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We study the quark mass function on hypercubic lattices in a large range of physical volumes and

cutoffs. To avoid the very large Wilson term artefact, we exploit the relation between the quark mass

function and the pseudoscalar vertex in the continuum. We extrapolate to the chiral limit. In function of

the physical volume, we observe a striking discontinuity in the properties of chiral extrapolation around a

physical volume Lc ’ 6 GeV�1 ¼ 1:2 fm. It is present in the quark mass function, which collapses to

zero, as well as in the pion mass and the quark condensate as directly calculated from the pseudoscalar

correlator. It is strongly reminiscent of the phenomenon of chiral symmetry restoration observed by

Neuberger and Narayanan at NC ¼ 1 around the same physical length. In the case of spontaneous

symmetry breaking, we confirm that the operator product expansion of the quark mass function, involving

the quark condensate, is not operative at the available momenta, even taking into account the unusually

large high order corrections to the Wilson coefficient calculated by Chetyrkin and Maier; the gap remains

large, around a factor 2, even at the largest momenta available to us (p ’ 6 GeV).
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I. INTRODUCTION

Obviously, when chiral symmetry is spontaneously bro-
ken, the quark pseudoscalar vertex presents a Goldstone
pole, i.e. a pole at q2 ¼ m2

�. In the Euclidean region tested
by lattice QCD, the large magnitude of its contribution to
the pseudoscalar vertex at q ¼ 0 was noted first in numeri-
cal calculation by Ref. [1]. However, the denominator is
q2 þm2

�; therefore, it vanishes at q ¼ 0 in the chiral limit
and it is proportional to the current quark mass; we have
then by exception a divergence of the vertex in the region
tested by lattice QCD, i.e. it goes to infinity when mq ! 0,

for all momenta p of the quark legs (q ¼ p0 � p ¼ 0), a
phenomenon which would be very spectacular if we could
indeed approach very small quark masses on the lattice.
One must note that in spite of this divergence, a chiral limit
of the vertex was presented in the literature for quite a
while in the context of momentum-subtraction (MOM)
nonperturbative renormalization at zero mass.1 Attention
to this divergence was drawn by the JLQCD collaboration
[2], and around the same time in [3,4]. In the paper [3], the
problem was shown to have two distinct aspects:

(1) Usually, the pseudoscalar vertex is used to renormal-
ize the pseudoscalar density in the UV asymptotic region;
one uses first a numerical MOM renormalization constant
ZMOM
P to be later inserted into certain perturbative calcu-

lations (running to higher scales, scheme conversions). It is

then necessary to subtract the Goldstone boson pole, in
order to extract the purely perturbative part of the renor-
malization constant. Analogously, one also should extract
any power corrections originating in condensates, which
will be the case for the quark condensate contribution,
when determining Zm, see below, or for the A

2 condensate
contribution in the gluon and ghost Green functions when
extracting perturbative informations like �QCD, see, for

instance, [5] and references therein.
(2) However, as a second aspect, one may also consider

the Goldstone pole contribution not as a parasitic contri-
bution to be eliminated, but in its own physical interest and
in its relation with other interesting quantities. We recall
these relations, stressed in the same paper. First, the residue
of the pole is simply given, up to a finite renormalization,
by the quark mass function, i.e. the quotient of the scalar
part of the quark propagator and the vector part, in the
chiral limit. That this mass function is nonzero in the chiral
limit is therefore also a signal of spontaneous symmetry
breaking. This can be seen directly from the fact that the
scalar part of the propagator is zero in a chirally symmetric
vacuum. Then, this mass function can be said to constitute
a continuous set of renormalized order parameters, labeled
by p.
Finally, the spontaneous breaking also manifests itself

through the OPE of this quark mass function; the main
contribution in the chiral limit is the one of the quark
condensate, with power 1=p2; this gives therefore a rela-
tion with another, well known, indicator of spontaneous
chiral symmetry breaking.
The object of the present paper is to study in more detail

these relations on the lattice, at Nf ¼ 0, with the clover

action. The central object will be the quark mass function,

*Unité Mixte de Recherche 8627 du Centre National de la
Recherche Scientifique.

1Let us stress that no such Goldstone contribution is expected
in the method of renormalization of the ALPHA group at zero
mass.
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in the chiral limit, calculated, along the line described
above, through the residue of the Goldstone boson in the
pseudoscalar vertex. Thus the present paper completes the
study of the papers [6,7] devoted to the vector part of the
propagator, Zc . For an extensive study of the quark propa-

gator, one can refer also to the papers of the Adelaide
group, see, for instance, our reference below [8].

Although it may appear involved at first, this method of
calculation is indeed an advantageous approach in calcu-
lations with the clover action, because the lattice quark
propagator itself would yield an untractable mass function,
plagued with the huge Wilson term artefact, while the
pseudoscalar vertex has much less artefacts, as will be
seen.

On the other hand, this calculation is very simple and
fast even on large volumes in contrast to the calculations
with overlap action. Of course, one cannot claim to work
very close to the chiral limit. It is, however, instructive to
see what comes out when using the standard methods of
chiral extrapolation, successfully used for a long time in
phenomenological applications of lattice QCD.

With respect to the exploratory study presented in
Refs. [3,4] with the help of data from the QCDSF group,
the present study uses the same basic ideas, but it is
performed with better data, with various �’s and lattice
sizes, so that, for instance, artefacts can be identified and
OPE can be tested with larger momenta.

A. Physics results

OPE: let us recall, with the lattice data used in [3], there
appears a very large discrepancy between the prediction of
OPE and the lattice data, using the known quark conden-
sate value and the Wilson coefficient with the two calcu-
lated orders; the prediction of the OPE is found to be much
lower than the lattice data. This problem with OPE is
confirmed (see Sec. V). It can be partly elucidated thanks
to the new perturbative calculations of Chetyrkin and
Maier for the Wilson coefficient [9,10]: the high order
corrections to the Wilson coefficient are exceedingly large,
almost spoiling the hope to extract the condensate from the
high momentum lattice data. The discrepancy is admittedly
reduced, but remains around a factor 2 at the largest
available momenta.

Chiral symmetry ‘‘restoration’’: one also displays (see
Sec. IV) a new striking and unexpected phenomenon at
small volumes, that we can term for simplicity as an abrupt
‘‘chiral symmetry restoration’’ below some critical physi-
cal volume; it affects the chiral extrapolation of several
quantities at the same time, not only the quark mass
function, but also the pion mass and the quark condensate;
to evaluate the latter independently of the Gell-Mann,
Oakes, Renner (GMOR) identity, we recourse to the old
method proposed in the paper by Bochicchio et al. [11].
This discontinuity is reminiscent of the phase transition
found by Narayanan and Neuberger [12] atNc ! 1. Let us

recall at this point that usually it is expected that the chiral
symmetry order parameters are vanishing at zero quark
mass, in finite volumes; therefore, what one should observe
on the lattice is dependant on the physical volume and on
the smallest quark masses actually considered.

II. SETTING THE FRAMEWORK IN THE
CONTINUUM : THE PSEUDOSCALAR VERTEX,
THE W-T IDENTITYAND THE QUARK MASS

FUNCTION

A. Definitions and Lorentz invariance

We work in the Landau gauge. Let us first fix the
notations that we will use. We will use all along the
Euclidean metrics. The continuum quark propagator is a
12� 12 matrix SðpÞ for 3-color and 4-spinor indices. One
can take into account Lorentz [in fact Oð4Þ] invariance and
discrete symmetries, as well as color neutrality of the
vacuum by expanding the inverse propagator according to:

S�1ðpÞ ¼ �a;bZc ðp2Þði 6pþmðp2ÞÞ (1)

where a, b are the color indices. Zc ðp2Þ is a standard

lattice notation, referring to the role it plays as a renormal-
ization constant for the quark field (in the standard Georgi-
Politzer MOM renormalization, see subsection II C,
ZMOM
2 ð�2Þ ¼ Zc ð�2Þ; for the precise lattice definition,

see below, Sec. III). Obviously, one has in the continuum,
with trace on spin and color:

Zc ðp2Þ ¼ 1=i 1=12TrðS�1ðpÞ6pÞ=p2 (2)

Sometimes, one uses to describe the scalar part of the
propagator, instead of the quark mass function mðp2Þ, the
alternative quantity, which is the proper scalar part of the
bare propagator:

bðp2Þ ¼ Zc ðp2Þmðp2Þ: (3)

One must not forget however the advantage ofmðp2Þ being
UV finite, since it is the ratio of two quantities renormal-
ized by the same factor Z2. In fact it is the MOM renor-
malized quark mass, with renormalization point �2 ¼ p2

(see below).
This is the central physical quantity we will consider in

the present paper. On the other hand, we will consider as
auxiliary the pseudoscalar vertex, and then use the axial
Ward identity to relate this vertex to mðp2Þ. Indeed, it
happens that mðp2Þ is not directly calculable with the
clover action. We then need some more definitions.
Let us consider a colorless local two quark operator

�qOq. The corresponding three point Green function G is
defined by

Gðp; qÞ ¼
Z

d4xd4yeip�yþiq�xhqðyÞ �qðxÞOqðxÞ �qð0Þi: (4)

It is a 4� 4 matrix in Dirac space. The corresponding
vertex function is then defined by amputation of quark
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propagators on both sides:

�ðp; qÞ ¼ S�1ðpÞGðp; qÞS�1ðpþ qÞ: (5)

In the whole paper, we will restrict ourselves to the case
where the operator carries a vanishing momentum transfer
q� ¼ 0. In the following, we will omit writing q� ¼ 0 and

we will moreover understand �ðpÞ as the bare vertex
function computed on the lattice.

