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We perform fits to the available charged and neutral kaon-production data in eþ þ e� ! K þ X, K ¼
K�, and K0

S, and determine the nonsinglet combination of kaon fragmentation functions DK�
u �DK�

d in a

model independent way and without any correlations to the other fragmentation functions. Only nuclear

isospin invariance is assumed. Working with nonsinglets allows us to include the data at very low

momentum fractions, which have so far been excluded in global fits, and to perform a first next-next-to

leading order fit to fragmentation functions. We find that the kaon nonsinglet fragmentation function at

large z is larger than that obtained by the other collaborations from global fit analysis and differs

significantly at low z.
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I. INTRODUCTION

Now that the new generation of high energy experiments
with the detection of a final state hadron are taking place,
further tests of QCD and the standard model require an
accurate knowledge not only of the parton distribution
functions (PDFs) and �sðMZÞ, but equally of the fragmen-
tation functions (FFs) Dh

i ðz;�2
fÞ. These quantities describe

the transition of a parton i at factorization scale �f into a

hadron h carrying away a fraction z of the parton’s mo-
mentum or energy in the center-of-mass (c.m.) frame. Like
�sðMZÞ, PDFs and FFs are important quantities because
they are universal: according to the factorization theorem,
once they are known at some suitably defined scale �f ¼
�f0, they can be calculated at any other scale �f and used

in any type of process. The most reliable way to determine
them at a given scale is by fitting to inclusive single hadron
production data in which the fraction x of available mo-
mentum or energy in the c.m. frame carried away by the
hadron is measured.

While there has recently been quite an extensive study
on the PDFs, only recently have the FFs received more
detailed studies, and it has been recognized that alota lot of
uncertainties appear in their determination.

The most direct way to determine the FFs is the one-
particle inclusive eþe� annihilation process:

eþe� ! hþ X; h ¼ ��; K�; p= �p . . . : (1)

Here and from now on we use the shorthand h� to mean
either a hþ or h� (but not both) is observed in a given
event. However, these processes, being proportional to the
square of the effective electroweak coupling ê2q of the

quark q, determine only the combinations Dhþ
q þDh�

q ¼
Dhþ

q þDhþ
�q , i.e. they cannot distinguish the quark and

antiquark FFs. In addition, in the limit of massless quarks,

they cannot distinguish between the down-type quark FFs
Dh

d and Dh
s , which have the same electroweak couplings.

Different assumptions are imposed in order to gain more
information about the FFs. In order to achieve separate
determination of Dh

q and Dh
�q, the semi-inclusive deep in-

elastic scattering lþ N ! lþ hþ X and the one-hadron
inclusive production processes pp ! hþ X and p �p !
hþ X play an essential role. However, in these processes
the nucleon structure is involved, which introduces further
uncertainties.
At present several sets of FFs are available in the litera-

ture [1], such as Kretzer [2], Kniehl-Kramer-Potter) [3],
Hirai-Kumano-Nagai-Sudoh (HKNS) [4], de Florian-
Sassot-Stratmann (DSS) [5], Albino-Kniehl-Kramer
(AKK,AKK08) [6,7], etc. Two points should be noted
about them: (1) in the DSS and HKNS analyses, different
relations, based on theoretical prejudice, between different
initial FFs have been imposed, and (2) there is significant
disagreement between the various parametrizations for
some of the FFs. It is not clear how much of this disagree-
ment can be attributed to the choices of experimental data
used by these collaborations and howmuch to the choice of
the assumptions imposed on the initial FFs. In this paper
we shall consider the possibility of obtaining information
about the FFs directly from experiment, without any
assumptions.
Recently, in [8], we suggested a model independent

approach to FFs. We showed that using only C invariance
of strong interactions, the difference cross sections be-
tween particle and antiparticle production are expressed
solely in terms of nonsinglet (NS) combinations of the FFs
to any order in perturbative QCD.
There are a number of benefits when performing fits of

NS quantities:
(i) There are no statistical correlations with gluon FFs,

which introduce the largest uncertainties.
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(ii) In their �2
f evolution they do not mix with other

FFs, so the difference cross sections are independent
of the other FFs at all scales.

(iii) The NS components do not contain unresummed
soft gluon logarithms (SGLs) at small z values.
This allows the use of measurements at much lower
values of x than in global fit analyses [4–7], which
would (hopefully) better constrain the NS. This
would provide stronger tests relative to global fits
on the validity of the leading twist calculations at
small x, where the effects of higher twists, as well
as of quark and hadron masses, should be most
pronounced.

(iv) A next-next-to leading order (NNLO) fit of the
nonsinglet components is possible, because the
perturbative components in the NS sector, namely,
the splitting and coefficient functions, are known to
NNLO. This is in contrast to global fit analyses
where only next-to leading order (NLO) calcula-
tions of cross sections are possible at present.

Note that here and further on we use the notation x for
the measured fraction of the energy E of the process carried
away by the observed hadron h, while we use z for the
fraction of the (unobservable) energy Ep of the fragment-

ing parton carried by the observed hadron:

x ¼ 2ðPhqÞ
q2

’ Eh=E; z ¼ Eh=Ep; (2)

i.e. x is the measured quantity, z is the theoretically QCD-
defined quantity, Eh is the c.m. energy of the observed
hadron. In leading order (LO), neglecting transverse mo-
menta and hadron mass corrections, x and z coincide.

In [8] a model independent approach for determining NS
combinations of FFs was developed. It was shown that if
both charged and neutral kaons are measured in lþ N !
lþ K þ X, in pp ! K þ X or in eþe� ! K þ X, K ¼
K�, K0, SU(2) isospin invariance of strong interactions

implies that the cross section differences �K between the
charged and neutral kaons:

d�K � �K� � 2�K0
S (3)

always determines, without any assumptions about PDFs

and FFs, the nonsinglet DK�
u �DK�

d .

In this paper we apply the model independent approach
of [8] to the available data on K� and K0

S production in

eþe� annihilation and determine the kaon nonsinglet

DK�
u �DK�

d . This allows us for the first time (i) to extract

DK�
u �DK�

d without any assumptions about the unfavored

FFs, commonly used in global fit analysis, (ii) to extract

DK�
u �DK�

d without any correlations to other FFs, and

especially toDK�
g , (iii) to determineDK�

u �DK�
d in a larger

region than in global fits by using all available data, that is
typically in the region x * 0:001, and (iv) to perform a first
NNLO extraction of the FFs. Including the small x data

should also improve the precision of the FFs at large z
since, via the convolution in Eq. (4) below, all z values in
the range x < z < 1 contribute, (v) to perform a first phe-
nomenological test of recent NNLO calculations and
(vi) to test, at lower x values than before, the incorporation
of hadron mass according the procedure of Ref. [9], which
becomes more important as x decreases.
The rest of the paper is organized as follows. In Sec. II

we describe our approach to charged and neutral kaon
production. We show how SU(2) invariance allows us to
single out the NS combination of the kaon FFs, and our
basic formula for eþe� kaon production is presented. In
Sec. III we describe our method of analysis and justify the
choice of the parametrizations used. The results of our fits
and the comparison with those obtained from global fits are
discussed in Sec. IV. The results are summarized in Sec. V.
Appendix A outlines our approach for calculating the
Mellin transform of harmonic polylogarithms, which is
necessary for the NNLO calculations.

