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B� ! �þ��K� and �B0 ! �þ�� �K0 decay channels are analyzed within the QCD factorization

scheme where final state interactions before and after hadronization are included. The K�ð892Þ and

K�
0ð1430Þ resonance effects are taken into account using the presently known �K strange vector and scalar

form factors. The weak decay amplitudes, which are calculated at leading power in �QCD=mb and at the

next-to-leading order in the strong coupling constant, include the hard-scattering and annihilation

contributions. The end-point divergences of these weak final state interactions are controlled by two

complex parameters determined through a fit to the available effective mass and helicity angle distribu-

tion, CP asymmetry, and K�ð892Þ branching ratio data. The predicted K�
0ð1430Þ branching ratios and the

calculated direct CP violation asymmetries are compared to the Belle and BABAR Collaboration data.
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I. INTRODUCTION

In the standard model, it is known that CP violation is
mainly predicted in weak decays because of the weak
phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
[1]. In decays of B mesons, through electroweak interac-
tion, one can calculate the matter–antimatter asymmetry;
W-boson exchange and large beauty quark mass allow a
systematic perturbative calculation in the QCD factoriza-
tion formalism (QCDF) [2] where the final state interac-
tions are the main source of uncertainty. It is the combined
occurrence of a weak and a strong phase difference that
leads to the observation of the CP violating asymmetry
between the B ! ����K and �B ! ���� �K channels.

Electroweak decays of resonant and nonresonant me-
sons made of a q �q pair are well described in QCDF. In this
framework, there is no direct three-body factorization
scheme that efficiently describes a three-body decay, hence
a quasi-two-body state has first to be built up. Here, one of
the two mesons assumed to be a K� resonance can decay
via a strong decay mechanism to a ð�KÞ state. In Ref. [3],
the authors attempt to reproduce the�K effective mass and
helicity angle distributions. In that calculation, the weak
amplitude relies on effective QCD coefficients describing
the leading order (LO) contribution as well as the vertex
and penguin corrections at the order of �QCD=mb. The K

�

resonances decaying into �K are then modeled by the
scalar and vector form factors [4] that correspond to the
strong final state interactions after hadronization.
Additional phenomenological amplitudes, represented by
four complex free parameters and added to the QCD
penguin amplitude, are fitted to mainly reproduce the B !
K�ð892Þ� branching ratio and the CP asymmetry of the
recent Belle and BABAR Collaboration data. Furthermore
they also predict the B ! K�ð1430Þ� branching ratio.

Altogether, one obtains a fair description of the data for
these three-body B decays.
In the present work, one explicitly includes the hard-

scattering and annihilation corrections at the order of
�QCD=mb. These weak final state interactions based on

phenomenological assumptions are controlled by the end-
point divergences related to the asymptotic wave functions.
This approach reduces thus the number of free parameters
to only two complex ones.
In Sec. II, we derive the three-body decay amplitudes for

the B ! ��K processes within the QCDF framework
introducing quasi-two-body states. Sections III and IV
provide all the details for the weak decay amplitudes
calculated at next-to-leading order in the strong coupling
constant and in the perturbative expansion of the short
distance interaction for B ! �K�ð892Þ and B !
�K�

0ð1430Þ. Section V lists all the numerical parameters

employed and in Sec. VI a discussion follows the presen-
tation of the significant results on branching ratios and
asymmetries. Finally, Sec. VII concludes with a summary
of our work and some outlook.

II. THREE-BODY DECAYAMPLITUDE

To analyze the B ! ��K decay amplitude, one first
evaluates the matrix element h�M2jH effjBi within the
factorization hypothesis,

h�M2jH effjBi / hM2j�s��ð1� �5Þdj0i
� h�j �u��ð1� �5ÞbjBi; (1)

withM2 being either the vectorK
�ð892Þ or scalarK�

0ð1430Þ
resonance, and H eff is the standard effective Hamiltonian
for B decay (see Ref. [3]). The vector K�ð892Þ and the
scalar K�

0ð1430Þ resonances are assumed to be ð�KÞ quasi-
bound states in P and S waves, respectively. Thus, one
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writes [3]

h��KjH eff jBi / hð�KÞS;Pj�s��ð1� �5Þdj0i
� h�j �u��ð1� �5ÞbjBi; (2)

where hð�KÞS;Pj�s��ð1� �5Þdj0i is expressed as

h�ðp�ÞKðpKÞj �s��ð1� �5Þdj0i

¼
�
ðpK � p�Þ� �m2

K �m2
�

q2
q�

�
f�K1 ðq2Þ

þm2
K �m2

�

q2
q�f

�K
0 ðq2Þ: (3)

In Eq. (3), q2 with q ¼ pK þ p� is the invariant �K mass
squared, and mK and m� denote the kaon and pion masses,
respectively. The vector f�K1 ðq2Þ and scalar f�K0 ðq2Þ form
factors are describing the final state interaction after ha-
dronization. From semileptonic decays like � ! K���

and K ! �l�l, one can extract information on these K�
scalar and vector form factors [4]. Analyticity, unitarity,
QCD counting asymptotic rules allow one to relate scalar
and vector form factors to the K�

0ð1430Þ ! �K and

K�ð892Þ ! �K scattering amplitudes in the elastic and
inelastic domains. All the details can be found in
Refs. [3,4]. The full amplitude for each wave is given by

A 3ðB ! ��KÞ ¼ AðB ! �M2Þ � �ðM2 ! K�Þ:
(4)

For the K�ð892Þ, the vertex function �ðK�ð892Þ ! K�Þ

associated with the B ! �K� ! ��K decay is written as

�ðK�ð892Þ ! K�Þ ¼ 2

qfK�

p�þ � p��

��K�ð892Þ � pB

f�K1 ðq2Þ; (5)

where fK� is the K� decay constant and ��K�ð892Þ � pB ¼
ðmB=2qÞ�1=4ðm2

B; q
2; m2

�Þ, pB and mB denoting the B four
momentum and mass, respectively. In Eq. (5), �ðx; y; zÞ ¼
ðxþ y� zÞ2 � 4xy and the moduli of the �� momenta are

jp�þj ¼ 1

2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2 � ðmK þm�Þ2�½q2 � ðmK �m�Þ2�

q
;

(6)

and

jp��j ¼ 1

2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

B � ðqþm�Þ2�½m2
B � ðq�m�Þ2�

q
: (7)