Now, Lorentz covariance and discrete symmetries allow
us to write for the axial vertex:

�A�ðpÞ ¼ �a;b½gð1ÞA ðp2Þ���5 þ igð2ÞA ðp2Þp��5

þ gð3ÞA ðp2Þp� 6p�5 þ igð4ÞA ðp2Þ½��; 6p��5�; (6)

which should be obeyed approximately on the lattice, as
we checked, and similarly for the pseudoscalar vertex:.

�ðp2Þ ¼ �a;b½gð1Þ5 ðp2Þ�5 þ igð2Þ5 ðp2Þ�5 6p�: (7)

B. Renormalization and Ward-Takahashi identities

Although we do not require a specific renormalization
scheme, we have to discuss the renormalization, because
the Ward-Takahashi (W-T) identities should be imposed on
the renormalized theory, and not on the bare quantities (we
do not consider anomalies). The following considerations
hold in an arbitrary renormalization scheme, and the cor-
responding renormalized quantities are denoted by a sub-
or superindex R. The renormalized equations should hold
up to OðaÞ artefacts.

Z2 denotes as usual the fermion field or propagator
renormalization according to:

q ¼ ffiffiffiffiffiffi
Z2

p
qR SðpÞ ¼ Z2SRðpÞ: (8)

Let us recall that the corresponding renormalized vertex
functions are:

�ðpÞ ¼ Z�1
2 Z�1

O �RðpÞ; (9)

where the necessary subindices are implicit for each type
of vertex; ZO is the renormalization of the composite
operator, namely, a current or density operator: O ¼ jV ,
jA, P5; the Z2 factor takes into account the amputation.

Note that the standard definition of renormalization
constants is to divide the bare quantity by the renormaliza-
tion constant to obtain the renormalized quantity (except
for photon or gluon vertex renormalization factors Z1

which we do not use). In principle, renormalization of
composite operators, for instance ZV , should be defined
similarly. We have followed this convention in our works
on gluon fields, for the renormalization of the gauge-
dependent gluon field condensate A2. But, in the case of
quark composite operators, an opposite convention has
become standard in lattice calculations : ð �qOqÞbare ¼
Z�1
O ð �qOqÞR; we feel compelled to maintain this convention

for the sake of comparison with parallel works on the

lattice. This explains our writing of the renormalized ver-
tex function.
In the continuum limit ZV ¼ 1, and in the chiral limit,

ZA ¼ 1 (conserved currents). We keep ZA since the axial
current is not conserved away from the chiral limit, which
we take only in the end. The lattice artefacts, as any other
regularization scheme, generate finite Oðg2Þ effects, van-
ishing slowly with a, included in factors ZV , ZA, due to
additional divergencies multiplying the a terms (which
have higher dimension). There are also terms with powers
of a which we do not write. ZV , ZA are independent of the
renormalization scheme up to such terms. The fact that we
do not include such terms means that our equations should
hold only sufficient close to the continuum.

1. Consequences of the axial Ward identity

Let us develop the consequences of the axial W-T iden-
tity, which derives from the equation @�ðjAÞ� ¼ 2mP5.

For this purpose, one has to return momentarily to the
general case q ¼ p0 � p � 0. Since they reflect the sym-
metries of the physical theory, the naive Ward identities
should a priori hold for the renormalized Green functions
(except for anomalies) and at infinite cutoff, which means:

q��A�;Rðp; qÞ ¼ �iðS�1
R ðpþ qÞ�5 þ �5S

�1
R ðpÞÞ

þ i 2mR�5;Rðp; qÞ: (10)

mR is the renormalized mass in the scheme, mR ¼ Z�1
m mq.

It is then possible to return to bare quantities which are the
ones actually measured on the lattice. Multiplying both
sides by Z�1

2 one gets:

ZAq
��A�ðp; qÞ ¼ �iðS�1ðpþ qÞ�5 þ �5S

�1ðpÞÞ
þ i2mRZP�5ðp; qÞ; (11)

i.e. there appear the renormalization constants ZA, ZP.
Now, we exploit this equation through an expansion in
powers of q�.

2. Setting q ¼ 0. The pseudoscalar vertex

First, from (1)–(6), one finds constraints for the pseudo-
scalar vertex by making q� ¼ 0, which eliminates the

axial vertex:

mðp2ÞZc ðp2Þ�5 ¼ mRZP�5ðpÞ: (12)

This means that the pseudoscalar vertex contains only the
�5 component, i.e. the second term in (7) should vanish:

gð2Þ5 ðp2Þ ¼ 0 �5ðpÞ ¼ gð1Þ5 ðp2Þ�5: (13)

This vanishing of gð2Þ5 ðp2Þ is verified to a good accuracy on
the lattice. Moreover, the pseudoscalar vertex at q ¼ 0 is
entirely determined from the mass function and Zc ðp2Þ, i.
e. from the propagator, through Eq. (12), if we know the
proportionality constant mRZP. However, this is not a
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practical way to determine the pseudoscalar vertex on the
lattice, because of the very large Wilson artefact in mðp2Þ.
Rather, as we propose, this relation should be used in the
reverse way: to determine mðp2Þ from the pseudoscalar
vertex and Zc ðp2Þ.

The proportionality constant mRZP is obtained in a
familiar way; we define a bare mass � through the equation
@�j

�
A ¼ 2�P5, which we can easily measure on the lattice

through bare matrix elements involving these operators (in
the technical lattice practice, we rather denote by � the
same quantity in lattice units). Comparing this equation
with the renormalized one @�ðjAÞ�R ¼ 2mRðP5ÞR, we get at
once:

mRZP ¼ ZA�: (14)

The good point in this transformation is that the right-hand
side is independent of the renormalization scheme, because
it is so for ZA as we will show now.

Indeed, from Eqs. (12) and (14), one gets:

mðp2Þ ¼ ZA�g
ð1Þ
5 ðp2Þ=Zc ðp2Þ: (15)

Note that this relation has been demonstrated indepen-
dently of any specific renormalization scheme. Then ZA

can be expressed as the same definite combination of bare

quantities ZA ¼ bðp2Þ=�=gð1Þ5 ðp2Þ in all schemes.

However, this expression is not a practical way to deter-
mine ZA on the lattice, once again because of the very large
Wilson artefact in the quantity bðp2Þ defined in Eq. (3).

What is now to be noticed is that neither side of Eq. (15)
vanishes in the chiral limit if there is spontaneous breaking
of the symmetry. As to the mðp2Þ side, this is because the
vacuum is then not invariant, therefore the expectation
value of a scalar need not vanish, while on the other side

there is a Goldstone pole in gð1Þ5 ðp2Þ compensating for the

vanishing of the � factor. We then write:

mchiralðp2Þ ¼ lim
m!0

ZAðmqÞ�gð1Þ5 ðp2Þ=Zc ðp2Þ
¼ ZAðmq ¼ 0Þ lim

m!0
�gð1Þ5 ðp2Þ=Zc ðp2Þ: (16)

This is the basic equation which we use below to deduce
mðp2Þ in the chiral limit. We need both the functions

Zc ðp2Þ and gð1Þ5 ðp2Þ, which we determine from the mea-

surement of the propagator and pseudoscalar vertex, as
well as �, which will be measured through a ratio of
vacuum expectation values as described below, and
ZAðm ¼ 0Þ, which will be taken from previous measure-
ments by the ALPHA group (see also below).

3. An equation for the axial vertex

Although not necessary for our direct purpose, we write
for completeness the equation for the axial vertex parallel
to the one relating the vector vertex to the quark propa-
gator. Let us recall that one could use this relation to

express ZV in terms of the bare propagator and vertex
according to:

ZV ¼ Zc ðp2Þ=gð1ÞV ðp2Þ; (17)

where gð1ÞV ðp2Þ is the coefficient of the �� term in the

Lorentz decomposition of the vertex. In practice, this
relation is not the best suited to measure accurately ZV

because of many artefacts.
By taking the derivative of the axial W-T identity with

respect to q�, it is indeed similarly possible in principle to
determine the axial vertex at q ¼ 0 from the propagator
and the pseudoscalar vertex.
In the axial case, the expression is more complicated

than in the vector one; this is due to the last term in Eq. (11)
which originates in the pseudoscalar density, and reflects a
nonconservation of the axial current. What should be
stressed is that once more the effect of this term does not
vanish in the chiral limit if the symmetry is spontaneously
broken.
As in the vector current case, the W-T identity will give

the constraints on the axial vertex by taking the derivative
of Eq. (11) with respect to q at q ¼ 0. We get:

ZA�A� ¼ �i
@

@p� S�1ðpÞ�5 þ 2iZA�
@

@p� �5ðpÞ: (18)

This relation again shows that ZA is independent of the
renormalization scheme. Of course, once more, this will
hold up to terms vanishing as inverse powers of the cutoff
at infinite cutoff, which are called artefacts in the lattice
language. It must be recalled that on the lattice, the Ward
identity is not exact, but holds only up to artefacts because
we work at finite cutoff, and the deviation will be found
very large in some cases. Although theoretically possible,
in practice, it is not easy to determine accurately ZA from
it. This is why we recourse to other determinations from
the ALPHA group.