II. OUR FORMALISM

In this section we describe our approach for extracting
the kaon nonsinglet and contrast it to that in global fits.
In general, the factorization theorem implies that any

inclusive hadron production cross section can be written as

d�hðx; E2
sÞ ¼

X
i

Z 1

x
dzd�i

�
x

z
; E2

s ; �
2
f

�
Dh

i ðz;�2
fÞ

þO

��
1

Es

�
p
�
; (4)

where Es is the energy scale of the process; d�i is the
process dependent partonic level cross section for the
inclusive production of a parton i determined fully in terms
of perturbatively calculable coefficient functions, electro-
weak factors, and of the PDFs for any initial state hadrons;
�f is the factorization scale, and p � 1. Note that though

formally d�i is independent of the renormalization scale�
that appears as the argument of the running coupling as ¼
�s=ð2�Þ, it depends on it when calculated in perturbation
theory; further, we assume �2 ¼ �2

f as usually done. In

LO the measurable quantity x and the QCD variable z
usually coincide because d�iðx=z; E2

s ; �
2
fÞ / �ðz� xÞ.

Although the z dependence of the fragmentation
functions Dh

i ðz;�2
fÞ is not calculated perturbatively, QCD

determines perturbatively, via the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) evolution equations,
their �2

f dependence:

d

d ln�2
f

Dh
i ðz;�2

fÞ ¼
X
j

Z 1

z

dz0

z0
Pij

�
z

z0
; asð�2

fÞ
�
Dh

j ðz0; �2
fÞ;

(5)

where Pijðz; asÞ are the perturbatively calculable splitting

functions. In addition, the DGLAP equations allow a
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choice of�f ¼ OðEsÞ which prevents the large logarithms

logðEs=�fÞ from spoiling the accuracy of the perturbative

calculations of d�i. Flavor and charge conjugation sym-
metry of QCD allow us to combine the quark FFs and
quark coefficient functions into singlets and nonsinglets,
whose advantage is that they do not mix in their evolution.
In this paper we shall deal with nonsinglets.

In any kaon-production process, if in addition to the
charged K� kaons the neutral K0

S kaons are also measured,

no new FFs above those used for K� are introduced in the
cross section. This is a consequence of SU(2) invariance of
the strong interactions, which relates neutral and charged
kaon FFs:

D
K0

S

u;d;s;c;b;g ¼ 1
2D

K�
d;u;s;c;b;g: (6)

Then for the difference cross section d�K, Eq. (3), we
obtain the simple expression:

d�Kðx; E2
sÞ ¼

Z 1

x
dzðd�u � d�dÞ

�
x

z
; E2

s ; �
2
f

�

� ðDK�
u �DK�

d Þðz;�2
fÞ; (7)

i.e. in any inclusive hadron production process d�K al-
ways depends only on one NS combination of FFs, namely,

DK�
u �DK�

d . This result relies only on SU(2) invariance for

the kaons, Eq. (6), and does not involve any other assump-
tions about PDFs or FFs. It holds in any order in QCD. The

explicit expressions for d�K in eþe�, SIDIS and pp
scattering were given in Ref. [8].

In this paper, we focus on the most precisely measured
and most accurately calculated processes

eþe� ! ð�; ZÞ ! K þ X; K ¼ K�; K0
S; (8)

for which Eq. (7) reads

d�K
eþe�ðx; sÞ ¼ Nc�0ðsÞ

Z 1

x
dzðê2u � ê2dÞðsÞ

� Cq

�
x

z
;
s

�2
f

; asð�2
fÞ
�
ðDK�

u �DK�
d Þðz; �2

fÞ;

(9)

where
ffiffiffi
s

p
is the c.m. energy of the process, x ¼ 2Eh=

ffiffiffi
s

p
,

�0 ¼ 4��2
em=s is the Born level cross section for the

process eþe� ! �þ��, Nc is the number of colors, and
ê2qðsÞ is the square of the effective electroweak charge of

the quark q:

ê2qðsÞ ¼ ê2q � 2êqvevq<ehZ

þ ðv2
e þ a2eÞ½ðvqÞ2 þ ðaqÞ2�jhZj2; (10)

with hZ ¼ ½s=ðs�m2
Z þ imZ�ZÞ�=sin22�W , êq the charge

of the quark q in units of the proton charge, and

ve ¼ �1=2þ 2sin2�W; ae ¼ �1=2;

vq ¼ Iq3 � 2êqsin
2�W; aq ¼ Iq3 ;

Iu3 ¼ 1=2; Id3 ¼ �1=2:

(11)

We set �2
f ¼ ks, k ¼ 1, 1=4, and 4 to estimate the theo-

retical error, i.e. we consider three different choices for�f:

�f ¼
ffiffiffi
s

p
=2;

ffiffiffi
s

p
, and 2

ffiffiffi
s

p
. The energy fraction z is given by

z ¼ 2ðPh � qÞ=q2 ¼ Eh=Ep, Cq is the flavor independent

perturbatively calculated quark coefficient function:

Cqðz;�2
f=s; asð�2

fÞÞ ¼ �ð1� zÞ þ asð�2
fÞCð1Þ

q ðz; �2
f=sÞ

þOða2sÞ: (12)

Equation (9) is our basic formula which we shall use in

our fit to determine ðDK�
u �DK�

d Þ.
In our analysis we shall use all available K� and K0

S

production data presented by the different collaborations
TASSO [10,11], MARK II [12], TPC [13], HRS [14],
CELLO [15], TOPAZ [16], ALEPH [17], DELPHI [18],
OPAL [19,20], and SLD [21] at different values of s.
Experimental data for hadron production (8) are com-

monly presented as normalized to the total hadronic cross
section �tot, which is given approximately by �tot ’
�0

P
qê

2
q. From Eq. (9) it is clear that the sensitivity of

�K
eþe�ðsÞ=�tot to (DK�

u �DK�
d ) is determined by the s

dependence of ðê2u � ê2dÞðsÞ=
P

qê
2
q. In Fig. 1 the quantities

ê2u=
P

qê
2
q and ê2d=

P
qê

2
q are shown as functions of

ffiffiffi
s

p
,

which demonstrates that the biggest contribution would
come from data away from the intersections with the

ffiffiffi
s

p
axis and the region between them, namely, away from
80 � ffiffiffi

s
p � 110 GeV, i.e. most important for our studies

would be data for which
ffiffiffi
s

p
& 60 GeV. It is unfortunate

that at the Z pole
ffiffiffi
s

p ’ 91, 2 GeV, where the most
precise and abundant data exist, the kaon cross section
difference normalized to �tot is an extremely small
quantity: ðê2u � ê2dÞ=

P
q¼u;d;sê

2
q ¼ ðv2

u � v2
dÞ=½ê2u þ 2ê2d� ’

�0:081.

