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We discuss jet substructure in recombination algorithms for QCD jets and single jets from heavy

particle decays. We demonstrate that the jet algorithm can introduce significant systematic effects into the

substructure. By characterizing these systematic effects and the substructure from QCD, splash-in, and

heavy particle decays, we identify a technique, pruning, to better identify heavy particle decays into single

jets and distinguish them from QCD jets. Pruning removes protojets typical of soft, wide-angle radiation,

improves the mass resolution of jets reconstructing heavy particle decays, and decreases the QCD

background to these decays. We show that pruning provides significant improvements over unpruned

jets in identifying top quarks and W bosons and separating them from a QCD background, and may be

useful in a search for heavy particles.

DOI: 10.1103/PhysRevD.81.094023 PACS numbers: 13.87.�a, 29.85.Fj

I. INTRODUCTION

The Large Hadron Collider (LHC) will present an ex-
citing and challenging environment. Efforts to tease out
hints of beyond the standard model (BSM) physics from
complicated final states, typically dominated by standard
model (SM) interactions, will almost surely require the use
of new techniques applied to familiar quantities. Of par-
ticular interest is the question of how we think about
hadronic jets at the LHC [1]. Historically jets have been
employed as surrogates for individual short-distance ener-
getic partons that evolve semi-independently into showers
of energetic hadrons on their way from the interaction
point through the detectors. An accurate reconstruction
of the jets in an event then provides an approximate de-
scription of the underlying short-distance, hard-scattering
kinematics. With this picture in mind, it is not surprising
that the internal structure of jets, e.g., the fact that the
experimentally detected jets exhibit nonzero masses, has
rarely been used in analyses at the Tevatron. However, we
can anticipate that large-mass objects, which yield multijet
decays at the Tevatron, e.g.,W=Z’s (two jets) or top quarks
(three jets), will often be produced with sufficient boosts to
appear as single jets at the LHC. Thus the masses of jets
and further details of the internal structure of jets will be
useful in identifying single jets not only as familiar objects
like the aforementioned vector bosons and top quarks, but
also as less familiar cascade decays of supersymmetry
particles or the decays of V particles [2]. In fact, the idea
of studying the subjet structure of jets has been around for
some time, but initially this study took the form of discus-
sing the number of jets as a function of the jet resolution
scale, typically at eþe� colliders, or the pT distribution
within the cone of (cone) jets at the Tevatron. (See, for
example, the analyses in [3–5].) Recently a variety of
studies have appeared suggesting a range of techniques
for identifying jets with specific properties to find W’s [6],
top quarks [7–11], Higgs bosons [11,12], and cascades of
supersymmetric particles [13,14]. It is to this discussion

that we intend to contribute. Not surprisingly the current
literature focuses on ‘‘tagging’’ the single jet decays of
specific heavy particles. However, since we cannot be
certain as to the full spectrum of new physics to be found
at the LHC, it is important to keep in mind the underlying
goal of separating QCD jets from any other type of jet. This
will be challenging and the diversity of approaches cur-
rently being discussed in the literature is essential. Suc-
cessful searches for new physics at the LHC will likely em-
ploy a variety of techniques. The analysis described below
presents detailed properties of the ‘‘pruning’’ procedure
outlined in [15].
In the following discussion we will focus on jets defined

by kT-type jet algorithms. The iterative recombination
structure of these algorithms yields jets that, by definition,
are assembled from a sequence of protojets, or subjets. It is
natural to try to use this subjet structure (along with the pT

and mass of the jet) to distinguish different types of jets. A
combination of cuts and likelihood methods applied to this
subjet structure can be used to identify jets, and thus
events, likely to be enriched with vector or Higgs bosons,
top quarks, or BSM physics. Such jet-labeling techniques
can then be used in conjunction with more familiar jet- and
lepton-counting methods to isolate new physics at the
LHC.
An essential aspect of high-pT jets at the LHC is that the

jet algorithm ensures nonzero masses not only for the
individual jets, but also for the subjets. For recombination
algorithms, we can analyze the 1 ! 2 branching structure
inherent in the substructure of the jet in terms of concepts
familiar from usual two-body decays. In fact, it is exactly
such decays (say fromW=Z and top quark decays) that we
want to compare in the current study to the structure of
‘‘ordinary’’ QCD (light quark and gluon) jets. As we
analyze the internal structure of jets we will attempt to
keep in mind the various limitations of jets. Jets are not
intrinsically well defined, but exhibit (often broad) distri-
butions that are shaped by the very algorithms that define
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them. Further, true experimental QCD jets are not identical
to the leading-logarithm parton showers produced by
Monte Carlos, but also include subleading effects in the
parton shower as well as (perturbative) contributions from
hard emissions, which may be important for precisely the
properties of jets we want to discuss here, including
masses. Finally, the background particles from the under-
lying event, and from pileup at higher luminosities, will
influence the properties of the jets observed in the detector.

In this paper, rather than developing a technique to find a
particular signal, we study general features of jets found
with recombination algorithms. Our goal is to use this
knowledge to distinguish jets produced by heavy particle
decays from jets produced purely from the showering of
light quarks and gluons. We conclude that heavy particle
jets can be effectively identified by first pruning away soft
radiation from the edges of the jet, then looking for bumps
in jet and subjet mass distributions. In the case of known
particles, mass cuts can be applied directly.

The following discussion includes a review of jet algo-
rithms (Sec. II) and a review of the expected properties of
jets from QCD (Sec. III) and those from heavy particles
(Sec. IV). For both QCD and heavy particle jets, we begin
by considering the substructure predicted by parton-level
(few-particle) models with appropriate (but approximate)
dynamics. We will see that at this level the two types of
signals have distinct substructure kinematics. We then
study, with Monte Carlo simulation, the effects of the
parton shower and the jet algorithm. The jet algorithm is
intended to ‘‘undo’’ the shower, but can only do so on aver-
age and hence introduces its own biases. The systematic
effects of recombination algorithms shape the kinematics
of the observed substructure. We attempt to summarize the
most relevant features. That jet algorithms introduce sys-
tematic effects is not a new idea (for example, the effect of
the underlying event on kT jet masses was noted in [16]),
but we believe our focus on substructure kinematics due to
the jet algorithm is novel. The expert reader may want to
skim these sections and begin with Sec. V, where we
summarize Secs. II, III, and IV and include a discussion
of global effects such as the underlying event.

In Sec. VI, we show how the systematic effects seen so
far can by reduced by a procedure we call pruning. Pruning
is based on the same ideas as other jet substructure meth-
ods such as ‘‘filtering’’ [12] and ‘‘top tagging’’ [9], in that
these techniques also modify the jet substructure to im-
prove heavy particle identification. Pruning differs from
these methods in that it is built as a broad jet substructure
analysis tool, and one that can be used in a variety of
searches. To this end, the mechanics of the pruning proce-
dure differ from other methods, allowing it to be general-
ized more easily. Pruning can be performed using either the
Cambridge-Aachen (CA) or kT algorithms to generate
substructure for a jet, and the procedure can be imple-
mented on jets identified by any algorithm, since the
procedure is independent of the initial jet finder.

We explore many aspects of pruning’s performance to
demonstrate its utility. Sections VII and VIII describe our
Monte Carlo studies of pruning and their results.
Additional computational details are provided in the
Appendix. In Sec. IX we summarize these results and
provide concluding remarks.

II. RECOMBINATION ALGORITHMS AND JET
SUBSTRUCTURE

Jet algorithms can be broadly divided into two catego-
ries, recombination algorithms and cone algorithms [1].
Both types of algorithms form jets from protojets, which
are initially generic objects such as calorimeter towers,
topological clusters, or final-state particles. Cone algo-
rithms fit protojets within a fixed geometric shape, the
cone, and attempt to find stable configurations of those
shapes to find jets. In the cone-jet language, ‘‘stable’’
means that the direction of the total four-momentum of
the protojets in the cone matches the direction of the axis of
the cone. Recombination algorithms, on the other hand,
give a prescription to pairwise (re)combine protojets into
new protojets, eventually yielding a jet. For the recombi-
nation algorithms studied in this work, this prescription is
based on an understanding of how the QCD shower oper-
ates, so that the recombination algorithm attempts to undo
the effects of showering and approximately trace back to
objects coming from the hard scattering. The anti-kT algo-
rithm [17] functions more like the original cone algo-
rithms, and its recombination scheme is not designed to
backtrack through the QCD shower. Cone algorithms have
been the standard in collider experiments, but recombina-
tion algorithms are finding more frequent use. Analyses at
the Tevatron [18] have shown that the most common cone
and recombination algorithms agree in measurements of jet
cross sections.
A general recombination algorithm uses a distance mea-

sure �ij between protojets to control how they are merged.

A ‘‘beam distance’’ �i determines when a protojet should
be promoted to a jet. The algorithm proceeds as follows:
(0) Form a list L of all protojets to be merged.
(1) Calculate the distance between all pairs of protojets

in L using the metric �ij, and the beam distance for each

protojet in L using �i.
(2) Find the smallest overall distance in the set f�i; �ijg.
(3) If this smallest distance is a �ij, merge protojets i

and j by adding their four vectors. Replace the pair of
protojets in Lwith this new merged protojet. If the smallest
distance is a �i, promote protojet i to a jet and remove it
from L.
(4) Iterate this process until L is empty, i.e., all protojets

have been promoted to jets.1

1This defines an inclusive algorithm. For an exclusive algo-
rithm, there are no promotions, but instead of recombining until
L is empty, mergings proceed until all �ij exceed a fixed �cut.
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For the kT [19–21] and CA [22] recombination algo-
rithms the metrics are

k T: �ij � minðpTi; pTjÞ�Rij=D; �i � pTi;

CA: �ij � �Rij=D; �i � 1:
(1)

Here pTi is the transverse momentum of protojet i and

�Rij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�i ��jÞ2 þ ðyi � yjÞ2

q
is a measure of the

angle between two protojets that is invariant under boosts
along and rotations around the beam direction. � is the
azimuthal angle around the beam direction, � ¼
tan�1py=px, and y is the rapidity, y ¼ tanh�1pz=E, with

the beam along the z axis. The angular parameter D
governs when protojets should be promoted to jets: it
determines when a protojet’s beam distance is less than
the distance to other objects. D provides a rough measure
of the typical angular size (in y��) of the resulting jets.

The recombination metric �ij determines the order in

which protojets are merged in the jet, with recombinations
that minimize the metric performed first. From the defini-
tions of the recombination metrics in Eq. (1), it is clear that
the kT algorithm tends to merge low-pT protojets earlier,
while the CA algorithm merges pairs in strict angular
order. This distinction will be very important in our sub-
sequent discussion.

A. Jet substructure

A recombination algorithm naturally defines substruc-
ture for the jet. The sequence of recombinations tells us
how to construct the jet in step-by-step 2 ! 1 mergings,
and we can unfold the jet into two, three, or more subjets
by undoing the last recombinations. Because the jet algo-
rithm begins and ends with physically meaningful infor-
mation (starting at calorimeter cells, for example, and
ending at jets), the intermediate (subjet) information gen-
erated by the kT and CA (but not the anti-kT

2) recombina-
tion algorithms is expected to have physical significance as
well. In particular, we expect the earliest recombinations to
approximately reconstruct the QCD shower, while the last
recombinations in the algorithm, those involving the
largest-pT degrees of freedom, may indicate whether the
jet was produced by QCD alone or a heavy particle decay
plus QCD showering. To discuss the details of jet sub-
structure, we begin by defining relevant variables.

B. Variables describing branchings and
their kinematics

In studying the substructure produced by jet algorithms,
it will be useful to describe branchings using a set of

kinematic variables. Since we will consider the substruc-
ture of (massive) jets reconstructing kinematic decays and
of QCD jets, there are two natural choices of variables. Jet
rest frame variables are useful to understand decays be-
cause the decay cross section takes a simple form. Lab
frame variables are useful because jet algorithms are for-
mulated in the lab frame, so algorithm systematics are most
easily understood there. The QCD soft/collinear singular-
ity structure is also easy to express in lab frame variables.
Naively, there are 12 variables completely describing a

1 ! 2 splitting. Here we will focus on the top branching
(the last merging) of the jet splitting into two daughter
subjets, which we will label J ! 1, 2. Imposing the four
constraints from momentum conservation to the branching
leaves eight independent variables. The invariance of the
algorithm metrics under longitudinal boosts and azimuthal
rotations removes two of these (they are irrelevant). For
simplicity we will use this invariance to set the jet’s direc-
tion to be along the x axis, defining the z axis to be along
the beam direction. Therefore there are six relevant varia-
bles needed to describe a 1 ! 2 branching. Three of these
variables are related to the three-momenta of the jet and
subjets, and the other three are related to their masses.
Of the six variables, only one needs to be dimensionful,

and we can describe all other scales in terms of this one.
We choose the mass mJ of the jet. In addition, we use the
masses of the two daughter subjets scaled by the jet mass:

a1 � m1

mJ

and a2 � m2

mJ

: (2)

We choose the particle labeled by 1 to be the heavier
particle, a1 > a2. The three masses, mJ, a1, and a2, will
be common to both sets of variables. Additionally, we will
typically want to fix the pT of the jet and determine how
the kinematics of a system change as pTJ

is varied. For

QCD, a useful dimensionless quantity is the ratio of the
mass and pT of the jet, whose square we call xJ:

xJ � m2
J

p2
TJ

: (3)

For decays, we will opt instead to use the familiar magni-
tude � of the boost of the heavy particle from its rest frame
to the lab frame, which is related to xJ by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

xJ
þ 1

s
; xJ ¼ 1

�2 � 1
: (4)