C. MOM renormalization constants

Useful and very usual specific renormalization condi-
tions for the Green functions on the lattice are the MOM
ones, considered at some normalization momentum p2 ¼
�2, originally due to Georgi and Politzer. Although they
are not really needed for our purpose, it remains useful to
explain the connection with what precedes, since results
are often discussed in terms of the renormalization con-
stants corresponding to this scheme. We lay particular
emphasis on the need to account for Ward-Takahashi (W-
T) identities in handling renormalization. We start from the
propagator and set:

S�1
R ð�Þ ¼ �a;bði 6pþmRÞjp2¼�2 ; (19)

which means ZMOM
2 ¼ Zc ð�2Þ�1 according to Eq. (1).
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Also, it means that the renormalized mass is thenmMOM
R ¼

mð�2Þ, i.e. it is the mass function at p2 ¼ �2. This is the
scheme of Georgi and Politzer.

For the vertices, we could think of choosing also the
standard MOM ones, i.e. tree-level expressions for p2 ¼
�2, namely:

ðgð1ÞA ÞRð�2Þ ¼ 1 ðgð1Þ5 ÞRð�2Þ ¼ 1 (20)

This would be satisfactory at zero mass in perturbation.
However, we must recall that one is not free to choose the
renormalization of vertices once the scheme has been
chosen for the propagator. Indeed, the renormalized theory
must obey the symmetries, and this fact translates itself
into W-T identities strongly constraining the vertices.

In the case of the vector current, the W-T constraint still
implies that:

ZV ¼ Zc ð�2Þ
gð1ÞV ð�2Þ ¼ ZMOM

V ð�2Þ; (21)

where ZMOM
V is defined by the standard MOM renormal-

ization condition:

ðgð1ÞV ÞRð�2Þ ¼ 1: (22)

But this does not work for the axial current. In effect, it is
necessary to deduce the renormalization of the axial vertex
from the W-T identities in a nonperturbative treatment,
with spontaneous symmetry breaking. From the W-T iden-
tities, one deduces that ZA � ZMOM

A , where ZMOM
A would be

defined, in parallel with ZMOM
V , as Zc ð�2Þ=gð1ÞA ð�2Þ; in fact

Zc ð�2Þ=gð1ÞA ð�2Þ is not even independent of �2; one can

expect only that it reaches ZA at large p; then, it would be
perhaps better to discard this MOM definition, since it
could be misleading.

On the reverse, ZP can be defined, consistently with the
Ward identities, from the standard renormalization condi-
tion, analogously to ZV . Indeed, setting mMOM

R ¼ mð�2Þ
and making p2 ¼ �2 in Eq. (12), one gets:

ZPð�2Þ ¼ Zc ð�2Þ
gð1Þ5 ð�2Þ ¼ ZMOM

P ð�2Þ; (23)

showing that ZPð�2Þ as deduced from the W-T identity and
MOM conditions for the propagator is equal to the one
normally defined directly by the tree condition:

ðgð1Þ5 ÞRð�2Þ ¼ 1: (24)

D. OPE in the chiral limit and the quark condensate

The quark propagator, like any Green function, can be
described by OPE at large momenta. In the present case,
one deals with a non–gauge-invariant Green function,
which implies the potential presence of non–gauge-
invariant local operators in the OPE. The coefficient of
all the operators giving the leading power corrections have

been calculated by Lavelle et al. [13]. A great simplifica-
tion is obtained if one takes the chiral limit. Then, for the
scalar part of the propagator or of its inverse, or the quark
mass function, the perturbative contribution vanishes, and
the dominating contribution in the OPE is the quark con-
densate one; this is in agreement with the fact that both the
quark mass function and the condensate vanish with resto-
ration of chiral symmetry. We stress this exceptional situ-
ation where the OPE begins by a power correction. This
could lead in principle to a complementary determination
of the condensate, but as we shall see in Sec. V, the attempt
fails. The relevant quantitative formulas are given in this
latter section. We just recall the tree-level formula pro-
posed a long time ago by Politzer [14], which gives the
general structure of the contribution:

mðp2Þ ’ � 4�

3
�sðpÞ 1

p2
h �c c i: (25)

E. A calculation of the condensate through the
pseudoscalar correlator

A very interesting identity has been considered some
years ago in several works on the lattice, which leads to a
possible calculation of the condensate, advantageous for
our discussion below, subsection IVB. This identity holds
exactly when chiral symmetry is preserved by the lattice
regularization, and it has been indeed written for overlap
fermions, see Refs. [15,16]:

h �c c i ¼ � lim
m!0

m
Z

d4xhP5ðxÞP5ð0Þi; (26)

as adapted to our specific case Nf ¼ 0. The quantities are

defined with the ‘‘rotated’’ quark fields, often introduced in
overlap calculations to improve Green functions (see the
above references). Note that for m � 0 both sides retain
additive divergences proportional to powers of the mass,
although the strongest one, 1=a3, is cancelled by the quark
field rotation. On the left-hand side, these divergences are
due to the limit x ! 0 taken in the propagator. On the right-
hand side, the integration may imply divergences from
coinciding arguments of the two P5 composite fields, in
addition to the multiplicative ones coming from each P5

field, so that these additive divergences cancel between the
two sides. In the chiral limit, we have no such divergences,
since they are canceled by powers of m. In renormalized
form, using for the overlap action ZP ¼ ZS ¼ Z�1

m , we get:

h �c c iR ¼ � lim
mR!0

�
mR

Z
d4xhðP5ÞRðxÞðP5ÞRð0Þi

�
: (27)

Now, in the renormalized form, it should hold indepen-
dently of any particular choice of action, therefore also
with the clover action, up to artefacts. Taking duly into
account the renormalization factors, we end, with the bare
<P5ðxÞP5ð0Þ> on the right-hand side, with :
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h �c c iR¼� lim
mR!0

�
ZSðZP=ZSÞ2m

Z
d4xhP5ðxÞP5ð0Þi

�
: (28)

The ratio ZP=ZS is independent of the renormalization
scheme. Only ZS depends on it. The bare hP5ðxÞP5ð0Þi on
the right-hand side can now be taken from any action,
including the clover one.

This identity can then be used on the lattice to calculate
the condensate rather directly from the pseudoscalar cor-

relator, for instance in the MS scheme. Indeed, the right-
hand side can be calculated with only standard logarithmic
multiplicative renormalizations. We need not extract the
pion residue, although this can be done as in the quoted
papers, ending on the GMOR relation. It is useful for our
purpose to avoid the recourse to the GMOR relation,
because we want to calculate the condensate in the absence
of the Goldstone state. In fact, it can be noticed that this
direct method is the one proposed a very long time ago by
Bochicchio et al., the Rome group, [11]. It can be estab-
lished starting from the standard axial W-T identity:

@�hA�
R ðxÞðP5ÞRi ¼ 2mRhðP5ÞRðxÞðP5ÞRi þ �ðxÞh �c c iR

(29)

and integrating over x. Note that we duly postulate the
Ward identity in renormalized form. It is valid in bare form
only up to finite renormalization factors ZP=ZS. This Ward
identity has been first established and exploited by D. J.
Broadhurst [17].

This method is advantageous also with respect to the one
of calculating directly h �c c i through the propagator: it
seems to circumvent the problem of extracting the power
divergences.

III. LATTICE CALCULATIONS WITH THE
CLOVER ACTION

A. The problem of theWilson term circumvented by the
study of the vertex

Of course, versions of the lattice Dirac action have been
devised to improve the chiral behavior of the Wilson
action, like the overlap, domain wall or twisted fermions.
The advantage of the Sheikholeslami-Wohlert(SW) or clo-
ver fermions is that they are relatively easily handled for
not too small masses, in contrast to these more sophisti-
cated versions.