50 100 150
s

0.3

0.4
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0.6

eq
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FIG. 1 (color online). The normalized electroweak charges
ê2u=ðê2u þ 2ê2dÞ (full line) and ê2d=ðê2u þ 2ê2dÞ (dashed line) as

functions of
ffiffiffi
s

p
.
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For a large part of the eþe� reaction data for kaon
production, the primary quark (i.e. the quark at the elec-
troweak vertex) is ‘‘tagged.’’ Experimentally, various tech-
niques are used to achieve this and we refer the reader to
the various experimental papers (but see, in particular,
Refs. [20,22]). For our calculations, we simply neglect
the contributions from all processes except those for which
the primary quark is tagged. Since this can be achieved by
setting the electroweak charges of all quarks to zero except
the tagged quark, the resulting cross section is scheme and
scale independent as a physical quantity should be.

We calculate asð�2Þ ¼ fðLÞ=ð�0LÞ, where L ¼
ln�2=�2

QCD and for f in LO, NLO, and NNLO we have

fLO ¼ 1; fNLOðLÞ ¼ 1� �1

�2
0

lnL

L
; (13)

fNNLOðLÞ ¼ fNLOðLÞ þ
�
�1

�2
0

�
2 ln

2L� lnLþ �0�2

�2
1

� 1

L2
:

(14)

The constants �i are given by [23]

�0 ¼ 11
6CA � 2

3TRnf; (15)

�1 ¼ 17
6C

2
A � CFTRnf � 5

3CATRnf; (16)

�2 ¼ 2857
432C

3
A þ 1

4C
2
FTRnf � 205

72CFCATRnf � 1415
216C

2
ATRnf

þ 11
18CFT

2
Rn

2
f þ 79

108CAT
2
Rn

2
f; (17)

where CA ¼ 3, CF ¼ 4
3 , and TR ¼ 1=2. We fix �QCD ¼

226 MeV at both NLO and NNLO and for nf ¼ 5. This is

the value of�QCD obtained in the CTEQ6.6M PDF extraction

[24].

III. METHOD OFANALYSIS OF K� AND K0
S DATA

SIMULTANEOUSLY

Our formalism would be easy if we had data on K0
S and

K� production at identical values of x and
ffiffiffi
s

p
, with the

cross sections being normalized in the same way. Then the
optimum procedure to constrain the kaon nonsinglet would
be to fit it to the difference between these data. However,
apart from the u and d quark tagging probabilities from
OPAL, this does not hold for the data in general. Data on
K� and K0

S are at similar c.m. energies
ffiffiffi
s

p
, but usually at

quite different x values. Therefore we proceed in 4 steps:
(1) We combine the measurements on K0

S into seven

energy intervals
ffiffiffi
s

p ¼ 12–14:8, 21.5–22, 29–35,
42.6–44, 58, 91.2, and 183–186 GeV and parame-

trize the x dependence of the cross section d�K0
S for

K0
S production in each interval separately as defined

below in Eq. (19).

(2) For each interval of
ffiffiffi
s

p
we calculate d�K perturba-

tively, using Eq. (9), parametrizing the z dependence
of the kaon nonsinglet at a suitable starting scale
�f ¼ �f0, as described below in Eq. (20).

(3) Using (19) and (20) we calculate the charged kaon

cross section �K�
in each energy interval of

ffiffiffi
s

p
through the expression:

d�K�
eþe� ¼ d�K

eþe� þ 2d�
K0

S

eþe� : (18)

(4) We fit the parameters in d�K0
S [as given in Eq. (19)]

and the parameters in the kaon nonsinglet [as given
in Eq. (20)] simultaneously to measurements of
charged and neutral kaon production in eþe�
reactions.

We believe that the above approach is the optimum one
since it involves performing only one fit.
Since the perturbative calculation of the cross section

difference d�K� � 2d�K0
S is free of SGLs, it is expected to

be valid at much lower values of x than the perturbative

calculations of d�K�
and d�K0

S separately. Therefore, in
our fits we vary the lowest value of x that the data can take.
In global fit analyses the usual minimum bound of x �
0:1–0:05 was used, but in general we will include data at
lower values.

We parametrize the cross section d�K0
S as follows:

d�
K0

S

eþe�

dx
ðx; sÞ ¼

�
NðsÞ þ �NðsÞ

ln
ffiffiffi
s

p
�
xAðsÞð1� xÞBðsÞ

� exp½�cðsÞln2xþ dðsÞln3xþ eðsÞln4x�;
(19)

where N, �N, A, B, c, d, and e are seven different parame-
ters that are fitted to the data in each range of

ffiffiffi
s

p
separately.

The �NðsÞ= ln ffiffiffi
s

p
term is motivated by the dependence of

the cross section on
ffiffiffi
s

p
predicted by QCD. In the case

where data of only one
ffiffiffi
s

p
value exists, namely, the data atffiffiffi

s
p ¼ 58 and 91.2 GeV, �N is fixed to zero. Otherwise,
note that no QCD input is used for the calculation of theK0

S

production data. The motivation behind the choice of the
parametrization is empirical, although the ð1� xÞB behav-
ior at large x and the exp½�cln2x� at small x also follow
from resummation in perturbative QCD in these respective
regions for

ffiffiffi
s

p 	 �QCD.

Because of flavor symmetry, d�K� � 2d�K0
S vanishes

whenever the quark at the electroweak vertex is neither a u
nor d-quark. Thus, we do not need the s, c and b-quark
tagged data from OPAL that should automatically cancel
and cannot constrain the kaon nonsinglet in our approach.
However, we shall use the light-quark tagged data, that
contain the u and d quarks. We can parametrize these data
directly, but instead we parametrize c and b quark tagged
data as in Eq. (19), and calculate the light-quark tagged
cross section as the difference between the untagged cross
section and the sum of the c and b quark tagged cross

SIMON ALBINO AND EKATERINA CHRISTOVA PHYSICAL REVIEW D 81, 094031 (2010)

094031-4



sections. By including all available heavy quark tagged
data in this way, we hope to improve our calculation of the
light-quark tagged data. Thus we have nine parametrized
functions in x to describe all the K0

S data: seven parame-

trizations for the untagged data in each
ffiffiffi
s

p
-energy interval

and two for the c and b quark tagged cross sections at
ffiffiffi
s

p ¼
91:2 GeV.

For the calculation of d�K using Eq. (9), we require a
parametrization for the kaon nonsinglet at a starting scale
�f ¼ �f0 which satisfies the following conditions: It

should exhibit the powerlike behavior za as z ! 0. Note
that the resummed double logarithmic contribution to the
splitting functions suggests that a Gaussian behavior in lnz
at small z occurs only for the gluon and singlet FFs [25]
and we do not assume that this behavior occurs also for the
nonsinglet. The FF should also exhibit the behavior ð1�
zÞb as z approaches one. After trying various parametriza-
tions that were in accordance with the above requirements,
we found that the best parametrization, i.e. the one that
gave a good fit with all parameters well constrained by the
data (meaning that the parameters did not become large),
was

ðDK�
u �DK�

d Þðz; �2
f0Þ ¼ nzað1� zÞb þ n0za0 ð1� zÞb0 :

(20)

This parametrization is effectively the same as the one used
in the latest global fits in [5,7], except that a0 � a in order
to allow a larger function space at small z to be available to
the nonsinglet.

