenched theories
in Ref. [67]. In this work, we perform SUð2Þ chiral extrap-

olations of the baryon masses, inspired by Ref. [68].6 To
perform the extrapolations, we treat the J ¼ 1=2 and J ¼
3=2 baryons as degenerate, which is valid at this order in
HQET/HH�PT.7 The baryons are grouped into their re-
spective SUð2Þmultiplets allowing for a simultaneous two-
flavor chiral extrapolation of all masses in related multip-
lets. This allows us, with only four gauge ensembles, to
determine all the relevant LECs for a given pair of multip-
lets in a global fit. The first pair of multiplets contains the
�c and �c baryons. Their SUð2Þ chiral extrapolation func-
tions are given at next-to-leading order (NLO) by

M�c

f�
¼ M0

f0

1

1þ �fðm�=f�Þ �
cr�ð	Þ
4�

m2
�

f2�

� 6g23
ð4�Þ2

F ðm�;���; 	Þ
f3�

; (23)

M�c

f�
¼ M0 þ�ð0Þ

��

f0

1

1þ �fðm�=f�Þ �
cr�ð	Þ
4�

m2
�

f2�

� 2

3

g23
ð4�Þ2

F ðm�;����; 	Þ
f3�

þ 4

3

g22
ð4�Þ2

F ðm�; 0; 	Þ
f3�

: (24)

The chiral functions are

F ðm;�; 	Þ ¼ ð�2 �m2 þ i�Þ3=2

	 ln

�
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
�

� 3

2
�m2 ln

�
m2

	2

�
��3 ln

�
4�2

m2

�
: (25)

with

F ðm; 0; 	Þ ¼ �m3; (26)

and

F ðm;��;�Þ ¼
��F ðm;�;�Þ þ 2i�ð�2 �m2Þ3=2; m < j�j
�F ðm;�;�Þ þ 2�ðm2 ��2Þ3=2; m > j�j : (27)

To stabilize the fits, we first fit M�c
�M�c

to a quadratic in m�=f�, and feed this into a fit of the masses, yielding the
results in Table VIII and extrapolations displayed in Fig. 6. One observes that the continuum HH�PT fits describe the

5A proper treatment of heavy quark discretization effects is more involved and can be found in Ref. [9].
6For further discussion on SUð2Þ chiral extrapolations of hadron states with strange valence quarks, see Refs. [80–82].
7It would be more desirable to use the lattice-calculated masses of the J ¼ 3=2 baryons, but we do not have them for this work, and

so we use this approximation for now.

SINGLYAND DOUBLY CHARMED J ¼ 1=2 BARYON . . . PHYSICAL REVIEW D 81, 094505 (2010)

094505-9



lattice data very well. However, only the leading term, M0

is well determined,8 while the rest of the LECs, most
notably the axial couplings, g��� and g��� are consistent
with zero. This phenomenon is not unique to the charmed
baryons. In Ref. [53], chiral extrapolations on the nucleon
mass in which the nucleon axial coupling, g�NN (com-
monly denoted as gA in baryon �PT) was left as a free
parameter, returned values which were inconsistent with
experiment and phenomenology. In fact, given the lattice
results for the nucleon mass as a function of m�, it was
found that the nucleon scales linearly inm�. Such behavior
signals a delicate cancelation between different orders, a
trend which is found in all 2þ 1 dynamical lattice com-
putations of the nucleon mass [83]. Therefore, our findings
for the axial couplings of the charmed baryons are not
surprising in this light. To improve the situation, a simul-
taneous fit of the axial charges themselves, along with the
masses will most likely be necessary.

We perform a similar analysis for the J ¼ 1=2 �c-�
0
c

isospin doublets, the results of which are collected in
Table IX and displayed in Fig. 7. The extrapolation for-

mulas for M�0
c
and M�c

are similar to those for M�c
and

M�c
. They can be deduced by comparing Eqs. (23) and

(24) to Ref. [66],9

M�c

f�
¼ M0

f0

1

1þ �fðm�=f�Þ �
cr
�
ð	Þ
4�

m2
�

f2�

� 3

2

g23
ð4�Þ2

F ðm�;��0�; 	Þ
f3�

; (28)

M�0
c

f�
¼ M0 þ�ð0Þ

�0�
f0

1

1þ �fðm�=f�Þ �
cr
�0 ð	Þ
4�

m2
�

f2�

� 1

2

g23
ð4�Þ2

F ðm�;���0�; 	Þ
f3�

þ 1

2

g22
ð4�Þ2

F ðm�; 0; 	Þ
f3�

: (29)

TABLE VIII. Fit to �c and �c masses with NLO continuum formulas.

Fit Range ���=f
phys
� M0=f

phys
� cr�ðf�Þ cr�ðf�Þ g22 g23 �2 dof Q

m007–m030 1.46(10) 17.9(2) �0:8ð5Þ 0.2(1.2) 0.8(1.0) �0:1ð1Þ 0.32 3 0.95
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FIG. 6 (color online). NLO HH�PT extrapolation of M�c
and M�c

(a) as well as M�c
�M�c

(b).

TABLE IX. Fit to �c and �0
c masses with NLO continuum formulas.

Fit Range ��0�=f
phys
� M0=f

phys
� cr

�
ðf�Þ cr

�0 ðf�Þ g22 g23 �2 dof Q

m007–m030 0.85(6) 19.4(2) 0.6(6) 1.3(1.2) 5.9(3.9) �1:0ð6Þ 0.04 3 1.00

8To determine M0=f
phys
� we take our results for M0=f0 and

scale them by ½1þ �fðmphys
� =f

phys
� Þ��1.

9In SUð3Þ HH�PT, the axial couplings for the �c-�
0
c system

are the same as those for the �c-�c system, g2 ¼ g��� ¼
g�0�0� and g3 ¼ g��� ¼ g�0��. However, in the SUð2Þ theo-
ries, they differ by SUð3Þ breaking corrections.
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The masses of the remaining J ¼ 1=2 charmed baryons,
M�cc

, M�c
, and M�cc

, can be treated independently. The

extrapolation formula for M�cc
is similar to that of M�c

.

