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The concept of incomplete vector-meson dominance and Regge models is applied to the transition form

factor of the pion. First, we argue that variants of the chiral quark model fulfilling the chiral anomaly may

violate the Terazawa-West unitarity bounds, as these bounds are based on unverified assumptions for the

real parts of the amplitudes, precluding a possible presence of polynomial terms. A direct consequence is

that the transition form factor need not necessarily vanish at large values of the photon virtuality.

Moreover, in the range of the BABAR experiment, the Terazawa-West bound is an order of magnitude

above the data, thus is of formal rather than practical interest. Then we demonstrate how the experimental

data may be properly explained with incomplete vector-meson dominance in a simple model with one

state, as well as in more sophisticated Regge models. Generalizations of the simple Regge model along the

lines of Dominguez result in a proper description of the data, where one may adjust the parameters in such

a way that the Terazawa-West bound is satisfied or violated. We also impose the experimental constraint

from the Z ! �0� decay. Finally, we point out that the photon momentum asymmetry parameter may

noticeably influence the precision analysis.
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I. INTRODUCTION

The pion transition form factor, F�0��� , measured in the

eþe� ! �0� annihilation, has been a particularly interest-
ing object of study since its value at the origin is fixed by
the chiral anomaly [1,2] while the behavior at very high
Euclidean momenta has been predicted via perturbative
quantum chromodynamics (pQCD), apparently holding at
sufficiently high but unspecified scales [3,4]. However,
objections have been raised [5] and reiterated [6] against
the applicability of pQCD to exclusive processes. The
recent measurement of F�0��� by the BABAR

Collaboration [7], where the pion transition form factor
goes visibly above the conventional pQCD prediction at
scales Q2 > 15 GeV2, raised serious doubts concerning
the theoretical understanding of the exclusive processes,
also in the asymptotic region. In the pQCD approach based
on factorization, one uses the light-cone Feynman rules
and the Efremov-Radyushkin-Brodsky-Lepage evolution
of the pion distribution amplitude (PDA) [3,4,8–16], which
results asymptotically in the leading-twist Brodsky-Lepage
term F�0��� � 2f�=Q

2, in vivid contradiction to the recent

BABAR [7] data.
Several ideas have been proposed to circumvent the

problem. Radyushkin [17] pointed out that the presence
of the possible end-point singularities in the PDA (as found
by the authors in the chiral quark models at the low-energy
quark-model scale [18]), together with essentially
switched-off evolution and regulated quark propagators,

is capable of reproducing the data in the available Q2

domain. Similar conclusions were reached by Polyakov
[19]. In this approach asymptotically F�0��� �
logðQ2=�2Þ=Q2, with the log in the numerator indicating
the breaking of factorization.We note that the same asymp-
totics follows in the spectral quark model; see Eq. (14.1) of
Ref. [20]. In fact, serious concerns have been spoken out on
the validity of factorization [21] in the considered process.
Dorokhov [22–24] proposed the use of the fixed-mass
constituent quark model to evaluate the triangle diagram
of Fig. 1, which is capable of reproducing the BABAR data,
however the needed value of the constituent quark mass is
uncomfortably low, M� 135 MeV. In this model the
asymptotics has the form �½logðQ2=�2Þ�2=Q2. Possible
need of the higher-twist terms has been invoked in
Ref. [25]. The calculation of Kotko and Praszalowicz
[26] in the nonlocal chiral quark model inspired by the
instanton-liquid model of QCD produced the result in
agreement with the data at lower values of Q2. The influ-
ence of nonperturbative gluonic components of the pion
stemming from instantons has been considered in
Ref. [27]. Mikhailov and Stefanis [16] showed that the
significant experimental growth of the transition form fac-

0

FIG. 1. The triangle diagram used to evaluate the pion tran-
sition form factor in quark models, with one real and one virtual
photon (the crossed diagram not shown).
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tor between 10 and 40 GeV2 cannot be explained in terms
of higher-order pQCD corrections at the next-to-next-to-
leading order level. Finally, in a very recent paper [28]
Dorokhov reiterates the findings of Ref. [22] in the non-
local model, where the asymptotic behavior is
� logðQ2=�2Þ=Q2. The nonlocal model of Ref. [28] also
requires a very low constituent quark mass in order to
reproduce the data in the whole Q2 range.