To be clear, our main fit (discussed in Sec. IVB) which

determines the NS DK�
u�d proceeds as follows. We deter-

mine DK�
u�d in a simultaneous fit to K� and K0

s production

data—we fit the K0
S production data to Eq. (19) and we fit

theK� production data to the difference of Eq. (19) (multi-

plied by two) and d�K: d�K� ¼ 2d�K0
s � d�K, where

d�K is calculated from DK�
u �DK�

d using Eq. (7). Note

that if all the K0
S production data were measured at the

same x and
ffiffiffi
s

p
values, and defined in the same way, as the

K� production data, there would be no need for Eq. (19)—

we would simply fit the theoretical calculation of d�K,

Eq. (7), directly to the measurements of d�K at each
measured x and

ffiffiffi
s

p
value. We stress that, despite the

theoretical discussion immediately following Eq. (19),
the motivation for the parameterization in Eq. (19) is
mainly empirical—as we will see in Sec. IVA, such a
parameterization describes all K0

S production data well.

We note, however, that different parametrizations will exist
which give an equally good fit to the K0

S production data

but give slightly different results. Such a ‘‘parametrization
error’’ should in any case be less than the errors on the
parameters due to the errors on the measurements. We also
note that a single simultaneous fit of all parameters to all
data is the statistically correct approach. For example,

fitting the parameters in Eq. (19) to the K0
S production

data and then, as a separate fit, fitting the parameters in
Eq. (20) to the K� data only would not take into account
the fact that the fitted values of the parameters in Eq. (19)
carry significant experimental errors.

In our perturbative calculations, we choose �f0 ¼ffiffiffi
2

p
GeV, five active flavors u, d, s, c, b, and �QCD ¼

226 MeV. We perform all calculations in Mellin space
since this approach is numerically more efficient than
explicitly performing x space convolutions such as that in
Eq. (20).
The NNLO perturbative components for the cross sec-

tion difference can be obtained using the results of [26] for
the nonsinglet coefficient functions and the results of [27]
for the difference between the spacelike and timelike non-
singlet splitting functions. The former, as well as the space-
like nonsinglet splitting functions of [28], are presented in
Mellin space as a weighted sum of harmonic sums. The
latter is presented in x space as a weighted sum of har-
monic polylogarithms. Our approach for determining the
Mellin transform of these harmonic polylogarithms is dis-
cussed in Appendix A.
Because the effect of the observed hadron’s mass is

expected to be significant at low x, we incorporate the
hadron mass effects according to the method of Ref. [9].
In this case, the scaling variable x, which in the factoriza-
tion theorem is defined as the ratio of the detected hadron’s
light cone momentum to the overall process’s, must be
distinguished from the energy and momentum fractions
measured in experiment and given by

xE ¼ 2Eh=
ffiffiffi
s

p
and xp ¼ 2j ~phj=

ffiffiffi
s

p
; (21)

respectively. We stress that xE and xp equal x only when

hadron mass effects are neglected. Otherwise, they are
related to x via

xp ¼ x

�
1� m2

h

sx2

�
; xE ¼ x

�
1þ m2

h

sx2

�
: (22)

The cross sections d�K�
=dx and d�K0

s =dx that determine

d�K=dx, Eq. (9), which we are calculating and which
enters the factorization theorem, are related to the measur-
able ones d�=dxp and d�=dxE via [9]

d�

dxp
ðxp; sÞ ¼ 1

1þm2
h=½sx2ðxpÞ�

d�

dx
ðxðxpÞ; sÞ; (23)

d�

dxE
ðxE; sÞ ¼ 1

1�m2
h=½sx2ðxEÞ�

d�

dx
ðxðxEÞ; sÞ; (24)

where d� stands for either d�K�
or d�K0

S . We exploit the
fact that different data groups use different definitions for
‘‘x’’ in order to obtain the kaon mass, by using the above
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relations and fitting the massmh. We assume the masses of
the neutral and charged kaons are equal.

The total number of free parameters in our fits to charged
and neutral kaon data is 66, and the total number of data
points is 730.

We could choose to fit the data at a subset of
ffiffiffi
s

p
values

and then predict the remaining data using the universality
of the nonsinglet FF thus obtained. However, we choose to
simultaneously fit all the available data in order to max-
imize the constraints on the parameters appearing in
Eq. (20). As we will see in Sec. IV, the simultaneous
description of all data with the same fitted nonsinglet FF
turns out to be good, in accordance with the universality
of FFs.

IV. RESULTS OF THE ANALYSIS

First we perform a fit only to the availableK0
S production

data in order to ensure that the parametrization in Eq. (19)
is adequate for the K0

S data that we will use in our extrac-

tions of the kaon nonsinglet. Then we perform a simulta-
neous fit to both charged and neutral kaon-production data

in eþe� reactions. In the latter case we perform our analy-
sis to NLO and NNLO in perturbative QCD.

A. Analysis of K0
S data

Here we present our results from a fit to K0
S data only,

using the parametrizations in Eq. (19). The average 	2 per
data point, 	2

DF, for each data set is presented in Table I
together with details of the data set. Also shown, where
applicable, is the value at the global minimum of 
 for each
data set, which after multiplication by the normalization
error is the most likely systematic deviation of the central
values (see Ref. [7] for a complete discussion), and which
should obey j
j & 1 for a reasonable fit.
In general, as seen from the Table, our parametrization

provides a good description of all but the HRS data, where
the description is poor. At

ffiffiffi
s

p ¼ 91:2 GeV, the b quark
tagged data appears to be slightly inconsistent with the
other data. The value of j
j for the ALEPH data is high, but
the fit to the other data at

ffiffiffi
s

p ¼ 91:2 GeV in general is
good. Otherwise, both 	2

DF and j
j & 1which suggests that
the parametrization in Eq. (19) is sufficient to represent
these data.

TABLE I. Summary of the measurements for inclusive single K0
S production in e

þe� reactions. The column labeled ‘‘Cross section’’
gives the type of cross section measured, up to the normalization and possible non zero width x bins. The column labeled ‘‘# data’’
gives the number of data. The column labeled ‘‘Norm. (%)’’ gives the normalization uncertainty on the data as a percentage. The values
of 
 and 	2

DF from the fit described in the text are also given. In this fit the fitted mass is mK ¼ 320 MeV.