The vertex function �ðK�
0ð1430Þ ! K�Þ is

�ðK�
0ð1430Þ ! K�Þ ¼ 1

fK�
0

m2
K �m2

�

q2
f�K0 ðq2Þ; (8)

where fK�
0
denotes the K�

0 decay constant. Following

closely [2], one derives the QCDF decay amplitudes where
the short and long distance contributions are factorized in
the approximation of a quasi-two-body state, �K�ð892Þ or
�K�

0ð1430Þ.
The amplitude B� ! �� �K�0ð892Þ is

AðB� ! �� �K�0Þ ¼ X
q¼u;c

�ðsÞ
q

�
A�K�

�
�qu�2ð	Þ þ aq4ð	Þ þ rK

�

 ð	Þaq6ð	Þ

� 1

2
ðaq10ð	Þ þ rK

�

 ð	Þaq8ð	ÞÞ þ �3ð	Þ þ �3;EWð	Þ

�
�K�

�
; (9)

and the �B0 ! �þ �K��ð892Þ amplitude,

Að �B0 ! �þ �K��Þ ¼ X
q¼u;c

�ðsÞ
q

�
A�K�

�
�qua

q
1ð	Þ þ aq4ð	Þ þ rK

�

 ð	Þaq6ð	Þ þ aq10ð	Þ þ rK

�

 ð	Þaq8ð	Þ þ �3ð	Þ

� 1

2
�3;EWð	Þ

�
�K�

�
; (10)

where the coefficients aqnð	Þ and�nð	Þ are given in Eqs. (18) and (20). The �ðsÞ
q are a product of CKMmatrix elements, the

rM2

 ð	Þ the chiral coefficients, and 	 is the scale.
The B� ! �� �K�0

0 ð1430Þ amplitude reads

AðB� ! �� �K�0
0 Þ ¼ X

q¼u;c

�ðsÞ
q

�
A�K�

0

�
�qu�2ð	Þ þ aq4ð	Þ � r

K�
0


 ð	Þaq6ð	Þ

� 1

2
ðaq10ð	Þ � r

K�
0


 ð	Þaq8ð	ÞÞ þ �3ð	Þ þ �3;EWð	Þ
�
�K�

0

�
; (11)

while the �B0 ! �þK��
0 ð1430Þ amplitude is
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Að �B0 ! �þK��
0 Þ ¼ X

q¼u;c

�ðsÞ
q

�
A�K�

0

�
�qua

q
1ð	Þ þ aq4ð	Þ � r

K�
0


 ð	Þaq6ð	Þ þ aq10ð	Þ � r
K�
0


 ð	Þaq8ð	Þ þ �3ð	Þ

� 1

2
�3;EWð	Þ

�
�K�

0

�
: (12)

The chiral coefficients, rK
�


 ð	Þ and rK�
0


 ð	Þ, will be given in
Eqs. (24) and (40).

For the K�ð892Þ resonance, the pseudoscalar-vector fac-
tor A�K� in Eqs. (9) and (10) reads

A�K� ¼ �i
GFffiffiffi
2

p 2q��K�ð892Þ � pBF
B!�
0 ðq2ÞfK� ; (13)

with the Fermi constant GF ¼ 1:16� 10�5 GeV�2 and
where the weak transition form factor FB!�

0 ðq2Þ will be
given in Sec. V. For the K�

0ð1430Þ scalar resonance, the
pseudoscalar-scalar factor A�K�

0
in Eqs. (11) and (12) is

A�K�
0
¼ i

GFffiffiffi
2

p ðm2
B �m2

�ÞFB!�
0 ðq2ÞfK�

0
: (14)

In Eqs. (9)–(12), the CKM matrix elements are

�ðsÞ
u ¼ VubV

�
us ¼ A�3ð�� i�Þ�;

�ðsÞ
c ¼ VcbV

�
cs ¼ A�2

�
1� �2

2

�
;

(15)

where following Ref. [5] the Wolfenstein parameters are
A ¼ 0:814, � ¼ 0:1385, � ¼ 0:358, and � ¼ 0:2257.

Since one assumes the dominance of the K�ð892Þ and
K�

0ð1430Þ resonances in the description of the �K channel,

the full amplitudeA3ðB ! ��KÞ is built up on the P and
S waves so that the differential effective mass branching
fraction is [3]

dBðB ! ��KÞ
dq

¼ 1

�B

qjp�þjjp��j
4ð2�Þ3m3

B

�
jA3ðB ! �ð�KÞSÞj2

þ 1

3
jA3ðB ! �ð�KÞPÞj2

�
; (16)

where �B ¼ 1=�B is the B-decay width. The usual CP
violating asymmetry parameter is

A CPðB ! ��KÞ ¼ BðB ! ��KÞ �Bð �B ! �� �� �KÞ
BðB ! ��KÞ þBð �B ! �� �� �KÞ :

(17)

In Eqs. (9)–(12), the aqnð	Þ, involving the Wilson coef-
ficients Cnð	Þ, are

aqnð	Þ ¼
�
Cnð	Þ þ Cn�1ð	Þ

Nc

�
NnðM2Þ þ Pq

nðM2Þ

þ Cf

4�Nc

�
sð	ÞCn�1ð	ÞVnðM2Þ

þ 4�2sð	=2Þ
Nc

Cn�1ð	=2ÞHnð�M2Þ
�
; (18)

with n 2 f1; 10g, and the scale is 	 ¼ mb, with mb being
the b quark mass. In Eq. (18), the color number is Nc ¼ 3
and Cf ¼ ðN2

c � 1Þ=2Nc ¼ 4=3. The upper (lower) signs

in Cn�1ð	Þ apply when n is odd (even) and

NnðM2Þ ¼
�
0; n 2 f6; 8g; and M2 � K�ð892Þ;
1; else:

(19)

The Wilson coefficients, Cnð	Þ, computed in the naive
dimension regularization (NDR) scheme [2], are taken at
the scale mb for the vertex, VnðM2Þ, and penguin Pq

nðM2Þ,
corrections which involve only the b quark, whereas the
annihilation, �nð�M2Þ and hard scattering, HnðM2Þ, con-
tributions are evaluated at the scale mb=2 since they in-
volve the spectator quark. The strong coupling constants
are sðmbÞ ¼ 0:224 and sðmb=2Þ ¼ 0:286 [5].
The annihilation term, �nð	Þ, is given by