To calculate mðp2Þ, the simplest way would seem to
extract it directly from the lattice propagator, by extracting
the scalar part. But this is not practicable for the Wilson or
clover action, due to the large magnitude of the Wilson
term, which affects the scalar part. Indeed, it is of order
Oðap2Þ, where a is the lattice unit; this term is purely an
artefact, but it cannot be avoided; not only is it large, but
moreover it increases like p2, while the real, continuum
mðp2Þ is decreasing like 1=p2 in the chiral limit, and
otherwise logarithmically. Let us remind that the clover
action improves the on shell quantities from order OðaÞ

down to Oða2Þ [18], but not the Green functions, and
presents the same large Wilson term artefact.
Fortunately, the problem is circumvented by the study of

the vertex [3], because, in this case, no such embarrassing
artefact is present. Indeed, as we shall see, the data on the
pseudoscalar vertex, with only a proper treatment of hyper-
cubic anisotropy, present the expected, roughly powerlike,
decreasing behavior, see Fig. 1 for the related mðp2Þ /
ZPðp2Þ. Moreover, the smallness of artefacts is guaranteed
by the good superposition of the data at 6.0 and 6.4 with
proper renormalization. This weakness of artefacts is only
an empirical fact devoid of explanation. One may suspect
that it is connected with the ‘‘amputation’’ of external
lines, i.e. for instance the tree approximation is exactly
�5; nevertheless, this is not a sufficient reason, for the
analogous vector vertex is found to be still spoiled by large
artefacts [6,7].
The connection between mðp2Þ and the pseudoscalar

vertex is given in Eq. (15) of the previous section, up to
artefacts. Thereafter, for simplicity of notation, we denote
by mðp2Þ the combination given by the right-hand side of
this equation, which should be equal to the scalar part of
the propagator in the continuum limit, but which is quite
different on usual lattices. We introduce lattice units:

mðp2Þ ¼ a�1ZA�g
ð1Þ
5 ðp2Þ=Zc ðp2Þ: (30)

� is now the dimensionless bare axial quark mass:

a@�j
�
A ¼ 2�P5 (31)

with j�A and P5 the bare lattice local axial current and
pseudoscalar density and a is the lattice spacing. In prac-
tice, � is determined in the standard way through the ratio
of v.e.v.’s:
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FIG. 1. The chiral extrapolations at � ¼ 6:0, with 244 and 164

lattices, after elimination of hypercubic artefacts. A very regular
behavior is observed. The spacing between the two curves
increases in the IR, which can be interpreted as a finite size
effect.

PH. BOUCAUD et al. PHYSICAL REVIEW D 81, 094504 (2010)

094504-6



� ¼ 1=2
� ~xha@0j0Að ~x; 0ÞP5ð0Þi
� ~xhP5ð ~x; 0ÞP5ð0Þi : (32)

Hereafter, we will define 	c as the value of 	 at which �
vanishes. All the other factors are dimensionless ab initio.
ZA is the � independent renormalization of the local axial
current. It can be determined by certain W-T identities
among current correlators [19] or other methods with
specified renormalization conditions. The lattice definition
of Zc ðp2Þ is, as previously:

Zc ðpÞ ¼ 1

i

1

12
Tr½�� �p�S

�1ðpÞ�=ð �pÞ2 (33)

where �p� � 1
a sinðap�Þ. Equation (30) is the well known

formula which has been used classically to determine the
renormalized quark masses on the lattice [20] at short
distance. But here, it is used in the nonperturbative regime
of spontaneous chiral symmetry breaking, and in the chiral
limit where mq ¼ 0. In order to avoid an increase of errors

on the chiral extrapolation, and since we are interested only
in the chiral limit of mðp2Þ, we multiply by ZA only after
having taken the chiral limit of the remaining factors. Now,
the ZA’s in the chiral limit are accurately known by the
work of the Alpha group [21], and we borrow their central
values ZAð	cÞ.

B. The treatment of the raw lattice data

The basic data, i.e. the quark propagator in the various
configurations, are the same as already used in [6,7] to
study Zc ðp2Þ. We have at hand simulations at Nf ¼ 0 with

the Wilson gauge action and the SW clover action in
Landau (i.e. Lorentz) gauge, on a series of lattices given
in order of decreasing physical volume: 6.0, 244 L ¼
12:2 GeV�1; 6.0, 164, L ¼ 8:14 GeV�1; 6.4, 244, L ¼
6:56 GeV�1; 6.6, 244, L ¼ 5:06 GeV�1; 6.4, 164, L ¼
4:37 GeV�1; 6.8, 244, L ¼ 3:93 GeV�1. We have consid-
ered the inversion of the Dirac operator at five kappa values
in each case; namely, at � ¼ 6:0, we choose 	 ranging
from 0.1310 to 0.1346, corresponding to a large range of
quark masses, so as to allow a reasonable chiral extrapo-
lation; the values at the other �’s are chosen to correspond
approximately to the same bare masses in physical units,
i.e. in terms of mq ¼ 1

2a ð1=	� 1=	cÞ, mq ¼ 0:233, 0.154,

0.104, 0.054, 0.0324 GeV.

We first calculate the product �gð1Þ5 ðp2Þ=Zc ðp2Þ at each
	, for a given � and volume 164, 244, and we correct this
quantity for the hypercubic artefacts according to the same
method used for the propagator vector part Zc ðp2Þ (see
discussion below). Then we take the chiral limit 	 ! 	c

according to Eq. (30), to obtain the chiral limit of the quark
mass function. The chiral limit is obtained by a fit in
function of 	. The factor ZAð	cÞ, which has a trivial effect
is introduced as an additional fixed factor, not affecting the
p dependence and the essential conclusions. A three pa-
rameters fit in 	 is possible with five 	 values, and it gives a

sizably better fit than with two parameters, pointing to a
significant curvature in mq. The coefficient of the Oðm2

qÞ
term is strongly negative.

C. Discussion of artefacts

We have given a very detailed discussion of artefacts in
our previous papers on the quark propagator [6,7]. We
direct the reader to these papers. However, it happens
that some aspects of the discussion are crucial here, so
that we give a new discussion for the relevant points.

1. Discretization artefacts

As to discretization artefacts, let us recall that we can
classify them into two categories according to their behav-
ior under Oð4Þ: either they are not invariant under Oð4Þ,
which corresponds to the hypercubic artefacts, and we may
determine them by using the various orbits; or they are
invariant and they can be extracted by using various �’s. It
happens that in the present case, contrarily to the vector
part of the propagator, both hypercubic artefacts and Oð4Þ
invariant artefacts seem small.
Note that we have treated the hypercubic artefacts by our

systematic method of extrapolation, explained in several
places, see for instance [22].2 With this method, we obtain
data where almost any anisotropy has been eliminated, see
Fig. 1 for an example, with the chiral extrapolation
performed.
With such smoothed data, it is possible to perform very

good analytical fits based on theoretical considerations in
the continuum, with very low 
2. Possibly, the fit should
also include terms accounting for Oð4Þ symmetric arte-
facts, to be determined by considering several �’s. In the
present case, we even do not require important terms of this
sort. We have a good superposition of the chiral extrapo-
lations at 6.0 and 6.4 with the 244 lattice, on their common
range of momenta, within statistical errors, see Fig. 2.
However, a further, more detailed study, at large p, with
multiplication by p2, reveals the possibility of a smallOð4Þ
symmetric artefact (see the end of the discussion of OPE,
Sec. V and Fig. 6).
On the other hand, at 6.6 and 6.8 for the same lattice size,

except for the first few points (where we have most proba-
bly a finite size artefact, see below), the chiral extrapola-
tions superpose very well, but at a zero value, therefore
completely different from the previous case, see Fig. 3.
Obviously, this is not a discretization problem. We show in
the next section that there is a discontinuity in function of
the physical volume.
Having thus explained our own results, we give some

comments on a recipe for treating discretization artefacts,
which leads to surprisingly different results in the case of
the pseudoscalar vertex [23], in the chiral limit. In addition

2This technique was initially devised by C. Roiesnel.
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to an usual democratic selection, Ref. [23] reads the con-
tinuum p� as corresponding, on the lattice, not to the

lattice p�, but rather to a trigonometric expression,

sinðap�Þ=a, differing from p� by Oða2Þ terms. As far as

the residue of the pseudoscalar vertex is concerned, our
systematic method for eliminating hypercubic artefacts
happens to give a result close to the democratic selection
if one reads p2 in the democratic method as the ��p

2
� of

the lattice. However, a large discrepancy appears when
[23] identifies p2 to ��ðsinðap�Þ=aÞ2, for the very asym-

metric lattices used there (for example, 163 � 52 or 243,
64). Why the effect can be large can be easily understood :

the residue behaves roughly as 1=p2 in physical terms, and
then, with the sine recipe, the curve appears much lower at
large p, because the ratio of the two curves is roughly
�ðsinðap�Þ=aÞ2=��p

2
�; one finds differences as large as

50%, for some asymmetric lattices at the largest momenta.
Then, at large p, the recipe gives a notably smaller result
than we find. Now, the question is: what is the correct
answer?
Our method gives a definite answer, by exploiting vari-

ous orbits. As to the recipe, it could seem to be somewhat
justified in some particular places, for free quarks, by
comparing the continuum and lattice explicit expressions
of the Green function: for example, the vector part of the
inverse quark propagator, which is found to be
i��� sinðap�Þ=a on the lattice, instead of i���p� in

the continuum. Nevertheless, this has been taken into
account by the standard lattice definition of Zc ðp2Þ,
Eq. (33), which gives exactly one for free quark, like in
the continuum; now, when one considers not the free Green
functions, but the nontrivial p2 dependence of the invari-

ants like Zc ðp2Þ or gð1Þ5 ðp2Þ due to the interaction, the

recipe has no theoretical justification, and one can even
doubt that there is a universal empirical recipe to reduce
UV artefacts.3

2. Lattice finite size artefacts

The last type of artefacts is what will be usually termed
as finite size artefacts, affecting the first few points in
momentum space, i.e. the one with lowest momentum
number. Let us stress that it is quite distinct from the effect
of the physical volume, which we study in the next section,
and which extends all over the range of available momenta
and shows a discontinuity.
As to these finite size artefacts, we find that they are

present. In fact, we observe that whatever the number of
sites and the lattice unit, the first five points are always
enhanced. We show this by considering first the cases
where mðp2Þ is found to be very close to zero, Fig. 4:
although the �’s are different, we can see that the value
is extremely small (10�4 GeV) for 6.6 and 6.8 except for
the first five points; in this case, they differ from each other,
which shows that it is an artefact. The data at 164, which
are larger, although still very small (10�3 GeV) except at
the three first points, suggest the same interpretation, but
also suggest that the finite size effects are notably larger at
164.
Then we observe that there is a similar effect in the other

case mðp2Þ � 0, by comparing the 244 and the 164 lattice
at the same 6.0, Fig. 1, or � ¼ 6:0 and � ¼ 6:4 with size
244, Fig. 2.