Given the fact that the recent BABAR data [7] predate the
conventional pQCD expectations at such high virtualities
as 15–30 GeV2, it seems adequate to question any implicit
assumptions in theoretical analyses. In this paper we ana-
lyze critically some of the assumptions underlying certain
high-energy theorems which, if holding, would forbid the
simple pre-BABAR fits based on the incomplete vector-
meson dominance (IVMD) [29] (see also Ref. [30] where
this result is upgraded with tiny consequences for the muon
g� 2). The theorems in question, the Terazawa-West
(TW) bounds [31,32], were recalled by Dorokhov in
Ref. [24].

The TW bounds [31,32] (for a review see, e.g., [33]) are
central to our discussion; they are reviewed in Sec. III.
Their derivation uses the Schwarz inequality to predict that

for physical momenta ImF�0��� ¼ Oð1= ffiffiffiffiffi
q2

p Þ (the first

bound). If one further assumes that there are no polynomial
contributions to the real part of the form factor, one may
conclude with the help of a dispersion relation that
F�0��� ¼ Oð1=QÞ for spacelike momenta Q (the second

bound). The assumption concerning the real part is clearly
spelled out in the original works and, to our knowledge, has
never been credibly questioned. We should remind the
reader that this was a pre-QCD bound, so we may test
the validity of the assumption by analyzing a particular
model where both the anomaly is satisfied and the second
Terazawa-West bound is violated. Actually, a reanalysis of
the issue using the quark model and corresponding triangle
graphs was presented in Ref. [34] as an example case
where the expected bound behavior holds. Here we will
consider another variant of the quark model which in fact
does not fulfill the assumptions, hence leads to a violation
of the second bound. The key point is to realize that the
anomaly fixes the value of the form factor at the origin,
while the finiteQ behavior can be determined regardless of
the value atQ ¼ 0. This construction requires a subtraction
constant which actually implies that at large Q the pion
transition form factor does not go to zero. These arguments
suggest that pQCD might in fact be computing just the
subtracted form factor. Clearly, the issue cannot be settled
unless one could go smoothly over all the available energy
range. Of course, quark models are not QCD itself, and it is
quite possible that our considerations do not apply directly
to the QCD analyses. However, the present paper unveils a
warning that from purely field-theoretic reasons an asymp-
totically nonvanishing pion transition form factor cannot
be rejected.

With this finding in mind we analyze in detail the
predictions of IVMD and the Regge models for F�0��� .

Regge models with (infinitely many) tree-level meson and
glueball exchanges are a realization of the large-Nc limit
[35] which, unlike the quark models, incorporates confine-
ment. In particular, these models were insightful in analyz-
ing condensate issues [36–44], form factors [45,46], or the
nature of scalar states [47].
On purely phenomenological grounds, we will show that

the data for F�0��� can be fitted very well in a simple

vector-meson exchange model with IVMD. In more elabo-
rate variants of the Regge approach the data may be
reproduced (with different choices of the model parame-
ters) almost equally well with or without the fulfillment of
the TW bounds.
There has also been an important interest in the pion

transition form factor after the proposal of determining the
rare Z ! �0� decay [48], which probes the timelike value
q2 ¼ M2

Z. The experimental bound given by the Particle
Data Group [49] implies a large suppression as compared
to the q2 ¼ 0 anomaly point, but not necessarily as much
as predicted by many authors, where �ðZ ! �0�Þ �
10�11 GeV (see, e.g., [50]).
The paper is organized as follows. As a preparatory

material, in Sec. II we provide some basic kinematics, in
Sec. III we review the TW bounds, and in Sec. IV recall the
bound from the Z ! �0� decay. In Sec. V we use several
variants of the quark model to inquire on the validity of the
TW bounds. As we will show, these models are not capable
of describing the data with realistic model parameters, but
pose a warning on the second TW bound. We use this
insight in Sec. VI to propose a more realistic Vector
Meson Dominance description of the data. The analysis
is complemented in Sec. VII with the inclusion of the large
Nc motivated infinite tower of radial Regge-like excitations
of the �meson. The important role of photon asymmetry is
discussed briefly in Sec. VIII. Finally, in Sec. IX we list our
main conclusions.