There is an axial coupling g�cc�cc� as well as g��
cc�cc�

where the second coupling is the axial transition coupling
of the J ¼ 3=2 to the J ¼ 1=2-� state. The heavy quark
symmetry also requires these couplings to be the same in
the heavy quark limit. At this order, we can treat the J ¼
3=2 ��

cc as degenerate with the �cc. The results are col-
lected in Table X and displayed in Fig. 8, with the extrapo-
lation formula [67]

M�cc

f�
¼ M0

f0

1

1þ �fðm�=f�Þ �
cr
�cc

ð	Þ
4�

m2
�

f2�

� g2

ð4�Þ2
F ðm�; 0; 	Þ

f3�
; (30)

where we have set ���� ¼ 0 in this analysis, valid at this
order in the heavy-quark expansion. One feature which is
more pronounced in this fit is g2 < 0. Taken at face value,
this would suggest the Lagrangian was non-Hermitian, and
the theory not sensible. Therefore, even though these fits
reproduce the lattice data well and predict a mass within a
few percent of the physical value, they must be taken with
caution. Most likely, as with the nucleon mass [83], there is
a delicate canclelation of terms at different orders, and
therefore one does not have confidence in these determi-
nations of the LECs.
Similar to the s ¼ �3 �, the J ¼ 1=2 �c and �cc do

not have mass corrections which scale as m3
�. This is

because these baryons do not contain any valence up or
down quarks, and therefore, the leading SUð2Þ axial cou-
pling vanishes [68,84]. The SUð2Þ chiral extrapolation
formula for these baryon masses is then expected to be as
convergent as that for pions. The mass extrapolation for-
mula for the �c and �cc are both given by

M�

f�
¼ M0

f0

1

1þ �fðm�=f�Þ �
cr
�cc

4�

m2
�

f2�

þ m4
�

ð4�Þ3f4�
�
�ð4Þ
� ln

�
m2

�

	2

�
þ �

ð4Þð	Þ
�

�
: (31)

At this order, the two-loop corrections from f� should be

included as corrections to �ð4Þ
� and �ð4Þ

� . Further, there is a

ln2ðm�Þ correction with fixed coefficient. However, since
we only have four mass points, we cannot judge the quality
of the fit anyway, so we ignore these corrections. The
results are collected in Table XI and displayed in Fig. 9.

TABLE X. Fit to J ¼ 1=2 �cc mass with the NLO continuum
heavy-hadron formula.

Fit Range M0=f
phys
� cr

�cc
ðf�Þ g2 �2 dof Q

m007–m030 28.1(2) 1.4(1.0) �1:7ð1:0Þ 3.0 1 0.08
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FIG. 7 (color online). NLO HH�PT extrapolation of M�c
and M�0
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(a) as well as M�0
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FIG. 8 (color online). NLO HH�PT extrapolation of M�cc
.
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Performing a fit with �� ¼ 0 and �� ¼ 0 returns consis-
tent mass predictions with smaller uncertainties. We take
the zero-degree-of-freedom fit as our central result as it
provides a more conservative uncertainty.

2. Polynomial extrapolation

Given the issues of performing the heavy-hadron chiral
extrapolations as discussed above, we also perform poly-
nomial extrapolations in m2

�. We use the difference be-
tween the polynomial extrapolations and the heavy-hadron
chiral extrapolations as an additional estimate of system-
atic extrapolation uncertainty. We use up to three different
polynomial fit functions for each of the charmed hadron
masses:

M2

f�
¼ M0

f0

1

1þ �fðm�=f�Þ þ c2
m2

�

f2�
; (32)

M3

f�
¼ M0

f0

1

1þ �fðm�=f�Þ þ c2
m2

�

f2�
þ c3

m3
�

f3�
; (33)

M4

f�
¼ M0

f0

1

1þ �fðm�=f�Þ þ c2
m2

�

f2�
þ c4

m4
�

f4�
: (34)

In Fig. 10, we display the results of these fits as well the
heavy-hadron �PT fits as ratios with respect to the experi-
mental masses. The experimental values for the baryon
masses are taken from the Particle Data Group [72]. As it
can be seen, there is very little variation in the results of the
extrapolated masses. In all cases, the different extrapola-
tions are consistent within one sigma.
In Table XII, we provide the extrapolated baryon

masses, taking the central value from the HH�PT extrap-
olations. The first uncertainty is statistical and the second
uncertainty is a comprehensive systematic uncertainty.
This systematic uncertainty is derived by comparing the
polynomial light quark mass extrapolations to the HH�PT
extrapolation. Further, it includes the uncertainty associ-
ated with the choice of fitting window for the correlators as
well. Except for the �c, the extrapolated masses are sys-
tematically high, indicative of a discretization error.

D. Discretization errors and mass splittings

In this work, we have performed calculations at only a
single value of the lattice spacing, with a� 0:125 fm,
prohibiting us from performing a continuum extrapolation.
However, we can take advantage of various symmetries

TABLE XI. Fit to J ¼ 1=2 �c and �cc masses with NLO continuum heavy-hadron formulas.

� Fit Range M0=f
phys
� cr�c

ðf�Þ �ð4Þ
� �ð4Þ

� �2 dof Q

�c m007–m030 20.4(6) �3:0ð4:6Þ 46(61) �164ð227Þ 0.00 0 –

�cc m007–m030 27.7(4) �7:3ð3:0Þ 109(40) �392ð149Þ 0.00 0 –
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and power counting to make a reasonable estimate of the
discretization errors present in our calculation.10 In these
heavy-light systems, the discretization errors arise both
from the light and heavy quark actions. The corrections
from both generically scale as Oða2Þ for each of the
charmed baryon masses. If we consider SUð3Þ symmetry,
then the leading discretization errors for all baryons in a
given SUð3Þ multiplet must be the same, with corrections
scaling as Oða2ðms �muÞÞ. Further, if one considers the
combined large-Nc, SUð3Þ and heavy-quark symmetries
[85], then all the singly charmed baryon masses we calcu-
late in this work share a common discretization correction
to their masses, with subleading corrections scaling as
Oða2=NcÞ as well as the SUð3Þ breaking corrections.
Therefore, all the singly charmed baryon masses we com-
pute in this work, f�c;�c;�c;�

0
c;�cg share a common

discretization correction, which happens to be the domi-
nant discretization error. The same analysis holds for the
doubly charmed baryons as well, f�cc;�ccg with a com-
mon error, albeit different from the singly charmed correc-
tion.11 It is therefore advantageous to consider
extrapolations of baryon mass splittings, as these mass
splittings exactly cancel the leading discretization errors.