2 4 6 8 10

p(GeV)

0

0.01

0.02

m
(p

2 )(
G

eV
)

β = 6.0 ; Vol = 24
4

β = 6.4 ; Vol = 24
4

β = 6.6 ; Vol = 24
4

β = 6.8 ; Vol = 24
4

FIG. 3. The chiral extrapolations at � ¼ 6:0 and � ¼ 6:4
superpose very well, with a relatively large value, corresponding
to spontaneous chiral symmetry breaking. On the other hand, the
chiral extrapolations at � ¼ 6:6 and � ¼ 6:8 also superpose
very well, but with a zero value, corresponding to unbroken
chiral symmetry. The huge difference between the two sets is a
physical volume effect, as explained in Sec. IV.
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FIG. 2. The chiral extrapolations at � ¼ 6:0 and � ¼ 6:4 at
244 superpose very well on their common range of physical
momenta. There remains however a small finite size effect.

3The Adelaide group has indeed observed, in the case of the
overlap action, and studying the scaling behavior, that two
different such recipes should be used for the vector and scalar
part of the propagator [8].
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IV. DISCONTINUITY OF CHIRAL
EXTRAPOLATIONS IN FUNCTION OF THE

PHYSICALVOLUME

A. Discontinuity of the quark mass function

We observe two very distinct cases, already seen in
Fig. 3 for the 244 lattices:

(a) at � ¼ 6:0 and 244 or 164, as well as at � ¼ 6:4 and
244, we obtain a nonzero chiral limit, which superposes
very well where possible, in the three cases, with large
values at small p, i.e. of order of 200 MeVat p ’ 0:5 GeV.
This typically exhibits the behavior of a spontaneous
breaking of chiral symmetry.

The presence of a curvature in function of mq seems to

explain why our chiral limit is smaller than in a previous
calculation [3], where only three 	’s were available: for
illustration we were getting around mð2 GeVÞ ’
0:034 GeV, while we obtain nowmð2 GeVÞ ’ 0:022 GeV.

(b) at � ¼ 6:6 and 244, and at � ¼ 6:8 and 244, as well
as at � ¼ 6:4 and 164, we obtain on the contrary much
smaller values on the whole range of momenta; moreover,
if we recalculate 	c by defining it through �ð	cÞ ¼ 0 in
each corresponding finite volume, it is a bit different from
the standard one determined in very large volumes, and
then the chiral limit is very small and physically not
significant,4 except for the low momenta p < 3 GeV of
the 6.4, 164 lattice, where there is a value significantly
different from zero, although small, and monotonously
decreasing with p. For these latter points, the most natural
explanation seems a volume artefact on the four or five
points, which is also present in the other cases, with a
different magnitude, as we have argued. On the whole,

the case (b) seems typically a situation of restoration of
chiral symmetry.
Now, the remarkable fact is that chiral symmetry

‘‘seems’’ to be ‘‘restored’’ rather abruptly for volumes
smaller than a certain physical value Lc ’ 6 GeV�1, in
the sense that standard chiral extrapolation by a low poly-
nomial in mq yields mchiralðp2Þ�0 above L¼Lc and

mchiralðp2Þ ¼ 0 below, where mchiral denotes the chiral
limit. Indeed, the relevant parameter distinguishing case
(a) and case (b) seems to be the physical volume. The
physical length of the lattice is respectivelyL ¼ 12:2, 8.13,
6:55 GeV�1 for the case (a), and L ¼ 5:05, 4.37,
3:93 GeV�1 for the case (b), the order being the same as
above. The separating length is then around Lc’
5:8GeV�1¼1:2 fm (we choose the middle between the
two lengths). Moreover, we speak of a discontinuity and
not simply of a transition: it is because the last volume
which presents ‘‘symmetry breaking’’ is certainly larger
than the first one which presents ‘‘symmetry restoration’’,
but the two volumes are not very different: � ¼ 6:4, 244,
L ¼ 6:56 GeV�1 against � ¼ 6:6, 244, L ¼ 5:06 GeV�1.
Moreover, on each side of the discontinuity, the results for
the order parametermchiralðp2Þ are very similar for the three
lattices of case (a), and very similar for the three lattices of
case (b). In the case of spontaneous breaking, this is
especially striking, because the volumes extend over a
large range; the largest volume, � ¼ 6:0, 244 can be con-
sidered as a relatively large volume, V¼2:2�104 GeV�4

but the smallest one�¼6:4, 244 which is 10 times smaller,
V ¼ 1:85� 103 GeV�4; and the latter volume is much
closer to the �¼6:6, 244 volume V¼6:55�102 GeV�4

for which symmetry is manifestly restored. This means a
discontinuity around V ¼ 1:25� 103 GeV�4 (middle
point) or, in length, around 5:8 GeV�1.
In [7], we studied the chiral symmetry breaking through

the overlap �A=�V as a possible indicator of spontaneous
symmetry breaking: it should differ from 1 due to a
Goldstone contribution at small p; in fact, we saw an effect
at small p presumably coming from the Goldstone, at least
at � ¼ 6:0. However, at small volumes corresponding to
6.6, 6.8, the available momenta were too large to test
whether this Goldstone effect disappears or not. Now, the
study of the pseudoscalar vertex (or quark mass function),
for which the Goldstone effect is much larger when
present, gives a clear answer: it shows a striking vanishing
of the Goldstone effect at 6.6, 6.8.
A typical feature is that this transition affects mchiralðp2Þ

over the whole momentum range simultaneously, i.e. when
passing the same critical length. Of course, there are also,
as we have shown in subsubsection III C 2, finite size
artefacts which somewhat enhance the smallest momenta.
But they superpose on top of a very clear discontinuity with
respect to the physical volume. And, even where enhanced
by this volume artefact, i.e. at small momenta, the curves
of case (b) lie much lower than those of case (a): admit-
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FIG. 4. The cases � ¼ 6:6 or � ¼ 6:8 at 244, and � ¼ 6:4 at
164, corresponding to the restoration of chiral symmetry. One
sees IR finite size effects, especially large in the latter case.

4In view of this observation, we have recalculated also the case
(a) with the same prescription for 	c.
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tedly, the 6.4, 164 is also lower, but less than the others at
the very first few points.

To reinforce our conviction that we are indeed facing a
notable phenomenon, we propose in the next subsection
two other similar and striking observations, which display
the same critical length.

B. Discontinuity of the pion mass and of the condensate
value

We extract these two observations from the behavior of
the pseudoscalar correlator, which we have calculated
together with the vertex on the same lattices with the
same four � values. From it, we can calculate,

(i) the pion mass, according to the well-known method
using the hP5ðxÞP5ð0Þi correlator integrated over
space, at large t, but also

(ii) the quark condensate, through the method explained
above (subsection II E), i.e. through the chiral ex-
trapolation of �m

R
d4xhP5ðxÞP5ð0Þi.

For both quantities, on performing a low order polyno-
mial extrapolation in mq ¼ 1

1=2a ð1=	� 1=	cÞ, we observe
exactly the same type of discontinuity as for mðp2Þ, i.e.
everything goes as if one had a phase transition at small
physical volume. The results are displayed in the table
below and graphically in Fig. 5.