The remaining two variables, which are related to the
momenta of the subjets, will differ between the rest frame
and lab frame descriptions of the splitting.
Unpolarized 1 ! 2 decays are naturally described in

their rest frame by two angles. These angles are the polar
and azimuthal angles of one particle (the heavier one, say)
with respect to the direction of the boost to the lab frame,
and we label them �0 and �0 respectively. Since we are

2The anti-kT algorithm has the metrics �ij �
minðp�1

Ti ; p
�1
Tj Þ�Rij=D, �i � p�1

Ti , so it tends to cluster protojets
with the hardest protojet, resulting in conelike jets with unin-
teresting substructure.
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choosing that the final jet be in the x̂ direction, �0 is
measured from the x̂ direction while �0 is the angle in
the y� z plane, which we choose to be measured from the
ŷ direction. Putting these variables together, the set that
most intuitively describes a heavy particle decay is the
‘‘rest frame’’ set

fmJ; a1; a2; �; cos�0; �0g: (5)

In the lab frame, we want to choose variables that are
invariant under longitudinal boosts and azimuthal rota-
tions. The angle �R12 between the daughter particles is a
natural choice, as is the ratio of the minimum daughter pT

to the parent pT , which is commonly called z:

z � minðpT1
; pT2

Þ
pTJ

: (6)

These variables make the recombination metrics for the kT
and CA algorithms simple:

�12ðkTÞ ¼ pTJ
z�R12 and �12ðCAÞ ¼ �R12: (7)

Note that for a generic recombination, the momentum
factors in the denominator of Eq. (6) and in the kT metric
in Eq. (7) should be pTp, the momentum of the parent or

combined subjet of the 2 ! 1 recombination.
From these considerations we choose to describe recom-

binations in the lab frame with the set of variables

fmJ; a1; a2; xJ; z;�R12g: (8)

In using these variables it is essential to understand the
structure of the corresponding phase space, especially for
the last two variables in both sets. If we require that the
decay ‘‘fits’’ in a jet, constraints and correlations appear.
These are clearest in terms of the lab frame variables �R12

and z. As a first step in understanding these correlations,
we plot in Fig. 1 the contour �R12 ¼ Dð¼ 1:0Þ in the
ðcos�0; �0Þ phase space for different values of � and
over different choices for a1 and a2. These specific values
of a1 and a2 correspond to a variety of interesting pro-
cesses: a1 ¼ a2 ¼ 0 gives the simplest kinematics and is
therefore a useful starting point; a1 ¼ 0:46, a2 ¼ 0 gives

the kinematics of the top quark decay; a1 ¼ 0:9, a2 ¼ 0
and a1 ¼ 0:3, a2 ¼ 0:1 are reasonable values for subjet
masses from the CA and kT algorithms, respectively. The
contour �R12 ¼ D defines the boundary in phase space
where a 1 ! 2 process will no longer fit in a jet, with the
interior region corresponding to splittings with �R12 <D.
Note that the contour is nearly vertical, increasingly so for
larger �. This is a reflection of the fact that �R12 is nearly
independent of �0, up to terms suppressed by ��2.
While the constraint �R12 <D becomes simpler in the

ðz;�R12Þ phase space, the boundaries of the phase space
become more complex. In Fig. 2, we plot the available
phase space in ðz;�R12Þ for the same values of xJ, a1, and
a2 as in Fig. 1, translating the value of � into xJ. The most
striking feature is that for fixed xJ, a1, and a2, the phase
space in ðz;�R12Þ is nearly one dimensional; this is again
due to the fact that �R12 and also z are nearly independent
of �0. In particular, for a1 ¼ a2 ¼ 0 [as in Fig. 2(a)], the
phase space approximates the contour describing fixed xJ
for small �R12, which takes the simple form

xJ � m2
J

p2
TJ

� zð1� zÞ�R2
12: (9)

This approximation is accurate even for larger angles,
�R12 � 1, at the 10% level. Note also that the width of
the band about the contour described by Eq. (9) is itself of
order xJ. As we decrease xJ the band moves down and
becomes narrower as indicated in Fig. 2(a).
As illustrated in Figs. 2(b) and 2(d), we can also see a

double-band structure to the ðz;�R12Þ phase space. The
upper band corresponds to the case where the lighter
daughter is softer (smaller pT) than the heavier daughter
(and determines z), while the lower band corresponds to
the case where the heavier daughter is softer. This does not
occur in Fig. 2(a) because a1 ¼ a2 (the single band is
double covered), or in Fig. 2(c) because the heavier particle
is never the softer one for the chosen values of xJ.
We have said nothing about the density of points in

phase space for either pair of variables. This is because
the weighting of phase space is set by the dynamics of a

FIG. 1. Boundaries in the cos�0 ��0 plane for a recombination step to fit in a jet of size D ¼ 1:0, for several values of the boost �
and the subjet masses fa1; a2g. The ‘‘interior’’ region has �R12 <D.
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process, while the boundaries are set by the kinematics.
Decays and QCD splittings weight the phase space differ-
ently, as we will see in Secs. III and IV.

C. Ordering in recombination algorithms

Having laid out variables useful to describe 1 ! 2 pro-
cesses, we can discuss how the jet algorithm orders re-
combinations in these variables. Recombination
algorithms merge objects according to the pairwise metric
�ij. The sequence of recombinations is almost always

monotonic in this metric: as the algorithm proceeds, the
value increases. Only certain kinematic configurations will
decrease the metric from one recombination to the next,
and the monotonicity violation is small and rare in practice.

This means it is straightforward to understand the typi-
cal recombinations that occur at different stages of the
algorithm. We can think in terms of a phase space bound-
ary: the algorithm enforces a boundary in phase space at a
constant value of the recombination metric that evolves to
larger values as the recombination process proceeds. If a
recombination occurs at a certain value of the metric, �0,
then subsequent recombinations are very unlikely to have
�ij < �0, meaning that this region of phase space is un-

available for further recombinations.

In Fig. 3, we plot typical boundaries for the CA and kT
algorithms in the ðz;�R12Þ phase space. For CA, these
boundaries are simply lines of constant �R12, since the
recombination metric is �ijðCAÞ ¼ �Rij. For kT, these

boundaries are contours in z�R12, and implicitly depend
on the pT of the parent particle in the splitting. Because the
kT recombination metric for i; j ! p is �ijðkTÞ ¼
z�RijpTp, increasing the value of pTp will shift the bound-

ary in to smaller z�Rij. These algorithm-dependent order-

ing effects will be important in understanding the
restrictions on the kinematics of the last recombinations
in a jet. For instance, we expect to observe no small-angle
late recombinations in a jet defined by the CA algorithm.
Having considered some generic features of jet substruc-

ture and the systematic effects of recombination algo-
rithms, we now explore how these effects combine with
the underlying dynamics of QCD and heavy particle de-
cays to produce the jets we observe.

III. SUBSTRUCTURE OF QCD JETS

The LHC will be the first collider where jet masses play
a serious role in analyses. The proton-proton center of mass
energy at the LHC is sufficiently large that the mass
spectrum of QCD jets will extend far into the regime of
heavy particle production (mW and above). Because
masses are such an important variable in jet substructure,
masses of QCD jets will play an essential role in determin-
ing the effectiveness of jet substructure techniques at sep-
arating QCD jets from jets with new physics. We expect
that the jet mass distribution in QCD is smoothly falling
due to the lack of any intrinsic mass scale above �QCD,

while jets containing heavy particles are expected to ex-
hibit enhancements in a relatively narrow jet mass range
(given by the particle’s width, detector effects, and the
systematics of the algorithm).
Understanding the more detailed substructure of QCD

jets (beyond the mass of the jet) presents an interesting
challenge. QCD jets are typically characterized by the soft
and collinear kinematic regimes that dominate their evo-

FIG. 3 (color online). Typical boundaries (red, dashed lines)
on phase space due to ordering in the CA and kT algorithms. The
shaded region below the boundaries is cut out, and the more
heavily shaded regions correspond to earlier in the recombina-
tion sequence. The cutoff �Rij ¼ D ¼ 1:0 is shown for refer-

ence (black, dashed lines).
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(b) a1 = 0 .46, a 2 = 0
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(c) a1 = 0 .9, a 2 = 0
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(d) a1 = 0 .3, a 2 = 0 .1

FIG. 2 (color online). Boundaries in the z��R12 plane for a recombination step of fixed fa1; a2; xJg, for various values of xJ and the
subjet masses fa1; a2g. Configurations with �R12 <D fit in a jet; D ¼ 1:0 is shown, for example.
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lution, but QCD populates the entire phase space of al-
lowed kinematics. Because of its immense cross section
relative to other processes, small effects in QCD can
produce event rates that still dominate other signals, even
after cuts. Furthermore, the full kinematic distributions in
QCD jet substructure currently can only be approximately
calculated, so we focus on understanding the key features
of QCD jets and the systematic effects that arise from the
algorithms that define them. Note that even when an on-
shell heavy particle is present in a jet, the corresponding
kinematic decay(s) will contribute to only a few of the
branchings within the jet. QCD will still be responsible for
the bulk of the complexity in the jet substructure, which is
produced as the colored partons shower and hadronize,
leading to the high multiplicity of color singlet particles
observed in the detector.

It is a complex question to ask whether the jet substruc-
ture is accurately reconstructing the parton shower, and
somewhat misguided, as the parton shower represents col-
ored particles while the experimental algorithm only deals
with color singlets. A more sensible question, and an
answerable one, is to ask whether the algorithm is faithful
to the dynamics of the parton shower. This is the basis of
the metrics of the kT and CA recombination algorithms—
the ordering of recombinations captures the dominant kine-
matic features of branchings within the shower. In particu-
lar, the cross section for an extra real emission in the parton
shower contains both a soft (z) and a collinear (�R)
singularity:

d�nþ1 � d�n

dz

z

d�R

�R
: (10)

While these singularities are regulated (in perturbation
theory) by virtual corrections, the enhancement remains,
and we expect emissions in the QCD parton shower to be
dominantly soft and/or collinear. Because of their different
metrics, the kT and CA algorithms will recombine these
emissions differently, producing distinct substructure. In
the next two subsections, we will discuss the interplay
between the dynamics of QCD and the recombination
algorithms, first using a toy analytic model, then with
more realistic simulated events.

A. Jets in a toy QCD

To establish an intuitive level of understanding of jet
substructure in QCD we consider a toy model description
of jets in terms of a single branching and the variables xJ, z,
and �R12. We take the jet to have a fixed pTJ

. We combine

the leading-logarithmic dynamics of Eq. (10) with the
approximate expression for the jet mass in Eq. (9), and
we label this combined approximation as the LL approxi-
mation. Recall that this approximation for the jet mass is
useful for small subjet masses and small opening angles.
From Sec. II B, recall that fixing xJ provides lower bounds
on both z and �R12 and ensures finite results for the LL

approximation. This approach leads to the following sim-
ple form for the xJ distribution:

1

�

d�LL

dðm2
J=p

2
TJ
Þ �

1

�

d�LL

dxJ

�
Z 1=2

0

Z D

0

dz

z

d�R12

�R12

� �ðxJ � zð1� zÞ�R2
12Þ

¼ � lnð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xJ=D

2
p Þ
2xJ

�½D2=4� xJ�:
(11)

Note we are integrating over the phase space of Fig. 2(a),
treating it as one dimensional. The resulting distribution is
exhibited in Fig. 4 for D ¼ 1:0 where we have multiplied
by a factor of xJ to remove the explicit pole. We observe
both the cutoff at xJ ¼ D2=4 arising from the kinematics
discussed in Sec. II B and the � lnðxJÞ=xJ small-xJ behav-
ior arising from the singular soft/collinear dynamics. Even
if the infrared singularity is regulated by virtual emissions
and the distribution is resummed, we still expect QCD jet
mass distributions (with fixed pTJ

) to be peaked at small

mass values and be rapidly cutoff for mJ > pTJ
D=2.

We can improve this approximation somewhat by using
the more quantitative perturbative analysis described in
[1]. In perturbation theory jet masses appear at next-to-
leading order (NLO) in the overall jet process where two
(massless) partons can be present in a single jet. Strictly,
the jet mass is then being evaluated at leading order (i.e.,
the jet mass vanishes with only one parton in a jet) and one
would prefer a NNLO result to understand scale depen-
dence (we take � ¼ pTJ

=2). Here we will simply use the

available NLO tools [23]. This approach leads to the very
similar xJ distribution displayed in Fig. 5, plotted for two
values of pTJ

(at the LHC, with
ffiffiffi
s

p ¼ 14 TeV). We are

correctly including the full NLO matrix element (not sim-
ply the singular parts), the full kinematics of the jet mass
(not just the small-angle approximation), and the effects of

FIG. 4 (color online). Distribution in xJ for a simple LL toy
model with D ¼ 1:0.
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the parton distribution functions. In this case the distribu-
tion is normalized by dividing by the Born jet cross section.
Again we see the dominant impact of the soft/collinear
singularities for small jet masses. Note also that there is
little residual dependence on the value of the jet momen-
tum and that again the distribution essentially vanishes for
xJ * 0:25, mJ=pTJ

* 0:5 ¼ D=2. The average jet mass

suggested by these results is hmJ=pTJ
i � 0:2D. Because

the jet only contains two partons at NLO, we are still
ignoring the effects of the nonzero subjet masses and the
effects of the ordering of mergings imposed by the algo-
rithm itself. For example, at this order there is no difference
between the CA and kT algorithms.