Before proceeding with the analysis of the mass split-
tings, we first use power counting arguments to estimate
the discretization errors. The leading discretization correc-
tions from the light and heavy quark actions can be esti-
mated as [13]

�qða2Þ ¼ 1

2
ðapÞ2�QCD; �Qða2Þ ¼ �sðmcÞðapÞ

2ð1þ amcÞ�QCD;

(35)

where p is a typical momentum scale, of the order of
�QCD, the characteristic hadronic scale. To be conserva-

tive, we can take �QCD ¼ 700 MeV which leads to the

estimates

�qða2Þ ¼ 68 MeV; �Qða2Þ ¼ 19 MeV: (36)

When considering mass splittings amongst a given SUð3Þ

multiplet, these leading errors become further suppressed
by ms �mu effects,

��Mqða2Þ ¼ 1

2
ðapÞ2�QCD

m2
K �m2

�

�2
�

;

��MQða2Þ ¼ �sðmcÞðapÞ
2ð1þ amcÞ�QCD

m2
K �m2

�

�2
�

:

(37)

Mass splittings between the two singly charmed SUð3Þ
multiplets, �M6;�3, would receive similar discretization
corrections, with the extra suppression of 1=Nc.
Combining these estimates in quadrature,12 we estimate
the discretization errors for the baryon masses, and various

mass splittings (using �� ¼ 2
ffiffiffi
2

p
�f� and the physical

kaon and pion masses)

�Mhc ¼ 71 MeV; �Mhcc ¼ 78 MeV;

��Mhc ¼ 12 MeV; ��Mhcc ¼ 13 MeV;

��M6;�3
hc

¼ 24 MeV; ��M6;�3
hcc

¼ 26 MeV:

(38)

Given our limited number of light-quark mass values,
we are not able to perform the (mixed-action) HH�PT
analysis of the mass splittings. We therefore perform our
fits using the polynomial fit functions, Eqs. (32)–(34), with

M0 replaced by�
ð0Þ
h2h1

. We perform the extrapolations of the

mass splittings, M�c
�M�c

, fM�0
c
;M�c

g �M�c
, M�c

�
M�c

, and M�cc
�M�cc

. In Fig. 11 we display the extrapo-

lation of these mass splittings using Eq. (34) and in Fig. 12
we show the ratio of these fits to the experimental values.
Our final predicted splittings are determined by using the
quartic fit function as the central value with the differences
from the quadratic and cubic fits to estimate light quark
mass extrapolation errors (in addition to those from the
quartic fit).
As discussed earlier in this section, the dominant dis-

cretization error in the mass calculations is common to all
baryons, given the various symmetries. Therefore, this
correction will shift all the baryon masses in one direction.
We can determine the sign of this correction in the follow-
ing manner. First, we can determine the singly charmed
baryon spectrum by taking our extrapolated mass split-

TABLE XII. Direct light/heavy quark mass extrapolation of the J ¼ 1=2 charmed baryon spectrum.

State M�c
M�c

M�c
M�0

c
M�c

M�cc
M�cc

(J ¼ 1=2) [MeV] [MeV] [MeV] [MeV] [MeV] [MeV] [MeV]

Prediction 2342(22)(11) 2527(17)(13) 2527(20)(08) 2638(17)(10) 2687(46)(16) 3665(17)(14) 3680(31)(38)

Exp. Mass 2286 2468 2454 2576 2698 3519 –

10With a single lattice spacing, we can not disentangle both the
discretization errors and the tuning of the charm quark mass. The
effects we discuss here as discretization errors are really a
combination of the two.
11With the full J ¼ 3=2 and J ¼ 1=2 heavy baryon mass
spectrum, one could perform an analysis of the large-Nc baryon
mass relations [86,87] as has recently been performed for the
light quark octet and decuplet baryons [88].

12For the doubly charmed baryon masses, we double the
estimated heavy quark discretization error. As mentioned above,
this uncertainty also includes any mistuning of the charm quark
mass, and thus a double charmed baryon will be miss-tuned
twice as much.
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tings, column ðaÞ of Table XIII, and usingMphys
�c

andM
phys
�c

as reference scales, M
split
hc

¼ M
phys
�c;�c

þ �Mhc��c;�c
, result-

ing in the predicted masses, Table XIII ðbÞ. We then
compare these to our direct mass extrapolations Mdirect

hc
,

given in Table XII. The first method is free of the leading
discretization errors while the second is not. We can then
construct the quantity,

�Mcða2Þ ¼ 1

Nhc

X
hc

ðMdirect
hc

�M
split
hc

Þ; (39)

which is a measure of these discretization errors. The sum
runs over all four singly charmed baryons hc for which we
have both methods to determine the masses (Nhc ¼ 4). The

first thing to note is that every element contributing to the
sum is a positive quantity, suggesting the discretization
errors increase the baryon masses. It is also interesting to
note that in our calculation, �Mcða2Þ ¼ 59 MeV, compa-
rable to our estimated leading discretization effects,
Eq. (38). We can then refine our estimate of the leading
discretization errors to be

�Mhc ¼þ0
�71 MeV; �Mhcc ¼þ0

�78 MeV; (40)

where we have also assumed that the doubly charmed
discretization errors do not change sign relative to the
singly charmed baryon corrections. Our final numbers,
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FIG. 11 (color online). Polynomial extrapolations of J ¼ 1=2 mass splittings amongst heavy-quark–SUð3Þ multiplets with Eq. (34).
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TABLE XIII. Resulting charmed spectrum, extrapolated in the light-quark mass to the physical m
phys
� =f

phys
� point. In ðaÞ we display

the mass splittings of the baryons related by SUð3Þ and large Nc symmetry. As discussed in detail in the text, the first uncertainty is
statistical, the second is systematic and the third is our estimate of discretization errors. These are the central results of this work. In
ðbÞ, we display our resulting baryon spectrum determined using the experimental values of M

exp
�c

and M
exp
�c

, combined with our

splittings in ðaÞ. For the�cc, we use our extrapolated value ofM�cc
given the present uncertainty in the experimental value. In ðcÞ, we

present the results of our direct mass extrapolations, including our estimated discretization errors. The results from the two methods are
consistent at the one-sigma level.