½�nð	Þ��M2
¼ ½bnð	Þ��M2

B�M2

A�M2

; (20)

where the factor, B�M2
, is the product of GF by the B, �,

and M2 decay constants,

B�M2
¼ �i

GFffiffiffi
2

p fBf�fM2
; (21)

with the upper sign if M2 � K�ð892Þ and the lower sign
otherwise. In Eqs. (9)–(12), the tree annihilation compo-
nent (at 	 ¼ mb=2) is (the upper scripts I and F denote
initial and final states)

½b2ð	Þ��M2
¼ Cf

N2
c

C2ð	ÞAI
1ð�M2Þ; (22)

while the penguin annihilation terms (at 	 ¼ mb=2) are

½b3ð	Þ��M2
¼ Cf

N2
c

½C3ð	ÞAI
1ð�M2Þ

þ C5ð	ÞðAI
3ð�M2Þ þ AF

3 ð�M2ÞÞ
þ NcC6ð	ÞAF

3 ð�M2Þ�;
½b3;EWð	Þ��M2

¼ Cf

N2
c

½C9ð	ÞAI
1ð�M2Þ

þ C7ð	ÞðAI
3ð�M2Þ þ AF

3 ð�M2ÞÞ
þ NcC8ð	ÞAF

3 ð�M2Þ�;

(23)

where the amplitudes AI;F
j ð�M2Þ are given in Eqs. (36) for

the P wave and (50) for the S wave.
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III. QCDF CORRECTIONS FOR B ! �K�ð892Þ
The pion in the final state �K�ð892Þ is created from the

transition B ! � while the K�ð892Þ is created from the
vacuum; this mechanism is due to the structure of the four-
quark operators in the heavy quark effective theory as well
as the conservation of the flavor quantum numbers.
Following Ref. [2], we only give the QCD corrections
that appear in AðB ! �K�ð892ÞÞ.

Since the coefficients in the Gegenbauer expansion of
the light cone distribution amplitudes (LCDA) are known
with large uncertainties [2], one here limits oneself to
leading terms in this expansion for the � and K�ð892Þ.
The leading twist-2 distribution amplitude is �ðxÞ ¼
6xð1� xÞ and the twist-3 two particle distribution is
’ðxÞ ¼ 1 and ’ðxÞ ¼ 3ð2x� 1Þ for both � and K�ð892Þ.

The chiral coefficient for the vector meson K�ð892Þ,
given at the scale 	, is defined as

rK
�


 ð	Þ ¼ 2
ffiffiffiffiffi
q2

p
mbð	Þ

f?K�

fK�
; (24)

where f?K� is the transverse decay constant and where one

has introduced the running meson mass square, replacing
m2

K�ð892Þ by m2
�K ¼ q2. For a pion, the chiral coefficient

reads

r�
ð	Þ ¼ m2
�

mbð	Þmuð	Þ ; (25)

with the u-quark mass mu.

A. Penguin contributions

The penguin contributions, Pq
nðK�ð892ÞÞ, with the values

n ¼ 4, 6, 8, 10, required in Eqs. (9) and (10), are as
follows:

Pq
4ðK�ð892ÞÞ ¼ Cfsð	Þ

4�Nc

�
C1ð	Þ

�
4

3
ln
mb

	
þ 2

3
�GK�ð892ÞðsqÞ

�
þ C3ð	Þ

�
8

3
ln
mb

	
þ 4

3
�GK�ð892Þð0Þ �GK�ð892Þð1Þ

�

þ ðC4ð	Þ þ C6ð	ÞÞ
�
4nF
3

ln
mb

	
� ðnF � 2ÞGK�ð892Þð0Þ �GK�ð892ÞðscÞ �GK�ð892Þð1Þ

�

� 2Ceff
8g ð	Þ

Z 1

0

dx

1� x
�K�ð892ÞðxÞ

�
; (26)

with

Z 1

0

dx

1� x
�K�ð892ÞðxÞ ¼ 3; (27)

and Ceff
8g ð	Þ related to the Q8g chromomagnetic dipole operator. Furthermore,

Pq
6ðK�ð892ÞÞ ¼ Cfsð	Þ

4�Nc

fC1ð	ÞĜK�ð892ÞðsqÞ þ C3ð	Þ½ĜK�ð892Þð0Þ � ĜK�0ð892Þð1Þ�

þ ðC4ð	Þ þ C6ð	ÞÞ½ðnF � 2ÞĜK�ð892Þð0Þ � ĜK�ð892ÞðscÞ � ĜK�ð892Þð1Þ�g; (28)

Pq
8ðK�ð892ÞÞ ¼ � e

9�Nc

ðC1ð	Þ þ NcC2ð	ÞÞĜK�ð892ÞðsqÞ; (29)

where e ¼ 1=129 is the electromagnetic coupling constant. Finally,

Pq
10ðK�ð892ÞÞ ¼ e

9�Nc

�
ðC1ð	Þ þ NcC2ð	ÞÞ

�
4

3
ln
mb

	
þ 2

3
�GK�ð892ÞðsqÞ

�
� 3Ceff

7�ð	Þ
Z 1

0

dx

1� x
�K�ð892ÞðxÞ

�
: (30)

In these equations, 	 ¼ mb and the number of active flavors is nF ¼ 5. In Eq. (30), Ceff
7�ð	Þ is related to the Q7�

electromagnetic dipole operator. The gluon kernel contributions are

GK�ð892ÞðsqÞ ¼

8>>>>>>><
>>>>>>>:

5
3 þ 2i�

3 ; sq ¼ 0;

85
3 � 6

ffiffiffi
3

p
�þ 4�2

9 ; sq ¼ 1;

5
3 � 2

3 lnsc þ 32
3 sc þ 16s2c � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p ½1þ 2sc þ 24s2c�½2 arctanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p Þ
�i�� þ 12s2cð1� 4

3 scÞ½2 arctanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p Þ � i��2; sq ¼ sc;

(31)

and
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ĜK�ð892ÞðsqÞ ¼

8>>>>>><
>>>>>>:

1; sq ¼ 0;

�35þ 4
ffiffiffi
3

p
�þ 4�2

3 ; sq ¼ 1;

�12s2c½2 arctanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p Þ � i��2 � 36sc

þ12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p
sc½2 arctanhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p Þ � i�� þ 1; sq ¼ sc:

(32)

In Eqs. (31) and (32), sq is defined as ðmq=mbÞ2 so that
sq ¼ 0 for q ¼ u, d, sq ¼ 1 for q ¼ b, and sq ¼ sc for
q ¼ c.