Next we consider the z and�R12 distributions for the LL
approximation where a single recombination of two (mass-
less) partons is required to reconstruct as a jet of definite
pTJ

and mass (fixed xJ). To that end we can undo one of the

integrals in Eq. (11) and consider the distributions for z and
�R12. We find for the z distribution the form

1

�

d�LL

dxJdz
� 1

2zxJ
�

�
z� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4xJ=D
2

p
2

�
�

�
1

2
� z

�
:

(12)

As expected, we see the poles in z and xJ from the soft/
collinear dynamics, but, as in Sec. II B, the constraint of
fixed xJ yields a lower limit for z. Recall that the upper
limit for z arises from its definition, again applied in the
small-angle limit. Thus the LL QCD distribution in z is
peaked at the lower limit but the characteristic turn-on
point is fixed by the kinematics, requiring the branching
at fixed xJ to be in a jet of size D. This behavior is
illustrated in Fig. 6 for various values of xJ ¼ 1=ð�2 � 1Þ
corresponding to those used in Sec. II B.

The expression for the �R12 dependence in the LL
approximation is

1

�

d�LL

dxJd�R12

� 2

�R2
12

�½�R12 � 2
ffiffiffiffiffi
xJ

p ��½D� �R12�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R2

12 � 4xJ

q
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xJ=�R

2
12

q
Þ
:

(13)

This distribution is illustrated in Fig. 7 for the same values

of xJ as in Fig. 6. As with the z distribution the kinematic
constraint of being a jet with a definite xJ yields a lower
limit, �R12 * 2

ffiffiffiffiffi
xJ

p
, along with the expected upper limit,

�R12 � D. However, for�R12 the change of variables also
introduces an (integrable) square root singularity at the
lower limit. This square root factor tends to be numerically
more important than the 1=�R2

12 factor.
3 Since this square

root singularity arises from the choice of variable (a kine-
matic effect), we will see that it is also present for heavy
particle decays, suggesting that the �R12 variable will not
be as useful as z in distinguishing QCD jets from heavy
particle decay jets.
Thus, in our toy QCD model with a single recombina-

tion, leading-logarithm dynamics and the small-angle jet
mass definition, the constraints due to fixing xJ tend to
dominate the behavior of the z and�R12 distributions, with
limited dependence on the QCD dynamics and no distinc-
tion between the CA and kT algorithms. However, this
situation changes dramatically when we consider more
realistic jets with full showering, a subject to which we
now turn.

B. Jet substructure in simulated QCD events

To obtain a more realistic understanding of the proper-
ties of QCD jet masses we now consider jet substructure
that arises in more fully simulated events. In particular, we
focus on Monte Carlo QCD jets with transverse momenta
in the range pTJ

¼ 500–700 GeV (c ¼ 1 throughout this

paper) found in matched QCD multijet samples, created as
described in the Appendix. The matching process means
that we are including, to a good approximation, the full
NLO perturbative probability for energetic, large-angle
emissions in the simulated showers, and not just the soft
and collinear terms. As suggested earlier, we anticipate two
important changes from the previous discussion. First, the
showering ensures that the daughter subjets at the last

FIG. 5 (color online). NLO distribution in xJ for kT-style QCD
jets with D ¼ 1:0,

ffiffiffi
s

p ¼ 14 TeV, and two values of pTJ
. FIG. 6. Distribution in z for LL QCD jets for D ¼ 1:0 and

various values of xJ. The curves are normalized to have unit area.

3One factor of �R12 arises from the collinear QCD dynamics
while the other comes from a change of variables. The soft QCD
singularity is contained in the denominator factor ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4xJ=�R

2
12

q
Þ ! 2z

for xJ � �R2 (equivalently, z � 1).
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recombination have nonzero masses. More importantly
and as noted in Sec. II C, the sequence of recombinations
generated by the jet algorithm tends to force the final
recombination into a particular region of phase space that
depends on the recombination metric of the algorithm. For
the CA algorithm this means that the final recombination
will tend to have a value of�R12 near the limitD, while the
kT algorithm will have a large value of z�R12pTJ

. This

issue will play an important role in explaining the observed
z and �R12 distributions.

First, consider the jet mass distributions from the simu-
lated event samples. In Fig. 8, we plot the jet mass distri-
butions for the kT and CA algorithms for all jets in the
stated pT bin (500–700 GeV). As expected, for both algo-
rithms the QCD jet mass distribution smoothly falls from a
peak only slightly displaced from zero [the remnant of the
perturbative� lnðm2Þ=m2 behavior]. There is a more rapid
cutoff for mJ > pTJ

D=2, which corresponds to the ex-

pected kinematic cutoff from the LL approximation, but
smeared by the nonzero width of the pT bin, the nonzero
subjet masses and the other small corrections to the LL

approximation. The average jet mass, hmJi � 100 GeV, is
in crude agreement with the perturbative expectation
hmJ=pTJ

i � 0:2. Note that the two algorithms now differ

somewhat in that the kT algorithm displays a slightly larger
tail at high masses. As we will see in more detail below,
this distinction arises from the difference in the metrics
leading to recombining protojets over a slightly larger
angular range in the kT algorithm. On the other hand, the
two curves are remarkably similar. Note that we have used
a logarithmic scale to ensure that the difference is apparent.
Without the enhanced number of energetic, large-angle
emissions characteristic of this matched sample, the dis-
tinction between the two algorithms is much smaller, i.e., a
typical dijet, LO Monte Carlo sample yields more similar
distributions for the two algorithms.
Other details of the QCD jet substructure are substan-

tially more sensitive to the specific algorithm than the jet
mass distribution. To illustrate this point we will discuss
the distributions of z, �R12, and the subjet masses for the
last recombination in the jet. We can understand the ob-
served behavior by combining a simple picture of the
geometry of the jet with the constraints induced on the
phase space for a recombination from the jet algorithm. In
particular, recall that the ordering of recombinations de-
fined by the jet algorithm imposes relevant boundaries on
the phase space available to the late recombinations (see
Fig. 3).
While the details of how the kT and CA algorithms

recombine protojets within a jet are different, the overall
structure of a large-pT jet is set by the shower dynamics of
QCD, i.e., the dominance of soft/collinear emissions.
Typically the jet has one (or a few) hard core(s), where a
hard core is a localized region in y�� with large energy
deposition. The core is surrounded by regions with sub-
stantially smaller energy depositions arising from the ra-
diation emitted by the energetic particles in the core (i.e.,
the shower), which tend to dominate the area of the jet. In
particular, the periphery of the jet is occupied primarily by
the particles from soft radiation, since even a wide-angle
hard parton will radiate soft gluons in its vicinity. This
simple picture leads to very different recombinations with
the kT and CA algorithms, especially the last
recombinations.
The CA algorithm orders recombinations only by angle

and ignores the pT of the protojets. This implies that the
protojets still available for the last recombination steps are
those at large angle with respect to the core of the jet.
Because the core of the jet carries large pT , as the recom-
binations proceed the directions of the protojets in the core
do not change significantly. Until the final steps, the re-
combinations involving the soft, peripheral protojets tend
to occur only locally in y�� and do not involve the
large-pT protojets in the core of the jet. Therefore, the
last recombinations defined by the CA algorithm are ex-
pected to involve two very different protojets. Typically

FIG. 8 (color online). Distribution in mJ for QCD jets with pT

between 500 and 700 GeV with D ¼ 1:0.

FIG. 7. Distribution in �R12 for LL QCD jets for D ¼ 1:0 and
various values of xJ . The curves are normalized to have unit area.
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one has large pT , carrying most of the four-momentum of
the jet, while the other has small pT and is located at the
periphery of the jet. The last recombination will tend to
exhibit large �R12, small z, large a1 (near 1), and small a2,
where the last two points follow from the small z and
correspond to the ðz;�R12Þ phase space of Fig. 2(c).

In contrast, the kT algorithm orders recombinations
according to both pT and angle. Thus the kT algorithm
tends to recombine the soft protojets on the periphery of
the jet earlier than with the CA algorithm. At the same
time, the reduced dependence on the angle in the recom-
bination metric implies the angle between protojets for the
final recombinations will be lower for kT than CA. While
there is still a tendency for the last recombination in the kT
algorithm to involve a soft protojet with the core protojet,
the soft protojet tends to be not as soft as with the CA
algorithm (i.e., the z value is larger), while the angular
separation is smaller. Since this final soft protojet in the kT
algorithm has participated in more previous recombina-
tions than in the CA case, we expect the average a2 value to

be farther from zero and the a1 value to be farther from 1.
Generally the ðz;�R12Þ phase space for the final kT recom-
bination is expected to be more like that illustrated in
Figs. 2(b) and 2(d) [coupled with the boundary in
Fig. 3(b)].
To illustrate this discussion we have plotted distributions

of z, �R12, and a1 for the last recombination in a jet for the
kT and CA algorithms in Fig. 9 for the matched QCD
sample described previously. We plot distributions with
and without a cut on the jet mass, where the cut is a narrow
window ( � 15 GeV) around the top quark mass. This cut
selects heavy QCD jets, and for the pT window of 500–
700 GeV it corresponds to a cut on xJ of 0.06–0.12. These
distributions reflect the combined influence of the QCD
shower dynamics, the restricted kinematics from being in a
jet, and the algorithm-dependent ordering effects discussed
above. Most importantly, note the very strong enhancement
at the smallest values of z for the CA algorithm in Fig. 9(a),
which persists even after the heavy jet mass cut. Note the
log scale in Fig. 9(a). While the kT result in Fig. 9(b) is still

FIG. 9 (color online). Distribution in z, �R12, and the scaled (heavier) daughter mass a1 for QCD jets, using the CA and kT
algorithms, with (dashed lines) and without (solid lines) a cut around the top quark mass. The jets have pT between 500 and 700 GeV
with D ¼ 1:0. Note the log scale for the z distribution of CA jets.
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peaked near zero when summed over all jet masses, the
enhancement is not nearly as strong. After the heavy jet
mass cut is applied, the distribution shifts to larger values
of z, with an enhancement remaining at small values. Only
in this last plot is there evidence of the lower limit on z of
order 0.1 expected from the earlier LL approximation
results.

Figure 9(c) illustrates the expected enhancement near
�R12 ¼ D ¼ 1:0 for CA. Figure 9(d) shows that kT exhib-
its a much broader distribution than CA with an enhance-
ment for small �R12 values. Once the heavy jet mass cut is
applied, both algorithms exhibit the lower kinematic cutoff
on�R12 suggested in the LL approximation results, as both
distributions shift to larger values of the angle. This shift
serves to enhance the CA peak at the upper limit and moves
the lower end enhancement in kT to substantially larger
values of �R12.

The CA algorithm bias toward large a1 is demonstrated
in Fig. 9(e). We can see that requiring a heavy jet enhances
the large-a1 peak. The kT distribution in a1, shown in
Fig. 9(f), exhibits a broad enhancement around a1 � 0:4.
This distribution is relatively unchanged after the jet mass
cut. To give some insight into the correlations between z
and �R12, in Fig. 10 we plot the distribution of both
variables simultaneously for both algorithms, with no jet
mass cut applied. The very strong enhancement at small z
and large �R12 for CA is evident in this plot. For kT, there
is still an enhancement at small z and large �R12, but there
is support over the whole range in z and �R12 with the
impact of the shaping due to the z��R12 dependence in
the metric clearly evident. Note that the kT distribution is
closer to what one would expect from QCD alone, with
enhancements at both small z and small �R12, while the
CA distribution is asymmetrically shaped away from the
QCD-like result. Finally we should recall, as indicated by
Fig. 8, that the jets found by the two algorithms tend to be
slightly different, with the kT algorithm recombining
slightly more of the original (typically soft) protojets at
the periphery and leading to slightly larger jet masses.

Because the QCD shower is present in all jets, and is
responsible for the complexity in the jet substructure, the
systematic effects discussed above will be present in all
jets. While the kinematics of a heavy particle decay is
distinct from QCD in certain respects, we will find that
these effects still present themselves in jets containing the
decay of a heavy particle. This reduces our ability to
identify jets containing a heavy particle, and will lead us
to propose a technique to reduce them. In the following
section, we study the kinematics of heavy particle decays
and discuss where these systematic effects arise.

IV. SUBSTRUCTURE OF HEAVY PARTICLE JETS

Recombination algorithms have the potential to recon-
struct the decay of a heavy particle. Ideally, the substruc-
ture of a jet may be used to identify jets coming from a
decay and reject the QCD background to those jets. In this
section, we investigate a pair of unpolarized parton-level
decays, a heavy particle decaying into two massless quarks
(a 1 ! 2 decay) and a top quark decay into three massless
quarks (a two-step decay). For each decay, we study the
available phase space in terms of the lab frame variables
�R12 and z and the shaping of kinematic distributions
imposed by the requirement that the decay be recon-
structed in a single jet. We will determine the kinematic
regime where decays are reconstructed, and contrast this
with the kinematics for a 1 ! 2 splitting in QCD.

