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The quark propagator is calculated in the Nambu–Jona-Lasinio model in a self-consistent

1=Nc-expansion at next-to-leading order. The calculations are carried out iteratively in Euclidean space.

The chiral quark condensate and its dependence on temperature and chemical potential is calculated

directly and compared with the mean-field results. In the chiral limit, we find a second-order phase

transition at finite temperature and zero chemical potential, in agreement with universality arguments. At

zero temperature and finite chemical potential, the phase transition is first order. In comparison with the

mean-field results, the critical temperature and chemical potential are slightly reduced. We determine

spectral functions from the Euclidean propagators by employing the maximum-entropy method. Thereby

quark and meson masses are estimated and decay channels identified. For testing this method, we also

apply it to evaluate perturbative spectral functions, which can be calculated directly in Minkowski space.

In most cases we find that the maximum-entropy method is able to reproduce the rough features of the

spectral functions, but not the details.
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I. INTRODUCTION

Describing the low-energy sector of QCD is a compli-
cated task due to its strong coupling. Especially investigat-
ing the region of the chiral and deconfinement phase
transition requires nonperturbative methods. To describe
these phenomena, one therefore often employs effective
models, which give a simplified description of the theory
and are valid in a limited energy range. In this article, we
focus on the Nambu–Jona-Lasinio (NJL) model [1], where
the quark-gluon interactions of QCD are substituted by
effective four-quark interactions. This model does not
exhibit confinement, which is its major lack, but it incor-
porates chiral symmetry. Spontaneous and explicit break-
ing of this symmetry as well as its restoration at high
temperatures or densities can be realized.

Despite the simplifications in the interaction, the NJL
model cannot be solved exactly, but further approximations
are necessary.1 In most publications, the model has been
treated in mean-field (Hartree) and random-phase approxi-
mation to describe the chiral dynamics of quarks and the
meson spectrum, both in vacuum and in hot and dense
matter [3–5]. A shortcoming of these approximations is
that the effects of mesons on the quark propagator are not
included. In the quark sector this leads to the wrong
universal behavior at the phase transition and produces
delta peaked quark spectral functions. As a consequence,
for instance, they are not suitable to be used in the Kubo

formula for the calculation of shear viscosities [6]. In the
mesonic sector, hadronic decay channels, like � ! ��,
are not included, which are the physical decay channels in
the confined phase.
These processes can be included systematically within a

1=Nc expansion, i.e., within an expansion in the inverse
number of colors, beyond the leading order; see, e.g.,
Refs. [7–16]. Here one can basically follow two different
approaches: In the ‘‘strict 1=Nc expansion scheme’’ one
first solves the gap equation in leading order, i.e., Hartree
approximation, and then adds the 1=Nc corrections to the
quantities of interest perturbatively, without modifying and
solving the gap equation again. This method yields good
results, e.g., for the rho meson dominated electromagnetic
pion form factor in the timelike region [14] as well as for
the low-temperature behavior of the quark condensate
[11,15] and the pressure [16]. Above the critical tempera-
ture the model has been studied in [17] where the influence
of soft modes on the quark spectral function was inves-
tigated. On the other hand, the perturbative approach
breaks down in the vicinity of the phase transition, where
a method is needed which incorporates the 1=Nc correc-
tions self-consistently in the gap equation. First attempts in
this direction have been performed in Refs. [9,13,15], but
in a simplified approach, where nonlocal contributions to
the quark self-energy have been neglected. This scheme is
thermodynamically inconsistent and it was found that the
chiral phase transition at finite temperature is first order for
two quark flavors [13,15], in contradiction to universality
arguments [18].
In the present paper, we derive a self-consistent solution

of the gap equation using the so-called �-derivable theory
in next-to-leading order without further approximations.
This approach is thermodynamically consistent and allows
a meaningful investigation of the phase transition. Because

1Strictly speaking, since the NJL model is nonrenormalizable,
a unique exact solution does not even exist, but the results
depend on the regularization scheme. An interesting alternative
to the continuum methods discussed in this article is to solve the
NJL model on the lattice [2]. In this case the nonrenormaliz-
ability has the consequence that there is no continuum limit, so
that the results depend on the choice of the lattice.
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of the nonlocal self-energy contributions, the structure of
the equations is rather involved and we use the imaginary
time (Matsubara) formalism to keep them on a tractable
level. This allows us to study static properties, like the
quark condensate at zero and finite temperature. On the
other hand, the analytic continuation of dynamical quanti-
ties to real times is problematic. In order to gain informa-
tion about quark and meson spectral functions in
Minkowski space, we therefore employ the maximum-
entropy method (MEM).

The remainder of this article is organized as follows. In
Sec. II we summarize the basics of the model and the
leading-order formalism. In Sec. III we introduce the
�-derivable theory and formally derive the gap equation
for the quark propagator in next-to-leading order (NLO) in
1=Nc. The numerical results for the self-consistent solu-
tions in the Matsubara formalism are shown in Sec. IV.
There, we also discuss the behavior of the quark conden-
sate as a function of temperature and chemical potential. In
Sec. V we review the basic ideas of MEM and apply them
to study quark and meson spectral functions. We conclude
with a summary in Sec. VI.

II. MODEL AND LEADING ORDER FORMALISM

We use a two-flavor NJL model with a scalar and
pseudoscalar interaction, given by the Lagrangian

L ¼ �qði6@�m0ÞqþG½ð �qqÞ2 þ ð �qi�5 ~�qÞ2� (1)

with a dimensionful coupling constant G and the Pauli
matrices ~� in isospin space. m0 is a small bare quark
mass, which explicitly breaks chiral symmetry. For calcu-
lations in the chiral limit, it is set to zero. In this limit the
Lagrangian is invariant under SUð2ÞL � SUð2ÞR transfor-
mations. For nonvanishing but small values of m0, this is
still an approximate symmetry of the model.

The 1=Nc counting scheme is introduced in the NJL
model by assuming that the quark fields q have Nc color
degrees of freedom. Consequently, a closed quark loop
yields a factor Nc. Furthermore, it is assumed that the
coupling constant G scales like 1=Nc. In this article these
rules are used to organize the diagrams in a systematic and
symmetry conserving way. In all explicit calculations,
however, we take the physical number of colors, Nc ¼ 3.