State Latt. Pred. Exp. State Mass Split. Direct Mass Exp. Mass

[MeV] [MeV] [MeV] [MeV] [MeV]

M�c
2342� 22� 11þ0

�71 2286

M�c
�M�c

164� 14� 23� 12 182 M�c
2450� 14� 23� 12 2527� 17� 13þ0

�71 2468

M�c
�M�c

190� 27� 18� 27 168 M�c
2476� 27� 18� 27 2527� 20� 8þ0

�71 2454

M�0
c
�M�c

113� 18� 8� 12 122 M�0
c

2567� 18� 8� 12 2638� 17� 10þ0
�71 2576

M�c
�M�c

195� 21� 7� 12 244 M�c
2649� 21� 7� 12 2687� 46� 16þ0

�71 2698

M�cc
3665� 17� 14þ0

�78 3519

M�cc
�M�cc

98� 9� 22� 13 – M�cc
3763� 19� 26þ13

�79 3680� 31� 38þ0
�78 –

ðaÞ ðbÞ ðcÞ
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collected in Table XIII, include these discretization error
estimates in the quoted uncertainties.

V. DISCUSSION AND CONCLUSIONS

The central results of this work are the predicted mass
splittings, displayed in the left panel of Table XIII. The first
uncertainty is statistical and the second uncertainty is a
comprehensive systematic as discussed in the text. The
third uncertainty is an estimate of discretization errors,
which must scale as Oða2ðms �muÞÞ for members of the
same SUð3Þ multiplet or Oða2=NcÞ þOða2ðms �muÞÞ
otherwise, as dictated by the approximate symmetries.
These results have been extrapolated to the physical charm
quark mass and the physical light quark mass defined,
respectively, by

M
phys

c

þ 3M
phys
J=�

4f
phys
�

¼ 23:47;
mphys

�

fphys�

¼ 1:056: (41)

To perform these extrapolations, we first formed the di-
mensionless ratios ðMlatt

h1
�Mlatt

h2
Þ=flatt� , taking into account

the known light-quark mass dependence of f�. The mass
splittings in MeV are then determined with f� ¼
130:7 MeV. These physical values are all taken from the
PDG [72]. In Fig. 13, we compare some of our mass
splitting results with those of Gottlieb and Na [24,25],
the only other dynamical calculation of the charmed
baryon spectrum. They used the same MILC gauge ensem-
bles, as well as the fine a� 0:09 fm lattices. For the light
quark propagators, they used staggered fermions, and for
the heavy quark, an interpretation of the Fermilab action
was used, defining the charm mass with the kinetic mass
instead of the rest mass. Their work is still somewhat
preliminary and does not yet provide a systematic uncer-
tainty. However, our results are consistent with theirs,
especially those on the same ensembles with a�
0:125 fm.

We additionally use these mass splittings, combined
with the experimental value ofMexp

�c
andMexp

�c
to determine

the J ¼ 1=2 baryon masses. Aside from the�cc state,
13 the

masses determined in this way are consistent with our
direct mass extrapolation results, Table XIII ðcÞ, after
including our estimated discretization errors. We used
power counting arguments [13,91] to estimate the size of
these corrections and we compared our two methods of
determining the baryon masses to determine the expected
sign of the leading discretization corrections. In Fig. 14, we
display our resulting mass calculations using the results
from both the mass splitting method (Liu et al. 2) as well as
the direct extrapolation of the masses (Liu et al. 1).
Additionally, we compare these with results from previous
calculations, found in the references of Table XIV (for
those calculations with more than one lattice spacing, we

Liu et al. 0.12 fmLiu et al. 0.12 fm

Na et al. 0.12 fmNa et al. 0.12 fm

Na et al. 0.09 fmNa et al. 0.09 fm

c c c c c
'

c c c
'

0

100

200

300

400

500

600

M
eV

FIG. 13 (color online). Comparison among charmed baryon
mass splittings of dynamical lattice calculations. The results of
Na et al. are taken from Ref. [25].

Liu et al. 1Liu et al. 1
Liu et al. 2Liu et al. 2
Na et al. a 0.12 fmNa et al. a 0.12 fm
Flynn et al.Flynn et al.

Mathur et al.Mathur et al.
Chiu et al.Chiu et al.

c c c c
' c cc cc

2000
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FIG. 14 (color online). A summary of charmed baryon masses
in MeV calculated using LQCD. We show both of our methods
for obtaining the spectrum, the direct mass extrapolation (Liu
et al. 1) and also using the extrapolated mass splittings, com-
bined with M

exp
�c

and M
exp
�c

(Liu et al. 2). These results are taken

from Table XIII. The other results, displayed for comparison, are
taken from Table XIV.

TABLE XIV. Summary of existing charmed baryon published
calculations from lattice QCD. Please refer to the above refer-
ences and references within for more details.

Group Nf SH a�1
t (GeV) L (fm)

Bowler et al. [19] 0 tree clover [92] 2.9 1.63

Lewis et al. [22] 0 D234 [93] 1.8, 2.2, 2.6 1.97

Mathur et al. [23] 0 NRQCD [92] 1.8, 2.2 2.64, 2.1

Flynn et al. [20] 0 NP clover 2.6 1.82

Chiu et al. [21] 0 ODWF [94] 2.23 1.77

Na et al. [24,25] 2þ 1 Fermilab [9] 2.2, 1.6, 1.3 2.5

This work 2þ 1 Fermilab 1.6 2.5

13Because the �cc has not been verified by multiple experi-
mental groups [5,6,72,89,90], we chose to use our extrapolated
value of M�cc

, combined with our extrapolated value of M�cc
�

M�cc
to make a prediction for the �cc mass.
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show only the results from the ensemble with lattice spac-
ing closest to the one used in this work).