Collaboration Cross section Tagging
ffiffiffi
s

p
(GeV) # data Norm. (%) 	2

DF 


TASSO [10] d�K0
S untagged 14.0 9 15 0.4 �0:6

TASSO [29] d�K0
S untagged 14.8 9 0.3 �0:4

TASSO [29] d�K0
S untagged 21.5 6 0.0

TASSO [10] d�K0
S untagged 22.0 6 0.1 0.1

HRS [14] d�K0
S untagged 29 13 3.2

MARK II d�K0
S untagged 29.0 21 12 0.8 0.3

TPC [13] d�K0
S untagged 29 8 0.5

TASSO [30] d�K0
S untagged 33.3 9 15 0.7 0.2

TASSO [10] d�K0
S untagged 34.0 15 1.4 �0:1

TASSO [29] d�K0
S untagged 34.5 15 1.3

CELLO [15] d�K0
S untagged 35 11 0.5

TASSO [29] d�K0
S untagged 35 15 1.3

TASSO [29] d�K0
S untagged 42.6 15 0.5

TOPAZ [16] d�K0
S untagged 58 7 0.1

ALEPH [31] d�K0
S untagged 91.2 30 2 0.5 �2:3

DELPHI [32] d�K0
S untagged 91.2 26 0.7

OPAL [19] d�K0
S untagged 91.2 20 6 1.0 �1:1

OPAL [20] d�K0
S c tagged 91.2 5 0.6

OPAL [20] d�K0
S b tagged 91.2 5 1.7

SLD [33] d�K0
S untagged 91.2 17 1.1

SLD [33] d�K0
S l tagged 91.2 17 0.6

SLD [33] d�K0
S c tagged 91.2 17 0.7

SLD [33] d�K0
S b tagged 91.2 17 1.5

DELPHI [34] d�K0
S untagged 189 10 0.7

DELPHI [34] d�K0
S untagged 183 8 1.3

331 1.1
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In the caption of Table I we quote the fitted kaon mass
mK ¼ 320 MeV, which is somewhat smaller than the true
mass of 498 MeV. However, it is not significantly different
from the value 343 MeVobtained in global fit analyses in
Ref. [7], where it was argued that kaon production through
complex decay chains may cause a significant difference
between the true mass and the fitted mass, when only direct
parton fragmentation is assumed in the calculations.

B. Analysis of K0
S and K�

Here we present the results from the combined analysis
of K� and K0

S data.

We implement large x resummation in our NLO analy-
sis. We resum both leading and next-to-leading logarithms,
which are all the classes of logarithms appearing at this
order. As shown in the AKK08 fit [7], this significantly
improves fits to charged kaon data at large x. Resummation
in the quark cross section (or quark coefficient function) is
obtained from the method of Ref. [35] and the results for
the unfactorized partonic cross section in Ref. [36], while
resummation in the evolution is performed according to the
method in Ref. [37].

Thus we apply the two most optimum theoretical tools to
our calculations, namely, the NLO results with resumma-
tion, and the NNLO without resummation.

The measured inclusive K� and K0
S production cross

sections and the obtained 	2
DF values, both in NLO and

NNLO, are shown in Table II. In general, with the excep-
tion of a few data sets, in particular, the b quark tagged
cross section measurements, the description of the data is
rather good. However, the kaon mass, both in NLO and
NNLO, is significantly lower than the one obtained in the
phenomenological description of the K0

S data (see Table I)

only, i.e. without perturbative QCD, also it is significantly
lower than the value 343 MeVobtained in Ref. [7].

Our results for DK�
u �DK�

d in NLO are shown in Fig. 2.

In the same figure the NLO results from global fits of the
DSS, HKNS, and AKK08 sets are presented as well. As
seen from the figure, at z * 0:5 there is an agreement in
shape among the different plots of the NS, but our NS is in
general larger in magnitude. However, they differ signifi-
cantly at z & 0:5. The most striking difference is the
negative value for the NS at z & 0:4 obtained in our
approach, while all global fit parametrizations imply a

positive DK�
u �DK�

d > 0.
In Tables III, IV, and V we show the values of the

parameters for our main fit, NLO þ resummation.
However, we caution the reader that, because we begin

our evolution at �f ¼
ffiffiffi
2

p
GeV, due to neglect of higher

order NNLO terms, the uncertainties on these parameters
in the NLO calculation may be very large and thus may
depend significantly on the method used for solving the
DGLAP equations. This uncertainty is approximately
equal to the size of the NNLO terms.

In order to understand the origin of the negative value of

DK�
u �DK�

d obtained from the difference cross sections

�K ¼ �K� � 2�K0
s , we make a comparison of the charged

and neutral kaon-production data at various
ffiffiffi
s

p
in Fig. 3.

Such a direct comparison is possible because, for these
data, the cross section measurements happen to be defined
the same way, i.e. they are differential in the same variable
and normalized in the same way, which is not typical for
the data in general. In general, the description of these data
is good. According to the (data-theory)/theory plots, the
calculation for the K0

S production data tends to overshoot

the central values of the data, while for K� production the
behavior is the opposite, but this is not significant relative
to the experimental errors. For x * 0:3, the calculated
charged kaon production exceeds the neutral except
when

ffiffiffi
s

p ¼ 91:2 GeV. However, below this region in x

the opposite behavior is observed, i.e. �K < 0 for x & 0:3,

for all
ffiffiffi
s

p
except

ffiffiffi
s

p ’ 91:2 GeV, where �K�
and �K0

s are
very similar. As Fig. 1 shows, the sign of the difference of
the effective electroweak couplings of the u and d quark
flavors, for all s except around the Z pole (78< s <
122 GeV2), is positive, i.e. ê2u � ê2d > 0 for s * 78 GeV2

and s & 112 GeV2, i.e. at the cross sections that give the
main contribution to the NS in (9). Then, following the
simple LO approach in which convolutions are replaced by

ordinary products, Eq. (9) implies that DK�
u �DK�

d < 0 at

z & 0:3, and DK�
u �DK�

d > 0 at z * 0:3. Of course these

rough arguments do not take into account experimental
errors, which are rather big for kaon production, or con-
volutions etc., however, they do help to verify the result
qualitatively.

Our negative result for DK�
u �DK�

d at low z, though

justified by the above arguments on the data on �K, is,
however, in contrast to the intuitive interpretation for fa-
vored u-quark and unfavored d-quark transitions. In addi-
tion, our result is quite different from the DSS, AKK08,
and HKNS results. There could be several reasons for this,
as well as for the unexpectedly low values for the kaon
mass mKðNLOÞ ¼ 124 MeV and mKðNNLOÞ ¼ 55 MeV,
shown in Table II. Most probably it is due to the different
assumptions in the parametrizations and to inclusion of the
small x data in our fit. The DSS and HNKS Collaborations
use the assumption that all light-quark unfavored FFs are

equal: DKþ
�u ¼ DKþ

s ¼ DKþ
d ¼ DKþ

�d
, while no assumptions

were used in the AKK08 fit and in the analysis in this
paper, denoted by AC. The fact that the DSS and HKNS

nonsinglet FF, which can be written as DKþ
u þDKþ

�u �
DKþ

d �DKþ
�d
, is lower than the others for z * 0:4 in

Fig. 2 suggests that DKþ
d and DKþ

�d
may be overestimated

in this region when the light-quark unfavored FFs are fixed
to be equal to one another. Maybe this could explain the

similarity of the results for DK�
u �DK�

d obtained from the

DSS and HKNS fits on one hand, and of AKK08 and AC at
z * 0:5 on the other hand (see Fig. 2). The AKK08 and
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TABLE II. As in Table I, but for the fit to both K� and K0
S production data, in which the perturbative components in the cross section

differences d�K� � 2d�K0
S are calculated in NLO and NNLO. The fitted mass of the kaon was mKðNLOÞ ¼ 124 MeV and

mKðNNLOÞ ¼ 55 MeV.