B. Vertex contributions

In the B ! �K�ð892Þ transition, the electroweak vertex,
VnðK�ð892ÞÞ, receives sð	Þ corrections to all aqnð	Þ in the
amplitude AðB ! �K�ð892ÞÞ,

VnðK�ð892ÞÞ ¼
�
12 lnðmb

	 Þ � 3i�� 37
2 ; n 2 f1; 4; 10g;

9� 6i�; n 2 f6; 8g:
(33)

C. Hard-scattering contributions

Evaluated at the scale 	 ¼ mb=2, the hard-scattering
correction can be written as

Hnð�M2Þ ¼
B�M2

A�M2

~Hnð�M2Þ; (34)

where for the vector resonance, M2 � K�ð892Þ, A�K�ð892Þ,

and B�K�ð892Þ are defined by Eqs. (13) and (21), respec-

tively. One has

~H nð�K�ð892ÞÞ ¼
�
3 mB

�B
½r�
ð	ÞXH þ 3�; n 2 f1; 4; 10g;

0; n 2 f6; 8g;
(35)

where �B ¼ 0:3 GeV is a hadronic parameter of the order
of�QCD [6]. In Eq. (35), r�
ð	Þ is given by Eq. (25) and XH

represents the end-point divergence related to the soft-
gluon interaction with the spectator quark. Its expression
will be given in Eq. (56) in Sec. V.

D. Annihilation contributions

The annihilation amplitudes cannot be derived from the
QCDF approach so that they are model dependent involv-
ing also a divergence parametrized by XA [Eq. (56)]. Based
on Ref. [2], the expressions for AI

jð�K�ð892ÞÞ and

AF
j ð�K�ð892ÞÞ, for j ¼ 1 and 3, are

AI
1ð�K�ð892ÞÞ 	 6�sð	Þ

�
3

�
XA � 4þ �2

3

�
þ rK

�

 ð	Þr�
ð	ÞðX2

A � 2XAÞ
�
;

AI
3ð�K�ð892ÞÞ 	 6�sð	Þ

�
�3rK

�

 ð	Þ

�
X2
A � 2XA � �2

3
þ 4

�
þ r�
ð	Þ

�
X2
A � 2XA þ �2

3

��
;

AF
3 ð�K�ð892ÞÞ 	 �6�sð	Þ½3rK�


 ð	Þð2XA � 1Þð2� XAÞ � r�
ð	Þð2X2
A � XAÞ�;

(36)

with 	 ¼ mb=2.

IV. QCDF CORRECTIONS FOR B ! �K�
0ð1430Þ

We now turn to the B ! �K�
0ð1430Þ transition for which

the sð	Þ corrections are all included. Here again, only the
first nonvanishing leading term in the LCDA of the
K�

0ð1430Þ are retained:
�K�

0
ð1430ÞðxÞ ¼ 6xð1� xÞ½1þ 3B

K�
0
ð1430Þ

1 ð	Þð2x� 1Þ�;
(37)

where B
K�

0
ð1430Þ

1 ð	 ¼ mbÞ ¼ 5:26, and B
K�

0
ð1430Þ

1 ð	 ¼
mb=2Þ ¼ 0:39 are the first nonvanishing Gegenbauer mo-
ments (for neutral scalar) evaluated at two different mass
scales. The asymptotic form of the LCDA for the pion is

��ðxÞ ¼ 6xð1� xÞ: (38)

The twist-3 two particle distributions are

’K�
0
ð1430ÞðxÞ ¼ 1 and ’�ðxÞ ¼ 1: (39)

Similarly to the B ! �K�ð892Þ decay channel, the B !
�K�

0ð1430Þ decay amplitude is factorized out into a prod-

uct of a transition form factor B ! � times a K�
0ð1430Þ

decay constant as shown in Eq. (2) of Ref. [2].
The K�

0ð1430Þ chiral coefficient is given by

r
K�

0
ð1430Þ


 ð	Þ ¼ 2q2

mbð	Þðmsð	Þ �muð	ÞÞ ; (40)

wherems is the strange quark mass. In Eq. (40), as has been
done for the K�ð892Þ meson [see Eq. (24)], one has intro-
duced the running meson mass square for the K�

0ð1430Þ
replacing m2

K�
0
ð1430Þ by m2

�K ¼ q2.
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A. Penguin contributions

From Ref. [2], one can obtain all the penguin corrections Pq
nðK�

0ð1430ÞÞ (with n ¼ 4, 6, 8, 10) for the B to pseudoscalar-

scalar transition. One has

Pq
4ðK�

0ð1430ÞÞ ¼
Cfsð	Þ
4�Nc

�
C1ð	Þ

�
4

3
ln
mb

	
þ 2

3
�GK�

0
ð1430ÞðsqÞ

�
þ C3ð	Þ

�
8

3
ln
mb

	
þ 4

3
�GK�

0
ð1430Þð0Þ �GK�

0
ð1430Þð1Þ

�

þ ðC4ð	Þ þ C6ð	ÞÞ
�
4nF
3

ln
mb

	
� ðnF � 2ÞGK�

0
ð1430Þð0Þ �GK�

0
ð1430ÞðscÞ �GK�

0
ð1430Þð1Þ

�

� 2Ceff
8g ð	Þ

Z 1

0

dx

1� x
�K�

0ð1430ÞðxÞ
�
; (41)

with

Z 1

0

dx

1� x
�K�

0ð1430ÞðxÞ ¼ 3B
K�

0

1 ð	Þ þ 3: (42)

Moreover,

Pq
6ðK�

0ð1430ÞÞ ¼
Cfsð	Þ
4�Nc

�
C1ð	Þ

�
4

3
ln
mb

	
þ 2

3
� ĜK�

0
ð1430ÞðsqÞ

�
þ C3ð	Þ

�
8

3
ln
mb

	
þ 4

3
� ĜK�

0
ð1430Þð0Þ � ĜK�

0
ð1430Þð1Þ

�

þ ðC4ð	Þ þ C6ð	ÞÞ
�
4nF
3

ln
mb

	
� ðnF � 2ÞĜK�

0ð1430Þð0Þ � ĜK�
0ð1430ÞðscÞ � ĜK�

0ð1430Þð1Þ
�
� 2Ceff

8g ð	Þ
�
;

(43)