In any approximation the full quark propagator SðkÞ is
given by

S�1ðkÞ ¼ S�1
0 ðkÞ ��ðkÞ (2)

with the inverse bare propagator S�1
0 ðkÞ ¼ k6 �m0 and a

self-energy �ðkÞ. For large enough couplings, chiral sym-
metry is spontaneously broken and the quarks acquire a
dynamical mass much larger than the bare mass. In leading
order in 1=Nc this is described by the Hartree Dyson
equation, Fig. 1. In the self-energy insertion on the right-
hand side (r.h.s.), the factor Nc of the quark loop is com-
pensated by a factor 1=Nc from the vertex. Hence, if we

assume that the bare propagator is of the order N0
c , we find

that the dressed propagator in Hartree approximation is
strictly of the order N0

c as well. Note that in this paper we
draw the local four-point interaction as a wavy line, in-
dicating the direction of the interaction. In the present
example this prevents confusion of the Hartree term with
the Fock term, which is suppressed by one order of 1=Nc.
In vacuum, the Hartree self-energy is given by

�H ¼ 2iG
Z d4k

ð2�Þ4 TrðSðkÞÞ: (3)

It is local and purely scalar and therefore corresponds to a
constant shift in the quark mass,

mH ¼ m0 þ �H: (4)

The dressed or ‘‘constituent quark’’ mass mH is the scalar
part of the inverse Hartree propagator S�1ðkÞ ¼ k6 �mH.
In this way it enters the r.h.s. of Eq. (3), thereby giving rise
to a self-consistency problem.
To describe the system at nonvanishing temperature T

and chemical potential �, we apply the Matsubara formal-
ism. The quark propagator is then defined at discrete
imaginary energies i!n þ�, with fermionic Matsubara
frequencies !n ¼ ð2nþ 1Þ�T. Accordingly, the energy
integration in fermionic loop integrals is replaced by a
sum,

i
Z d4k

ð2�Þ4 fðk0;
~kÞ ! �T

X
n

Z d3k

ð2�Þ3 fði!n þ�; ~kÞ: (5)

In the Hartree approximation, where the self-energy is just
a constant, the analytic continuation of the propagator to
real energies is, of course, trivial. However, this will no
longer be the case at NLO.
Mesons are described by a Bethe-Salpeter equation

(BSE) for the quark-antiquark T matrix,

iT̂ðqÞ ¼ iK̂ þ iK̂ð�i�̂ðqÞÞiT̂ðqÞ: (6)

The leading order corresponds to the random-phase ap-
proximation (RPA), depicted in Fig. 2. In this case

FIG. 1. Dyson-equation for the Hartree quark propagator (bold
lines). Thin lines represent the bare propagator, the wavy line the
bare interaction.

FIG. 2. Bethe-Salpeter equation for quark-antiquark scattering.
Double lines denote RPA meson propagators.
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iK̂ ¼ 2iG
X
M

ð�M � �MÞ (7)

is the bare scattering kernel and

JMðqÞ � �M�̂ðqÞ�M

¼ i
Z d4k

ð2�Þ4 Tr½�MSðkþ qÞ�MSðkÞ� (8)

are the quark-antiquark polarization functions in the scalar
and pseudoscalar channels,

�s ¼ 1; �p;a ¼ i�5�a: (9)

Here we have used the fact that these channels do not mix.
Equation (6) is then easily solved with the ansatz

T̂ M ¼ �DMð�M � �MÞ; (10)

which yields

DMðqÞ ¼ �2G

1� 2GJMðqÞ : (11)

Following Refs. [14,15], we will call the functions DMðqÞ
‘‘meson propagators’’ although they are not properly nor-
malized. In particular, the meson masses are given by the
pole positions of the propagators,

D�1
M ðqÞjq2¼m2

M
¼ 0: (12)

When we expand the r.h.s. of Fig. 2 into a geometric
series, we see that the term with n quark loops contains nþ
1 four-point vertices. Thus, applying the 1=Nc counting
rules, we find that the RPA meson propagators are strictly
of the order 1=Nc.

In the Matsubara formalism, the meson propagators and
polarization functions are defined at discrete imaginary
energies i!m, with bosonic Matsubara frequencies !m ¼
2m�T. The determination of meson masses according to
Eq. (12) then requires the analytic continuation of the
propagator to real energies. Again, this is easily done in
the Hartree þ RPA scheme, but will be nontrivial at NLO.

III. �-DERIVABLE THEORY

As motivated in the introduction we are aiming at a self-
consistent extension of the approximation scheme beyond
the leading order in 1=Nc. To this end we apply the 1=Nc

expansion on the level of the thermodynamic potential
using the so-called �-derivable theory [19,20]. This
scheme preserves all important symmetries.

The full thermodynamic potential is given by

�½S� ¼ iTr lnS�1 þ iTrð�SÞ þ�½S�; (13)

where S and � ¼ S�1
0 � S�1 are the full quark propagator

and the full self-energy, respectively, and Tr denotes a
functional trace over all space-time and internal degrees
of freedom. The functional �½S� summarizes all closed
two-particle irreducible diagrams [21].

The stationarity condition ��
�ðiSÞ ¼ 0 implies that

�ðxÞ ¼ � ��

�ðiSðxÞÞ ; (14)

i.e., the self-energy can be obtained as a functional deriva-
tive of �. Diagrammatically, this corresponds to cutting a
single quark line of � at all possible places. In turn, �
depends on � via the full quark propagator. Equation (14)
therefore constitutes a self-consistency problem.
Similarly, the symmetry conserving scattering kernel for

the mesonic BSE can be obtained as

K̂ðx; yÞ ¼ � �2�

�ðiSðxÞÞ�ðiSðyÞÞ ; (15)

corresponding to cutting the � functional twice. However,
unlike for the self-energy, this is not a self-consistency

problem because � does not depend on K̂.
Self-consistent approximation schemes can now be in-

troduced by performing truncations of the functional�. In
the present article, we expand� in powers of 1=Nc to next-
to-leading order. The leading-order contribution corre-
sponds to the ‘‘glasses’’ diagram, shown in Fig. 3. In
vacuum it is given by