A. 1 ! 2 decays

We begin by considering a 1 ! 2 decay with massless
daughters. An unpolarized decay has a simple phase space
in terms of the rest frame variables cos�0 and �0:

d2N0

d cos�0d�0

¼ 1

4�
: (14)

Recall from Sec. II B that cos�0 and �0 are the polar and
azimuthal angles of the heavier daughter particle in the
parent particle rest frame relative to the direction of the

FIG. 10 (color online). Combined distribution in z and �R12 for QCD jets, using the CA (left panel) and kT (right panel) algorithms,
for jets with pT between 500 and 700 GeV with D ¼ 1:0. Each bin represents a relative density, normalized to 1 for the largest bin.
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boost to the lab frame. In general, we will use N0 to label
the distribution of all decays, while N will label the dis-
tribution of decays reconstructed inside a single jet. N0 is
normalized to unity, so that for any variable set �,

Z
d�

dN0

d�
¼ 1: (15)

The distribution N is defined from N0 by selecting those
decays that fit in a single jet, so that generically

dN

d�
�

Z
d�0 dN0

d�0 �ð�0 ��Þ�ðsingle jet reconstructionÞ:
(16)

N is naturally normalized to the total fraction of recon-
structed decays. The constraints of single jet reconstruction
will depend on the decay and on the jet algorithm used, and
abstractly take the form of a set of� functions. For a 1 ! 2
decay and a recombination-type algorithm, the only con-
straint is that the daughters must be separated by an angle
less than D:

�R12 <D: (17)

Since the kinematic limits imposed by reconstruction are
sensitive to the boost � of the parent particle, we will want
to consider the quantities of interest at a variety of � values.
To illustrate this � dependence, we first find the total
fraction of all decays that are reconstructed in a single jet
for a given value of the boost. We call this fraction fRð�Þ:

fRð�Þ �
Z

d cos�0d�0

d2N0

d cos�0d�0

�ðD� �R12Þ: (18)

In Fig. 11, we plot fRð�Þ vs � for several values of D. The
reconstruction fraction rises rapidly from no reconstruction
to nearly complete reconstruction in a narrow range in �.
This indicates that �R12 is strongly dependent on � for
fixed cos�0 and �0, which we will see below. Conversely,
the minimum boost necessary for a decay to fit in a jet
depends strongly on D. The turn-on for increasing � is the

same effect as the ðz;�R12Þ phase space moving into the
allowed region below �R12 ¼ D in Fig. 2(a) as xJ is
reduced.
To better understand the effect that reconstruction has on

the phase space for decays, we would like to find the
distribution of 1 ! 2 decays in terms of lab frame varia-
bles,

d2N0

dzd�R12

: (19)

With two massless daughters,�R12 is given in terms of rest
frame variables by

�R2
12 ¼

�
tanh�1

�
2� sin�0 sin�0

sin2�0ð	2�2 þ sin2�0Þ þ 1

��
2

þ
�
tan�1

�
2	� sin�0 cos�0

sin2�0ð	2�2 þ sin2�0Þ � 1

��
2

(20)

with 	 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��2

p
. This relation is analytically nonin-

vertible, meaning we cannot write the Jacobian for the
transformation

d2N0

d cos�0d�0

! d2N0

dzd�R12

(21)

in closed form. However, �R12 has some simple limits. In
particular, when the boost � is large, to leading order in
��1,

�R12 ¼ 2

� sin�0
þOð��3Þ: (22)

This limit is only valid for sin�0 * ��1, but as we will see
this is the region of phase space where the decay will be
reconstructed in a single jet. The large-boost approxima-
tion describes the key features of the kinematics and is
useful for a simple picture of kinematic distributions when
particles are reconstructed in a single jet.

Since � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=xJ

p
, this limit is equivalent to the

small-angle limit we took in Sec. III A. [For �R2 � 1,
xJ � zð1� zÞ�R2 � 1.] We can see this in Eq. (20),
where �R � 1=�.
The value of z is also simple in the large-boost approxi-

mation. In this limit,

z ¼ 1� j cos�0j
2

þOð��2Þ: (23)

With the large-boost approximation, z and �R12 are both
independent of �0. As noted earlier both �R12 and z
depend on �0 only through terms that are suppressed by
inverse powers of � (cf. Figs. 1 and 2). In this limit we can
integrate out�0 and find the distributions in z and�R12 for
all decays. For z the distribution is simply flat:

dN0

dz
� 2�

�
1

2
� z

�
�ðzÞ: (24)

We have included the limits for clarity. For �R12, the
FIG. 11. Reconstruction fractions fRð�Þ as a function of � for
various D.
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distribution is

dN0

d�R12

� 4

�2�R2
12

�ð�R12 � 2��1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R2

12 � 4��2
q : (25)

This distribution has a lower cutoff requiring �R12 	
2��1. This is close to the true lower limit on�R12,�R12 	
2csc�1�. Note that in Eq. (25), there is an enhancement at
the lower cutoff in �R12 due to the square root singularity
arising from the change of variables, just as there was in the
QCD result in Eq. (14).

In Fig. 12, we plot the exact distribution dN0=dz, found
numerically, for several values of �. The true distribution is
qualitatively similar to the approximate one in Eq. (24),
which is flat. The peak in the distribution at small z values
comes from the reduced phase space as z ! 0, and the
peak is lower for larger boosts. In Fig. 13, we plot the exact
distribution dN0=d�R12, which is again qualitatively simi-
lar to the large-boost result. The distribution in �R12 is
localized at the lower limit, especially for larger boosts.
This provides a useful rule: the opening angle of a decay is
strongly correlated with the transverse boost of the parent
particle. Note that the relevant boost is the transverse one
because the angular measure �R is invariant under longi-
tudinal boosts (recall that in the example here, we have set
the parent particle to be transverse).

The constraint imposed by reconstruction is simple in
the large-boost approximation. In terms of sin�0, the con-
straint �R12 <D requires sin�0 > 2=�D, which excludes
the region where the approximation breaks down.
Therefore the large-boost approximation is apt for describ-
ing the kinematics of a reconstructed decay. In Fig. 14, we
plot the distribution, dN=d cos�0, where the implied sharp
cutoff is apparent [and should be compared to what we
observed in Fig. 1(a)]. This distribution is easy to under-
stand in the rest frame of the decay. When j cos�0j is close
to 1, one of the daughters is nearly collinear with the
direction of the boost to the lab frame, and the other is
nearly anticollinear. The anticollinear daughter is not suf-

ficiently boosted to have �R12 <D with the collinear
daughter, and the parent particle is not reconstructed. As
j cos�0j decreases, the two daughters can be recombined in
the same jet; this transition is rapid because the �0 depen-
dence of the kinematics is small. We now look at the
distributions of z and �R12 when we require
reconstruction.
Because z is linearly related to cos�0 at large boosts, the

distribution in z has a simple form:

dN

dz
� 2�

�
z� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4=ð�2D2Þp
2

�
�

�
1

2
� z

�
: (26)

Comparing to Eq. (24), we see that requiring reconstruc-
tion simply cuts out the region of phase space at small z.
This is confirmed in the exact distribution dN=dz, shown in
Fig. 15. The small-z decays that are not reconstructed come
from the regions of phase space with j cos�0j near 1, just as
in the previous discussion. In these decays, the backward-
going (anticollinear) daughter is boosted to have small pT

in the lab frame. Comparing to Fig. 6, the distribution in z
for QCD splittings, we see first that the cutoffs on the
distributions are similar (they are not identical because of
the LL approximation used in Fig. 6). However, the QCD

FIG. 12. The distribution of all decays in z for several values of
�.

FIG. 13. The distribution of all decays in �R12 for several
values of �.

FIG. 14. The reconstructed distribution dN=d cos�0 with D ¼
1:0 for various values of �.
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distribution has an enhancement at small-z values, due to
the QCD soft singularity, that the distribution for recon-
structed decays does not exhibit.

The distribution of reconstructed particles in the variable
�R12 is related simply to the distribution of all decays in
the same variable:

dN

d�R12

¼ dN0

d�R12

�ðD� �R12Þ; (27)

which means that the distribution dN=d�R12 is given by
Fig. 13 with a cutoff at �R12 ¼ D. Note that this distribu-
tion is very close in shape to the distribution of QCD
branchings versus �R12 displayed in Eq. (14) and Fig. 7.
This similarity arises from the fact that the most important
factor in the shape is the square root singularity, which
arises from the change of variables in both cases and hides
the underlying differences in dynamics.

B. Two-step decays

We now turn our attention to two-step decays, which
exhibit a more complex substructure. Two-step decays
offer new insights into the ordering effects of the kT and
CA algorithms, highlight the shaping effects from the
algorithm on the jet substructure, and offer a surrogate
for the cascade decays that are often featured in new
physics scenarios. Even at the parton level the choice of
jet algorithm matters in reconstructing a multistep decay;
different algorithms can give different substructure. In
studying this substructure we take the same approach as
for the 1 ! 2 decay, translating the simple kinematics of a
parton-level decay into the lab frame variables �R12 and z.

The top quark is a good example of a two-step decay,
and we focus on it in this section. We will label the top
quark decay t ! Wb, with W ! qq0. In this discussion
requiring that the top quark be reconstructed means that the
W must be recombined from q and q0 first, then merged
with the b. The observed (3-parton) ‘‘jet’’ will then have
the W as one of its daughter subjets.

For the kT algorithm, reconstructing the top quark in a
single jet imposes the following constraints on the partons:

minðpTq; pTq0 Þ�Rqq0 <minðpTq; pTbÞ�Rbq;

minðpTq; pTq0 Þ�Rqq0 <minðpTq0 ; pTbÞ�Rbq0 ;

�Rqq0 <D;

and �RbW <D: (28)

For the CA algorithm the relations are strictly in terms of
the angle:

�Rqq0 < �Rbq;

�Rqq0 < �Rbq0 ;

�Rqq0 <D;

and �RbW < D: (29)

The kinematic limits requiring the decay to be recon-
structed in a single jet are the same for the two algorithms,
but fixing the ordering of the two recombinations requires a
different restriction for each algorithm, which in turn
biases the distributions of kinematic variables.
The common requirements such that the top quark be

reconstructed in a single jet, �Rqq0 <D and �RWb < D,

are straightforward to understand in terms of the rest frame
variable cos�0, which here is the polar angle in the top
quark rest frame between the W and the boost direction to
the lab frame. For cos�0 � 1, the W has a large transverse
boost in the lab frame, so �Rqq0 <D, but the angle be-

tween the W and b will be large (as was the case for the
corresponding 1 ! 2 decay in the previous section). For
cos�0 � �1, the W transverse boost is small, and �Rqq0

will be large. Therefore, we only expect to reconstruct top
quarks in a single jet when j cos�0j is not near 1.
If the CA algorithm correctly reconstructs the top quark,

the two quarks from the W decay must be the closest pair
(in �R) of the three final-state particles. This requirement
strongly selects for decays where the W opening angle,
�Rqq0 , is smaller than the top quark opening angle, �RWb.

Therefore, only decays with a large (transverse) W boost
will be reconstructed by the CA algorithm. In terms of
cos�0, the fraction of decays that are reconstructed will
increase as we increase cos�0 toward the upper limit where
�RWb 	 D, and the reconstruction fraction will be small
for lower values of cos�0.
The kT algorithm orders recombinations by pT as well as

angle, and the set of reconstructed decays is understood
most easily by contrasting with CA. As the transverse
boost of the W decreases, on average the pT of the q and
q0 decrease while the pT of the b increases. Therefore,
while �Rqq0 is increasing, minðpTq; pTq0 Þ is decreasing,

and these competing effects suggest that kT reconstructs
decays with smaller values of cos�0 than CA, and that the
dependence on cos�0 is not as strong.

FIG. 15. The distribution of reconstructed decays in z for
several values of �.

RECOMBINATION ALGORITHMS AND JET . . . PHYSICAL REVIEW D 81, 094023 (2010)

094023-13



The effect of the CA and kT algorithms on the observed
distribution in cos�0 is shown in Fig. 16, where we plot the
distribution of cos�0 for reconstructed top quarks for both
algorithms. The top boost is fixed to � ¼ 3. We observe the
kinematic limit near cos�0 � 0:8 is common between
algorithms, and that cos�0 � �1 is not accessed by either
algorithm. As expected, the distribution for the CA algo-
rithm falls off more sharply than for kT at lower values of
cos�0.

Next, we look at distributions in z and �RWb. Just as in
the 1 ! 2 decay, we expect decays with small z not to be
correctly reconstructed. Small values of z will come when
the W or b is soft, and therefore produced very backward
going in the top rest frame. This corresponds to cos�0 �

1, and from Fig. 16 these decays are not reconstructed. In
Fig. 17, we plot the distribution in z for all decays, dN0=dz,
and the distribution for reconstructed decays, dN=dz, for a
boost of � ¼ 3.

In dN0=dz, the discontinuity at z � 0:2 arises from the
fact that the W is sometimes softer than the b, but has a
minimum pT . The extra weight in dN0=dz for z above this
value comes from the decays where theW is softer than the

b. Note that these decays are rarely reconstructed, espe-
cially for CA: the distribution dN=dz is smooth, and has
little additional support in the region where theW is softer.
This correlates with the fact that decays with negative
cos�0 values are rarely reconstructed with CA, but more
frequently with kT. The distribution dN=dz has a lower
cutoff that corresponds to the upper cutoff in Fig. 16. As the
boost � of the top increases, the cutoff at small z decreases,
since the limit in cos�0 for which �RWb > D will increase
toward 1.
The opening angle �RWb of the top quark decay also

illustrates how strongly the kinematics are shaped by the
jet algorithm. When cos�0 � �1, for sufficient boosts
�RWb is small because the W is boosted forward in the
lab frame, but these decays are not reconstructed because
the ordering of recombinations will typically be incorrect
and theW decay may not have �Rqq0 <D. For cos�0 � 1,

�RWb will exceed D and the top will not be reconstructed.
In Fig. 18, we plot the distribution dN0=d�RWb of the
angle between theW and b in all top decays for a top boost
of � ¼ 3, as well as the distribution dN=d�R12 of the
angle of the last recombination for reconstructed top
quarks with the kT and CA algorithms. Note that when
the top quark is reconstructed at the parton level, �R12 ¼
�RWb. The difference in dN=d�R12 between the kT and
CA algorithms reflects their different recombination order-
ings. Because CA orders strictly by angle, the angle �R12

tends to be larger than for kT because CA requires �R12 ¼
�RWb > �Rqq0 .