II. THE KINEMATICS

With the outgoing momenta and polarizations of the
photons denoted as q1, e1 and q2, e2 (see Fig. 1), one finds
the amplitude

���

�0���� ðq1; q2Þ ¼ �����e
�
1 e

�
2q

�
1 q

�
2F����� ðQ2; AÞ; (1)

where the pion transition form factor F����� depends on

the total virtuality, Q2, and the photon momentum asym-
metry parameter, A,

Q2 ¼ �ðq21 þ q22Þ; A ¼ q21 � q22
q21 þ q22

; �1 � A � 1:

(2)

Equivalently, q21 ¼ � ð1þAÞ
2 Q2, q22 ¼ � ð1�AÞ

2 Q2. For large
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virtualities, assuming factorization, one finds the standard
twist decomposition of the pion transition form factor [8],

F�0���� ðQ2; AÞ ¼ Jð2ÞðAÞ 1

Q2
þ . . . ; (3)

with

Jð2ÞðAÞ ¼ 4f�
Nc

Z 1

0
dx

’ð2Þ
� ðxÞ

1� ð2x� 1Þ2A2
; (4)

involving the pion parton distribution amplitude PDA,
’ðxÞ.

Taking the asymptotic form ’ðxÞ ¼ 6xð1� xÞ in Eq. (4)
gives the Brodsky-Lepage asymptotic result [8]

Jð2ÞðA ¼ 1Þ ¼ 6

Ncf�
: (5)

An analysis of the lowest Gegenbauer moments a2 and
a4 of ’ðxÞ has been carried out in Refs. [13,15,51,52].
Higher twists have been analyzed in the framework of the
light-cone sum rules [53]. An attempt of a direct measure-
ment of the DA has been presented by the E791
Collaboration [54]. For a concise review on all these
developments see, e.g., Ref. [55] and references therein.

Although theoretically one may take the maximally
asymmetric case of A ¼ 1, in the experiment this situation
is not possible to achieve. For instance, in the BABAR
kinematic setup �q21 < 0:6 GeV2 and �q22 > 3 GeV2,
suggesting A� 0:9–0:97. As advanced in Ref. [56], we
note that the model results presented in the following
sections become quite sensitive to the precise value of A
at large Q2, hence in precision analyses the effects of
kinematic cuts should be incorporated.

At this point, before undertaking further elaborations, an
important qualification is in order. Equation (4) provides a
gauge-invariant high-energy-motivated definition of the
pion PDA, which formally determines a nonperturbative
matrix element. A purely low-energy definition of the PDA
involves link operators between the quark fields at different
space-time points and depends on the renormalization
scale. A nontrivial issue has to do with the equivalence
of both definitions and the scale at which this identification
makes sense. We refer to previous works [18,20,45,57] for
a detailed discussion on this delicate and nontrivial issue.
An outstanding outcome was that in several models

’ðxÞ ¼ 1 (6)

at the model low-energy scale; the end-point behavior
would be bended after the QCD evolution to higher scales
[see Eq. (5.26) of Ref. [58] for the detailed asymptotic form
of the PDA near the end points after evolution]. While the
identification of the PDA through Eq. (4) indeed requires
taking asymptotically large momenta, it does not neces-
sarily follow that the asymptotic expression itself holds at
the so far measured momenta.

III. TERAZAWA-WEST BOUNDS

Terazawa [31] andWest [32] (for a review see, e.g., [33])
derived unitarity bounds for the pion transition form factor.
The derivation considers the photon propagator, the charge
form factor of the pion, and the transition form factor. The
Schwarz inequality is used to show that

ImF�0��� ðq2Þ ¼ Oð1=
ffiffiffiffiffi
q2

q
Þ (7)

for timelike momenta, q2 > 4m2
�, which we term the first

TW bound. Under a further important assumption that there
are no polynomial contributions to the real part of the form

factor, one may also conclude that jF�0��� ðq2Þj ¼
Oð1= ffiffiffiffiffi

q2
p Þ. Then the dispersion relation (see Sec. 14 of

Ref. [33]) yields that

jF�0��� ðQ2Þj ¼ Oð1=QÞ (8)

for large spacelike momenta Q, which we call the second
TW bound.
The assumption of the absence of the polynomial terms