�ð0Þ½S� ¼ �G
X
M

�
�i

Z d4k

ð2�Þ4 Trð�MSðkÞÞ
�
2
; (16)

which can be generalized in the Matsubara formalism by
the replacement (5). As it contains two quark loops and one
four-point vertex, it is of the order OðNcÞ. Cutting one or
two quark lines, we reproduce our earlier result that the
Hartree self-energy and the RPA scattering kernel, respec-
tively, are the corresponding leading-order expressions in
this expansion. Formally, this can also be obtained from
Eqs. (14) and (15), where one has to take into account that
the transformation to momentum space brings in extra
factors of ð2�Þ4. For instance, for the self-energy one gets

�ðkÞ ¼ ið2�Þ4 ��

�SðkÞ ; (17)

which, when applied to Eq. (16), indeed yields Eq. (3).
The fact that the Hartree self-energy and the RPA scat-

tering kernel can consistently be derived from the same
�-functional guarantees that this approximation scheme is
symmetry conserving. In particular, chiral Ward identities
and low-energy theorems are fulfilled and the RPA pion is
massless in the chiral limit, as required by Goldstone’s
theorem.

FIG. 3. Leading order contribution to �.
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The NLO correction to � is given by the ring sum,
depicted in Fig. 4. Taking into account the appropriate
symmetry factors, these diagrams can be combined to a
logarithm. One obtains

�ð1Þ½S� ¼ � i

2

X
M

Z d4q

ð2�Þ4 lnð1� 2GJMðqÞÞ; (18)

which depends on S through the polarization function JM,
Eq. (8). Applying again Eq. (17), we find the following
NLO correction to the self-energy:

�ð1ÞðkÞ ¼ i
X
M

Z d4q

ð2�Þ4 DMðqÞ�MSðk� qÞ�M: (19)

It describes the dressing of the quark propagator by an RPA
meson and corresponds to the insertion in the last diagram
in Fig. 5. Recalling that the RPA meson propagators are of
the order 1=Nc, this self-energy term yields a correction of
the order 1=Nc to the quark propagator. However, when the
diagrams are iterated in the gap equation, as shown in the
figure, higher orders are generated. Therefore both, the
self-consistent quark propagator and the individual self-
energy contributions, are no longer of strict orders in 1=Nc.

Obviously, the same is true for�ð0Þ and�ð1Þ which contain
higher orders in 1=Nc as well, when the self-consistent
quark propagator is used. In the present scheme, the 1=Nc

counting is thus introduced on the level of skeleton dia-
grams for the � functional, i.e., before dressing the
propagators.

As we have discussed, at leading order RPA mesons
together with the Hartree gap equation are consistent
with chiral Ward identities so that, in the chiral limit, pions
emerge as massless Goldstone bosons in that scheme. In
the same way one can construct mesons which are consis-
tent with the NLO gap equation. To that end one has to
calculate the NLO corrections to the scattering kernel by

applying Eq. (15) to �ð1Þ, corresponding to cutting the
diagrams in Fig. 4 twice, and iterate them together with
the leading-order kernel in the BSE. Again, this scheme
preserves chiral symmetry and the resulting pions are
massless in the chiral limit.

In this context it should be noted that the mesons which
enter the NLO self-energy diagram are not the NLO-
corrected mesons, but RPA mesons. To be precise, they
are obtained from the BSE with the leading-order scatter-
ing kernel, Fig. 2, but the polarization functions JM,
Eq. (8), involve the self-consistent NLO quark propagators.
As a consequence, these ‘‘intermediate mesons’’ are not
restricted by chiral Ward identities and the pions are not
necessarily massless in the chiral limit. Formally, this
problem is a higher-order effect in 1=Nc but, as we will
see below, it is quite severe. It can be avoided by perform-
ing a ‘‘strict 1=Nc-expansion,’’ where only the Hartree gap
equation is solved self-consistently and the NLO correc-
tions are added perturbatively, discarding all higher-order
terms. Then all diagrams contain only Hartree quark propa-
gators and, hence, the intermediate RPA pions are massless
in the chiral limit. As shown, e.g., in Refs. [11,14–16] this
perturbative treatment yields the correct results for the low-
temperature behavior of the quark condensate and the
pressure. However, since the focus of the present paper is
on the phase transition, which cannot be treated perturba-
tively, we stay with the self-consistent expansion scheme
outlined above. We should then be alerted to the fact that
the intermediate RPA mesons do not obey the chiral Ward
identities.

IV. NUMERICAL RESULTS

In this section we present numerical solutions of the self-
consistent gap equation at NLO and related quantities. The
main complication as compared to the leading-order prob-
lem arises from the fact that the NLO self-energy correc-
tion (last diagram in Fig. 5) is nonlocal. Hence, unlike the
Hartree self-energy, which only yields a constant shift in
the mass, the self-energy is now energy and momentum
dependent and consists of several terms with different
Dirac structure. Assuming a homogeneous medium with
even parity, the inverse propagator can be parametrized as

S�1ðz; ~kÞ ¼ �0zCðz; j ~kjÞ � ~� � ~kAðz; j ~kjÞ � Bðz; j ~kjÞ;
(20)

where z is a complex energy variable. In vacuum, as a
consequence of Lorentz invariance, the dressing functions

A, B, and C are only functions of k2 ¼ z2 � j ~kj2, and the
functions A and C are equal. In the medium, however,
where we have a preferred frame, we have three indepen-
dent functions, which depend on energy and momentum
separately.

A. Model parameters and computational details

The integrals given in Sec. II are divergent and our
model is only well-defined after specifying how to regu-
larize them. Since the NJL model is nonrenormalizable,
new cutoff parameters can appear at each loop order. For
instance, even if we have regularized the quark loops in the

FIG. 4. NLO contribution to �.

FIG. 5. NLO gap equation. The thin and bold lines represent
bare and dressed quark propagators, respectively. The double
line symbolizes RPA-like mesons as defined in Fig. 2 but
involving the self-consistent solution for the quark propagator.
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Hartree self-energy, Eq. (3), and the RPA polarization loop,

Eq. (8), the loop over the meson momentum in �ð1Þ,
Eq. (19), is in general still divergent and needs to be
regularized separately.

In the following we regularize both, quark and meson
loops, by sharp three-momentum cutoffs � and �M, re-
spectively. This has the advantage that it keeps the numeri-
cal effort for the involved self-consistency problem as
simple as possible. Moreover, it preserves the analytic
structure in the complex energy plane. The obvious dis-
advantage is that the three-momentum cutoffs violate the
Lorentz covariance. For the moment, we take this as a
minor problem, which could be improved on in future
modifications of the model.