C. Hadron-level top quark jets

To this point, we have looked at parton-level kinematics
of the top decay. However, we cannot expect the jet algo-
rithm to faithfully represent the kinematics of the parton-
level top decay in jets which include the physics of show-
ering and hadronization. That is, the systematic effects of
the jet algorithm, similar to those seen in QCD jets in
Sec. III B, can be expected to appear in top quark jets as
well. The substructure of a jet that reconstructs the top

FIG. 17 (color online). dN0=dz (all decays) and dN=dz (re-
constructed decays), with � ¼ 3.
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FIG. 18 (color online). dN0=d�RWb (all decays) and
dN=d�R12 (reconstructed decays), with � ¼ 3.

FIG. 16 (color online). dN=d cos�0 vs cos�0, with � ¼ 3, for
both the kT and CA algorithms. The underlying distribution
dN0=d cos�0 ¼ 1=2 is plotted as the dotted line for reference.
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quark mass may not match onto the kinematics of that
decay. For instance, with the CA algorithm we expect
that soft recombinations will occur at the last recombina-
tion step, even for jets that contain the decay products of a
top quark. This can make the substructure look more like a
heavy QCD jet than a top quark decay, and subsequently
the jet may not be properly identified.

To demonstrate this point, in Fig. 19 we plot the distri-
bution in z for jets with mass within a window around the
top quark mass. The data represent simulated t�t events as
described in the Appendix. In this sample, the top quarks
have a pT between 500–700 GeV, so that many are ex-
pected to be reconstructed in a single jet.

The distribution for CA jets is very different from the
parton-level distribution (Fig. 17). The excess at small
values of z arises from soft recombinations in the CA
algorithm, which make the distribution similar to that for
QCD jets [Figs. 9(a) and 9(b)]. For the kT algorithm, there
are rarely soft recombinations late in the algorithm, be-
cause the metric orders according to z as well as �R.

The kT algorithm distorts the dynamics of jet substruc-
ture less than does CA, but it has a serious drawback. The
kT algorithm tends to yield a much broader mass distribu-
tion for reconstructed tops than the CA algorithm, since
soft particles that dominate the periphery of the jet are
recombined early in the algorithm. This means that soft

energy depositions in the calorimeter near the decay prod-
ucts of a top quark have a higher probability of being
included in the jet and broadening the reconstructed top
mass distribution. (This is essentially the statement that kT
jets have larger and more irregular ‘‘areas’’ than CA jets
[24].) In Fig. 20, we plot the jet mass distribution in the
neighborhood of the top mass for jets in the same t�t sample
as in Fig. 19 for both algorithms.
The top mass peak is broadened for the kT algorithm

relative to CA. From the point of view of the jet substruc-
ture, we cannot identify vertex-specific variables (such as z
and�R) that characterize this broadening, because it is due
to recombinations early in the algorithm. However, we will
find that techniques used to remove the systematic effects
of the algorithm from the substructure of jets are effective
in narrowing mass distributions.

V. IDENTIFYING RECONSTRUCTED HEAVY
PARTICLES WITH JET SUBSTRUCTURE

In the previous two sections we examined several kine-
matic distributions for QCD splittings and for heavy par-
ticle decays. We saw that while at the parton level the two
processes have distinct kinematic features, these features
are biased by the effects of the parton shower and the jet
algorithm. The algorithm attempts to undo the showering
but introduces its own biases. We would like to understand
these effects and if possible remove them.
Our parton-level studies can be briefly summarized. In

Sec. III, we used a toy model for QCD splittings in jets that
contained the dominant soft and collinear physics of QCD,
and studied the kinematics of the first splitting. In Sec. IV,
we looked at one- and two-step decays with fixed boost.
For the two-step top quark decay, requiring full reconstruc-
tion of the top (including the W as a subjet) from the three
final-state quarks imposed kinematic restrictions that de-
pended on the algorithm used. These studies led to the z
and �R12 distributions seen in Figs. 6 and 7 (QCD),
Figs. 13 and 15 (one-step decays), and Figs. 17 and 18
(two-step decays). We can see that the distributions in
�R12 are quite similar, but that QCD splittings tend to
have smaller z values than heavy particle decays for fixed
mass and pT .
Observing these parton-level differences is difficult be-

cause the QCD shower and the jet algorithm shape the jet
substructure. The ordering of recombinations for the kT
and CA algorithms imposes significant kinematic con-
straints on the phase space for the last recombinations in
a jet. This leads to kinematic distributions for the last
recombination in a jet that depend as much on the algo-
rithm as the underlying physics of the jet. For instance,
in Fig. 9, we find that the kinematics of the last recombi-
nation in QCD jets are very different between the kT and
CA algorithms. In particular, we can compare Figs. 9(a)
and 9(b), the distribution in z of the last recombination for
QCD jets, with Fig. 19, the distribution in z of the last

FIG. 19 (color online). Distribution in z for jets with the top
mass in the t�t sample. The jets have pT between 500 and
700 GeV, and D ¼ 1:0. Note the kT distribution is scaled up
by a factor of 5 to make the scales comparable.

FIG. 20 (color online). Distribution in jet mass for jets in the
neighborhood of the top mass in t�t events for the CA (solid black
line) and kT (dotted red line) algorithms.
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recombination for jets in a t�t sample that reconstruct the
top quark mass. For the kT algorithm, the differences
reflect the different physics of QCD splittings and decays.
However, the CA algorithm has shaped the distributions to
have a large enhancement at small z for both processes. We
cannot identify the physics of the jet simply from the value
of z in the last recombination for CA. For the kT algorithm,
the final recombinations better discriminate between de-
cays and QCD, but the mass resolution is poorer than for
CA (Fig. 20).

There is one more important contribution to jet sub-
structure common to QCD jets and heavy particle decays
that we have not yet discussed. This is the combined effect
of splash-in from several sources: soft radiation from other
parts of the hard scattering, the underlying event (UE, the
rest of the pp interaction), and pileup (other pp collisions
that occur in the same time bin). All of these sources add
particles to jets that are typically soft and approximately
uncorrelated. Splash-in particles will mostly be located at a
large angle to the jet core, simply because there is more
area there. How these particles affect jet substructure de-
pends on the algorithm used. We expect them to contribute
similarly to soft radiation from the QCD shower, discussed
at the ends of Secs. III and IV. For concreteness, we now
examine briefly the effect of adding UE to our Monte Carlo
events. We expect other splash-in effects to be similar.

In Fig. 21, we show the effect of adding UE on jet
masses. The effect here is simple: adding extra energy to
jets pushes the mass distribution higher. Note that for top
jets, the mass peak has also broadened, making it harder to
find the signal mass bump over the background distribu-
tion. In Fig. 22, we show how distributions in z and �R12

are affected by the UE. Because of the extra radiation at
large angles from the UE, the distribution in the angle of

the last recombination, �R12, is systematically shifted to
larger values. The UE populates the same region in the jet
as soft radiation from the hard partons, meaning the distri-
bution in z is not significantly altered by the UE.
We have seen numerous examples that the kinematics of

the jet substructure in the last recombination for CA is a
poor indicator for the physics of the jet. However, we can
characterize the aberrant substructure very simply. For the
CA algorithm, late recombinations (necessarily at large
�R) with small z are more likely to arise from systematics
effects of the algorithm than from the dynamics of the
underlying physics in the jet. For the kT algorithm, the
poor mass resolution of the jet arises from earlier recombi-
nations of soft protojets. The last recombination for kT is
representative of the physics of the jet, but the degraded
mass resolution makes it difficult to efficiently discrimi-
nate between jets reconstructing heavy particle decays and
QCD. While small-z, large-�R recombinations are not as
frequent late in the kT algorithm as in CA, they do con-
tribute the most to the poor mass resolution of kT.
As a simple example of the sensitivity of the mass to

small-z, large-�R recombinations, consider the recombi-
nation i, j ! p of two massless objects in the small-angle
approximation. The mass of the parent p is given by m2

p ¼
p2
Tp
zð1� zÞ�R2

ij, as in Eq. (9). Suppose the value of the kT
recombination metric, �ijðkTÞ ¼ pTp

z�R12, is bounded

below by a value �0 (say by previous recombinations),
and the recombination i, j ! p occurs at �ijðkTÞ ¼ �0.

Then the mass of the parent ism2
p ¼ �2

0ð1� zÞ=z, which is
maximized for small z. Therefore, at a given stage of the
algorithm, small-z recombinations have a large effect on
the mass of the jet.
When we can resolve the mass scales of a decay in a jet,

the distribution of kinematic variables matches closely

FIG. 21 (color online). Distribution in mJ with and without
underlying event for QCD and top jets, using the CA and kT
algorithms. The jets have pT between 500 and 700 GeV, and
D ¼ 1:0. The samples are described further in the Appendix.

CA, UE
CA, no UE
10x KT, UE
10x KT, no UE

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

z

fr
ac

ti
on

of
je

ts
pe

r
bi

n

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

R12

fr
ac

ti
on

of
je

ts
pe

r
bi

n

FIG. 22 (color online). Distributions in z and �R12 with and
without underlying event for QCD and top jets, using the CA and
kT algorithms. The jets have pT between 500 and 700 GeV, and
D ¼ 1:0. The samples are described further in the Appendix.

ELLIS, VERMILION, AND WALSH PHYSICAL REVIEW D 81, 094023 (2010)

094023-16



what we expect from the parton-level kinematics of the
decay. For the example of the top quark decay, if we select
jets with the top mass that have a daughter subjet with the
W mass, the kinematic distributions of z and �R12 closely
match the distributions from the parton-level decay of the
top quark. We show this in Fig. 23, where we make a top
quark ‘‘hadron-parton’’ comparison for z and �R12. The
specifics of the mass cuts are described in Sec. VII. In the
parton-level events, we simply require that the top quark
decay to three partons be fully reconstructed by the algo-
rithm in a single jet, namely, that the W is correctly
recombined first from its decay products before recombi-
nation with the b quark to make the top. The parton-level
events have the same distribution of top quark boosts as the
top jets in the hadron-level events. It is clear that simply
requiring the hadron-level jet to have the top mass, which
makes no cut on the substructure, leads to kinematic dis-
tributions in z and �R12 for CA that do not match the
parton-level distributions, although the distributions do
match quite well for the kT algorithm. The excess of
small-z recombinations for CA in the hadron-level jet
with only a jet mass cut arises from jet algorithm effects
discussed previously. After the subjet mass cut, these are
removed and the distribution of z in the jet matches the
reconstructed parton-level decay very well.

Therefore, when we can accurately reconstruct the mass
scales of a decay in a jet, the kinematics of the jet sub-
structure tend to reproduce the parton-level kinematics of
the decay. This suggests that if we can reduce systematic
effects that generate misleading substructure, we can im-
prove heavy particle identification and separation from
background. Reducing these systematic effects can also

improve the mass resolution of the jet, which will aid in
identifying a heavy particle decay reconstructed in a jet
and in rejecting the QCD background.

VI. THE PRUNING PROCEDURE

In this section we define a technique that modifies the jet
substructure to reduce the systematic effects that obscure
heavy particle reconstruction. In general, we will think of a
pruning procedure as using a criterion on kinematic vari-
ables to determine whether or not a branching is likely to
represent accurate reconstruction of a heavy particle decay.
This takes the form of a cut: if a branching does not pass a
set of cuts on kinematic variables, that recombination is
vetoed. This means that one of the two branches to be
combined (determined by some test on the kinematics) is
discarded and the recombination does not occur.
In Sec. V, we identified recombinations that are unlikely

to represent the reconstruction of a heavy particle. These
can be characterized in terms of the variables z and �R:
recombinations with large �R and small z are much more
likely to arise from systematic effects of the jet algorithm
and in QCD jets rather than heavy particle reconstruction
(compare the upper and lower figures in Fig. 23). We
expect that removing (pruning) these recombinations will
tend to improve our ability to measure jet substructure,
including subjet masses. We also expect that this procedure
will systematically shift the QCD mass distribution lower,
reducing the background in the signal mass window.
Finally this procedure is expected to reduce the impact of
uncorrelated soft radiation from the underlying event and
pileup. We therefore define the following pruning proce-
dure:
(0) Start with a jet found by any jet algorithm, and

collect the objects (such as calorimeter towers) in
the jet into a list L. Define parameters Dcut and zcut
for the pruning procedure.

(1) Rerun a jet algorithm on the list L, checking for the
following condition in each recombination i, j ! p:

z ¼ minðpTi; pTjÞ
pTp

< zcut and �Rij > Dcut:

This algorithm must be a recombination algorithm
such as the CA or kT algorithms, and should give a
‘‘useful’’ jet substructure (one where we can mean-
ingfully interpret recombinations in terms of the
physics of the jet).

(2) If the conditions in 1 are met, do not merge the two
branches 1 and 2 into p. Instead, discard the softer
branch, i.e., veto on the merging. Proceed with the
algorithm.

(3) The resulting jet is the pruned jet, and can be
compared with the jet found in step 0.