(in particular, a constant) from the real part of the pion
transition form factor is equivalent to validity of the un-
subtracted dispersion relation. As mentioned in the
Introduction, this crucial assumption is clearly spelled
out as such in the original papers; in the following
Sections of the paper we will investigate situations where
the subtraction constant is present in the pion transition
form factor.
The constant in the bound (8) may be given [33] in terms

of the photon spectral density and the pion quark structure
function, namely,

jF�0��� ðQ2Þj< 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1Þp
Q

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ðx;Q2Þ
xð1� xÞ

s
; (9)

where

�ðsÞ ¼ s

16�3�2
QED

	eþe�!hadronsðsÞ; (10)

with the asymptotic value

�ð1Þ ¼ 1

12�2

X
i

e2i ; (11)

ei denoting the charge of the quark of flavor i in the natural
units. The pion structure function is

F1ðx;Q2Þ ¼ 1

2

X
i

e2i ½qiðx;Q2Þ þ �qiðx;Q2Þ�; (12)

with qiðx;Q2Þ and �qiðx;Q2Þ denoting the quark and anti-
quark distribution functions at momentum Q.
With the help of the Sutton-Martin-Roberts-Stirling [59]

and the Gluck-Reya-Vogt [60] parametrizations of the pion
parton distribution functions we obtain, via integrating
from x ¼ 10�5 to 1, a numerical estimate for the coeffi-
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cient in the bound (9) which actually exhibits a rather mild
dependence on Q2. With Q2 in the range 10–40 GeV2 we
find for the LO and next-to-leading order (NLO) evolved
parton distribution functions the bounds

jF�0��� ðQ2Þj< 0:85ð1Þ
Q

ðLOÞ;

<
0:75ð1Þ

Q
ðNLOÞ;

(13)

with the small uncertainty reflecting the considered Q
interval. Therefore the bound is completely ‘‘inefficient’’
in the considered range of momenta, as it is an order of
magnitude above the BABAR data. For that reason it is of
formal rather than practical interest.1

IV. BOUND FROM THE Z ! �0� DECAY

Another bound for the pion transition form factor comes
from the rare Z ! �0� decays. In that process, proceeding
via a quark loop, only the vector coupling of the Z boson to
the quarks contributes [48], hence

FZ!�0�ðq2Þ
FZ!�0�ð0Þ

¼ F�0���ðq2Þ
F�0�

��ð0Þ : (14)

The experimental limit �ðZ ! �0�Þ< 5� 10�5�totðZÞ ¼
10:25� 10�5 GeV, provided by the Particle Data Group
[49], implies

jFZ!�0�ðM2
ZÞ=FZ!�0�ð0Þj< 0:17: (15)

This experimental bound is not as stringent as predicted by
many authors, where �ðZ ! �0�Þ � 10�11 GeV (see, e.g.,
[50]). The bound can be used in models which predict the
form factor in the timelike region, e.g. the Regge models
considered in the following sections.

V. QUARK MODELS

The role of the constituent vs. current quarks in the �0

and ! transition form factors in triangle diagrams was
recognized in Ref. [61]. The diagram of Fig. 1 is super-
ficially linearly divergent, but the requirement of the gauge
invariance guarantees convergence. In the constituent
quark model (CQM) a direct computation of the triangle
yields, for the general kinematic case,

F�0���� ðQ2; AÞ ¼ 1

4�2f�
GðQ2; AÞ; (16)

where the loop function (we work in the strict chiral limit
of m� ¼ 0),

GðQ2; AÞ ¼ 2M2

Q2

Z 1

0

dx

x

� log

�
2M2 þ ð1þ AÞxð1� xÞQ2

2M2 þ ð1� AÞxð1� xÞQ2

�
; (17)

is normalized to unity at the origin, Gð0; AÞ ¼ 1. For the
special case A ¼ 1

GðQ2; A ¼ 1Þ � GðQ2Þ

¼ 2M2

Q2

Z 1

0

dx

x
log

�
1þ xð1� xÞQ

2

M2

�
: (18)