The noncovariance of the regularization also makes it
necessary to specify how external three-momenta are dis-
tributed to the propagators in a loop. In the RPA polariza-
tion functions, Eq. (8), we distribute ~q equally to both
quark propagators, whereas in the NLO meson loops,
Eq. (19), we must attribute the entire external three-
momentum to the quark propagator in order to be consis-
tent with the derivation of this diagram from the �
functional.

In addition to the cutoffs, the model has two more
parameters, namely, the coupling constant and the bare
quark mass. We take

� ¼ 664:3 MeV; G�2 ¼ 2:06; m0 ¼ 5:0 MeV;

(21)

which in leading order (Hartree/RPA) yield the empirical
vacuum values for the pion mass m� ¼ 135:0 MeV and
pion decay constant f� ¼ 92:4 as well as a quark conden-

sate of h �uui1=3 ¼ �250:8 MeV [22]. This corresponds to a
constituent mass mH ¼ 300 MeV. In principle, a refit of
these parameters should be done at NLO. However, for the
mostly explorative studies of the present paper, we keep
them unchanged. The meson loop cutoff is set to �M ¼
500:0 MeV.

The gap equation is solved iteratively starting with a
Hartree-like ansatz for the quark propagator. The dressing
functions are stored on a grid. In energy direction the grid
is fixed through the Matsubara frequencies and in three-
momentum direction an equidistant grid space of 50 MeV
is chosen. Values in between the grid points are interpo-
lated with cubic splines. The inverse propagators of the
intermediate mesons are also stored on a grid.

B. Dressing functions and intermediate meson
propagators

Results for the dressing functions A, B, and C are dis-
played in Fig. 6. To a good approximation they can be
taken to represent the dressing functions in vacuum,
although for numerical reasons they have been calculated
at a temperature of 10 MeVand are therefore only given at

discrete Matsubara frequencies. The results should be
compared with the Hartree results, which are BH ¼ mH ¼
300 MeV for the present parameters and AH ¼ CH ¼ 1.
As one can see, the NLO corrections lead to an overall
reduction of the B function, whereas A and C are slightly
enhanced. All dressing functions have in common that they
are maximal at the lowest j!nj and monotonously decrease
with increasing j!nj. (Note that the functions are symmet-

FIG. 6 (color online). Dressing functions C, A, and B of the
quark propagator at T ¼ 10 MeV and � ¼ 0 as functions of the
Matsubara frequency for different three-momenta.
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ric in !n.) The same behavior can be observed with in-
creasing three-momentum. Asymptotically, the NLO self-
energy contribution vanishes, and the B function ap-
proaches a constant value coming from the Hartree dia-
gram. For the same reason the C function converges to the
trivial value of 1.

In principle, we would expect the same behavior for the
A function. In fact, because of Lorentz covariance, the
functions A and C should be equal in vacuum. However,
as a consequence of the noncovariant regularization, this
turns out not to be the case. Moreover, when we consider
the nontrivial parts A� 1 and C� 1, the symmetry viola-
tion is of the same order of magnitude as the physical
effect. A closer inspection reveals that the A function is
most strongly affected by the cutoff artifacts, because it is
directly related to the three-momentum [see Eq. (20)]. In
particular, this explains the wrong asymptotic behavior of
A. Hence, if we are interested in results which are sensitive
to A� 1, an improved regularization scheme should be
employed. For the quark condensate, which we discuss in
Sec. IVC, we expect that the situation is less problematic,
as it is mainly influenced by the scalar function B [see
Eqs. (23) and (24) below].

In Fig. 7 the intermediate RPA propagators in the pion
(upper panel) and sigma (lower panel) channel at T ¼
10 MeV and � ¼ 0 are displayed as functions of the
Matsubara frequency for vanishing three-momentum.
The numerical results are indicated by points. For com-
parison we also show the corresponding propagators in the
Hartreeþ RPA scheme. As discussed at the end of Sec. III
the latter are constrained by chiral Ward identities whereas
the intermediate RPA propagators in the NLO scheme are
not. In Fig. 7 this is reflected by the fact that the peak of the
pion propagator at !m ¼ 0 is strongly suppressed in the
NLO scheme: In Hartree þ RPA the peak is due to the
relatively near-by pole at real energies, q0 ¼ m� ¼
135 MeV. The strong reduction of this peak in NLO is
thus a hint for a considerably larger mass of the intermedi-
ate pion.

We can estimate the meson masses by fitting the nu-
merical points with a simple pole ansatz,

DMði!M; ~0Þ � � ZM

!2
m þmM

� 2G: (22)

The constant �2G has to be taken into account to get the
correct asymptotic behavior [cf. Eq. (41) below]. These fits
are indicated by the lines in Fig. 7. In Hartree þ RPA we
findm� � 137 MeV, in good agreement with the true pole
mass of 135 MeV. For the intermediate RPA pion in NLO,
on the other hand, the fit yields m� � 340 MeV.

In the sigma channel, the situation is less dramatic
because the sigma meson is not a Goldstone boson. Here
the pole fit yieldsm� � 670 MeV in Hartreeþ RPA and a
slightly lower mass for the intermediate RPA sigma in
NLO. However, these numbers should not be trusted too

much, as they are based on rather far extrapolations from
imaginary to real energies. (In fact, in the MEM analysis in
the next section, we find masses which are 10%–15%
lower.)
In Fig. 8 we show the behavior of the intermediate sigma

and pion propagators in the chiral limit at the chiral resto-
ration temperature, T ¼ Tc. As chiral symmetry is re-
stored, sigma and pion are now degenerate. However,
even at Tc the intermediate RPA mesons do not become
massless. Fitting again the numerical points with Eq. (22),
we find m� ¼ m� � 270 MeV. This will be relevant for
the discussion below.