This technique is intended to be generically applicable
in heavy particle searches. It generalizes analysis tech-
niques suggested by other authors, including filtering
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FIG. 23 (color online). Distributions in z and �R12 comparing
for top quark decays at the parton level and from Monte Carlo
events. The jets have pT between 500 and 700 GeV, and have
D ¼ 1:0. The parton-level top decays have the same distribution
of boosts as the Monte Carlo top jets. Jets in the upper plots have
a mass cut on the jet; the lower plots include a subjet mass cut.
The details of these cuts are described in Sec. VII.
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[12] and top tagging [9], in that these methods also modify
the jet substructure to assist separate a particular signal
from backgrounds. In particular, the use of the variables z
and �Rij follows the use of �p and �r in [9], with the

significant difference that �p measures softness relative to

the total jet, and we define z to be a ‘‘local’’ variable that
only depends on the two protojets being recombined. A
more important distinction is that filtering and top tagging
are designed to find a specific number of subjets to map
onto a specific decay, whereas pruning is intended to be
applied to an entire jet with no bias toward a specific
substructure configuration. While we think this generality
is novel, we emphasize that pruning is an evolution from
earlier methods and relies on the same physical effects. We
have endeavored to justify our claim for generality with the
discussions in Secs. III, IV, and V, which demonstrate that
the interpretation of jet substructure is subject to generic
systematic effects that can be well characterized. Pruning
is not the only option, but offers some advantages which
we explore in further studies below.

In the analysis of pruning, we will explore the depen-
dence of the pruned jets on the value of D from the jet
algorithm.When reconstructing a boosted heavy particle in
a single jet, without pruning the reconstruction is opti-
mized if the value of D is fit to the expected opening angle
of the decay. However, this angle depends on the mass of
the particle (which is not known in a search) and its pT . We
will show that pruning reduces the sensitivity to D and
allows one to use large-D jets over a broad range in pT to
search for heavy particles.

Values for the two parameters of the pruning procedure,
zcut and Dcut, can be well motivated. In the following
studies, we will show that the results of pruning are rather
insensitive to the parameters, and that the optimal parame-
ters are similar for different searches. That is, it is not
necessary to tune the pruning procedure for individual
searches.

The parameter zcut can be chosen based on the analysis
of single-step and multistep decays in Sec. IV. Near the
limit in boost where decays are reconstructed in a single
jet, the value of z is typically large. It is only at large
boosts, where the production rate of heavy particles is
much smaller, that small values of z are allowed for re-
constructed decays (see Fig. 15). Therefore, we can choose
a value of zcut that will keep all reconstructed parton-level
decays at small boost, and only remove a small fraction of
decays at larger boosts. We expect that a zcut � 0:10will be
a reasonable compromise. Note that Fig. 23(a) indicates
that much of the soft radiation distorting the substructure
for CA jets has z & 0:02, so that at least for CA a zcut not
much bigger than this should be effective.

The parameter Dcut can be determined on a jet-by-jet
basis, allowing pruning to be more adaptive than a fixed-
parameter procedure. Dcut determines how much of the jet
substructure can be pruned, with smaller values allowing

for more pruning. Dcut should be sufficiently small so that
if a decay is ‘‘hidden’’ inside the jet substructure by late
recombinations of, say, UE particles, the substructure can
be pruned and the decay can be found. A value that is too
small, however, will result in overpruning. A natural scale
for Dcut is the opening angle of the jet. However, this is an
infrared unsafe quantity, as soft radiation can change the
opening angle. Instead, the dimensionless ratio mJ=pTJ

for

the jet is related to the opening angle: typically, �R12 �
2mJ=pTJ

. Therefore, we choose Dcut to scale with

2mJ=pTJ
. Dcut ¼ mJ=pTJ

is a reasonable starting value.

Effects of pruning

Having defined the pruning procedure, we now wish to
study its effects. In this study, we use the parameters
Dcut ¼ mJ=pTJ

for both algorithms, and zcut ¼ 0:10 for

the CA algorithm and 0.15 for the kT algorithm. We will
motivate these parameters in Sec. VIII A. First, in Fig. 24,
we reproduce the hadron-parton comparison from Fig. 23,
using pruning at both the hadron and parton level. The
parton-level pruning is implemented in the same way as
defined above, treating the three partons of the recon-
structed top quark as the jet.
It is clear by comparing Figs. 23 and 24 that pruning has

removed much of the systematic effects in the CA algo-
rithm; when only a jet mass cut is made, the distributions in
z and �R12 for pruned jets match the parton-level distri-
bution much better than unpruned jets. When both mass
and subjet mass cuts are made, pruning shows a slightly
poorer agreement to the parton-level kinematics than the
unpruned case. Note however that for pruned jets, the
efficiency of the subjet mass cut is considerably greater
since we more often identify one of the daughter subjets as
a W (see the discussion of Fig. 30 in Sec. VIII A).
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FIG. 24 (color online). Distributions in z and �R12 comparing
for top quark decays at the parton level and from Monte Carlo
events after implementing pruning. This figure uses the same
samples and cuts as Fig. 23.
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In addition to improving the kinematics of the jet sub-
structure, pruning reduces the contribution of the under-
lying event and improves the mass resolution of
reconstructed decays. In Figs. 25 and 26 we give the
mass distribution of jets with and without the UE in both
the QCD and t�t samples for the CA and kT algorithms, but
now with and without pruning. In Figs. 27 and 28 we show
the effect of UE on distributions in z and �R12, with and
without pruning.

Three distinctions between pruned and unpruned jets are
clear. First, the distributions with and without the UE are
very similar for pruned jets, while they differ noticeably for
unpruned jets. This shows that pruning has drastically

reduced the contribution of the underlying event. Second,
the mass peak of jets near the top quark mass in the t�t
sample is significantly narrowed by the introduction of
pruning (especially when the UE is included). This is
evidence of the improved mass resolution of pruning, and
will contribute to the improvement in heavy particle iden-
tification with pruning. And finally, the mass distribution of
QCD jets is pushed significantly downward by pruning.
The QCD jet mass is dominantly built from the soft, large-
angle recombinations—most recombinations are soft, and
for fixed pT , larger-angle recombinations contribute more
to the jet mass. Removing these by pruning the jets reduces
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FIG. 25. Distributions in mJ with and without underlying
event, for QCD and top jets, using the CA algorithm, with and
without pruning. The jets have pT between 500 and 700 GeV,
and D ¼ 1:0.
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FIG. 26 (color online). Distributions in mJ with and without
underlying event, for QCD and top jets, using the kT algorithm,
with and without pruning. The jets have pT between 500 and
700 GeV, and D ¼ 1:0.
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FIG. 28 (color online). Distribution in �R12 with and without
underlying event, for QCD and top jets, using the CA and kT
algorithms, with and without pruning. The jets have pT between
500 and 700 GeV, and D ¼ 1:0.
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FIG. 27 (color online). Distribution in z with and without
underlying event, for QCD and top jets, using the CA and kT
algorithms, with and without pruning. The legends for plots (c)
and (d) correspond to (a) and (b), respectively. The jets have pT

between 500 and 700 GeV, and D ¼ 1:0.
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the QCD mass distribution in the large-mass range and will
contribute to the reduction of the QCD background.

We move on to examine pruning through a set of studies
using Monte Carlo simulated events. We will investigate
the parameter dependence of pruning, motivating the pa-
rameters used above. We will extensively study both top
and W reconstruction with pruning, and quantify the im-
provements from pruning in terms of basic statistical mea-
sures. These studies will provide evidence of the
insensitivity of pruning to the value of D in the jet
algorithm.

VII. MONTE CARLO STUDIES

A. Study layout

The parameter space for questions about pruning proce-
dures is very large. We will not be able to answer all
possible questions in this paper, but we will attempt to
answer the most important. We useMonte Carlo samples to
studyW reconstruction and the rejection ofW þ jets back-
grounds, as well as top quark reconstruction and the re-
jection of QCD multijet backgrounds. To test the
usefulness of pruning across a range of jet m=pT , and
hence the heavy particle boost, we study both signals in
four pT bins. We will also be able to compare a signal with
a single mass scale (the W) to one with two (the top). The
details of the Monte Carlo samples and their generation are
described in the Appendix.

In the following sections, we define a particular method
to identify the heavy particles using jet substructure, and
examine pruning in this context. We are more concerned
with the improvements provided by pruning than its abso-
lute performance. Therefore, we compare pruning to an
analysis procedure where the jets are left unpruned. This
comparison removes dependence on quantities that have
large uncertainties, such as signal and background cross
sections, or are not specified, such as the integrated lumi-
nosity. Instead, the performance of pruning is quantified in
terms of how much better pruning resolves the physically
relevant substructure of the jet and separates signal and
background processes versus using the substructure from
unpruned jets.

Additionally, we test the performance of pruning as
parameters of the jet algorithm and the pruning procedure
are varied, includingD. We expect theD dependence to be
closely correlated with the jet pT , as it is a direct measure
of the boost of the heavy particle. We aim to draw some
basic conclusions about how pruning should be applied in a
search.

B. Measures used to quantify pruning

Mass variables are by far the strongest discriminator
between QCD jets and jets reconstructing heavy particle
decays. QCD jets have a smooth mass distribution set by
the jet pT (see Sec. III), while a decaying particle can have

multiple intrinsic mass scales. We define simple criteria to
identify a jet as coming from a top quark: if the jet mass is
in the top mass window and one of the two subjets has a
mass in theW mass window, then we tag the jet as a top jet.
The top and W mass windows are defined by fitting the
relevant mass peaks of the signal sample, which we de-
scribe in detail below. The W study proceeds analogously
with only a jet mass cut. In a real search for a particle of
unknown mass, one obviously cannot fit a ‘‘signal sam-
ple.’’ However, we employ this method to demonstrate two
effects of pruning: sharpening the signal mass peak and
reducing the QCD background in this region. These two
effects will determine how well pruning improves our
ability to find bumps in jet mass distributions.
We use a common set of variables to measure the

difference between a jet algorithm and its pruned version.
Let NSðAÞ be the number of jets in the signal sample
identified as a reconstructed heavy particle for algorithm
A, and NBðAÞ the analogous number of jets in the back-
ground sample. Use pA to denote the pruning procedure
run on jets found with algorithm A. Then the variables we
use are


 ¼ NSðpAÞ
NSðAÞ ;

R ¼ NSðpAÞ=NBðpAÞ
NSðAÞ=NBðAÞ ; and S ¼ NSðpAÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBðpAÞ

p
NSðAÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NBðAÞ

p :

(30)


 is the relative efficiency of pruning in identifying heavy
particles in the signal sample, while R and S are the relative
signal-to-background and signal-to-noise ratios for the
pruned and unpruned algorithms. We also evaluate the
relative mass window widths, which we label wrel. For
the W study, this is the ratio of the W mass window width
for pruning relative to not pruning; for the top study it is the
ratio in the top mass window width. Note that in the top
study, aW subjet mass cut is also used. A value of wrel < 1
means pruning has improved the mass resolution of the
jets. These ratios are independent of the integrated lumi-
nosity and the total cross sections, and are representative of
the improvements that pruning would provide in an
analysis.
To determine the mass window for a particular signal

sample, we fit the mass peak to determine the window
width. In these studies, a skewed Breit-Wigner is sufficient
to fit the peak, with a power law continuum background.
These functions used to fit mass peaks are

peak: fðmÞ ¼ M2�2

ðm2 �M2Þ2 þM2�2
ðaþ bðm�MÞÞ;

continuum: gðmÞ ¼ c

m
þ d

m2
: (31)

M is the location of the mass peak; � is the width of the
peak. A sample fit is shown in Fig. 29. The mass window
½M� �;Mþ �� is found to be nearly optimal, given this
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functional form, in measures similar to 
, R, and S: the area
in the window (� 
), the ratio of area to the window width
(� R), and the ratio of area to the square root of the width
(� S).

VIII. STUDY RESULTS

In this section we present results comparing analyses
with pruned jets to unpruned jets. We demonstrate two
main points: first, pruning is useful and broadly applicable,
and second, its parameters do not need fine-tuning for it to
provide significant improvement.

The natural starting point is to investigate the parameters
particular to the pruning procedure,Dcut and zcut. The most
important question is whether these need to be tuned to the
signal. To answer this, in Sec. VIII A we study the per-
formance of pruning as we vary its parameters for two
different signals across the full pT range for the samples.
We find that optimal choices of zcut and Dcut vary slowly
with m=pT , but that our choice of parameters is not far
from optimal in all cases.

After fixing zcut and Dcut, we consider the effect of
varying D in the jet algorithm. In Sec. VIII B we study
pruning with D fixed at 1.0 over all pT bins. This type of
analysis is like a search where the mass (and hence m=pT)
of the new heavy particle is not known. For comparison, in
Sec. VIII C we redo the analysis, but with D adjusted for
each bin to fit the expected angular size of the decay in that
bin. In this case, the unpruned jet algorithm performs better
than with a constantD, as expected, but pruning still shows
improvements in findingW’s and tops. In all cases, pruned
jets are a better way to identify heavy particles than un-
pruned. In Sec. VIII D we compare the results of
Secs. VIII B and VIII C. Significantly, if jets are pruned,
we find that it does not make much difference what the
initial D value was, indicating that searches with large
fixed D do not suffer in power compared to searches with
D tuned to known or suspected m=pT .

In Sec. VIII E we give some absolute measures of top
finding with pruned jets for comparison to other methods.

In Sec. VIII F we directly compare the CA and kT algo-
rithms, before and after pruning. Finally, in Sec. VIII G we
consider the effect of a crude detector model where we
smear the energies of all particles in the calorimeter. We
find that the performances of the pruned and unpruned
algorithms are degraded, but that pruning still provides
significant improvement.