� Size (Length) (GeV�1) m2
� (GeV�2) �c c (GeV�3)

6.0 244 (12.2) (1:54� 1:58) 10�2 (� 44:3� 7:4) 10�3 (a) ’’broken symmetry’’

164 (8.14) (4:05� 2:59) 10�2� (� 50:7� 7:9) 10�3

6.4 244 (6.56) (� 5:1� 4:6) 10�2 (� 43:5� 7:8) 10�3

6.6 244 (5.06) (0:66� 0:115) (� 7:29� 14:3) 10�3 (b) ’’restored symmetry’’

6.4 164 (4.37) (0:615� 0:21) (� 24:5� 12:1) 10�3�

6.8 244 (3.93) (1:3� 0:22) (� 8:65� 28:8) 10�3

We draw the following conclusion from this table:
(i) the chiral extrapolation gives a much smaller m2

� in
case (a) than in case (b), by 2 orders of magnitude. This
striking difference confirms the advocated discontinuity. In
fact, it is almost compatible with 0, m2

� ’ 0, in case (a)—
and this is in agreement with spontaneous symmetry break-
ing. For the largest volume, it is fully compatible with 0.
On the other hand, there is no Goldstone boson in case (b),
but a heavy meson. A complementary criterion for the
study of chiral restoration would be the presence of a scalar
meson degenerate with the pseudoscalar one.

(ii) the chiral extrapolation ofm
R
d4xhP5ðxÞP5ð0Þi gives

something close to the expected value for the quark con-
densate, or larger than it for the case (a).
The central values of the corresponding renormalized

condensates in MS at 2 GeV are estimated to be, either by
using values of ZRI�MOM

S nonperturbatively measured or

those obtained through ZRI�MOM
P , and using also ZP=ZS

from Ward identities :h �c c iMSð2GeVÞ¼�ð2:2�0:4Þ�
10�2 GeV3 at 6.0, 244, h �c c iMSð2GeVÞ¼�ð2:5�0:4Þ�
10�2 GeV3 at 6.0, 164, in a quite encouraging agreement
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FIG. 5. m2
� (left) and the quark condensate (right) as functions of the lattice size. The left-most part of each graph shows the

restoration of chiral symmetry at small volume while the symmetry is broken in the right-most one. The horizontal lines are indicative
of the average value of the measured quantity in each region. Note that form2

� in the symmetry breaking phase the errors are very small
and can hardly be seen on the figure.
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with standard values from the GMOR relation at Nf ¼ 0.

Indeed, from [23]:

h �c c iMSð2 GeVÞ ¼ �ð273� 19 MeVÞ3
¼ ð2:0� 0:5Þ � 10�2 GeV3: (34)

On the other hand, the renormalized value
h �c c iMSð2 GeVÞ ¼ �ð3:2� 0:6Þ � 10�2 GeV3 obtained

at 6.4, 244 is somewhat too large, but not far from com-
patibility with Eq. (34).

On the contrary, for the case (b), it is smaller, and
compatible with zero for two lattices out of three. The
exception is the 6.4, 164, which gives an unexpected inter-
mediate value. So the conclusion would be equally strik-
ing, if not for the exception of this small volume lattice 6.4,
164.

This exception does not correspond to an intermediate
physical volume (this would invalidate our advocated con-
clusion of a discontinuity as function of the physical vol-
ume). Rather, it is probably due to a finite size artefact,
connected with the similar observation for mðp2Þ. At the
same 6.4, 164, mðp2Þ shows rather high points at the first
momenta, much higher than those for the others in case b).
Such finite size artefacts seem also to affect the case (a);
the renormalized value of the condensate at 6.0, 164 is
somewhat larger that the one at the largest volume 6.0,
244; simultaneously, the pion mass is somewhat larger. It is
difficult to give a complete rational explanation of the size
of such artefacts. Nevertheless, it is doubtless that finite
size artefacts are superimposed on the basic physical vol-
ume effect, and can be distinguished from it because they
do not follow the same rationale.

C. Comments on the unexpected discontinuity of chiral
extrapolations in function of the physical volume

1. A phase transition?

At this point, it is important to enter into some warnings,
to avoid possible confusions.

(i) What is as expected. We are well aware that chiral
symmetry is not expected to undergo spontaneous break-
down in finite volumes: order parameters are expected to
vanish anyway when mq ! 0. But, if the volume is suffi-

ciently large, this may happen at only very small quark
masses, which we cannot consider with Wilson-type ac-
tions. Then, at moderate masses reached by Wilson-type
actions, things, as is well known, may look as in the infinite
volume case : order parameters like the mass function seem
to tend to the same nonzero value as in the infinite volume,
if one performs a naive chiral extrapolation with a low
order polynomial in mq. Of course, mðp2Þ as function of

mq should present a bending downwards with respect to

this extrapolation, if one were able to go to smaller masses.
To know whether the volume is sufficiently large, a neces-
sary condition is to check whether the ‘‘chiral’’ limit is
stable against variation of the volume, which we verify. Let

us call this first situation ‘‘infinite-volume-like.’’ It seems
to correspond to our case (a).
On the other hand, if the volume is sufficiently small, it

is natural to expect that, simply extrapolating from the
moderate masses, one gets already a vanishing of order
parameters. Let us denote this second situation as the one
of ‘‘chiral symmetry restoration.’’ It seems to correspond to
our case (b).
(ii) What is surprising. This dichotomic presentation is

however an oversimplification, according to the common
ideas. One would expect a continuous transition between
the two situations when one decreases the volume; the
chiral extrapolation would be expected to deviate progres-
sively from the truly infinite volume value, and decrease
downwards to zero. In the same vein, the Goldstone boson
would be expected to acquire progressively a mass. Let us
recall for instance the finding in the so called � regime for
the condensate: the ratio to the infinite volume limit de-
viates from 1 by a function of z ¼ mV, therefore, at fixed
mass, it is a continuous function of the volume.
In face of such expectations, our lattice analyses show

on the contrary an abrupt discontinuity between the two
cases (a) and (b) in a rather narrow window of physical
lattice length or volume. Indeed, our low order polynomial
extrapolations exhibits this striking discontinuity for
mchiralðp2Þ, which drops suddenly to zero. And the
Goldstone boson acquires abruptly a very large mass.
This discontinuity would suggest speaking of a phase
transition. In fact, this would be a too strong statement,
since principles seem to be against such a conclusion for
finite volumes, and also, since we are not really experi-
menting in the chiral limit, with truly very small masses,
but instead are performing only an extrapolation. Rather,
one should speak of a sharp transition to a new regime of
chiral extrapolation:
(i) above the critical length, the naive chiral extrapola-

tion picks the quantities corresponding to infinite
volume and spontaneous breaking,

(ii) while thereunder it picks the ones corresponding to
chiral symmetry restoration.

This behavior is illustrated in Fig. 5.

2. Origin of the discontinuity

Our observation deserves obviously understanding. We
are tempted to assume a connection with the observation of
Neuberger and Narayanan [12] of a restoration of chiral
symmetry below some critical length. Admittedly, they
work in the NC ! 1 limit and they then expect a true
phase transition at finite volume. However, their critical
length is close to ours: they find Lcrit around 1 fm ¼
5 GeV�1.
One can also think of a connection with the ‘‘finite

temperature transition,’’ which affects both the confining
properties and the chiral symmetry and is observed at large
spatial volume and finite time interval 1=T. Indeed the
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transition occurs around Tc ¼ 0:270 GeV, therefore
1=Tc ’ 3:7 GeV�1, mot too far from our Lc ¼
5:8 GeV�1. However, our data do not correspond to this
situation of highly asymmetric lattices which would allow
us to study such questions.

Let us emphasize that the transition we observe, con-
cerning chiral symmetry, is not a universal fact. Not all
condensates vanish at small volumes. In our analyses of the
gluon, ghost, and vector part of the quark propagator, the
nonperturbative vacuum expectation value hA2i was found
the same, consistently, at all the four volumes� ¼ 6:0, 6.4,
6.6, 6.8, 244, the same volumes as we use now. hA2i, which
does not seem to be an order parameter for some symmetry
breaking, does not collapse in small volumes. Note that we
are not yet in a situation of such a small volume that
everything should be perturbative simply because power
corrections would be negligible (‘‘femto-universe’’).

V. THE OPE

A. Failure of OPE with the Wilson coefficients at low
order

Let us now concentrate on the case (a), i.e. the one where
the chiral limit mass function is large. From now on, we

shall consider only renormalized quantities, in the MS
scheme, and skip any subindex meant to recall the renor-
malization: we quote only the subtraction point. Let us first
recall the puzzle underlined in [3], where one studies the
results of lattice data by the QCDSF group at � ¼ 6:0. If
we consider the OPE with tree level coefficient for the
condensate, we have in the chiral limit the Politzer formula
quoted above [14]:

mðp2Þ ¼ � 4�

3
�sðpÞ 1

p2
h �c c i: (35)

Note the remarkable fact that the expansion begins with the
power correction. The purely perturbative contribution
vanishes in the chiral limit, since it is proportional mq.