Finally, we compare the doubly charmed baryons with
the predictions of theoretical models, as shown in Fig. 15.
Although the SELEX Collaboration has reported the first
observation of doubly charmed baryons, searches by the
BABAR [89], Belle [90], and Focus [95] Collaborations
have not confirmed their results. This makes it interesting
to look back to the theory to see where the various pre-

dictions lie. We compare with a selection of other theoreti-
cal results, such as a recent quark-model calculation [96],
relativistic three-quark model [97], the relativistic quark
model [98], the heavy quark effective theory [99], potential
model [100], sum rules of nonrelativistic QCD [101], and
the Feynman-Hellmann theorem [102]. We compute the
mass of �cc to be 3665� 17� 14þ0

�78 MeV, which is

higher than what SELEX observed, although less than
two sigma with our estimated discretization errors; most
theoretical results suggest that the �cc that is about 100–
200 MeV higher than the SELEX experimental value. To
improve this situation, we need results at multiple lattice
spacings to reduce this systematic uncertainty. The �cc

mass prediction made by this work is 3763� 19�
26þ13

�79 MeV, and the overall theoretical expectation is for

the �cc to be 3650–3850 MeV. We hope that upcoming
experiments will be able to resolve these mysteries of
doubly charmed baryons.
Our largest uncertainty presently arises from the lack of

a continuum extrapolation. Therefore, in the future we plan
to extend these calculations to a second lattice spacing.
This will hopefully allow us to significantly reduce the size
of our discretization errors. Additionally, we are extending
our calculation to include the spin-3=2 spectroscopy.

ACKNOWLEDGMENTS

A.W. L. and K.O. would like to thank Brian Tiburzi for
helpful discussions. We would like to thank Heechang Na
and Steve Gotlieb for providing us with their spectrum
numbers from Ref. [25]. We thank the NPLQCD collabo-
ration for sharing their propagators: most of the light-quark
and all of the strange-quark propagators used in this work;
we also thank LHPC for some light-quark propagators. We
would also like to thank Jo Dudek for a careful reading of
our manuscript. These calculations were performed using
the Chroma software suite [103], on computer clusters at
Jefferson Laboratory (USQCD SciDAC supported) and the
College of William and Mary (Cyclades cluster supported
by the Jeffress Memorial Trust grant J-813). L. L. and H. L.
are supported by Jefferson Science Associates, L. L. under
U.S. DOE Contract No. DE-AC05-06OR23177. HL is also
supported by the U.S. Department of Energy under Grant
No. DE-FG03-97ER4014. K.O. is supported in part by the
Jeffress Memorial Trust grant J-813, DOE OJI Grant
No. DE-FG02-07ER41527 and DOE Grant No. DE-
FG02-04ER41302. A.W. L. is supported under the U.S.
DOE OJI Grant No. DE-FG02-07ER-41527.

[1] E. Barberio et al. (Heavy Flavor Averaging Group),
arXiv:0808.1297.

[2] M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008).

[3] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 99, 202001
(2007).

[4] V.M. Abazov et al. (D0), Phys. Rev. Lett. 99, 052001

LQCDLQCD

HQETHQET

QMQM

RTQMRTQM

RQMRQM

FHTFHT

PMPM

SRSR

3300 3400 3500 3600 3700 3800 3900

M cc MeV

LQCDLQCD

HQETHQET

QMQM

RTQMRTQM

RQMRQM

FHTFHT

PMPM

SRSR

3300 3400 3500 3600 3700 3800 3900

M cc MeV

FIG. 15 (color online). Comparison of theoretical predictions
for doubly charmed baryons of spin 1=2. ‘‘LQCD’’ is the lattice
QCD calculation done in this work with solid error bars for the
statistical error and dashed bars for the total error including the
estimated systematic; ‘‘QM’’ is taken from a recent quark-model
calculation [96]; ‘‘RTQM’’ is the result of relativistic three-
quark model [97]; ‘‘RQM’’ and ‘‘HQET’’ are from the relativ-
istic quark model [98] and the heavy-quark effective theory [99]
respectively; ‘‘PM’’ is the result of a potential model [100]; note
that there is no error estimation done in these calculations. ‘‘SR’’
and ‘‘FHT’’ are based on the sum rules of nonrelativistic QCD
[101] and the Feynman-Hellmann theorem [102] respectively,
where rough uncertainties are estimated.

LIU et al. PHYSICAL REVIEW D 81, 094505 (2010)

094505-16

http://arXiv.org/abs/0808.1297
http://dx.doi.org/10.1016/j.ppnp.2008.02.001
http://dx.doi.org/10.1103/PhysRevLett.99.202001
http://dx.doi.org/10.1103/PhysRevLett.99.202001
http://dx.doi.org/10.1103/PhysRevLett.99.052001
http://dx.doi.org/10.1103/PhysRevLett.99.052001
http://dx.doi.org/10.1103/PhysRevLett.99.052001
http://dx.doi.org/10.1103/PhysRevLett.99.052001
http://dx.doi.org/10.1103/PhysRevLett.99.052001


(2007).
[5] M. Mattson et al. (SELEX), Phys. Rev. Lett. 89, 112001

(2002).
[6] A. Ocherashvili et al. (SELEX), Phys. Lett. B 628, 18

(2005).
[7] T. Aaltonen et al. (CDF), Phys. Rev. Lett. 99, 052002

(2007).
[8] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.

Hornbostel, Phys. Rev. D 46, 4052 (1992).
[9] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,

Phys. Rev. D 55, 3933 (1997).
[10] S. Aoki, Y. Kuramashi, and S.-i. Tominaga, Prog. Theor.