Pq
8ðK�

0ð1430ÞÞ ¼
e

9�Nc

�
ðC1ð	Þ þ NcC2ð	ÞÞ

�
4

3
ln
mb

	
þ 2

3
� ĜK�

0ð1430ÞðsqÞ
�
� 3Ceff

7�ð	Þ
�
; (44)

and

Pq
10ðK�

0ð1430ÞÞ ¼
e

9�Nc

�
ðC1ð	Þ þ NcC2ð	ÞÞ

�
4

3
ln
mb

	
þ 2

3
� ĜK�

0ð1430ÞðsqÞ
�
� 3Ceff

7�ð	Þ
Z 1

0

dx

1� x
�K�

0ð1430ÞðxÞ
�
: (45)

Comparing Eq. (26) with Eqs. (30) and (41) with Eq. (45), one can see that the formal structures of Pq
4ðK�

0ð1430ÞÞ and
Pq
10ðK�

0ð1430ÞÞ in terms of Cnð	Þ, of gluon kernel functions, GM2
ðsqÞ and of LCDA, �M2

ðxÞ, where M2 is now K�
0ð1430Þ

instead of K�ð892Þ, are identical to those of Pq
4ðK�ð892ÞÞ and Pq

10ðK�ð892ÞÞ, respectively. The gluon kernel functions,
entering in Eqs. (41)–(45), are

GK�
0
ð1430ÞðsqÞ ¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

5
3 þ 2i�

3 þ B
K�
0

1
ð	Þ
2 ; sq ¼ 0;

85
3 � 6

ffiffiffi
3

p
�þ 4�2

9 �
�
155
2 � 36

ffiffiffi
3

p
�þ 12�2

�
B
K�

0

1 ð	Þ; sq ¼ 1;

5
3 � 2

3 lnsc þ
B
K�
0

1
ð	Þ
2 þ 4

3 ½8þ 9B
K�
0

1 ð	Þ�sc þ 2½8þ 63B
K�

0

1 ð	Þ�s2c
�306B

K�
0

1 ð	Þs3c � 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p ½1þ 2sc þ 6ð4þ 27B
K�
0

1 ð	ÞÞs2c � 324B
K�
0

1 ð	Þs3c�
�½2 arctanhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4sc
p Þ � i�� þ 12s2c

�
1þ 3B

K�
0

1 ð	Þ � 4
3 ð1þ 9B

K�
0

1 ð	ÞÞsc
þ18B

K�
0

1 ð	Þs2c
�
½2 arctanhð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4sc
p Þ � i��2; sq ¼ sc;

(46)

and

Ĝ K�
0
ð1430ÞðsqÞ ¼

8>><
>>:

16
9 þ 2�

3 i; sq ¼ 0;
�32
9 þ 2�ffiffi

3
p ; sq ¼ 1;

16
9 ð1� 3scÞ � 2

3 ½lnsc þ ð1� 4scÞ3=2½2 arctanhð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sc

p Þ � i���; sq ¼ sc:

(47)
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B. Vertex contributions

The relevant vertex corrections, VnðK�
0ð1430ÞÞ, for n 2 f1; 4; 6; 8; 10g are the following:

VnðK�
0ð1430ÞÞ ¼

�
12 lnðmb

	 Þ � 3i�� 37
2 þ 1

2 ð11� 6i�ÞBK�
0

1 ð	Þ; n 2 f1; 4; 10g;
�6; n 2 f6; 8g; (48)

with 	 ¼ mb.

C. Hard-scattering contributions

From gluon exchange between the scalar K�
0ð1430Þ and the spectator u quark one derives, at 	 ¼ mb=2, the hard-

scattering corrections. One writes it as in Eq. (34) withM2 � K�
0ð1430Þ and A�K�

0
ð1430Þ and B�K�

0
ð1430Þ defined by Eqs. (14)

and (21), respectively. Here

~H nð�K�
0ð1430ÞÞ ¼

� 3mB

�B
½3ðBK�

0

1 ð	Þ þ 1Þ � r�
ð	ÞXHðBK�
0

1 ð	Þ � 1Þ�; n 2 f1:4; 10g;
0; n 2 f6; 8g: (49)

As for the K�ð892Þ (Sec. III C) the end-point divergence is modeled by XH.

D. Annihilation contributions

The weak initial and final annihilation amplitudes, AI
jð�K�

0ð1430ÞÞ and AF
j ð�K�

0ð1430ÞÞ (with j ¼ 1 and 3) at	 ¼ mb=2

are calculated starting from Ref. [2] for B ! �K�
0ð1430Þ:

AI
1ð�K�

0ð1430ÞÞ 	 2�sð	Þð9BK�
0

1 ð	Þð3XA þ 4� �2Þ � r�
ð	ÞrK�
0


 ð	ÞX2
AÞ;

AI
3ð�K�

0ð1430ÞÞ 	 6�sð	Þ
�
3r�
ð	ÞBK�

0

1 ð	Þ
�
X2
A � 4XA þ 4þ �2

3

�
þ r

K�
0


 ð	Þ
�
X2
A � 2XA þ �2

3

��
;

AF
3 ð�K�

0ð1430ÞÞ 	 6�sð	ÞXAfr�
ð	ÞBK�
0

1 ð	Þð6XA � 11Þ � r
K�

0

 ð	Þð2XA � 1Þg;

(50)

with XA an end-point divergence [Eq. (56)]. These ampli-
tudes will then be implemented in the bnð�K�

0ð1430ÞÞ
given in Eqs. (22) and (23).

V. INPUT

A. Numerical parameters

In this section, one summarizes all the values of the
parameters required for performing numerical applica-
tions. From Ref. [5], the meson masses in GeV are

mB ¼ 5:300; m� ¼ 0:139; mK ¼ 0:493;

mK� ¼ 0:892; mK�
0
¼ 1:430; mB� ¼ 5:320:

(51)

The running quark masses (at mb ¼ 4:2 GeV) in GeV are

mb ¼ 4:2; mc ¼ 1:3;

ms ¼ 0:070; mu;d ¼ 0:003;
(52)

whereas at mb=2, one has in GeV [7],

mb ¼ 4:95; mc ¼ 1:51;

ms ¼ 0:090; mu;d ¼ 0:005:
(53)

The meson decay constants in MeV are

fB ¼ 180� 40 ½6�; fK� ¼ 218� 4 ½2�;
f� ¼ 130� 0:2 ½5�; f?K� ¼ 175� 25 ½2�: (54)

The scalar meson decay constant fK�
0
, which appears in

Eqs. (8), (14), and (21), does not, in fact, enter in our
calculation as it cancels out in A3ðB ! ��KÞ [Eq. (4)],
in �nð�M2Þ [Eq. (20)], and in Hnð�M2Þ [Eq. (34)].
The B� and B0 mean lives, entering in Eq. (16), are [5]