A. Dependence on pruning parameters

The pruning procedure we have defined has two free
parameters (in addition to those of the jet algorithms
themselves). In introducing the procedure, we argued that
zcut ¼ 0:10 and Dcut ¼ mJ=pTJ

were sensible choices. We

now investigate how pruning performs when each of these
parameters is varied while the other is held fixed, for both
(W and top) signals and across the four pT bins for each
signal.
We will look at the values of the metrics wrel, 
, R, and S

defined in Sec. VII B. The priority in choosing particular
values for zcut and Dcut should be in optimizing S, as it is
the criterion for discovery. That being said, 
 and R are still
important measures as they determine the total size of the
signal and remaining fraction relative to the background.
We also evaluate wrel because the mass window width
drives the other three metrics. As the relative width de-
creases, in general the measures R and S will increase
because the heavy particle is better resolved and more of
the background is rejected, but 
 will tend to decrease
simply because the narrower width selects fewer signal
jets. 
 can, however, increase with decreasing mass win-
dow width if enough high-mass signal jets are being pruned
into the mass window.
In Fig. 30, we show all four metrics for top and W jets,

for both CA and kT jets. Dcut is set to mJ=pTJ
throughout,

and zcut is varied in [0, 0.25]. zcut ¼ 0 represents no prun-
ing and we can see that all metrics are 1 here. With
increasing pruning, the mass window width initially de-
creases rapidly, then levels out. In all but the smallest pT

bin, the relative signal efficiency 
 increases as the width
narrows, suggesting that signal jets that had ‘‘vacuumed
up’’ too much UE or soft radiation are being pruned back
into the mass window. Note that for the top quark sample
with the kT algorithm, 
 merely flattens out for a range in
zcut, and does not increase as it does for the other samples.
Once the window stops shrinking significantly (around
zcut ¼ 0:05), the relative signal efficiency starts decreas-
ing; now the dominant effect is overpruning signal jets out
of the mass window. Note, however, that even though the
relative signal efficiency is decreasing, the relative signal-
to-background ratio R is increasing over the full range. So
even as signal jets are being removed from the mass
window, background jets are being removed even faster.
If we look at signal-to-noise, S, there appears to be a broad
optimal range in zcut that depends somewhat on the signal,
on the pT bin, and on the jet algorithm.
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FIG. 29 (color online). A sample fit showing the jet mass
distribution (black histogram) and sample fit (blue curve) for
CA jets from t�t events.
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There are two important lessons to be learned from these
plots. First, more pruning is required for kT jets than for CA
to achieve similar results. The right two columns (kT) are
similar to the left two (CA) except that features are shifted
out in zcut. Second, the peak in S does not depend strongly
on the signal or the pT , in the three largest pT bins. The
dependence on S in the smallest pT bin, however, is differ-
ent from the others due to threshold effects of the heavy
particle being reconstructed in a single jet. In this bin, the
boosts of the W’s or tops are small enough that many
decays are just at the threshold for being reconstructed.
Decays at the reconstruction threshold typically have poor
mass resolution, and cutting more aggressively on z re-
duces these threshold effects and significantly decreases
the background, leading to an increase in S over the whole
range in zcut. For CA, our ‘‘reasonable choice’’ of zcut of
0.10 looks close to optimal for the upper three bins, and not
far off for the smallest. For kT, a larger zcut is needed; 0.15
is close to optimal.

Additionally, these plots offer an interesting perspective
on the role of z in jet substructure. The t�t sample for the CA
algorithm is the most instructive. In this case, small values
of zcut lead to dramatically increased efficiency for finding
top jets in the larger pT bins. This is due to the improved
ability after pruning to find theW as a subjet of the top. At
large pT with a fixedD ¼ 1:0, the opening angle of the top
quark decay is much smaller than D. This means that the
top quark decay is very localized in the jet, and much of the

jet area includes soft radiation. For the CA algorithm,
which recombines solely by the angle between protojets,
this tends to delay recombining the soft peripheral radia-
tion until the end of the algorithm. The result is substruc-
ture with small z at the last recombination that is not
representative of the top quark decay—neither daughter
protojet of the top has theW mass. As an illustration of this
point, in Fig. 31 we plot the distribution of z for unpruned
jets in the top mass range for the CA algorithm in the
largest and smallest pT bins. Note that in the largest pT bin,
where the top quark decay is highly localized in the jet and
the decay angle is much less thanD, there is a substantially
increased fraction of jets with a small value of z. This does
not occur in the smallest pT bin, where most of the recon-
structed tops are at threshold for being just inside the jet.
When pruning is implemented, however, much of this soft
radiation is removed. In Fig. 32, we plot the same distri-
butions as in Fig. 31, but for pruned jets. In this case, no jets
with the top mass have small z, since pruning has removed
those recombinations. This leads to a highly enhanced
efficiency to resolve the W subjet and identify the jet and
a top jet. In Sec. VIII B, we will study pruning when the
value of D is matched to the average angle of the heavy
particle decay, and we will see that the performance of the
unpruned CA algorithm improves.
By contrast, this situation does not occur for the kT

algorithm. Even when the value of D is mismatched with
the top quark decay angle, the soft radiation on the periph-
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FIG. 30. Relative statistical measures wrel, 
, R, and S vs zcut forW’s and tops, using CA and kT jets. Four pT bins are shown for each
sample. Statistical errors (not shown) are Oð1%Þ for wrel and 
, and Oð10%Þ for R and S.
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ery of the jet is recombined early in the kT algorithm
because of the pT weighting in the recombination metric.
Therefore, there is no increase in efficiency with increasing
zcut for large pT , and the decrease in 
 comes from the
narrower width of the top and W mass distributions. The
small variation in the measures R and S for the kT algo-
rithm at small zcut is evidence of the fact that kT tends to
have many fewer small-z recombinations at the end of the
algorithm, and supports the larger value of zcut ¼ 0:15 for
the kT algorithm that we will use in the remainder of the
study.

We now fix zcut to study the dependence onDcut. For the
CA algorithm we choose zcut ¼ 0:1, and for kT we choose
0.15. In Fig. 33, we plot wrel, 
, R, and S asDcut is varied in
½0; 5mJ=pTJ

�. While zcut sets the minimum pT asymmetry

that recombinations can have,Dcut sets the minimum open-
ing angle for recombinations that can be pruned. We can
think of Dcut as determining which recombinations can be
pruned, and zcut as determining whether or not that pruning
takes place. This difference is clearer when we consider
two limiting values of Dcut and their impact on the pruned
jet substructure.

As Dcut grows past 2mJ=pTJ
, any recombination must

have a large opening angle between the daughters to be
pruned. Note that the limit Dcut ! 1 is the limit of no
pruning. For both the CA and kT algorithms, in this limit
only very late recombinations in the algorithm can be
pruned (if the jet can be pruned at all). In this limit, we

expect the statistical measures to tend to one as the amount
of pruning decreases.
The second limit is Dcut ! 0. In this limit any recom-

bination can be pruned, since the minimum opening angle
needed is very small. As Dcut decreases toward zero, more
of the jet substructure can be pruned. In particular, earlier
recombinations—those with smaller opening angle on av-
erage—can be pruned as Dcut decreases. In general, these
early recombinations are associated with the QCD shower,
and pruning them can degrade the mass resolution of the jet
because too much radiation is being removed. Therefore,
we expect the performance of pruning to be poor in this
region.
Both of these limits are present in Fig. 33, and our

expectations about these limits are correct. It is in the
intermediate region, where Dcut � mJ=pTJ

, that the per-

formance of pruning is optimal, with a maximum in S that
is not very sensitive to the pT bin, sample, or algorithm.
This value of Dcut ¼ mJ=pTJ

is sensible when we recog-

nize that the average opening angle of the jet is approxi-
mately 2mJ=pTJ

, and half this value allows for pruning of

late recombinations but not the soft, small-angle recombi-
nations associated with the QCD shower.
For the remainder of the study, we fix the pruning

parameters zcut ¼ 0:1 for the CA algorithm and zcut ¼
0:15 for the kT algorithm, as well as Dcut ¼ mJ=pTJ

for

both algorithms. With these parameters fixed, we move on
to discuss more interesting tests of the pruning procedure.

B. Top and W identification with constant D

In a search for heavy particles decaying into jets, it may
be unfeasible to divide a sample into pT bins and use a
tailored jet algorithm to look for local excesses in the jet
mass distribution in each pT bin. (A ‘‘variable-R’’ method
for avoiding pT binning, which we do not consider here,
has recently been suggested [25]. This still requires know-
ing or guessing the mass of the new particle, since it is
m=pT that determines the relevant angular size.) For in-
stance, the appropriate angular scale may be unknown
because the mass of the heavy particle is not known or
the production mechanism is not well understood (so that
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FIG. 32 (color online). Distribution in z for pruned CA jets in
the top mass window for two pT bins, using zcut ¼ 0:10.
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FIG. 31. Distribution in z for unpruned CA jets in the top mass window for two pT bins. The small pT bin distribution (left panel) has
only a small enhancement of entries at small z, while the large pT bin distribution (right panel) is dominated by small z.
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are shown.
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the spectrum of heavy particle boosts is not known). In this
case, a large-D jet algorithm may be used to search for
heavy particles reconstructed in single jets. To mimic such
an analysis, and provide a reference point for further tests
of pruning, we find our statistical measures for W and top
quark jets with a fixed D of 1.0.

In Fig. 34 we plot the values for wrel, 
, R, and S versus
pT bin for W’s and tops, using the CA and kT algorithms.
Pruning improves W and top finding for both algorithms,
with substantial improvements for large pT . The measure S
in the smallest pT bins ranges from 30%–40%, growing to
values between 100%–600% in the largest pT bins. At
large pT in the top quark study, the improvement in
signal-to-noise for the CA algorithm is larger than for the

kT algorithm, as is the relative efficiency to identify tops.
This arises because the CA algorithm is poor at recon-
structing the W as a subjet of the top jet at large pT when
the value of D is not matched to the opening angle of the
decay. We will investigate this case further in the rest of the
analysis.

C. Top identification with variable D

For an analysis where the heavy particle mass is known,
the jet algorithm can be tailored to the jet pT . The D value
can be chosen using the relation

D ¼ min

�
1:0; 2

m

pT

�
; (32)

wherem is the heavy particle mass and pT is the transverse
momentum of the jet. We take 1.0 to be the maximum
allowed value of D. The D values we use are given in
Table I. In Fig. 35, we plot wrel, 
, R, and S for jets with
these D values used for each pT bin. Note that Eq. (32)
neglects the differences between algorithms, which depend
on the particular decay. As an example of the fidelity of this
relation forD, recall Fig. 18, which plotted the distribution
in�R for reconstructed parton-level top quark decays with
a top boost of � ¼ 3. Equation (32) suggests the valueD ¼
0:7, while the means of the CA and kT distributions for the
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FIG. 35. Relative statistical measures wrel, 
, R, and S vs pT for W’s and tops, using CA and kT jets. Instead of a fixed D ¼ 1:0, a
tuned D is used for each pT bin (see Table I). Statistical errors are shown.

TABLE I. ‘‘Tuned’’ D values for W and top pT bins. The
fixed-D analysis used D ¼ 1:0, so the smallest bin does not
change.

W
pT (GeV) 125–200 200–275 275–350 350–425

tuned D 1.0 0.8 0.6 0.4

Top

pT (GeV) 200–500 500–700 700–900 900–1100

tuned D 1.0 0.7 0.5 0.4
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reconstructed parton-level decay are 0.75 and 0.65, respec-
tively. Because the distribution in opening angles of the
reconstructed decay is broad, by using a smaller, fixed D
some decays will not be reconstructed by the jet algorithm.

The difference between the case of constant D ¼ 1:0
and variable D is readily apparent. When the D value is
matched to the expected opening angle of the decay, the
improvements in pruning are flatter over the whole range in
pT , and generally decreasing toward high pT . The de-
creased efficiency for pruning, especially for the kT algo-
rithm, is outweighed by the increases in R and S over the
whole range in pT .

D. Comparing pruning with different D values

In the previous two sections we saw that an unpruned
analysis performs much better when D is tuned to the
m=pT of the signal. We now consider whether this is true
of a pruned analysis.

In each pT bin, we can compare the results of pruned jets
with D ¼ 1:0 with pruned jets using a value of D fit to the
expected size of the decay. Because the naive expectation
is that the tuned value of D will yield better separation
from background, we find the improvements in pruning
when D is tuned, relative to pruning with a fixed D of 1.0.
Analogous metrics, wD, 
D, RD, and SD, are used, but now
they compare the results from pruning with the tuned D

value to the results from pruning with D ¼ 1:0. For in-
stance,

RD � S=B from pruning with tuned D

S=B from pruning with D ¼ 1:0
: (33)

Note that xD > 1 indicates that tuning D yields an im-
provement. The values of these four measures are shown in
Fig. 36 over the range of pT . Note that since the tuned
value of D in the smallest pT bin is 1.0, the comparison
there is trivial and so is not shown.
These results show only small improvements in SD, with

the statistical error bars at most data points including the
value SD ¼ 1. They indicate that the results after pruning
are roughly independent of the value of D used in the jet
algorithm, as long as that D is large enough to fit the
expected size of the decay in a single jet. From the point
of view of heavy particle searches, we can conclude that
pruning removes much of the D dependence of the jet
algorithm in the search.

E. Absolute measures of pruning

So far, we have only considered measures of pruning
relative to a similar analysis without pruning, because this
factors out much of the dependence on details of the
samples. However, several recent studies report absolute
performance metrics for heavy particle identification, so
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D, RD, and SD vs pT forW’s and tops, using CA and kT jets. The measures now compare
pruning with a tuned D value in each pT bin to pruning with a fixed D. Statistical errors are shown.
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we examine similar measures here for completeness. In
addition, we directly compare the CA and kT algorithms,
with and without pruning.

As can be seen from the plots of wrel in previous sec-
tions, pruning reduces the width of the mass distribution
for heavy particles. In Fig. 37, we plot the absolute widths
of the fitted mass distributions for both the top andW in the
t�t sample and the W in the WW sample, over all pT bins.
We plot this width for the pruned and unpruned versions of
the CA and kT algorithms.