C. The quark condensate

The chiral quark condensate is a scalar quantity and can
be calculated directly in Euclidean (Matsubara) space,

FIG. 7 (color online). Pion (upper panel) and sigma (lower
panel) propagators at T ¼ 10 MeV and � ¼ 0 as functions of
the Matsubara frequency for vanishing three-momentum. The
intermediate RPA propagators based on the self-consistent solu-
tions of the NLO gap equation are compared with the propa-
gators in the Hartree þ RPA scheme. The numerical results at
the discrete Matsubara frequencies are indicated by points
whereas the lines correspond to fits according to Eq. (20).
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h �qqiT ¼ T
X
n

Z d3k

ð2�Þ3 TrðSði!n; ~kÞÞ; (23)

where

TrðSði!n; ~kÞÞ

¼ �8Nc

Bði!n; ~kÞ
!2

nC
2ði!n; ~kÞ þ ~k2A2ði!n; ~kÞ þ B2ði!n; ~kÞ

;

(24)

cf. Eq. (20).
Our results for its temperature dependence in the chiral

limit are displayed in Fig. 9, both, in Hartree approxima-

tion (dashed) and in NLO (solid). We find that chiral
symmetry is restored in a second-order phase transition
in both cases. The critical temperature is decreased by the
NLO corrections.
A second-order phase transition is also what is expected

for two-flavor QCD in the chiral limit. At the critical
temperature the fermionic degrees of freedom are sup-
pressed due to their antiperiodicity. Therefore the phase
transition is dominated by four bosonic degrees of freedom
(three pions and the sigma meson) which are all massless at
Tc and one expects critical behavior according to the Oð4Þ
universality class [18]. Since these arguments are only
based on the symmetries and dimensionality of the system,
the same should hold in any theory or model with the same
conditions. Indeed, a second-order phase transition with
Oð4Þ critical exponents has been found in a renormaliza-
tion group approach to the two-flavor quark meson model
[23,24], and the NJL model should in principle exhibit a
similar behavior.
However, it is not a priori clear to what extent the

universal behavior is spoiled by the truncation scheme.
As we have seen, the massless bosonic degrees of freedom
which are the basis of the universality arguments are not
manifest in the gap equation, neither in Hartree approxi-
mation nor in NLO: In the Hartree self-energy, there is no
back-reaction of the RPA mesons on the quark propagator,
whereas the intermediate RPA mesons which enter the
NLO gap equation are not massless. From this point of
view, it seems not even guaranteed that the phase transition
must be second order in these approximation schemes. To
understand why this nevertheless should be expected, we
can adopt the arguments of Ref. [25], where the chiral
phase transition was investigated in a purely bosonic model
at NLO and found to be second order as well: As we have
discussed, at each order one can in principle construct
mesonic correlators with the correct chiral behavior by
applying Eq. (15) to the � functional and iterating the
resulting scattering kernel in the BSE. One could then
employ these correlators to study critical exponents.
Obviously, this can only work if the phase transition is
second order. Thus, the gap equation must somehow
‘‘know’’ about the massless degrees of freedom even if
they do not enter the equation explicitly.
In this context the consistency of the approximation

scheme is crucial: In Refs. [13,15] a first-order phase
transition was found in a simplified NLO scheme, which
was suggested in Refs. [9,12]. In that scheme, only local
contributions to the quark self-energy are taken into ac-
count. Although one can formally show that there are
massless Goldstone bosons in the chiral limit, the approxi-
mation is not thermodynamically consistent as the gap
equation cannot be derived from a thermodynamic poten-
tial. This suggests that a thermodynamically consistent
treatment is important to find the correct order of the phase
transition.

FIG. 8 (color online). Intermediate sigma and pion propaga-
tors in the NLO scheme in the chiral limit at � ¼ 0 and T ¼
Tc ¼ 131 MeV as functions of the Matsubara frequency for
vanishing three-momentum.

FIG. 9 (color online). Temperature dependence of the chiral
quark condensate in the chiral limit in Hartree approximation
(dashed) and in NLO (solid) at � ¼ 0.
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Yet, even in a self-consistent and thermodynamically
consistent truncation scheme, not all details of the critical
behavior are necessarily reproduced correctly. It is well
known that the Hartree gap equation, although correctly
predicting a second-order phase transition, yields mean-
field critical exponents. At NLO, there might be some
improvement, but we should not expect to find exact
Oð4Þ behavior. Unfortunately, our numerical results are
not precise enough to work this out quantitatively.

The low-temperature behavior of the quark condensate
is model independently given by chiral perturbation theory.
For two quark flavors one finds in the chiral limit [26]

h �qqiT ¼ h �qqi0
�
1� T2

8f2�
� T4

384f4�
þ . . .

�
; (25)

where h �qqi0 is the condensate at T ¼ 0 and f� is the pion
decay constant. This behavior is entirely due to the mass-
less chiral pions. The T2 term corresponds to their ideal gas
contribution, while the T4 term is due to p-wave �� �
interactions.

Obviously, this behavior cannot be reproduced in the
Hartree approximation, which includes no back-coupling
of the mesons to the quark propagator. The change of the
condensate is then exclusively triggered by thermal quarks
and, hence, exponentially suppressed due to their mass.

On the other hand, it was shown in Ref. [15] that at least
the T2 term in Eq. (25) is reproduced correctly, if the 1=Nc

corrections to the quark propagator are taken into account
perturbatively. To be more precise, it was shown that the
leading correction corresponds to that of an ideal gas of
RPA pions. Since in the perturbative approach the latter are
built from Hartree quarks, they are massless in the chiral
limit and, thus, lead to the correct low-temperature
behavior.

Accordingly, the T2-term in Eq. (25) cannot be repro-
duced in our fully self-consistent NLO scheme. As in the
perturbative approach, there are corrections from the inter-
mediate RPA mesons. However, because of their relatively
large masses, their effect is exponentially suppressed. We
are thus faced with the situation that the self-consistent
scheme gives only a poor description of the low-
temperature behavior but works well at the phase transi-
tion, while it is just the other way around in the perturbative
approach.

In Fig. 10 we show the temperature dependence of the
quark condensate for the case of a nonvanishing bare quark
mass. In this case, chiral symmetry is only approximately
restored in a crossover. Again, the NLO corrections lead to
a reduction of the crossover temperature relative to the
Hartree result.

The dependence of the quark condensate on the chemi-
cal potential at T ¼ 0 can be seen in Fig. 11 for the chiral
limit. The Hartree and NLO results look qualitatively
similar. In both cases chiral symmetry is restored in a
first-order phase transition. Similar to the temperature

behavior, the critical chemical potential is slightly lower
in NLO.