�B� ¼ ð1:638� 0:011Þ � 10�12 s and �B0 ¼ ð1:530�
0:009Þ � 10�12 s, respectively.
For the Wilson coefficients, Cnð	Þ, we take, at both

scales 	 ¼ mb and mb=2, the next-to-leading order loga-
rithmic approximation values as given in Table 1 of
Ref. [6]. Using Eqs. (18) and (19), one obtains, at the scale
	 ¼ mb, the universal LO aqnð	Þ values presented in the
first column of Table I.
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B. Model parameters

For the B ! � transition form factor, we employ the
pole-extrapolation model [8],

FB!�
0 ðq2Þ ¼ f0ð0Þ

ð1� �1
q2

m2
B�
þ �2

q4

m4
B�
Þ
; (55)

at the momentum transfer, q. In the transition form factor
model we are using, the numerical parameters are f0ð0Þ ¼
0:29, �1 ¼ 0:76, and �2 ¼ 0:28.

As pointed out in Sec. II, we use the vector f�K1 ðq2Þ and
scalar f�K0 ðq2Þ (with fK=f� ¼ 0:193) form factors derived

in [3].
The hard-scattering and annihilation contributions for

the K�ð892Þ given in Eqs. (35) and (36) as well as those for
the K�

0ð1430Þ given in Eqs. (49) and (50) involve divergen-
ces, XH and XA, which are modeled [2] as follows:

XA;H ¼ ð1þ �A;H expði�A;HÞÞ lnmB

�h

; (56)

with, for each XA;H, two real parameters �A;H > 0 and 0<
�A;H < 360
. One expects the annihilation and hard-

scattering contributions to be of the order of lnðmB=�hÞ
with �h ¼ 0:5 GeV (see Ref. [6]).

VI. RESULTS AND DISCUSSION

Within the QCDF approach including final state inter-
actions, before and after hadronization, we fit, with the two
complex parameters ð�A;�AÞ and ð�H;�HÞ the mass and
helicity angle distributions, the P-wave branching ratios
and the CP asymmetries provided by the Belle [9–12] and
BABAR [13–16] Collaborations. We consider 206 effective
mass distribution data, 82 helicity distribution points, 6
values of asymmetries for both �K�ð892Þ and �K�

0ð1430Þ,
and 4 branching ratios for �K�ð892Þ. Altogether we have
298 observables with equal weight. Note that in the fit we
did suppress some points which lie outside the general
trend of the data. We have checked that these suppressions
do not influence the results of the fit.
We obtain a 
2=dof ¼ 492:5=ð298� 4Þ ¼ 1:68with the

values �H ¼ 54:43� 7:32, �H ¼ �0:95� 0:10 rad for
the hard-scattering parameters and �A ¼ 2:51� 0:11,
�A ¼ �2:98� 0:06 rad for the annihilation parameters.
The corresponding hard-scattering, HnðM2Þ, contributions
to the short distance amplitudes, aqnð	Þ of Eq. (18), are
listed in Table I together with the leading order, vertex
VnðM2Þ and penguin Pq

nðM2Þ contributions for the P and
S waves. The resulting annihilation amplitudes, �nð�M2Þ,
are displayed in Table II.
The amplitude, aqnð	Þ, for n ¼ 4–10 are always correc-

tions to the aq1ð	Þ. For n ¼ 1–8, the modulus of the LO

contribution is larger than the modulus of the vertex term,

TABLE I. Real and imaginary parts of the leading order (LO), vertex, penguin, and hard-scattering contributions to the short distance
amplitude, aqnð	Þ, for P and S waves. The scale 	 ¼ mb except for the hard scattering where 	 ¼ mb=2.

P wave

LO Vertex Penguin Hard scattering Total

au1ð	Þ
(1.018; 0) (0.028; 0.014) (0; 0) ð�0:246; 0:317Þ (0.800; 0.331)

ac1ð	Þ
au4ð	Þ �0:031; 0Þ ð�0:002;�0:001Þ ð0:003;�0:014Þ ð0:018;�0:023Þ ð�0:012;�0:038Þ
ac4ð	Þ (� 0:002;�0:005Þ) ð�0:017;�0:029Þ
au6ð	Þ

(0; 0) ð0:0006;�0:001Þ ð�0:007;�0:0009Þ
(0; 0)

ð�0:006;�0:002Þ
ac6ð	Þ (0.001; 0.011) (0.002; 0.010)

au8ð	Þ
(0; 0) ð�0:6; 1:3Þ � 10�5 ð�4:7; 0Þ � 10�5

(0; 0)
ð�5:3; 1:3Þ � 10�5

ac8ð	Þ ð�0:3; 6:4Þ � 10�5 ð�0:9; 7:7Þ � 10�5

au10ð	Þ ð�0:0014; 0Þ (0.0014; 0.0007)
ð0:0002;�0:0001Þ ð�0:013; 0:016Þ ð�0:012; 0:017Þ

ac10ð	Þ ð0:0002;�0:0001Þ
S wave

au1ð	Þ
(1.018; 0) ð�0:016; 0:089Þ (0; 0) ð�0:151; 0:184Þ (0.851; 0.273)

ac1ð	Þ
au4ð	Þ ð�0:031; 0Þ ð0:001;�0:007Þ ð0:023;�0:017Þ ð0:011;�0:014Þ ð0:004;�0:037Þ
ac4ð	Þ (0.039; 0.036) (0.021; 0.016)

au6ð	Þ ð�0:039; 0Þ ð�0:0004; 0Þ ð�0:003;�0:014Þ
(0; 0)

ð�0:042;�0:014Þ
ac6ð	Þ ð�0:006;�0:004Þ ð�0:045;�0:004Þ
au8ð	Þ ð44; 0Þ � 10�5 ð0:4; 0Þ � 10�5 ð4;�10Þ � 10�5

(0; 0)
ð48;�10Þ � 10�5

ac8ð	Þ ð2;�5Þ � 10�5 ð46;�5Þ � 10�5

au10ð	Þ ð�0:0014; 0Þ ð�0:0008; 0:005Þ ð0:0015;�0:0001Þ ð�0:008; 0:009Þ ð�0:009; 0:014Þ
ac10ð	Þ (0.0016; 0.0002) ð�0:009; 0:014Þ
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itself larger than that of the penguin. The modulus of the
hard-scattering contribution is in between 25% to 60% of
the modulus of the LO term. The vertex, penguin, and hard-
scattering contributions can be seen as corrections to the
leading order amplitude whereas for n ¼ 10,HnðM2Þ gives
the main contribution to the very small amplitude aq10ð	Þ.
The moduli of the annihilation terms (see Table II) are of
the order of those of the vertex or penguin for both P and
S waves.