Note that the heavy particle identification method we
use in this work selects jets within a range of width 2�,
with � coming from a fit to the signal sample. This gives
rise to a mass range cut that is typically much narrower
than fixed width ranges used in other studies, and hence the
absolute efficiency to identify heavy particles is lower.

In Figs. 38(a) and 38(b), we plot the absolute efficiency
to identify tops andW’s in the two signal samples for both
algorithms, with and without pruning. For the top sample,
this efficiency 
abs is the ratio


abs � # of top jets in the signal sample

# of parton-level tops in the pT range
(34)

for each pT bin, with 
abs defined analogously for the W
sample. Because the substructure of the W decay is much
simpler than the top decay, with no secondary mass cut, the
absolute identification efficiencies are similar between all
algorithms.

The efficiency to find top quarks is only meaningful
when compared to the fake rate for QCD jets to be mis-
identified as a top quark. We define this fake rate as


fake � # of fake top jets in the background sample

# of unpruned jets in the pT range

(35)

for each pT bin, and analogously for the W sample. In
Figs. 38(c) and 38(d), we plot 
fake for tops and W’s in the
two background samples for both algorithms, with and
without pruning. The fake rate is significantly reduced
for pruned jets compared to unpruned jets, for both the
top and W studies. The decrease in absolute efficiency
arising from using a narrow mass window is compensated
by a correspondingly small fake rate for QCD jets.
For top quarks, the efficiencies shown in Fig. 38 can be

compared with those given in Table 5 of [26] for several
other top-finding methods. Our highest pT bin is relevant
for the comparison. More than a few words of caution are
in order, however. Unlike the pruning-to-not-pruning com-
parisons we have presented so far, comparisons between
methods using absolute efficiencies will depend on the
details of the signal and background samples, as well as
the details of the various cuts included in each analysis. For
example, the cuts we have used in this analysis are nar-
rower than fixed mass window cuts used in other top-
finding algorithms, and hence our top identification effi-
ciency and background fake rate are both lower than
described in other methods. We intend to perform a more
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thorough comparison between different substructure ap-
proaches in a future work.

F. Algorithm comparison

Throughout this paper, we have studied how pruning
compares to not pruning for the CA and kT algorithms.
However, it is also of interest to study how the CA and kT
algorithms compare, with and without pruning. To do this,
we use statistical measureswA, 
A, RA, and SA analogous to
wrel, 
, R, and S. For instance,

RA � S=B from the CA algorithm with D ¼ 1:0

S=B from the kT algorithm with D ¼ 1:0
: (36)

We will change the subscript to pA to compare the pruned
versions of the algorithms, e.g.,

RpA � S=B from pruned CA with D ¼ 1:0

S=B from pruned kT with D ¼ 1:0
: (37)

In Fig. 39, we plot the measures comparing CA to kT and
pruned CA to pruned kT for both the WW and t�t samples.

These comparisons illustrate many of the effects that we
have observed throughout this paper. For the unpruned
algorithm comparison, CA tends to have a much lower
efficiency to identify tops than kT. As pT increases, CA
performs more poorly relative to kT, with the efficiency
decreasing significantly. This arises because the CA has a
decreasing efficiency to identify the W at high pT , when
the top quark becomes more localized in the fixed D jet.
Pruning corrects for this, though the performance of CA
relative to kT still decreases at high pT .

TheWW sample is instructive because it lets us compare
the effectiveness of pruning between CA and kT across a
wide range in pT . For the unpruned algorithms, the per-
formance of CA relative to kT is fairly consistent over all
pT , reflecting the fact that W identification is simpler than
top identification, with accurate mass reconstruction the
only requirement. However, when the jets are pruned, the
performance of pruned CA relative to pruned kT improves
in the smallest pT bin and worsens in the largest pT bin, as
compared to the performance of CAversus kT for unpruned
jets. This skewing indicates that pruning is more effective
for CA than kT at small pT , where threshold effects are
important, and more effective for kT than CA at large pT .

G. Detector effects

So far, no detector simulation has been applied to our
events aside from clustering particles into massless calo-
rimeter cells. We now consider a technique that approx-
imates the impact that detector resolution has on the
effectiveness of pruning. We modify our top and W jet
analyses by smearing the energy E of each calorimeter cell
with a factor sampled from a Gaussian distribution with
mean E and standard deviation � given by

�ðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Eþ b2 þ c2E2

p
: (38)

We consider a parameter set motivated by the expected
ATLAS hadronic calorimeter resolution [27], fa; b; cg ¼
f0:65; 0:5; 0:03g. One obvious effect of the detector smear-
ing is degraded mass resolution. In Fig. 40, we show this
effect by plotting the jet mass distribution for the t�t sample

200 500 500 700 700 900 900 1100
0.00

0.05

0.10

0.15

0.20

pT bin GeV
ab

s

pCA
CA
pkT
kT

125 200 200 275 275 350 350 425
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pT bin GeV

ab
s

pCA
CA
pkT
kT 5

200 500 500 700 700 900 900 1100
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

pT bin GeV

fa
ke

125 200 200 275 275 350 350 425
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

pT bin GeV

fa
ke

FIG. 38 (color online). 
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fake vs pT bin, for the CA and kT algorithms with and without pruning, usingD ¼ 1:0. A ‘‘p’’ before
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FIG. 40 (color online). Distribution in jet mass for t�t events, with (dashed line) and without (solid line) energy smearing. The jets
have pT of 200–500 GeV and D ¼ 1:0, and there is no pruning.
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FIG. 39. Relative statistical measures comparing CA to kT jets and pruned CA to pruned kT jets vs pT for W’s and tops, using
D ¼ 1:0. Statistical errors are shown.
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in the first pT bin. Even after smearing, however, pruning
improves the jet mass resolution. In Fig. 41, we plot the
pruned and unpruned jet mass distributions for the t�t
sample in the first pT bin. Note that because the QCD jet
mass distribution is smooth, only the overall size of the
sample in the mass window changes, so we do not plot
these distributions.

In Fig. 42, we repeat the basic analysis of Sec. VIII B,
applying the detector smearing described above. This fig-
ure can be compared to Fig. 34 from the previous analysis,
which plots the same measures when no energy smearing is
used. The improvements are very similar to those for
unsmeared jets, good evidence that pruning may retain
its utility in a more realistic detector simulation or in real
data.

IX. CONCLUSIONS AND FUTURE PROSPECTS

In this work, we have demonstrated that recombination
jet algorithms shape the substructure of heavy particles
reconstructed in single jets. We have identified regions in
the variables z and �R where individual recombinations
are unlikely to represent the kinematics of a reconstructed
heavy particle. Specifically, soft, large-angle recombina-
tions are unlikely to arise from the accurate reconstruction
of a heavy particle decay, and are likely to come from QCD

jets, uncorrelated radiation, or systematic effects of the jet
algorithm. For the CA algorithm, we have demonstrated
that these soft, large-angle recombinations are a key sys-
tematic effect that shapes the substructure of the jet, in
particular, the final recombinations.
We have presented a procedure, called pruning, that

eliminates soft, large-angle recombinations from the sub-
structure of the jet. Using hadronically decaying top quarks
andW bosons as test cases, we have demonstrated that the
pruning procedure improves the separation between heavy
particle decays and a QCD multijet background. We have
motivated the parameters of the pruning procedure and
demonstrated that they roughly optimize the improvements
from pruning in our study for both top quarks and W
bosons.
Our studies on pruning have demonstrated many posi-

tive results of the procedure. In a heavy particle search, the
jet is sensitive to the parameter D, and if the value of D is
not well matched to the decay of a heavy particle then the
ability to identify that particle in single jets is greatly
reduced. Our results indicate that pruning removes much
of the jet algorithm’s dependence on D. Pruning shows
improvements even when D is adjusted to fit the expected
decay of the heavy particle. We have demonstrated that
pruning largely removes the effects of the underlying
event, as the underlying event mainly contributes soft,
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, R, and S vs pT for W’s and tops, using CA and kT jets. Calorimeter cell energies are
smeared as described in the text. Statistical errors are shown.
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uncorrelated radiation that can be pruned away.
Additionally, we have shown that the results of pruning
are robust to a basic energy smearing applied to the calo-
rimeter cells used to seed the jet algorithm. Finally, we
have quantified absolute measures of the pruning proce-
dure that can be used to compare to other jet substructure
methods.

It should be reiterated that pruning systematizes meth-
ods that have been proposed by other authors for specific
searches. Pruning should be applicable to a wide range of
searches, and is intended to be a generic jet analysis tool.
We have detailed the ideas behind why pruning works and
why it should be used, and presented an in-depth discus-
sion of many of the physics issues arising when studying
jet substructure.

Future prospects

The conclusions in this paper, like those for any analysis
technique not demonstrated on real data, must be taken
cautiously. This is especially true for studies like this one
on jet substructure, where a majority of the work has been
in exploring techniques that may—or may not—actually
be useful in an experiment. However, new techniques like
jet substructure offer great promise. All studies thus far
indicate that jet substructure, and in general a more inno-
vative approach to jets, will be a useful tool for under-
standing the physics in events with jets at collider
experiments.

The most obvious and immediate application of pruning,
and jet substructure tools in general, is in rediscovery of the
standard model at the LHC. As the LHC collects data from
high-energy collisions, there will be an abundant sample of
high-pT top quarks, and W and Z bosons with fully had-
ronic decays. As these channels are observed using stan-
dard analyses, jet substructure techniques can be applied
and tested. These channels can also serve as key calibration
tools for jet substructure methods applied in the search for
new physics.

From the theoretical side, improvements in jet-based
analyses can come from a variety of sources. As calcula-
tions in perturbative QCD progress, they can be used to
improve predictions for jet-based observables in QCD.
Improved Monte Carlo tools, such as the continued imple-
mentation of next-to-leading order matrix elements and
better parton showers, will lead to more accurate studies
and a better understanding of jet physics. Additionally, the
framework of soft-collinear effective theory (SCET) [28–
32] can improve the understanding of QCD jets. As SCET
is adapted to describe a wider variety of event topologies
and realistic jet algorithms are implemented in the effec-
tive theory, it can be used to calculate resummed predic-
tions [33–35] for jet-based observables and accurately
describe processes that are difficult to access with fixed-
order perturbative QCD. Jets will likely play a central role
in new physics searches at the LHC, and a better under-

standing of jets and jet substructure can aid in the discovery
process.
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APPENDIX: COMPUTATIONAL DETAILS

We give a brief summary of the computational tools
employed to do the studies in this paper. We generate
LHC (14 TeV) events using MADGRAPH/MADEVENT

V4.4.21 [36] interfaced with PYTHIA V6.4 [37]. We employ

MLM-style matching, implemented in MADGRAPH (see,
e.g., [38]), on the backgrounds. We have checked that
our matching parameters are reasonable using the tool
MATCHCHECKER [39]. We use the DWT tune [40] in

PYTHIA to give a ‘‘noisy’’ underlying event (UE). For

the hadron-level studies in Secs. III and IV, we exclude
the underlying event by setting the PYTHIA parameter MSTP

(81) to zero, turning off multiple interactions. The UE

comparisons in Sec. V compare samples with this parame-
ter set at 0 or 1. No detector simulation is performed so we
can isolate the ‘‘best case’’ effects of our method. In
Sec. VIII G, we examine the effects of Gaussian smearing
on the energies of final-state particles from PYTHIA to get a
sense for how much the results may change with a detector.
For the W study, the signal sample is WþW� pair

production, with exactly one W required to decay leptoni-
cally. The background is a matched sample of aW and one
or two light partons (gluons and the four lightest quarks)
before showering. These partons must be in the central
region, j�j< 2:5. � is the pseudorapidity, � �
lnðcotð�b=2ÞÞ, with �b the polar angle with respect to the
beam direction (� ¼ y for massless particles). Signal and
background samples are divided into four pT bins: [125,
200], [200, 275], [275, 350], and [350, 425] (all in GeV).
Each bin is defined by a pT cut that is applied to single jets
in the analysis. These bins confine theW boost to a narrow
range and allow us to study the performance of pruning as
the jet pT (or W boost) varies.
For each pT bin ½pmin

T ; pmax
T �, both samples are generated

with a pT cut on the leptonicW of pmin
T � 25 GeV. For the
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background, we set the matching scales ðQME
cut ; QmatchÞ to be

(10, 15) GeV in all four bins.
For the top quark reconstruction study, the signal sample

is t�t production with fully hadronic decays. The back-
ground is a matched sample of QCD multijet production
with two, three, or four light partons, with the same cut on
parton centrality as in the W study. Samples are again
divided into four pT bins: [200, 500], [500, 700], [700,
900], and [900, 1100] (all in GeV).

We generate signal and background samples with a
parton-level hT cut for generation efficiency, where hT is
the scalar sum of all pT in the event. For each pT bin
½pmin

T ; pmax
T �, the parton-level hT cut is pmin

T � 25 GeV �
hT=2 � pmax

T þ 100 GeV. For the background, we use

matching scales (20, 30) GeV for the smallest pT bin and
(50, 70) GeV in the other three bins.
From the hadron-level output of PYTHIA, we group final-

state particles into ‘‘cells’’ based on the segmentation of
the ATLAS hadronic calorimeter (�� ¼ 0:1, �� ¼ 0:1 in
the central region). We sum the four-momenta of all par-
ticles in each cell and rescale the resulting three-
momentum to make the cell massless. After a threshold
cut on the cell energy of 1 GeV, cells become the inputs to
the jet algorithm. Our implementation of recombination
algorithms uses FASTJET [41], with a pruning plugin we
have written [42].
Several of the plots in early sections involve mass cuts

on jets. The details of these cuts are provided in Sec. VII B.
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