We note that the evaluation is covariant, thus different in
philosophy from the conventional light-cone analysis. In
the latter case the soft part of the diagram containing the
PDA is factorized, while the hard part of the diagram is
evaluated according to the light-cone Feynman rules. On
the other hand, in CQM one evaluates the diagram of Fig. 1
with the instant-form Feynman rules, corresponding to
local or nonlocal variants of the model. That way one is
insensitive to the issues of factorization. However, it is not
clear how credible this approach is at high virtualities, in
particular, in local models, where the virtual quark propa-
gator carries, even asymptotically, a large constituent mass.
In the study of this section we are, however, primarily
interested in formal aspects, namely, the TW bounds in a
field-theoretic model, thus we shall not be concerned with
the issue whether or not a low-energy quark model can be
realistically used to obtain the asymptotic transition form
factor according to Fig. 1.
Chiral quark models are particular realizations of the

large-Nc limit. A variant of the CQM, the well-known
Georgi-Manohar model [62], allows the quarks to carry

an axial charge different from unity, gQA � 1. The relevant
part of the Lagrangian of the model is

L¼ �qði@6 þ gQAA6 �5 �MÞqþ f2�
4

Trð@�Uy@�UÞ þWZW;

A� ¼ i

2
ðuy@�u� u@�u

yÞ; u¼ ei ~�� ~
=ð2fÞ; U ¼ u2;

(19)

where f ¼ 93 MeV is the pion decay constant and WZW
denotes the Wess-Zumino-Witten term [63,64]. There has

been some discussion on whether or not 1� gQA ¼ OðN0
cÞ.

This issue was answered in the affirmative way in
Ref. [65], where the OðN0

cÞ departure from unity is basi-
cally due to the t-channel exchanges in the Adler-
Weisberger sum rule for the pion-quark scattering. In the
Nambu–Jona-Lasinio model with vector mesons, the A1 �
� mixing is an explicit leading-Nc source [66–68] of the
effect. Because of the chiral anomaly, the field representa-

tion used to describe the gQA � 1 situation is relevant. In
Ref. [69] it was shown that the apparent anomalous in-
equivalence of effective theories may be compensated by

1We are taking Q2 large enough as to neglect the higher twist
corrections. Actually the bound never crosses the pQCD limit
2f�=Q

2 for the lowest momenta considered in Ref. [60], namely,
Q2

0 � 0:26 GeV2 at LO and Q2
0 � 0:40 GeV2 at NLO.
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including extra terms in the effective action. More specifi-
cally, the original Georgi-Manohar model does not contain
the anomalous piece, such that the Wess-Zumino-Witten
(WZW) action should be added a posteriori, as in Eq. (19).
An example on how various vertex functions are modified

by naively including gQA � 1 and violating the anomaly in
chiral quark models is presented in Ref. [70]. The sub-
traction procedure described above to restore the anomaly
and based on [69] was addressed in Ref. [71] (see also
[72]).

A direct calculation of the pion transition form factor in
the Georgi-Manohar model supplied with the WZWaction
yields the result

F�0��� ðQ2Þ ¼ 1

4�2f�
þ gQA

4�2f�
½GðQ2Þ � 1�; (20)

with GðQ2Þ given by Eq. (18). This expression satisfies the
anomaly and the dispersion relation but does not vanish at
infinity, since

F�0��� ðQ2Þ ¼ 1� gQA
4�2f�

þ gQAM
2

4�2f�

½logðQ2=M2Þ�2
Q2

þ . . .

(21)

fulfills the first TW bound (for the imaginary part) but does
not fulfill the second bound (for the real part).

Similarly, within the spectral quark model [20] a direct

implementation of gQA is equally possible [73] and one gets
the result of Eq. (20) with

GðQ2Þ ¼ 1

3

�
2m2

�

m2
� þQ2

þm2
�

Q2
log

�
m2

� þQ2

m�

��
: (22)

With gQA ¼ 1 this model fulfills qualitatively the result of

Radyushkin with a similar mass scale [17], since

F�0��� ðQ2Þ ¼ 1� gQA
4�2f�

þ gQAm
2
�

12�2f�

½logðQ2=m2
�Þ�

Q2
þ . . .