Phys. 109, 383 (2003).
[11] N. H. Christ, M. Li, and H.-W. Lin, Phys. Rev. D 76,

074505 (2007).
[12] H.-W. Lin and N. Christ, Phys. Rev. D 76, 074506 (2007).
[13] A. S. Kronfeld, Nucl. Phys. B, Proc. Suppl. 129-130, 46

(2004).
[14] M. Wingate, Nucl. Phys. B, Proc. Suppl. 140, 68 (2005).
[15] M. Okamoto, Proc. Sci., LAT2006 (2006) 013 [arXiv:hep-

lat/0510113].
[16] T. Onogi, Proc. Sci., LAT2006 (2006) 017 [arXiv:hep-lat/

0610115].
[17] M. Della Morte, Proc. Sci., LAT2007 (2007) 008

[arXiv:0711.3160].
[18] E. Gamiz, Proc. Sci., LAT2008 (2008) 014

[arXiv:0811.4146].
[19] K. C. Bowler et al. (UKQCD), Phys. Rev. D 54, 3619

(1996).
[20] J.M. Flynn, F. Mescia, and A. S. B. Tariq (UKQCD), J.

High Energy Phys. 07 (2003) 066.
[21] T.-W. Chiu and T.-H. Hsieh, Nucl. Phys. A755, 471

(2005).
[22] R. Lewis, N. Mathur, and R.M. Woloshyn, Phys. Rev. D

64, 094509 (2001).
[23] N. Mathur, R. Lewis, and R.M. Woloshyn, Phys. Rev. D

66, 014502 (2002).
[24] H. Na and S. A. Gottlieb, Proc. Sci., LAT2007 (2007) 124.
[25] H. Na and S. Gottlieb, Proc. Sci., LAT2008 (2008) 119

[arXiv:0812.1235].
[26] L. Liu, H.-W. Lin, and K. Orginos, arXiv:0810.5412.
[27] C.W. Bernard et al., Phys. Rev. D 64, 054506 (2001).
[28] M.G. Alford, W. Dimm, G. P. Lepage, G. Hockney, and

P. B. Mackenzie, Phys. Lett. B 361, 87 (1995).
[29] K. Orginos, D. Toussaint, and R. L. Sugar (MILC), Phys.

Rev. D 60, 054503 (1999).
[30] K. Orginos and D. Toussaint (MILC), Phys. Rev. D 59,

014501 (1998).
[31] D. Toussaint and K. Orginos (MILC), Nucl. Phys. B, Proc.

Suppl. 73, 909 (1999).
[32] J. F. Lagae and D.K. Sinclair, Phys. Rev. D 59, 014511

(1998).
[33] G. P. Lepage, Phys. Rev. D 59, 074502 (1999).
[34] K. Orginos, R. Sugar, and D. Toussaint, Nucl. Phys. B,

Proc. Suppl. 83, 878 (2000).
[35] S. Naik, Nucl. Phys. B316, 238 (1989).
[36] Y. Shamir, Nucl. Phys. B406, 90 (1993).
[37] V. Furman and Y. Shamir, Nucl. Phys. B439, 54 (1995).
[38] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[39] S. R. Beane, K. Orginos, and M. J. Savage, Int. J. Mod.

Phys. E 17, 1157 (2008).

[40] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64, 034504
(2001).

[41] T.A. DeGrand, A. Hasenfratz, and T.G. Kovacs, Phys.
Rev. D 67, 054501 (2003).

[42] T.A. DeGrand (MILC), Phys. Rev. D 69, 014504 (2004).
[43] S. Durr, C. Hoelbling, and U. Wenger, Phys. Rev. D 70,

094502 (2004).
[44] O. Bar, C. Bernard, G. Rupak, and N. Shoresh, Phys. Rev.

D 72, 054502 (2005).
[45] B. C. Tiburzi, Phys. Rev. D 72, 094501 (2005).
[46] J.-W. Chen, D. O’Connell, and A. Walker-Loud, Phys.

Rev. D 75, 054501 (2007).
[47] K. Orginos and A. Walker-Loud, Phys. Rev. D 77, 094505

(2008).
[48] J.-W. Chen, D. O’Connell, and A. Walker-Loud, J. High

Energy Phys. 04 (2009) 090.
[49] J.-W. Chen, M. Golterman, D. O’Connell, and A. Walker-

Loud, Phys. Rev. D 79, 117502 (2009).
[50] W.-J. Lee and S. R. Sharpe, Phys. Rev. D 60, 114503

(1999).
[51] D. B. Renner et al. (LHP), Nucl. Phys. B, Proc. Suppl. 140,

255 (2005).
[52] R. G. Edwards et al. (LHPC), Proc. Sci., LAT2006 (2006)

056 [arXiv:hep-lat/0509185].
[53] A. Walker-Loud et al., Phys. Rev. D 79, 054502 (2009).
[54] K. Symanzik, Nucl. Phys. B226, 187 (1983).
[55] P. Chen, Phys. Rev. D 64, 034509 (2001).
[56] J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142

(1984).
[57] G. Colangelo, S. Durr, and C. Haefeli, Nucl. Phys. B721,

136 (2005).
[58] M. B. Wise, Phys. Rev. D 45, R2188 (1992).
[59] G. Burdman and J. F. Donoghue, Phys. Lett. B 280, 287

(1992).
[60] T.-M. Yan et al., Phys. Rev. D 46, 1148 (1992).
[61] P. L. Cho, Phys. Lett. B 285, 145 (1992).
[62] P. L. Cho, Nucl. Phys. B396, 183 (1993).
[63] M. J. Savage, Phys. Lett. B 359, 189 (1995).
[64] J. Hu and T. Mehen, Phys. Rev. D 73, 054003 (2006).
[65] M. J. Savage, Phys. Rev. D 65, 034014 (2002).
[66] B. C. Tiburzi, Phys. Rev. D 71, 034501 (2005).
[67] T. Mehen and B. C. Tiburzi, Phys. Rev. D 74, 054505

(2006).
[68] B. C. Tiburzi and A. Walker-Loud, Phys. Lett. B 669, 246

(2008).
[69] C. Aubin et al. (MILC), Phys. Rev. D 70, 114501 (2004).
[70] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage

(NPLQCD), Phys. Rev. D 73, 054503 (2006).
[71] A. Bazavov et al., arXiv:0903.3598.
[72] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1

(2008).
[73] J. J. Dudek, R. G. Edwards, N. Mathur, and D.G.