V. ANALYTIC CONTINUATION WITH THE
MAXIMUM-ENTROPY METHOD (MEM)

Searching the analytic continuation of a propagator
given at a discrete set of Matsubara frequencies is an ill-
posed problem. In general, an infinite set of functions
would provide an analytic continuation. Additional re-
quirements on asymptotics and analytical structure provide
a unique solution [27] but this only helps if one can get
analytic expressions for the functions.
One way to attack this problem numerically is the

maximum-entropy method. The quantity to calculate is
the spectral function �ð!Þ which is related to the propa-

FIG. 10 (color online). Temperature dependence of the quark
condensate for a bare quark mass m0 ¼ 5 MeV in Hartree
approximation (dashed) and NLO (solid) at � ¼ 0.

FIG. 11 (color online). Quark condensate in the chiral limit as
a function of the chemical potential in Hartree approximation
(dashed) and NLO (solid) at T ¼ 0.
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gator via the Lehmann representation (e.g. [28]),

DðzÞ ¼
Z 1

�1
d!

2�

�ð!Þ
z�!

; (26)

and can be interpreted as a probability distribution. The
method performs a �2 fit to the discrete ‘‘data’’Dði!nÞ and
additionally requires minimum deviation from the so-
called prior estimate, the ‘‘most probable’’ spectral func-
tion in absence of any data. The combination of both
requirements finally leads to a unique solution. MEM has
been successfully used in lattice QCD [29,30] and Dyson-
Schwinger calculations [31].

A. The Method

We largely follow the formalism described in
Refs. [29,31]. The basis for MEM is Bayes’ theorem for
conditioned probability applied to the plausibility
P½�jDHðmÞ� of a spectral function � under given data D
and a prior knowledge HðmÞ,

P½�jDHðmÞ� ¼ P½Dj�HðmÞ�P½�jHðmÞ�
P½DjHðmÞ� : (27)

P½Dj�HðmÞ� is the likelihood function, which indicates the
plausibility of the data under the spectral function and the
prior and P½�jHðmÞ� is the prior probability for the plau-
sibility of � solely under the prior. P½DjHðmÞ� is a nor-
malization factor independent of the spectral function and
can be dropped as the probabilities are normalized in the
end.

For the likelihood function a Gaussian distribution is
assumed

P½Dj�HðmÞ� ¼ 1

ZL

e�L½�� (28)

with

L½�� ¼ 1

ND

X
i

jDi �D�
i j2

2j�ij2
(29)

for ND equidistant ‘‘data’’ with valuesDi and errors�i and
the corresponding values D�

i calculated from the given
spectral function � using the Lehmann representation,
Eq. (26). ZL is a normalization constant. Note that, by
this assumption, P½Dj�HðmÞ� does actually not depend
on the prior.

The prior probability P½�jHðmÞ� depends directly on a
prior estimate mð!Þ for the spectral function. mð!Þ con-
tains general information about spectral functions, espe-
cially positivity, and is usually chosen as a constant
function. With help of a scale factor 	, P½�jHðmÞ� can
be expressed as

P½�jHðmÞ� ¼
Z 1

0
d	P½�jHð	mÞ�P½	jHðmÞ�; (30)

where

P½�jHð	mÞ� ¼ 1

ZS

e	S½�� (31)

with a normalization constant ZS and the Shannon-Jaynes
entropy

S½�� ¼
Z 1

�1
d!

�
�ð!Þ �mð!Þ � �ð!Þ ln�ð!Þ

mð!Þ
�
: (32)

This can be derived axiomatically by using general features
of the entropy (locality, scale invariance, etc.) or with help
of the law of large numbers (‘‘monkey argument’’) [29].
Discretization and expanding the logarithm for small de-
viations of the spectral function from the prior yields

S½�� � �2
X
i

�!ið ffiffiffiffiffi
�i

p � ffiffiffiffiffiffi
mi

p Þ2: (33)

Applying Eq. (28) and (31) to Eq. (27) gives

P½�jDHð	mÞ� ¼ 1

Z
eQ½�� (34)

with another normalization constant Z and the functional
Q½�� ¼ 	S½�� � L½��. Maximizing Q½�� gives the most
probable spectral function, �ð!Þ ¼ �	ð!Þ, for given 	.
Finally the scale factor 	 has to be eliminated, which

can be done in several ways. We use Bryan’s method [32],
which is applied in most cases. Here, the final spectral
function �MEMð!Þ is obtained by averaging over 	,

�MEMð!Þ ¼
Z

D��ð!ÞP½�jDHðmÞ�

�
Z 1

0
d	�	ð!ÞP½	jDHðmÞ�; (35)

with the probability factor

P½	jDHðmÞ� /
Z

D�eQ½��

� exp

�
1

2

X
k

ln

�
	�!k


k

�
þQ½�	�

�
: (36)

and 
k being the eigenvalues of the matrix

Mij ¼ 	�!i�ij þ ffiffiffiffiffi
�i

p @2L

@�i@�j

ffiffiffiffiffi
�j

p j�¼�	
(37)

In an intermediate step Laplace’s rule (P½	jHðmÞ� ¼
const:) [29] has been applied. For calculating �MEMð!Þ
the probabilities Eq. (36) have to be normalized.

B. Numerical implementation

The iterative calculation of the quark propagator dis-
cussed in Sec. IV has been performed without error esti-
mate, as the largest parts of the error are highly correlated
and systematical. MEM requires data with noncorrelated
Gaussian errors [Eq. (29)]. Therefore we assume a constant
relative error of 10�4 all data points. This error under-
estimates the systematical errors but should be of the order
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the uncorrelated numerical errors. This choice seems use-
ful as larger errors do not resolve the continuum contribu-
tions to the spectral functions while smaller errors lead to
unphysical oscillations.

We chose a constant prior of mð!Þ ¼ 10�3 MeV�1.
This arbitrary choice can be justified as the result is quite
insensitive, even when the prior is varied by 6 orders of
magnitude, as illustrated in Fig. 12.

C. Vacuum spectral functions

Vacuum2 results for the quark spectral function are
shown in Fig. 13. To be precise, since the spectral function
of spin- 12 fermions has a Dirac structure, we show the 0-

component,

�0 ¼ 1
4 Trð�0�Þ: (38)

Moreover, we consider quarks with vanishing three-
momentum.