(23)

In the local quark models we have the general relation

F�0��� ðtÞ ¼ 1� gQA
4�2f�

þ gQA
12�2f�

�
2Fem

�þðtÞ

þ
Z t

0
dsFem

�þðsÞ
�
; (24)

which correlates the charge and transition form factors.
This relation shows that in these models even in the case

gQA � 1 one cannot have complete VMD simultaneously

for the two form factors.
Unfortunately, attempts to fit the experimental data with

the quark-model formulas, with gA equal or different from
unity, are not numerically successful in the whole momen-
tum range, unless one uses unrealistic model parameters.
The purpose of the above calculations was different. Our

examples show in an explicit manner that the second TW
may be violated in models consistent with all field-
theoretic constraints, such as covariance, gauge invariance,
chiral symmetry, and anomaly matching. Importantly, they
provide instances where the form factor does not vanish
asymptotically. The calculation also illustrates that the
Q2 ¼ 0 value and the finite Q2 values are independent.
The possibility of disobeying the second TW bound will be
explored in the following sections.

VI. VECTOR MESON DOMINANCE MODELS

We now come to the core of our paper and consider
several implementations of IVMD, both in a simple ap-
proach with a single vector meson, as well as in more
sophisticated Regge models with infinitely-many
radially-excited states. It will turn out that the pion tran-
sition form factor can be accurately described with this
phenomenological method. The coupling of photons to
vector mesons has a long history and Ref. [74] compre-
hensively reviews the interplay between universality, the
vector-meson dominance, and the low-energy theorems.
We will highlight first the issue of IVMD for the charge
form factor, such that our points are later on more easily
made for the transition form factor.

A. Charge form factor

The charge form factor is the famous case where VMD
can be implemented:

Fem
�þðtÞ ¼ M2

V

M2
V � t

��M2
V

t
þ . . . (25)

with t ¼ �Q2. Here and in the following the asymptotic
behavior at t ! 1 is indicated by the � sign. When the
unregularized quark-loop mean squared radius [75] is
matched to (25), one gets the relation

M2
V ¼ 24�2f2�=Nc: (26)

There is no way to match the successful form factor of
Eq. (25) to the pQCD result.2

If one uses a once-subtracted dispersion relation and
imposes the current conservation, Fem

�þð0Þ ¼ 1, one gets

Fem
�þðtÞ � 1 ¼ 1

�

Z 1

t0

t

t0
ImFem

�þðt0Þ
t0 � t� i�

dt0; (27)

2If we nevertheless match Eq. (25) to pQCD, the only possible
solution is �sðQÞ ¼ �=2, which yields a too-small scale Q�
300 MeV. This matching to pQCD may seem weird but need not
necessarily be conceptually wrong. Note that in the string model
calculation of the q �q potential one gets V �qqðrÞ ¼ ��=12r,
whereas from pQCD V �qqðrÞ ¼ �4�S=3r. This yields � ¼
�=16, which means a safely high scale of � ¼ 2 GeV for
�QCD ¼ 240 MeV. The string model describes accurately the
lattice data in the short distance region. In the case of the charge
form factor with VMD, the required scale is much smaller.
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which yields

Fem
�þð�1Þ � 1 ¼ � 1

�

Z 1

t0

ImFem
�þðt0Þ
t0

dt0: (28)

Saturation with a single resonance gives the result

Fem
�þðtÞ ¼ 1þ a

2

t

M2
V � t

� 1� a

2
þ a

2

M2
V

�t
þ . . . (29)

When the coupling a=2 ¼ f��g���=m
2
� � g���=g�eþe�

becomes unity, the form factor vanishes at infinity.
Sakurai’s universality indeed requires g��� ¼ g�eþe� . In

general, however, we may have g��� � g�eþe� . Note that

positivity requires a < 2, such that Fem
�þð�Q2Þ< 1. A fit to

the experimental data [76–79] yields a=2 ¼ 0:99ð2Þ and
MV ¼ 679ð36Þ MeV. Thus the data for the pion charge
form factor are consistent with the complete VMD, but
certainly do not preclude IVMD, with a=2 departing
slightly from unity.

Caldi and Pagels [80] obtained a similar expression as
Eq. (29) for the pion form factor from a direct photon
contribution and a momentum-dependent �� � vertex
(see also Ref. [81]). The discussed properties are nicely
displayed by the hidden-symmetry approach by Bando
et al. [82], where there is a contact piece and the vector
meson term, which dominates completely when the
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin relation
is fulfilled. Actually, in Ref. [83] the equivalence of this
approach to more conventional ones is established. The
interplay between VMD and universality was analyzed by
Schechter [84] (see also Ref. [85]). Symmetry breaking
effects have been analyzed in Ref. [86]. More attempts
including predictions for meson decays can be found in
[87].