Richards, Phys. Rev. D 77, 034501 (2008).
[74] B. Grinstein, Nucl. Phys. B339, 253 (1990).
[75] H. Georgi, Phys. Lett. B 240, 447 (1990).
[76] A. F. Falk, H. Georgi, B. Grinstein, and M.B. Wise, Nucl.

Phys. B343, 1 (1990).
[77] H.-W. Lin, Proc. Sci., LAT2006 (2006) 184

[arXiv:0708.1633].
[78] L. Levkova and C. E. DeTar, Proc. Sci., LAT2008 (2008)

133 [arXiv:0809.5086].

SINGLYAND DOUBLY CHARMED J ¼ 1=2 BARYON . . . PHYSICAL REVIEW D 81, 094505 (2010)

094505-17

http://dx.doi.org/10.1103/PhysRevLett.99.052001
http://dx.doi.org/10.1103/PhysRevLett.89.112001
http://dx.doi.org/10.1103/PhysRevLett.89.112001
http://dx.doi.org/10.1016/j.physletb.2005.09.043
http://dx.doi.org/10.1016/j.physletb.2005.09.043
http://dx.doi.org/10.1103/PhysRevLett.99.052002
http://dx.doi.org/10.1103/PhysRevLett.99.052002
http://dx.doi.org/10.1103/PhysRevD.46.4052
http://dx.doi.org/10.1103/PhysRevD.55.3933
http://dx.doi.org/10.1143/PTP.109.383
http://dx.doi.org/10.1143/PTP.109.383
http://dx.doi.org/10.1103/PhysRevD.76.074505
http://dx.doi.org/10.1103/PhysRevD.76.074505
http://dx.doi.org/10.1103/PhysRevD.76.074506
http://dx.doi.org/10.1016/S0920-5632(03)02506-4
http://dx.doi.org/10.1016/S0920-5632(03)02506-4
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.138
http://arXiv.org/abs/hep-lat/0510113
http://arXiv.org/abs/hep-lat/0510113
http://arXiv.org/abs/hep-lat/0610115
http://arXiv.org/abs/hep-lat/0610115
http://arXiv.org/abs/0711.3160
http://arXiv.org/abs/0811.4146
http://dx.doi.org/10.1103/PhysRevD.54.3619
http://dx.doi.org/10.1103/PhysRevD.54.3619
http://dx.doi.org/10.1088/1126-6708/2003/07/066
http://dx.doi.org/10.1088/1126-6708/2003/07/066
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.090
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.090
http://dx.doi.org/10.1103/PhysRevD.64.094509
http://dx.doi.org/10.1103/PhysRevD.64.094509
http://dx.doi.org/10.1103/PhysRevD.66.014502
http://dx.doi.org/10.1103/PhysRevD.66.014502
http://arXiv.org/abs/0812.1235
http://arXiv.org/abs/0810.5412
http://dx.doi.org/10.1103/PhysRevD.64.054506
http://dx.doi.org/10.1016/0370-2693(95)01131-9
http://dx.doi.org/10.1103/PhysRevD.60.054503
http://dx.doi.org/10.1103/PhysRevD.60.054503
http://dx.doi.org/10.1103/PhysRevD.59.014501
http://dx.doi.org/10.1103/PhysRevD.59.014501
http://dx.doi.org/10.1016/S0920-5632(99)85241-4
http://dx.doi.org/10.1016/S0920-5632(99)85241-4
http://dx.doi.org/10.1103/PhysRevD.59.014511
http://dx.doi.org/10.1103/PhysRevD.59.014511
http://dx.doi.org/10.1103/PhysRevD.59.074502
http://dx.doi.org/10.1016/0550-3213(89)90394-5
http://dx.doi.org/10.1016/0550-3213(93)90162-I
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1142/S0218301308010404
http://dx.doi.org/10.1142/S0218301308010404
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.64.034504
http://dx.doi.org/10.1103/PhysRevD.67.054501
http://dx.doi.org/10.1103/PhysRevD.67.054501
http://dx.doi.org/10.1103/PhysRevD.69.014504
http://dx.doi.org/10.1103/PhysRevD.70.094502
http://dx.doi.org/10.1103/PhysRevD.70.094502
http://dx.doi.org/10.1103/PhysRevD.72.054502
http://dx.doi.org/10.1103/PhysRevD.72.054502
http://dx.doi.org/10.1103/PhysRevD.72.094501
http://dx.doi.org/10.1103/PhysRevD.75.054501
http://dx.doi.org/10.1103/PhysRevD.75.054501
http://dx.doi.org/10.1103/PhysRevD.77.094505
http://dx.doi.org/10.1103/PhysRevD.77.094505
http://dx.doi.org/10.1088/1126-6708/2009/04/090
http://dx.doi.org/10.1088/1126-6708/2009/04/090
http://dx.doi.org/10.1103/PhysRevD.79.117502
http://dx.doi.org/10.1103/PhysRevD.60.114503
http://dx.doi.org/10.1103/PhysRevD.60.114503
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.357
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.357
http://arXiv.org/abs/hep-lat/0509185]
http://dx.doi.org/10.1103/PhysRevD.79.054502
http://dx.doi.org/10.1016/0550-3213(83)90468-6
http://dx.doi.org/10.1103/PhysRevD.64.034509
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/0003-4916(84)90242-2
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1016/j.nuclphysb.2005.05.015
http://dx.doi.org/10.1103/PhysRevD.45.R2188
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://dx.doi.org/10.1103/PhysRevD.46.1148
http://dx.doi.org/10.1016/0370-2693(92)91314-Y
http://dx.doi.org/10.1016/0550-3213(93)90263-O
http://dx.doi.org/10.1016/0370-2693(95)01060-4
http://dx.doi.org/10.1103/PhysRevD.73.054003
http://dx.doi.org/10.1103/PhysRevD.65.034014
http://dx.doi.org/10.1103/PhysRevD.71.034501
http://dx.doi.org/10.1103/PhysRevD.74.054505
http://dx.doi.org/10.1103/PhysRevD.74.054505
http://dx.doi.org/10.1016/j.physletb.2008.09.054
http://dx.doi.org/10.1016/j.physletb.2008.09.054
http://dx.doi.org/10.1103/PhysRevD.70.114501
http://dx.doi.org/10.1103/PhysRevD.73.054503
http://arXiv.org/abs/0903.3598
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://dx.doi.org/10.1103/PhysRevD.77.034501
http://dx.doi.org/10.1016/0550-3213(90)90349-I
http://dx.doi.org/10.1016/0370-2693(90)91128-X
http://dx.doi.org/10.1016/0550-3213(90)90591-Z
http://dx.doi.org/10.1016/0550-3213(90)90591-Z
http://arXiv.org/abs/0708.1633
http://arXiv.org/abs/0809.5086