We observe immediately an enormous discrepancy be-
tween both sides at the momenta usually considered; in-
deed, with the estimate of h �c c i¼�½ð0:267�
5�15ÞGeV�3¼�ð1:9�0:35Þ�10�2 GeV3 from the
mass of the pion and GMOR formula with overlap fermi-
ons [16], or �ð2:0� 0:5Þ � 10�2 GeV3 from clover fer-
mions, as given above [23], see Eq. (34); taking
p ¼ 2 GeV, �sðpÞ ’ 0:3 (at one-loop, with �MS ¼
0:240 GeV), we find a right-hand side around 5�
10�3 GeV, much smaller, by a factor 4, than the value
we find from the lattice result for the left-hand side:
mlattð2 GeVÞ ’ 2� 10�2 GeV. Note that there is an habit
to present condensates through cubic roots, which hides the

discrepancies. We want to avoid it. Let us recall that 41=3 ’
1:6. Note also that, in the initial paper [3], the discrepancy
was found still larger, around 10. The reason is twofold:
first we adopted as reference the standard QCD sum rule

value of the condensate, h �c c i ¼ �ð0:225 GeVÞ3 ¼
�0:0114 GeV3, which is twice smaller; second, the lattice
value of mðp2Þ that we estimated was larger, as explained
in the beginning of Sec. IV, because we could do only a
linear extrapolation. Nevertheless, the discrepancy remains
huge.
Working at higher momentum would not help much in

this respect: using the � ¼ 6:4, 244 lattice, we have mo-
menta up to more than 5 GeV, but nevertheless the discrep-
ancy is not much smaller: the prediction at tree level, with
�sð5:7GeVÞ’0:18 mð5 GeVÞ ’ 4�

3 0:18 1
5:72

0:0176 GeV ’
4� 10�4 GeV, against mlattð5:7 GeVÞ ¼ ð1:15� 0:67Þ �
10�3 according to our lattice measurements, therefore
there is a factor about three of discrepancy. Note that
here we choose to calculate �sðpÞ at one loop for simplic-
ity in this first discussion. To be more quantitative, it seems
that we should adopt the best possible approximation for
�s, i.e. including �3. This is what we do in the rest of the
section. At Nf ¼ 0, the resulting values of �s are sizably

smaller, which reinforces the problem.
We can include, as done already in [3], the one-loop

correction to the coefficient, which has been calculated a
long time before by Pascual and de Rafael [24]; we set in
their formula a ¼ 0 for the Lorentz gauge, Nc ¼ 3, and for
the renormalization point,� ¼ p in their notation; we also
take their p2 as minus the Euclidean p2 of the lattice;
whence:

mðp2Þ ¼ � 4�

3
�sðpÞ 1

p2
h �c c iðpÞ

�
1þ 6:1875

�sðpÞ
�

�
:

(36)

We can in addition make a fit on the whole range of our
data. We take into account the evolution of the condensate
from p down to the reference point 2 GeV where we want
to determine the condensate, by using the formula for the

evolution of theMS quark mass, which is just the inverse of
the one for h �c c iðpÞ:
h �c c iðpÞ=h �c c ið2 GeVÞ
¼ ðð�sð2 GeVÞ=�Þ4=11ð1þ 0:687328ð�sð2 GeVÞ=�Þ

þ 1:51211ð�sð2 GeVÞ=�Þ2
þ 4:05787ð�sð2 GeVÞ=�Þ3ÞÞ=ðð�sðpÞ=�Þ4=11
� ð1þ 0:687328ð�sðpÞ=�Þ þ 1:51211ð�sðpÞ=�Þ2
þ 4:05787ð�sðpÞ=�Þ3ÞÞ (37)

to the corresponding order. We have checked this formula
by calculating it from both the expressions in [25] and
[26,27], respectively. It coincides exactly with the one
given in [9].
In the common range of momenta at � ¼ 6:0 and � ¼

6:4, 244, p ¼ 2–3 GeV, cf Fig. 2, we find a good superpo-
sition of the lattice curves for mðp2Þ at 6.4 and 6.0, and a

very consistent fit where the ‘‘condensate’’ at 2 GeV inMS
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scheme would have the fitted value�ð0:062� 0:01Þ GeV3

at � ¼ 6:0, �ð0:056� 0:009Þ GeV3 at � ¼ 6:4, therefore
around 3 or 3.5 times the actual value. This is still clearly
unacceptable. The situation is only slightly better if we use
larger momenta, available only with the 6.4 lattices; in this
case, using the full range of momenta, we get
�ð0:05� 0:01Þ GeV3.5

Obviously, the discrepancy is so huge that we have to
find a nontrivial explanation. We can think at once of two
types of explanation of the discrepancy, preserving the
OPE: either the above condensate value, taken from the
pion mass, has something basically wrong; this is hard to
believe; note also that many successful considerations have
been based on roughly this value, and one would have to
reconsider a whole sector of particle physics; or it is the
perturbative expansion of the coefficient which is strongly
modified by higher orders, or even, which is simply not
valid, at least at available momenta. In [3], the second
explanation is suggested, i.e. it was suggested that the
perturbative expansion may merely break down at avail-
able lattice momenta, since already the one-loop correction
is found as large as 50% of the tree level at 2 GeV. It could
mean that either there is merely no sort of convergence or
that the OPE is practically useless. Equivalently, it could
mean that we have to reach very high momenta for the
known, low order, perturbative expansion to be valid.
However, since the decrease of �s is very slow, we would
require prohibitively large momenta to test the idea on the
lattice.

B. The lesson from very high order calculations

Fortunately, an impressive progress has been performed
in the calculation. Incorporating the higher order terms
recently computed by K. Chetyrkin and A. Maier6 gives
[cf. Eq. (A1) in the appendix]:

mðp2Þ ’ �4�=3�s=p
2h �c c iðpÞð1þ 6:1875ð�s=�Þ

þ 52:9495ð�s=�Þ2 þ 564:8284ð�s=�Þ3Þ: (38)

We write ’ because there is in addition a correction of the
same formal order from the quark self-energy, �ðpÞ, be-
ginning at two loops, which is found to be very small (1%).
The positive and steadily increasing coefficients are much
larger than in the purely perturbative series for the propa-
gator [see for instance Eq. (A6)]. It does much in convinc-
ing one that the perturbative expansion of the Wilson
coefficient is not well behaved. For p ¼ 2 GeV, �s ’ 0:2

one gets:

mðð2 GeVÞ2Þ ’ 4�=30:2=ð2 GeVÞ2ð�h �c c ið2 GeVÞÞ
� ð1þ 0:394þ 0:215þ 0:146Þ: (39)

On one hand, it shows that the series is meaningless at
2 GeV, and it implies that claims to recover the value of the
condensate from data around 2–3 GeV with only the low
orders cannot be justified. On the other hand, it suggests
that the discrepancy we have observed at lower orders
between the fitted and the real value of h �c c i could be
explained by the strength of high order radiative
corrections.
Working at higher p would presumably not suffice, even

assuming some convergence of the series. With
�sð5 GeVÞ=� ’ 0:147=�, the behavior of the series is
substantially improved:

mðð5 GeVÞ2Þ ’ �4�=30:147=ð5 GeVÞ2ð�h �c c ið5 GeVÞÞ
� ð1þ 0:289þ 0:116þ 0:058Þ (40)

and, as can be seen on Fig. 6 the inclusion of the higher
terms results in reducing the gap between the lattice data
and the OPE estimation by a factor of 2. But it is unable to
reconcile them. Equivalently, the fit gives a fictitious value
for the condensate of�ð4:� 0:6Þ � 10�2 GeV3, twice too
large. To summarize, not even on our 6.4, 244 lattice, where
momenta run up to more than 5 GeV, can we apply safely
OPE. In the case of Zc ðp2Þ [7] and of the gluon propagator
[28], we could use the 6.6, 6.8 lattices, which provide
momenta up to 10 GeV, to study the hA2i condensate;
this is not possible for the quark condensate in the present

0 2 4 6

p(GeV)

0

0.05

0.1

p2 m
(p

2 )(
G

eV
3 )

Expectation at tree level
Expectation at 3 loops

β = 6.4 ; Vol = 24
4

β = 6.0 ; Vol = 24
4

FIG. 6. The lattice data �p2 at 6.0 and 6.4, compared with the
OPE expectations at tree level and at three loops, with an upper
value of the condensate (2:25� 10�2 GeV3) estimated by com-
bination of overlap and clover estimates in the GMOR method,
showing the gap between the lattice data and the OPE expecta-
tions.

5Note that even introducing a strong additional 1=p4 term and
with a different treatment of discretization effects, the conden-
sate in [23] remains sizably larger than required :
�ð0:312Þ3 GeV3 ’ �0:03 GeV3; without the 1=p4 term, it rises
to a still larger value, larger by a factor ð0:792=0:721Þ3 ¼ 1:33,
whence �0:04 GeV3, i.e. a factor 2 of discrepancy.

6We thank them for communicating their work to us prior to
publication.
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case, because of the collapsing to zero of the quark mass
function at those small volumes.

What is encouraging is that the terms of the series are all
positive, and, if this behavior persists, it makes understand-
able that the real curve lies above the OPE contribution
presently calculated.