Since the present work and that of Ref. [3] (see their
Table VI) use the same leading and next-to-leading order
parameters, the P-wave vertex and penguin contributions
to the aqn are quite similar. For the S wave, there are some
differences in these corrections for aq1 and aq4 . These arise
from the introduction of Gegenbauer moments up to order 3
in Ref. [3]. The moduli of the aq1 are about 20% smaller

than those of Ref. [3] (see their Table I). This reduction
comes mainly from the hard-scattering contributions.

The K��� effective mass distributions for B0 !
���þK0 are globally well fitted: for �B0 decay,

2
Belle=dof ¼ 1:03, 
2

BABAR=dof ¼ 0:71 and for B0 decay,


2
Belle=dof ¼ 1:0, 
2

BABAR=dof ¼ 2:96. In the case of the

B� ! ����K� effective mass distributions, one has

2
Belle=dof ¼ 2:55, 
2

BABAR=dof ¼ 2:65, the data being

not very well reproduced, in particular, for the charged
B decays, below 0.9 GeV. The helicity angle distributions
are well fitted for both decays with a 
2=dof of the order
of 1.
All the results on branching ratios and asymmetries are

summarized in Table III. For the K�ð892Þ branching ratios,
90% of the 
2=dof comes from the B0 and �B0 BABAR data.
These are incompatible with the corresponding ones from
Belle. The P-wave experimental branching ratios for
B� ! ����K� are well reproduced whereas our predic-
tions for the S-wave branching ratios do not fully agree
with those provided by Belle but do agree better with the
BABAR data. As discussed in detail in Ref. [3], the deter-
mination of the B ! �K�

0ð1430Þ branching ratios is prob-

lematic as the K�
0ð1430Þ resonance is wide and the result is

quite model dependent. However, within the factorization
and quasi-two-body hypotheses, the use of a scalar form
factor, determined with precision from theory and experi-
ments other than those of B decays, makes our �K�

0ð1430Þ
branching ratio predictions well founded.
It is difficult to draw any firm conclusions from the small

asymmetries obtained from our global fit for both P and S
waves since the experimental data have large uncertainties.
We found that, if we introduced some factor in the 
2 to
increase the weight of the CP asymmetries, as done in
Ref. [3], we obtain a fit of equivalent quality with, indeed,
ACP values closer to the central values of the experimental
analyses, in particular, for neutral B decays.

TABLE III. Branching fractions B [see Eq. (16)] in units of 10�6 and direct CP asymmetries ACP in % [Eq. (17)] averaged over
charge conjugate reactions. The values of the model, calculated by the integration of the m�K distribution over the m�K range from
mmin

�K ¼ 0:82 to mmax
�K ¼ 0:97 GeV for the P wave and from 1.0 to 1.76 for the S wave are compared to the corresponding Belle and

BABAR results given in the fourth column for B and fifth column for ACP. Model uncertainties arise from the phenomenological
parameter errors obtained through the minimization. The third column gives the model values without the phenomenological hard-
scattering and annihilation contributions.

B (decay channel) Model Hn½�n� � 0 Bexpðmmin
�K ;m

max
�K Þ Bexp Refs.

BðB� ! �� �K�0 ! ���KÞ 5:82� 0:15 2.17
5:35� 0:59 6:45� 0:71 [10]

5:98� 0:75 7:20� 0:90 [13]

Bð �B0 ! �þ �K�� ! �þ�KÞ 4:50� 0:21 1.65
4:65� 0:77 5:60� 0:93 [9]

6:47� 0:72 11:70� 1:30 [16]

BðB� ! �� �K�0
0 ! ���KÞ 12:11� 0:32 7.80

25:92� 2:45 32� 3:02 [10]

17:64� 3:60 24:5� 5:0 [13]

Bð �B0 ! �þ �K��
0 ! �þ�KÞ 11:05� 0:25 7.45

24:95� 3:25 30:80� 4:01 [9]

12:19� 3:26 25:40� 6:80 [14]

ACP (decay channel) Model Hn½�n�ð�M2Þ � 0 Aexp
CP Refs.

ACPðB� ! �� �K�0 ! ���KÞ 0:89� 0:23 1.29
�14:90� 6:75 [10]

3:2� 5:4 [13]

ACPð �B0 ! �þ �K�� ! �þ�KÞ �0:99� 3:42 7.99 �14� 12 [14]

ACPðB� ! �� �K�0
0 ! ���K) 0:27� 0:10 0.27

7:60� 4:66 [10]

3:20� 4:60 [13]

ACPð �B0 ! �þ �K��
0 ! �þ�KÞ 0:75� 0:90 �0:68 17:0� 26 [14]

TABLE II. Real and imaginary parts of the annihilation con-
tributions for P and S waves. Here 	 ¼ mb=2.

P wave S wave

�2ð�M2Þ (0.006; 0.0007) (0.031; 0.013)

�3ð�M2Þ ð�0:024;�0:011) (0.094; 0.051)

�3;EWð�M2Þ ð0:025; 0:005Þ � 10�2 ð�0:009;�0:003Þ � 10�2
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The plots on effective mass and helicity angle distribu-
tions, almost identical to those published in [3], will not be
given here. For the S wave and for m�K & 0:8 GeV, the
effective mass distributions, mainly for the charged
B decays, are smaller than those of Ref. [3] which could
indicate some stronger suppression of the K�

0ð800Þ
contribution.

In relation to the direct CP violation asymmetries, we
will focus on the differential difference of effective mass
branching ratio distributions for charge conjugate chan-
nels. In Fig. 1 we draw dð�BÞ=dm�K with �B ¼ BðB !
��KÞ �Bð �B ! �� �� �KÞ [numerator of ACP, see Eq. (17)]
for the charged and neutral decays and calculated from the
S, P, and Sþ P amplitudes, where the strong interaction
scalar and vector form factors have been factorized out.
Figure 2 illustrates these distribution differences for the
full Sþ P amplitude including these form factors. The
weak interaction plus the strong interaction before hadro-
nization produces Sþ P distribution differences (see
Fig. 1) negative for m�K below �1 GeV, positive and
increasing above. Including the final state interaction after
hadronization, the Sþ P distributions as seen in Fig. 2 are
enhanced in the vicinity of the K�ð892Þ resonance, that of
the charged channel is positive while that of the neutral is
negative. The positive enhancement at the 1430 resonance
for the B0 decays is larger than that of the B�.