[79] S. Gottlieb et al., Proc. Sci., LAT2006 (2006) 203 [arXiv:
hep-lat/0510072].

[80] F.-J. Jiang and B. C. Tiburzi, Phys. Rev. D 80, 077501
(2009).

[81] M. Mai, P. C. Bruns, B. Kubis, and U.-G. Meissner, Phys.
Rev. D 80, 094006 (2009).

[82] B. C. Tiburzi, arXiv:0908.2582.
[83] A. Walker-Loud, Proc. Sci., LAT2008 (2008) 005

[arXiv:0810.0663].
[84] B. C. Tiburzi and A. Walker-Loud, Nucl. Phys. A 748, 513

(2005).
[85] E. E. Jenkins, Phys. Rev. D 54, 4515 (1996).
[86] R. F. Dashen, E. E. Jenkins, and A.V. Manohar, Phys. Rev.

D 49, 4713 (1994).
[87] E. E. Jenkins and R. F. Lebed, Phys. Rev. D 52, 282

(1995).
[88] E. E. Jenkins, A.V. Manohar, J.W. Negele, and A. Walker-

Loud, Phys. Rev. D 81, 014502 (2010).
[89] B. Aubert et al. (BABAR), Phys. Rev. D 74, 011103

(2006).
[90] R. Chistov et al. (BELLE), Phys. Rev. Lett. 97, 162001

(2006).
[91] M.B. Oktay and A. S. Kronfeld, Phys. Rev. D 78, 014504

(2008).
[92] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572

(1985).
[93] M.G. Alford, T. Klassen, and P. Lepage, Nucl. Phys. B,

Proc. Suppl. 47, 370 (1996).
[94] T.-W. Chiu, Phys. Rev. Lett. 90, 071601 (2003).
[95] S. P. Ratti, Nucl. Phys. B, Proc. Suppl. 115, 33 (2003).
[96] W. Roberts and M. Pervin, Int. J. Mod. Phys. A 23, 2817

(2008).
[97] A. P. Martynenko, Phys. Lett. B 663, 317 (2008).
[98] D. Ebert, R. N. Faustov, V. O. Galkin, and A. P.

Martynenko, Phys. Rev. D 66, 014008 (2002).
[99] J. G. Korner, M. Kramer, and D. Pirjol, Prog. Part. Nucl.

Phys. 33, 787 (1994).
[100] V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, and V.A.

Saleev, Phys. Rev. D 66, 034030 (2002).
[101] V. V. Kiselev and A. E. Kovalsky, Phys. Rev. D 64, 014002

(2001).
[102] R. Roncaglia, D. B. Lichtenberg, and E. Predazzi, Phys.

Rev. D 52, 1722 (1995).
[103] R. G. Edwards and B. Joo (SciDAC), Nucl. Phys. B, Proc.

Suppl. 140, 832 (2005).

LIU et al. PHYSICAL REVIEW D 81, 094505 (2010)

094505-18

http://arXiv.org/abs/hep-lat/0510072
http://arXiv.org/abs/hep-lat/0510072
http://dx.doi.org/10.1103/PhysRevD.80.077501
http://dx.doi.org/10.1103/PhysRevD.80.077501
http://dx.doi.org/10.1103/PhysRevD.80.094006
http://dx.doi.org/10.1103/PhysRevD.80.094006
http://arXiv.org/abs/0908.2582
http://arXiv.org/abs/0810.0663
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.012
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.012
http://dx.doi.org/10.1103/PhysRevD.54.4515
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.52.282
http://dx.doi.org/10.1103/PhysRevD.52.282
http://dx.doi.org/10.1103/PhysRevD.81.014502
http://dx.doi.org/10.1103/PhysRevD.74.011103
http://dx.doi.org/10.1103/PhysRevD.74.011103
http://dx.doi.org/10.1103/PhysRevLett.97.162001
http://dx.doi.org/10.1103/PhysRevLett.97.162001
http://dx.doi.org/10.1103/PhysRevD.78.014504
http://dx.doi.org/10.1103/PhysRevD.78.014504
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://dx.doi.org/10.1016/0920-5632(96)00076-X
http://dx.doi.org/10.1016/0920-5632(96)00076-X
http://dx.doi.org/10.1103/PhysRevLett.90.071601
http://dx.doi.org/10.1016/S0920-5632(02)01948-5
http://dx.doi.org/10.1142/S0217751X08041219
http://dx.doi.org/10.1142/S0217751X08041219
http://dx.doi.org/10.1016/j.physletb.2008.04.030
http://dx.doi.org/10.1103/PhysRevD.66.014008
http://dx.doi.org/10.1016/0146-6410(94)90053-1
http://dx.doi.org/10.1016/0146-6410(94)90053-1
http://dx.doi.org/10.1103/PhysRevD.66.034030
http://dx.doi.org/10.1103/PhysRevD.64.014002
http://dx.doi.org/10.1103/PhysRevD.64.014002
http://dx.doi.org/10.1103/PhysRevD.52.1722
http://dx.doi.org/10.1103/PhysRevD.52.1722
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254