C. Remaining discretization artefacts?

Of course, one should consider the possibility that there
remain discretization artefacts. We feel that in spite of the
good superposition of 6.0 and 6.4, there is some positive
Oð4Þ invariant artefact (e.g.þa2p2), but presumably much
too small to explain the discrepancy. Signals of a small
artefact (see Fig. 6) are (1) 6.0 and 6.4 differ somewhat
around the endpoint of 6.0, p ’ 3 GeV (see Fig. 6); (2) the
central curve of the 6.4 points seems too flat beyond 4 GeV,
although our errors are too large to ascertain this statement.
About point (2): the theoretical perturbative curve is falling
more and more rapidly with increasing order, as seen in
Fig. 7. One may then expect the exact continuum curve to
fall still more rapidly and not to be flat. The flatness of the
lattice data could be explained by a positive artefact of the
type ap2 or a2p2, corresponding to an artefact �mðp2Þ / a
or a2. The magnitude of this artefact is however strongly
limited by the region around p ’ 3 GeV, where both 6.0,
6.4 points are present and give close central values of
p2mðp2Þ (difference is around 0:4� 10�2 GeV3 against
a total magnitude of p2mðp2Þ5:4� 10�2 GeV3 at p ’
3 GeV, 4:2� 10�2 GeV3 at p ’ 5:7 GeV) but of course
it would be better to have smaller errors to strengthen this
conclusion.7

VI. CONCLUSIONS

A. General approach to the quark mass function

The method of circumventing the Wilson term artefact
which affects the clover propagator quark mass function,
by passing through the pseudoscalar vertex, seems effi-
cient, and yields a result no too far from the continuum.

OPE. The present study gives useful indications for the
extraction of OPE power corrections, at least for elemen-
tary Green functions. In the regime of spontaneous chiral
symmetry breaking, the quark mass function is, in princi-
ple, an exceptionally favorable case for the study of the
OPE power corrections, since

(1) the 1=p2 quark condensate contribution is the lead-
ing order in the chiral limit,

(2) the value of the condensate is well known by other
methods.

In fact, it is the best place for a lattice, nonperturbative,
measurement of a Wilson coefficient. In practice, the

present study strengthens the previous conclusion that an
accurate OPE analysis is a very difficult task.
The present case illustrates one of the difficulties, which

will also appear in other cases according to the calculations
of Chetyrkin and Maier: the perturbative series giving the
Wilson coefficient of the power term converges at best very
slowly; it is difficult to work at sufficiently large momenta
to have it converge better. In the present work, at the largest
momenta, even with the huge improvement provided by
the recent work of Chetyrkin and Maier (three loops), a
discrepancy of a factor 2 seems to remain with the actual
value of the condensate; we find a fictitious �h �c c i�
ð2 GeVÞ ’ ð4� 0:6Þ � 10�2 GeV3. Equivalently, one can
say that, practically, the OPE even with the very high
orders calculated can work only at very high p. Effects
of similar magnitudes are found by Chetyrkin and Maier in
several other cases, concerning the A2 vacuum condensate
contribution to propagators. The situation about the OPE of
composite operators is not known.
This causes a difficulty for the program of renormaliza-

tion through the lattice measurement of MOM renormal-
ization constants. This is especially true if we require a
high precision of order of the ‘‘percent,’’ as often consid-
ered. Indeed, let us recall that the final aim of the method is
to extract from the measured renormalization constants
their purely perturbative part. Of course, in principle, we
could work at a very large p to kill completely the power
corrections, and at a sufficiently large cutoff, in order that
this large p should not be affected by appreciable UV
artefacts. However, from our findings, power corrections
due to hA2i can be guaranteed to be 1% only around p ’
10 GeV. Then the task would be obviously very difficult.
The alternative method is to perform OPE fits at avail-

able momenta. Such fits must include first the known
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FIG. 7. The fits of p2mðp2Þ with increasing number of loops in
the Wilson coefficient of the condensate. The fits are performed
over the largest momenta available (6.4), to favor as much as
possible the convergence the OPE, showing the increasing,
although slowly evolving, slope.

7In fact, the initial errors on the pseudoscalar vertex (Z�1
P ) are

very small at large p, but the extraction of the residue increases
them much.
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purely perturbative part, multiplied by the unknown Z,
second the power corrections, which are predicted to be
important at usual momenta, but also, as a third contribu-
tion, discretization terms invariant under Oð4Þ, which
should be important as well at this degree of accuracy,
and whose magnitude is unknown. The method is then to
exploit the different behavior of the various types of terms,
as function of both p and�. This method of extraction of Z
is then also difficult, when the form of the discretization
artefacts (as we have shown for the vector part of the
propagator) as well as the functional form of the Wilson
coefficient, which depends on high orders, are not known
accurately. Moreover, we have not an independent knowl-
edge of the A2 condensate value in contrast to the quark
condensate. Let us stress that the difficulty of OPE is
presently manifest only in elementary, non–gauge-
invariant, Green functions, but these are precisely the
ones used for MOM normalization conditions.

B. Restoration of chiral symmetry

On the other hand, the study has revealed the unexpected
and remarkable feature that there is a general discontinuity
of chiral properties, as obtained by the standard chiral
extrapolation methods: when the physical volume passes
through some critical value, chiral symmetry seems to be
restored abruptly, although we do not expect a real phase
transition. The discontinuity affects simultaneously the
quark mass function, the pion mass, and the chiral conden-
sate. Since the critical volume coincides with the one found
for the phase transition to symmetry restoration advocated
since several years by Neuberger and Narayanan at NC !
1, we are tempted to establish a connection with it: it could
be a remnant of this at NC ¼ 3. We stress the fact that this
property is revealed only through a polynomial extrapola-
tion from non-negligible quark masses of 30 MeVor more
(bare masses).

C. Alternative method for calculating
the quark condensate

As a by-product, our calculations suggest that the rather
direct method of calculating the condensate through the
chiral extrapolation ofm

R
d4xhP5ðxÞP5ð0Þi is efficient. For

our larger lattice, the result is very encouraging, consider-
ing the simplicity of the method: h �c c iMSð2 GeVÞ ¼
�ð2:2� 0:4Þ � 10�2 GeV3.
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APPENDIX: HIGH ORDERS OF THE WILSON
COEFFICIENT OF THE CONDENSATE

From the calculations of Chetyrkin and Maier [9,10], we
extract the following result at Nf ¼ 0 for Euclidean p:

mðp2Þ ¼ 16�2=p2

�
�s=�

�
� 1

12

�
þ ð�s=�Þ2

�
� 33

64

�

þ ð�s=�Þ3
�
� 13 745

3072
þ 79

1536
�ð3Þ

�

þ ð�s=�Þ4
�
� 2 6331 733

497 664
þ 2 236 285

995 328
�ð3Þ

� 79

3072
�ð4Þ þ 121 66 325

3 981 312
�ð5Þ

��

� ð1þ�ðpÞÞh �c c iðpÞ; (A1)

�s being taken at p. It is easily seen that the first order is as
given by Politzer, and the second one as given by Pascual
and de Rafael. We have obtained these numbers by the
following manipulations. The authors consider the renor-
malized OPE of the quark propagator renormalized in the

MS scheme, and write the contribution of the quark con-
densate as CðqÞ �c c h �c c i. They find for the scalar part and

vector part of the renormalized propagator S ¼
AðpÞ þ BðpÞ6p:

AðpÞ ¼ �m=p2 þ C �c c ðpÞh �c c i þ . . .BðpÞ
¼ �1=p2 þ . . . (A2)

where dots denote n > 0 orders in � or power corrections
with power larger than 1=p2, or terms suppressed by n > 0
powers ofm. In AðpÞ, the tree order termm is kept in a first
step to indicate the conventions of the authors. We note that
mðp2Þ as we calculate from the ratio of bare quantities is
also the ratio of the renormalized quantities in any scheme,
since the factor Z2 applies to both terms of the fraction.
Then, at m ¼ 0,:

mðp2Þ ¼ AðpÞ=BðpÞ ¼ �p2C �c c ðpÞh �c c ið1þ �ðpÞÞ;
(A3)

where �ðpÞ is the MS quark self-energy. Now, we pass to
the Euclidean space by setting p2 ¼ �p2

E, or making the
substitution p2 ! �p2. Then C being read as 1=p4C0,
where C0 represents the radiative corrections and is a
polynomial in �s, one ends on:

mðp2Þ ¼ 1=p2C0ð�sÞh �c c ið1þ�ðpÞÞ (A4)

C0 and h �c c i being negative,mðp2Þ> 0 as observed on the
lattice. Finally, we set� ¼ p. Then�ðpÞ is found to give a
very small correction. We borrow the expression from
Chetyrkin and Retey: [27]:
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1þ�ðpÞ¼1þ1=42ðCACFð41=4�3�ð3ÞÞ
þC2

Fð�5=8ÞÞð�s=�Þ2
þ1=43ðC2

ACFð159257=648�3139=24�ð3Þ
�69=16�ð4Þþ165=4�ð5ÞÞ
þCAC

2
Fð�997=24þ44�ð3Þþ6�ð4Þ�20�ð5ÞÞ

þC3
Fð�73=12ÞÞð�s=�Þ3 (A5)

or numerically:

1þ�ðpÞ ¼ 1þ 1:591 51ð�s=�Þ2 þ 23:2809ð�s=�Þ3:
(A6)

This is 1.005 for �s ¼ 0:14 (p ¼ 5 GeV).
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