Collaboration Cross section Tagging
ffiffiffi
s

p
(GeV) # data Norm. (%) 	2

DF NLO 
NLO 	2
DF NNLO 
NNLO

TASSO [38] d�K�
untagged 12 3 20 1.0 �1:1 0.9 �1:0

TASSO [39] d�K�
untagged 14 9 8.5 1.0 �0:1 0.9 �0:2

TASSO [39] d�K�
untagged 22 10 6.3 0.3 �0:5 0.3 �0:6

HRS [14] d�K�
untagged 29 7 1.9 2.3

MARKII [12] d�K�
untagged 29 6 12 2.1 �1:4 2.6 �1:4

TPC [40] d�K�
untagged 29 29 1.2 1.8

TASSO [38] d�K�
untagged 30 5 20 0.9 �1:4 0.9 �1:4

TASSO [11] d�K�
untagged 34 11 6 1.5 �1:0 1.6 �0:9

TASSO [11] d�K�
untagged 44 4 6 0.1 0.1

TOPAZ [16] d�K�
untagged 58 12 0.7 0.7

ALEPH [17,31] d�K�
untagged 91.2 29 3 1.3 �0:6 1.2 �0:7

DELPHI [18] d�K�
untagged 91.2 23 0.2 0.2

DELPHI [18] d�K�
l tagged 91.2 23 0.8 0.8

DELPHI [18] d�K�
b tagged 91.2 23 0.5 0.5

OPAL [41] d�K�
untagged 91.2 33 2.3 2.5

OPAL [20] d�K�
c tagged 91.2 5 4.6 4.8

OPAL [20] d�K�
b tagged 91.2 5 4.5 4.4

SLD [21] d�K�
untagged 91.2 36 1.9 1.5

SLD [21] d�K�
l tagged 91.2 36 4.7 4.0

SLD [21] d�K�
c tagged 91.2 36 2.7 2.4

SLD [21] d�K�
b tagged 91.2 36 4.7 4.6

DELPHI [34] d�K�
untagged 189 8 5.2 5.3

OPAL [20] d�K� � 2d�K0
S u tagged 91.2 5 1.2 1.4

OPAL [20] d�K� � 2d�K0
S d tagged 91.2 5 1.0 1.5

TASSO [10] d�K0
S untagged 14 9 15 0.4 �0:2 0.4 0.0

TASSO [29] d�K0
S untagged 14.8 9 0.6 0.6

TASSO [29] d�K0
S untagged 21.5 6 0.1 0.1

TASSO [10] d�K0
S untagged 22 6 0.2 0.2 0.3 0.3

HRS [14] d�K0
S untagged 29 13 2.9 3.4

MARK II d�K0
S untagged 29 21 12 1.2 1.2 1.3 1.4

TPC [13] d�K0
S untagged 29 8 1.8 2.3

TASSO [30] d�K0
S untagged 33.3 9 15 0.6 0.3 0.7 0.4

TASSO [10] d�K0
S untagged 34 15 1.3 0.0 1.3 0.0

TASSO [29] d�K0
S untagged 34.5 15 1.3 1.2

CELLO [15] d�K0
S untagged 35 11 0.6 0.6

TASSO [29] d�K0
S untagged 35 15 1.9 1.9

TASSO [29] d�K0
S untagged 42.6 15 0.6 0.6

TOPAZ [16] d�K0
S untagged 58 7 1.1 1.0

ALEPH [31] d�K0
S untagged 91.2 30 2 1.5 1.9 1.4 1.7

DELPHI [32] d�K0
S untagged 91.2 26 3.0 2.8

OPAL [19] d�K0
S untagged 91.2 20 6 2.3 0.4 2.2 0.3

OPAL [20] d�K0
S c tagged 91.2 5 1.2 1.3

OPAL [20] d�K0
S b tagged 91.2 5 12.9 12.8

SLD [33] d�K0
S untagged 91.2 17 3.2 3.0

SLD [33] d�K0
S l tagged 91.2 17 0.8 0.7

SLD [33] d�K0
S c tagged 91.2 17 1.2 1.2

SLD [33] d�K0
S b tagged 91.2 17 5.1 5.2

DELPHI [34] d�K0
S untagged 183 8 1.9 1.9

DELPHI [34] d�K0
S untagged 189 10 2.7 2.7

730 2.3 2.2
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HKNS analyses used no data below x � 0:05, the DSS
analysis used only data at x � 0:1, while we include data as
low as x ’ 0:001. The discrepancy may also be a result of
various low x effects not accounted for in the calculation,

such as dynamical higher twist, quark mass corrections,
etc. However, perhaps the most likely reason are the large
experimental errors on the NS. The FFs of the various
collaborations should be the same within the error (com-
posed of the theoretical errors and the (unknown) experi-
mental errors propagated from the fitted data to the FF).
Thus if we assume that the various FFs are consistent, then
the spread of FFs in Fig. 2 gives some indication of the
error on the FF, and shows the error increasing drastically
with decreasing z. This argument assumes that the (similar)
assumptions made on the FFs in the DSS and HKNS fits are
correct. In any case, these results warrant further inves-
tigation into the validity of the standard approach at low x.
It is promising, however, that it is possible to fit low x data
(x ’ 0:001) using fixed order perturbation theory.

TABLE III. The fitted values of the parameters for ðDK�
u �

DK�
d Þðz;�2

f0Þ parametrized as in Eq. (20), from our main fit.

Parameter Value

n �6:25
a �0:11
b 3.12

n0 11.13

a0 0.60

b0 3.01

FIG. 2. The kaon nonsinglet FF obtained in this paper at NLO with large x resummation [labeled ‘‘AC (NLO+res)’’] and from the
calculations of the same quantity from the HKNS [4], DSS [5], and AKK08 [7] FF sets.

TABLE IV. The fitted values of the parameters for d�
K0

S

eþe�=dxðx; sÞ parametrized as in Eq. (19) in the different energy intervals
ffiffiffi
s

p
from our main fit: NLO with resummation.

Energy interval in [GeV] N �N A B c d e

12<
ffiffiffi
s

p
< 14:8 1:58� 10�5 7:90� 10�5 �17:2 �2:33 10.1 �2:99 �0:357

21:5<
ffiffiffi
s

p
< 22 8:43� 105 �4:79� 105 14.5 12.2 �7:24 1.45 8:81� 10�2

29<
ffiffiffi
s

p
< 35 �0:444 3.81 �2:57 3.49 1.79 �0:696 9:25� 10�2

42:6<
ffiffiffi
s

p
< 44 3:55� 104 �1:32� 105 4.91 7.10 �1:66 4:08� 105 �3:21� 10�2ffiffiffi

s
p ¼ 58 6.03 0 (fixed) �1:23 6.26 1.11 �0:415 �4:93� 10�2ffiffiffi
s

p ¼ 91:2 16.1 0 (fixed) �4:88 �0:681 1.68 �0:338 �2:92� 10�2

183<
ffiffiffi
s

p
< 189 126. �646: �1:34 5.16 0.492 �0:156 �1:69� 10�2

TABLE V. The fitted values of the parameters for d�
K0
S

eþe�=dxðx; sÞ parametrized as in Eq. (19) for
ffiffiffi
s

p ¼ 91:2 GeV from our main fit:
NLO with resummation for the c and b tagged data.