The denominator of ACP giving a similar contribution
for charged and neutral channels, the above behavior of the
Sþ P distributions allows us to understand the model
values (calculated by integrating distributions over the
m�K range quoted in the Table III caption) for ACP dis-

played in Table III, knowing that the P-wave contribution
dominates in the vector resonance region and the Swave in
the scalar one. One can see that a strong final state inter-
action after hadronization can increase the CP asymmetry.

VII. SUMMARYAND OUTLOOK

In the present study, we analyze theK� resonance effects
on the direct CP violation in the B ! ��K decay chan-
nels. We calculate the amplitudes for the B0 ! ���þK0

and B� ! ����K� decays in the QCD factorization
framework [2,6] at leading order in �QCD=mb and at the

next-to-leading order in s. In order to do so, we approxi-
mate these three-body processes as quasi-two-body B de-
cays into �K�ð892Þ and �K�

0ð1430Þ since these final state
K� resonances dominate the �K effective mass region
below 2 GeV. All the contributions, before hadronization,
i.e., from vertex, penguin, hard-scattering, and annihilation
corrections as well as those after hadronization, i.e., from
the K� meson resonance formation and decay described by
the strong interaction scalar and vector form factors, are
included. We complete the calculation performed in
Ref. [3] by adding explicitly the hard-scattering and anni-
hilation contributions which are however subject to large
uncertainties arising from the presence of end-point diver-
gences. These divergences are modeled with two complex
parameters; they are the sole fitted parameters entering in
the present calculation. Thus, as compared to Ref. [3], our
model involves only 4 real phenomenological parameters
instead of 8 while reproducing equally well the present
data. These 4 parameters are then determined through a fit
to the available data on mass and helicity angle distribu-
tions, branching ratios, and CP asymmetries originating
from Belle and BABAR Collaboration measurements. The
large experimental uncertainties in CP asymmetries do not
yield strong constraints. Producing higher statistics experi-
mental data seem to us mandatory in order to improve

FIG. 1. Here �BW represent the contributions, to the numera-
tor of the CP asymmetry parameter ACP of Eq. (17), of the
different S, P, and Sþ P amplitudes where the scalar and vector
form factors have been factorized out. The curves denoted by
B�
S;P;SþP correspond to the contribution for the S, P, and Sþ P

of this weak interaction plus perturbative QCD interaction
amplitudes to the charged B decays and those denoted by
B0
S;P;SþP the contributions to the neutral B decays.

FIG. 2. As in Fig. 1 but only for the Sþ P amplitudes includ-
ing the scalar and vector form factor contributions.
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constraints on models. Furthermore, it should sort out the
present discrepancies between the Belle and BABAR
analyses.

At this stage one cannot conclude that the data are or are
not compatible with the standard model. Yet, the possibil-
ity of new physics effects, as, for instance, in the minimal
supersymmetric standard model approach studied in
Ref. [17], cannot be excluded. However, the theoretical
basis of our model being restricted to next-to-leading order
corrections, the phenomenological terms can simulate
next-to-next-to leading order (NNLO) effects. It could
also take into account charming penguin contributions. In
principle, the NNLO corrections to hard scattering are
amenable to convergent integrals which can be evaluated
[18,19]. This contribution could reduce the phenomeno-
logical part of our model amplitudes. The long distance
charming penguin amplitudes such as those arising from

intermediate Dð�Þ
s Dð�Þ states could be important since the

branching fractions for the transition B ! Dð�Þ
s Dð�Þ are

quite large. However, their contributions cannot be calcu-
lated in a QCD pertubative framework. Both NNLO cor-
rections and charming penguin amplitudes should be
included before being able to give a firm statement as to
whether or not it is necessary to introduce new physics to
understand the data, but, this is outside the scope of the
present study.

In conclusion, from this analysis, we point out the
important following aspects.

(i) It constitutes a robust state of the art QCD factoriza-
tion calculation at next-to-leading order in the strong
coupling constant. In this framework, the strong
phase can be generated dynamically. However, the
mechanism suffers from end-point singularities
which are not well controlled. It is now apparent
that the Cabibbo-Kobayashi-Maskawa matrix is the
dominant source of CP violation in flavor changing
processes in B decays. The corrections to this domi-
nant source coming from beyond the standard model
are not expected to be large. In fact, the main re-
maining uncertainty lies in the factorization approxi-
mation which provides an explicit picture in the
heavy quark limit. It takes into account all the lead-
ing contributions as well as subleading corrections to
the naive factorization. The soft collinear effective
theory (SCET) has been proposed as a new proce-
dure for factorization [18]. It allows one to formulate
a collinear factorization theorem in terms of effec-

tive operators where new effective degrees of free-
dom are involved, in order to take into account the
collinear, soft, and ultrasoft quarks and gluons.
Following such steps should improve further our
knowledge of B physics and, eventually, hint at
contributions from physics beyond the standard
model.

(ii) It illustrates explicitly how the strong final state
interaction after hadronization can enhance CP vio-
lation asymmetries. The variation of the differential
difference of effective mass branching ratio distri-
bution for charge conjugate channels as a function
of the�K invariant mass over the whole range of the
K�ð892Þ and K�

0ð1430Þ resonances shows that mix-

ing resonance effects, as those seen in Fig. 2, can be
observed within a window of 100–200 MeV. With
the new Large Hadron Collider (LHC) providing
energy and accuracy (small energy bin), we believe
that by exploring such windows the LHCb
Collaboration should be in a position to perfom
accurate measurements of CP violation in B to
��K decays.

(iii) It confirms the advantage of using, as a conse-
quence of QCD factorization, a scalar form factor
to describe the �K�

0ð1430Þ final state. The

K�
0ð1430Þ resonance is very wide and its nonreso-

nant part is difficult to evaluate. Thus, the determi-
nation of the B ! �K�

0ð1430Þ branching fractions

within, in particular, the isobar model, leads to
large uncertainties. As advocated in Ref. [3], a
parametrization with this scalar form factor, pre-
cisely constructed from unitary coupled channel
equations using experimental kaon–pion T-matrix
elements together with chiral symmetry and
asymptotic QCD constraints, should be used in
experimental Dalitz plot analysis.
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