The Hartree spectral function is displayed in the upper
panel. Here we can directly compare the MEM result with
the exact analytical solution,

�0ð!Þ ¼ ��ðj!j �mHÞ; (39)

i.e., two delta peaks at ! ¼ �300 MeV. Indeed, MEM
yields two sharp peaks at the correct positions, although
with a small width which is caused by the assumed nu-
merical errors.

The NLO spectral function (lower panel) has similar
peaks, shifted to slightly lower energies, ! �
�270 MeV. In addition there are two broad bumps at
higher values of j!j. These structures can be related to
the imaginary part of the NLO self-energy diagram (last
diagram of Fig. 5), i.e., to the continuum due to meson
absorption or emission processes on the quark. This con-
tinuum should be well separated from the quark mass peak
and start at a threshold given by the sum of the quark mass
and the intermediate pion mass. According to our earlier
estimate for m�, this would be at around 600 MeV and is
more or less consistent with the MEM result. The details of
the threshold region can, however, not be resolved. From
Fig. 12 we also see that the dip region, where we expect a
vanishing spectral function, is most sensitive to the prior.
Unlike in Hartree approximation, the MEM results for

the spectral functions in the self-consistent NLO scheme
cannot be confronted with direct calculations in
Minkowski space, since the latter are highly nontrivial.
However, such a comparison can be done for the quark
propagator with perturbative NLO corrections to the self-
energy. In that case, as already mentioned, only the Hartree

FIG. 12 (color online). MEM result for the NLO quark spectral
function �0ð!Þ in vacuum for vanishing three-momentum, using
different priors mð!Þ ¼ const.

FIG. 13 (color online). MEM results for the quark spectral
function �0ð!Þ in Hartree approximation (upper panel) and
NLO (lower panel) in vacuum for vanishing three-momentum.

2As before, the ‘‘vacuum’’ results have been obtained at� ¼ 0
and a temperature T ¼ 10 MeV for numerical reasons. We
expect the difference to real vacuum calculations at T ¼ 0 to
be small.
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propagator SH is calculated self-consistently and after-
wards perturbative corrections are added to the self-energy,

S�1
pert ¼ S�1

H ��ð1Þ
pert; (40)

where �ð1Þ
pert is strictly of the order 1=Nc. In particular, it is

entirely given in terms of SH and meson propagators in the
Hartree þ RPA scheme. This makes its evaluation in
Minkowski space possible.

As discussed, e.g., in Ref. [15], �ð1Þ
pert consists of two

diagrams. The first one is local and, thus, only gives a
constant real contribution to the mass. In the following
comparison we will therefore neglect this term for sim-
plicity. The second contribution is nonlocal and given by
self-energy in the last diagram in Fig. 5 if all self-consistent
quark propagators are replaced by SH. In Minkowski space
we make the additional approximation of neglecting the
continuum parts and finite widths of the mass peaks of the
RPA mesons. As the mass peaks are the dominant contri-
butions to the spectrum and even for the unstable sigma
meson the main peak is very sharp, this approximation
should be quite accurate.

A comparison with the MEM output of a corresponding
perturbatively dressed propagator calculated in Euclidean
space is shown in Fig. 14. For numerical reasons the
calculation in Minkowski space has been performed with
quark propagators with a width of 1 MeV, which was added
by hand. The main peak of the MEM result and the
Minkowski result are almost at the same energy. (The small
difference could be due to the mentioned approximations
for the meson spectral function in Minkowski space.) The
continuum contributions only show rough agreement in

height and position but the shape differs considerably.
The main reason for this is the dominance of the mass
peak in the spectrum. The continua give only small con-
tributions and it would require data with much lower errors
to become sensitive to the shape of the continuum.
Furthermore the continuum structure is very complicated
with sharp thresholds and peaks which are difficult to be
reproduced by MEM. In fact, the high-energy thresholds
and peaks are artifacts of the regularization and therefore
not even physical. In principle, one could try to include
these effects into the prior mð!Þ as done in the lattice
calculations of Ref. [33].
For applying MEM to meson propagators we use a

subtracted dispersion relation,

DMðzÞ ¼
Z 1

�1
d!

2�

�ð!Þ
z�!

� 2G; (41)

FIG. 14 (color online). Comparison between MEM result and
direct Minkowski-space calculation of the quark spectral func-
tion with perturbative 1=Nc corrections to the self-energy in
vacuum.

FIG. 15 (color online). MEM results for the RPA pion (upper
panel) and sigma (lower panel) spectral function in vacuum for
vanishing three-momentum. The various curves correspond to
the intermediate RPA mesons in the NLO scheme for m0 ¼
5 MeV and in the chiral limit, as well as in the Hartree þ RPA
scheme for m0 ¼ 5 MeV.
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which takes care of the asymptotic behavior of NJL RPA
meson propagators.

The spectral functions for the RPA meson propagators
are displayed in Fig. 15. The intermediate RPA mesons in
the NLO scheme with finite current quark mass and in the
chiral limit are compared with the mesons in the Hartreeþ
RPA scheme.

The latter can also be calculated directly in Minkowski
space (cf. Sec. VD). In the pion channel this yields a delta
peak at ! ¼ m� ¼ 135 MeV and a continuum due to
quark-antiquark decay above a threshold of 2mH ¼
600 MeV. As one can see in the figure (upper panel, dotted
line), these features are again qualitatively reproduced by
MEM: We find a sharp peak at 135 MeVand a broad bump
at higher energies, which can be identified with the con-
tinuum. On the other hand, as before, the detailed threshold
behavior cannot be reproduced.

The spectral function of the intermediate RPA pion in
NLO (solid line) looks qualitatively similar, but the mass
peak is now located at ! ¼ 320 MeV. This is slightly
lower than our estimate by the pole fit in Sec. IVB
(340 MeV), but still very heavy. As we have said repeat-
edly, this reflects the fact that the intermediate RPAmesons
are not constrained by chiral Ward identities. In fact, even
in the chiral limit (dashed line), we find a mass peak at
280 MeV in the MEM spectral function.