the data N �N A B c d e

c tagged 2.62 0 (fixed) �7:52 2.39 3.97 �1:01 �9:35� 10�2

b tagged 0.164 0 (fixed) �8:65 2.01 2.95 �0:474 �3:08� 10�2
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The negative value of the nonsinglet FF DKþ
u þDKþ

�u �
DKþ

d �DKþ
�d

at low z contradicts the physical argument that

favored FFs are larger than unfavored FFs. This behavior
alone is not too serious since FFs in general are not
physical. However, the second Mellin moment of a FF
Dh

a is physical, in the sense of being factorization scheme
and scale independent, and can be interpreted as the frac-
tion of momentum of the fragmenting parton a that is
carried away by hadrons of species h. The second moment
of the nonsinglet FF is expected then to be positive, but
from our fit using calculations to NLO (NNLO) the result is
�0:07 (� 0:1). Most likely this is a consequence of the
large experimental errors at low z. However, it could also
arise from a breakdown of perturbation theory, or from
effects not accounted for in the calculation at low x, if such
effects turn out significantly large.

In order to check our negative result for the NS at small
z, we performed a fit in which a parameterization of the
form nzað1� zÞb, instead of that in Eq. (20), was used
which yielded a positive NS (i.e. n > 0). However, the
result 	2

DF ¼ 2:4 was obtained, which corresponded to a

	2 of about 100 points above that for our main fit. Thus, the
parametriztion in Eq. (20) is much more favored by the
data. We also performed a fit in which the NS was fixed to
zero, and obtained 	2

DF ¼ 2:4 again. Thus, a positive, as

well as a zero kaon nonsinglets are both allowed by data as
a whole, but the fits are much worse. Note that in our
analysis we include data at very low x, which are the
most accurate data and any deviations of the fit from
these data immediately results in higher 	2. It is the small
x data that raises 	2 with the zero and nzað1� zÞb
parameterizations.

In Fig. 4 we compare the NLO and NNLO fits forDK�
u �

DK�
d at �f ¼ 10 GeV (Fig. 4, left) and at �f ¼ 91:2 GeV

(Fig. 4, right) for various choices of the factorization scale
k ¼ �f=

ffiffiffi
s

p
, k ¼ 1, 1=2, 2. As seen from this figure, there

is an extremely strong dependence on the choice of k and
on the chosen perturbative order—NLO or NNLO. The
quality of the fits for all curves is good, which indicates that
the errors of the available data are too big to constrain the
nonsinglet FFs. With very accurate data, the spread of the
three NLO FFs and the spread of the three NNLO FFs

FIG. 3. Comparison of charged and neutral kaon production at various c.m. energies.
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should be less and, assuming that the theoretical error in
the calculations is sufficiently larger than the experimental
error, both should give some indication of the theoretical
error. However, since large x resummation has been ap-
plied only to the NLO calculation and not in NNLO, this
analysis cannot test the perturbative convergence by com-
paring NLO and NNLO calculations. Also the low x data,
for the first time included in an analysis, might have caused
troubles. Figure 4 implies only upper and lower bound on

the nonsinglet: 0 � DK�
u�d � 0.2 at z � 0:35.

Note that in the used method, the uncertainties of the FFs
are due almost completely to the experimental errors on the
data. The theoretical error in the calculation is relatively
negligible here. Having the experimental errors as they are,

one would not get such good fits to the NS FF from cross
section (not cross section difference) measurements, even
with similarly large errors. One of the reasons is that, due
to the large x logarithms in the singlet/gluon evolution and
in gluon coefficient functions, the small x data cannot be
included in the analysis. All curves are positive for z *
0:5, and the theoretical error in this region is arguably less
for the NNLO fits. More accurate data is needed to better
determine the scale variation.
The nonsinglet FF from the NNLO fit with k ¼ 1 is

close to zero for z * 0:5, suggesting that the cross section

�K is too. This is a consequence of the fact that the K�
production data and the K0

S production data (multiplied by

2) are very close (see Fig. 3). This behavior is consistent

FIG. 5. The fitted kaon cross section difference at different c.m. energies. Also shown is the same quantity but with the kaon massmh

varied from its fitted resultmK. Note that the left plot shows the negative cross section difference,��K ¼ 2�K0
s � �K�

. The curves in
the left and right plot are negative (and not shown) for x * 0:4 and 0.3, respectively.

FIG. 4. The kaon nonsinglet FF obtained in this paper at NLO with large x resummation and at NNLO without resummation from fits
for which k ¼ �2

f=s ¼ �2=s ¼ 1=4, 1, and 4. For both the left and right plots, the fits for the NS FF are arranged in their increasing

magnitude at z ¼ 0:8 as follows: at NNLO with k ¼ 1 and then with k ¼ 1=4, at NLO with k ¼ 1, at NNLO with k ¼ 4 and at NLO
with k ¼ 4, and finally with k ¼ 1=4. Note that the fit at NNLO with k ¼ 1 yields almost a zero NS, i.e. the curve coincides with the
z axis.
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with our finding above, that a good fit can be obtained
with the nonsinglet FF fixed to zero (i.e. all parameters in
Eq. (20) fixed to zero so that only the parameters in
Eq. (19) are varied in the fit).

In Fig. 5, we examine the sensitivity of the cross section
difference to the mass mh for two different values of

ffiffiffi
s

p
,

taking the mass to be mh ¼ mK, mK=2, and 2mK in
Eq. (22), where mK is the fitted mass. As shown in the
figure, for

ffiffiffi
s

p ¼ 10 GeV the calculation becomes sensitive
tomh at x & 0:1, while for

ffiffiffi
s

p ¼ 91:2 the sensitivity sets in
at x & 0:01 where most of the data lie. Because the calcu-
lation is very sensitive to hadron mass effects at low

ffiffiffi
s

p
and

small x, these effects strongly affect our fits. Conversely,
precisely because the hadron mass effects are important for
the data in this region means that they cannot be neglected.
However, other low

ffiffiffi
s

p
, small x effects, such as higher

twist and mass effects of resonances from which the kaon
has been produced, will also be absorbed into mK after it
has been fitted. More accurate data will be needed to
determine how important these other effects are.

In Fig. 6 we show the effect on the fitted NS of increas-
ing the lower bound in x on the data. The result when no cut
is imposed is similar to the result with a cut of x > 0:005,
implying that data for which x < 0:005 might not impose
important constraints. The largest change in the fitted NS is
from x > 0:005 to x > 0:01. The fact that this difference is
so large suggests that a new (but valid) minimum in 	2 has
been found. This implies that the accuracy of the data at
x > 0:1 is not enough to form the difference cross sections

with the required precision to determine DK�
u �DK�

d . In

particular, note the unphysical divergence of the FF as z !
1, which is caused by the negative values of the fitted b and
b0 parameters in Eq. (20), which further indicates the
inability of the data at x > 0:1 to constrain the FF at large
z. Only including the large amount of precise small x data,

which through convolution determines the ðDK�
u �

DK�
d ÞðzÞ not only at z ¼ x, but also at all z > x, allows us

to determine the NS in the whole z region.