In the sigma channel, the exact spectral function in
Hartree þ RPA has a mass peak slightly above the con-
tinuum threshold. This is again qualitatively reproduced by
MEM (lower panel, dotted line), where we find a maximum
at about 615 MeV. The NLO corrections to the sigma are
rather small (solid line), the mass is lowered by about
20 MeV. In the chiral limit (dashed line), it is further
reduced by 60 MeV, but the gross features of the spectral
function remain unchanged.

D. In-medium spectral functions

Larger temperatures increase the inaccuracies signifi-
cantly as the larger distance between the Matsubara fre-
quencies (2�T) provides only few data at low frequencies
while high-frequency data mainly carry information about
the asymptotics.

As for larger temperature the quark mass decreases and
therefore the main peaks in the spectral function come
closer together, extrapolating the 0-component of the spec-
tral function with MEM does not resolve the single peaks.
Therefore it is reasonable to study other projections of the
spectral function to separate the peaks. For vanishing
three-momentum this can be achieved by the decomposi-
tion of the spectral function

�ð!Þ ¼ �þð!ÞLþ�0 þ ��ð!ÞL��0 (42)

with the projectors L� ¼ 1
2 ð1� �0Þ. The components ��

correspond to the spectra of particle and antiparticles and

are also positive definite, therefore MEM is applicable. In
Hartree approximation the analytic result yields

�þð!Þ ¼ �

�
1þm

!

�
�ð!�mÞ (43)

��ð!Þ ¼ �

�
1�m

!

�
�ð!þmÞ (44)

and the two main peaks are separated into the different
channels. This decomposition has also been used in recent
lattice studies at finite temperature [34].
MEM results for T ¼ 200 MeV are shown in Fig. 16.

While in Hartree approximation the quark and antiquark
peaks are still well-separated the NLO peaks are much
broader and overlap. This is an indicator for the thermal
broadening of the quark spectral function in the medium.

FIG. 16 (color online). MEM result for the quark spectral
functions �ð!Þ in Hartree approximation (upper panel) and
NLO (lower panel) for vanishing three-momentum at T ¼
200 MeV and � ¼ 0. The solid (dashed) lines correspond to
an assumed relative numerical error of 10�4 (10�6).
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Applying MEM at finite chemical potential visualizes
the shifted Fermi surface. The quark spectral function at
� ¼ 200 MeV is displayed in Fig. 17. We obtain a quite
asymmetric result: At positive energies we find a very
sharp mass peak which is well separated from the contin-
uum at higher energies. At negative energies, on the other
hand, both the mass peak and the continuum are broader
and the dip region in between is less pronounced.

Although at finite chemical potential the spectral func-
tion is indeed in general no longer symmetric, the main
reason for the observed asymmetry is probably caused by
the MEM procedure. This is due to the fact that the
dispersion relation is now of the form

Sði!n þ�Þ ¼
Z 1

�1
d!

2�

�ð!Þ
i!n þ��!

: (45)

Therefore, the integral is most sensitive to details of the
spectral function near the Fermi surface, where it gives the
largest contribution. Hence, in the present example, the
MEM procedure works best around ! ¼ 200 MeV, which
explains why the positive mass peak is much better
resolved.

In the mesonic sector, Hartree þ RPA meson spectral
functions can be calculated directly in Minkowski space
without further assumptions. A comparison with MEM
results in the pion channel at T ¼ 100 MeV is displayed
in Fig. 18 for j ~qj ¼ 0 (upper panel) and 100 MeV (lower
panel). In the Minkowski-space calculations, a width of
1 MeV was again added by hand to the propagators for
numerical reasons.

We find that the agreement of the MEM results with the
direct calculations is rather poor. Only the position of the
main peak fits while the shape of the spectral function
looks totally different. The spacelike particle-hole branch

in the spectrum which occurs at finite three-momentum
cannot be resolved in the MEM output.
In order to shed some light on this problem, we show in

Fig. 19 the Euclidean data which served as input for the
MEM results in Fig. 18. At low Matsubara frequencies the
data points with different three-momenta are slightly
shifted against each other, which takes care of the different
mass peak positions. But one cannot see a qualitative
difference which could produce the spacelike continuum
contributions which exist at j ~qj ¼ 100 MeV, but not at
j ~qj ¼ 0. Furthermore the complicated structure of the
spectral functions is not visible in the Euclidean data and
so this structure gets almost lost in the convolution with the
Lehmann representation Eq. (26). Instead the fit of a
propagator with a single mass pole according to a delta
peak in the spectrum already fits the data almost perfectly.

FIG. 17 (color online). MEM result for the NLO quark spectral
function �0ð!Þ for vanishing three-momentum at T ¼ 0 and
� ¼ 200 MeV.

FIG. 18 (color online). Hartree þ RPA pion spectral function
in directly calculated in Minkowski space and extrapolated with
MEM at T ¼ 100 MeV for three-momentum j ~qj ¼ 0 (upper
panel) and j ~qj ¼ 100 MeV (lower panel).
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This exemplifies how difficult it is to regain the spectral
function from the Euclidean data.

VI. SUMMARY

We have studied the NJL model in next-to-leading order
in a self-consistent 1=Nc expansion. The chiral condensate
shows a second-order phase transition at finite temperature
and vanishing chemical potential in agreement with expec-
tations from the Oð4Þ universality class. In comparison to
mean-field results the critical temperature is decreased.
The low-temperature behavior expected from chiral per-
turbation theory cannot be reproduced as the intermediate

mesons which enter the NLO quark self-energy diagram
are not restricted in terms of chiral symmetry and are very
massive. At finite chemical potential and vanishing tem-
perature the phase transition is of first order like in mean-
field approximation. The critical chemical potential is also
slightly reduced.
The maximum-entropy method has been used to calcu-

late spectral functions for real energies from the Euclidean
propagators. The mass peak of the particles can be repro-
duced quite well and for NLO quark propagators also a
continuum contribution can be identified. The large mass
of the intermediate pions is confirmed and approximately
of order 	320 MeV while the masses of the quarks
(	 270 MeV) and intermediate sigma mesons
(	 600 MeV) are of the order of the mean-field values.
Finite temperature increases the inaccuracies of MEM as
fewer data at low energies are available. For perturbatively
dressed propagators the spectral function can be calculated
directly in Minkowski space. A comparison with these
results shows that the main peak is reproduced well by
MEM, but not the continua.
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