V. SUMMARY

The cross section difference d�K ¼ d�K� � 2d�K0
S

determines uniquely the NS DK�
u �DK�

d without any as-

sumptions. We have extracted DK�
u �DK�

d from kaon pro-

duction in eþe� ! K þ X, K ¼ K�, K0
S, and compared

our results to those from global fit analyses, namely, the
DSS, the HNKS and the AKK08 parametrizations. In con-
trast to global fits, in our analysis (i) data at much lower
values of x, as low as ’ 0:001, could be included in the fit
because of the absence of SGLs in NS perturbative quan-
tities, (ii) calculations could also be performed at NNLO
and (iii) no assumptions about unfavored FFs were im-
posed. The quality of the fits were high suggesting that
perturbative QCD is consistent with the data, including the
very low x measurements. However, the fitted kaon mass
mK, on which low x cross sections depend strongly, was
found to be somewhat lower than the value obtained phe-
nomenologically, i.e. without perturbative QCD, from the
fit to neutral kaon-production data only. The obtained

values for DK�
u �DK�

d at small z are negative and consid-

erably different from those obtained from global analyses.
Fits performed using NNLO calculations gave lower theo-

retical errors on DK�
u �DK�

d , suggesting stability of the

perturbation series for the most of the available cross
section measurements.
The current measurements of inclusive kaon production

are not at the level of accuracy required to obtain a com-
petitive extraction of �sðMZÞ from the considered
cross section differences. Also it is not enough to really

constrain the nonsinglet DK�
u�d. As our fits show, the error

on the FF is large (see Fig. 4). But our method is a good
one, which allows for the first NNLO analysis of
inclusive hadron production and it will be useful for
future studies. Admittedly the experimental errors are
large, still one would not get such good fits to cross
section (not cross section difference) measurements, even
with similarly large errors, due to small x logarithms in

FIG. 6. The kaon nonsinglet FF obtained in this paper at NLO from fits for which various cuts on the data were imposed.
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singlet/gluon evolution and in gluon coefficient
functions.

With more accurate data in the future and in greater
numbers, it would be nice to see if we could continue to
describe the low x data well. In particular, at present the
most accurate data is that for which

ffiffiffi
s

p ¼ 91:2 GeV,
which is the least sensitive to the kaon nonsinglet due to
the similarity between the u and d quark effective electro-
weak charges at this energy. However, such an extraction
may become possible once the accurate measurements of
kaon production at BABAR [42] have been finalized, be-
cause these data are at

ffiffiffi
s

p ¼ 10:54 GeV where the quark
electroweak charges are very different. These BABAR data

could also significantly improve the constraints on DK�
u �

DK�
d .
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APPENDIX A: HARMONIC POLYLOGARITHMS
IN MELLIN SPACE

In this section we describe our procedure for obtaining
the Mellin transform of harmonic sums, defined as

Hm1;m2;...;mn
ðxÞ ¼

Z x

0
dx1fm1

ðx1Þ

�
Z x1

0
dx2fm2

ðx2Þ . . .
Z xn�1

0
dxnfmn

ðxnÞ;
(A1)

where

f0ðxÞ ¼ 1

x
; f1ðxÞ ¼ 1

1� x
; f�1ðxÞ ¼ 1

1þ x
:

(A2)

Their Mellin transforms can be expressed as a weighted
sum of harmonic sums, defined for integer values of the
Mellin space variable n as

Sk1;k2;k3;...ðnÞ ¼
Xn
n1¼1

ðsgnðk1ÞÞn1
njk1j1

Xn1
n2¼1

ðsgnðk2ÞÞn2
njk2j2

� Xn2
n3¼1

ðsgnðk3ÞÞn3
n
jk3j
3

. . . ; (A3)

which can be continued to complex n according to the
procedure in [43].

Such weighted sums can be found recursively [44] by
determining, in Mellin space, the dependence of a har-
monic polylogarithm on the same one without the leftmost

index. By performing the integration for the Mellin trans-
form of Hp; ~mðxÞ ¼

R
x
0 dyfpðyÞH ~mðyÞ by parts, which gives

~Hp; ~mðnÞ ¼ ðHp; ~mð1Þ �M½xfpðxÞH ~mðxÞ�ðnÞÞ=n, and then

performing the replacements xf�1ðxÞ ¼ 
ð1� f�1ðxÞÞ,
we find that our desired relations are

~H 0; ~mðnÞ ¼ H0; ~mð1Þ � ~H ~mðnÞ
n

; (A4)

~H 1; ~mðnÞ ¼
~H ~mðnÞ �M½½H ~mðxÞ

1�x �þ�ðnÞ
n

; (A5)

~H �1; ~mðnÞ ¼
H�1; ~mð1Þ � ~H ~mðnÞ þM½H ~mðxÞ

1þx �ðnÞ
n

; (A6)

where M½H ~mðxÞ=ð1þ xÞ�ðnÞ and the ‘‘þ’’ distri-
bution M½½H ~mðxÞ=ð1�xÞ�þ�ðnÞ ¼M½H ~mðxÞ=ð1�xÞ�ðnÞ�
M½H ~mðxÞ=ð1�xÞ�ð1Þ can be calculated from ~H ~mðnÞ by
expanding 1=ð1� xÞ as a series in x before performing
the Mellin transform. The result [45] is simply that, be-
cause

P
n
i¼1ð
1ÞiS ~mðiÞ=ip ¼ S
p; ~mðnÞ which follows from

Eq. (A3), where p > 0 here and in what follows, each term
of the form

S ~mðnÞ
np

in ~H~rðnÞ (A7)

becomes

ð
1Þn½S
p; ~mð1Þ � S
p; ~mðn� 1Þ�

¼ S ~mðnÞ
np

þ ð
1Þn½S
p; ~mð1Þ � S
p; ~mðnÞ�

in M

�
H~rðxÞ
1� x

�
ðnÞ: (A8)

Furthermore, each term of the form

ð�1Þn S ~mðnÞ
np

in ~H~rðnÞ (A9)

becomes

ð
1Þn½S�p; ~mð1Þ � S�p; ~mðn� 1Þ�

¼ ð�1Þn S ~mðnÞ
np

þ ð
1Þn½S�p; ~mð1Þ � S�p; ~mðnÞ�

in M

�
H~rðxÞ
1� x

�
ðnÞ: (A10)

Although the S1; ~mð1Þ are singular, they may be treated in a

symbolic sense because ~H ~mðnÞ,M½H ~mðxÞ=ð1þ xÞ�ðnÞ, and
M½½H ~mðxÞ=ð1� xÞ�þ�ðnÞ are all finite when the real part of
n is suitably large. To complete this recursive procedure,
we require the Mellin transforms of the simplest harmonic
polylogarithms, which are given by
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~H0ðnÞ ¼ � 1

n2
; ~H1ðnÞ ¼ S1ðnÞ

n
;

~H�1ðnÞ ¼ �ð�1Þn S�1ðnÞ
n

þ lnð2Þ
n

ð1� ð�1ÞnÞ:
(A11)

A Mathematica file for implementing this procedure and
for producing FORTRAN programs to calculate numerical
values of harmonic polylogarithms anywhere in Mellin
space can be obtained from [46].
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