Of course, the nonvanishing of the low-energy represen-
tation (the one-resonance saturation) need not be taken as a
fundamental problem. The only feature we see is that this
nonvanishing represents more accurately the unknown
high-energy data. If we had infinitely many states, we
could fit that data and by separating explicitly the contri-
bution from the lowest � state. We see that the effect of all
other states does behave as the a constant, which is slowly
dependent on Q in a wide energy range.

Ideally, one should take the eþe� ! �þ�� data over
all possible momenta. However, obviously the experimen-
tal data are available only up to a certain maximum value,
smax ¼ 4�2. Thus, even if the form factor vanishes at
infinity, we have

Fem
�þðtÞ � 1 ¼ 1

�

Z 4�2

4m2
�

t

s

ImFem
�þðsÞ

s� t
ds

þ 1

�

Z 1

4�2

t

s

ImFem
�þðsÞ

s� t
ds; (30)

where the last term is weakly momentum-dependent and

hence resembles a constant behavior assumed in IVMD, as
discussed above.

B. Transition form factor

For the �0��� form factor the complete VMD with just
one state implies

F�0��� ðtÞ ¼ 1

4�2f�

M2
V

M2
V � t

�� M2
V

4�2f�t
þ . . . : (31)

Note that while the anomaly value does not depend on Nc

explicitly, the high momentum behavior does. When
matching Eq. (31) to the pQCD result of Eq. (5) is done,
one gets independently the relation (26),

M2
V ¼ 24�2f2�=Nc: (32)

Despite this appealing property, the parametrization (31)
fails to describe the experimental data in the high momen-
tum region.
If we incorporate the possibility that the form factor

need not vanish at infinity, we may write a once-subtracted
dispersion relation [88],

F�0��� ðtÞ � F�0��� ð0Þ ¼ 1

�

Z 1

t0

t

t0
ImF�0��� ðt0Þ
t0 � t� i�

dt0: (33)

The influence of the well-known timelike region does not
determine unambiguously when the onset of the pQCD
takes place. Actually, the single VMD model shows that
even in the spacelike region with momenta as low as Q2 �
m2

� the effects of the chiral logs and final state interactions

are meager. Taking the limit t ! �1 we get

F�0��� ð�1Þ � F�0��� ð0Þ ¼ � 1

�

Z 1

t0

ImF�0��� ðt0Þ
t0

dt0:

(34)

This shows that F�0��� ð�1Þ< F�0��� ð0Þ if ImF�0��� ðtÞ>
0. When we saturate the absorptive part with just one
resonance, we get

F�0��� ð�Q2Þ ¼ 1

4�2f�

�
1� c

Q2

M2
V þQ2

�
; (35)

with MV denoting the vector-meson mass. The coefficient
c is related to the � ! �� decay,

c ¼ c��� ¼ �2ef�

m�

Að�0 ! �0�Þ
Að�0 ! ��Þ ¼ 1:022	 0:051;

(36)

where the value of the estimate is obtained from the decay
width �ð�þ ! �þ�Þ ¼ 68	 7 KeV.
If we fit the parameters in formula (35) with the CLEO

data only, we get

c ¼ 0:998ð18Þ; MV ¼ 777ð44Þ MeV; (37)

with �2=DOF ¼ 0:54, hence c is consistent with unity, in
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agreement with previous determinations assuming com-
plete VMD, however not excluding IVMD. On the other
hand, the fit to the combined CELLO, CLEO, and BABAR
data yields the result

c ¼ 0:986ð2Þ; MV ¼ 748ð14Þ MeV; (38)

hence c is different from unity at the level of 7 standard
deviations, while it remains consistent with estimate (36).
As seen from Fig. 2, the agreement with the experimental
data over all the momentum range is remarkable, with
�2=DOF ¼ 0:7. The contours of the confidence levels are
displayed in Fig. 3.

The logarithmic slope at the origin reads

b� ¼ �
�

1

F�0��� ðQÞ
d

dQ2
F�0��� ðQÞ

���������Q2¼0
: (39)

Numerically, taking the optimum parameters (38), we get
the value

b� ¼ c

M2
V

¼ 1:76ð7Þ GeV�2: (40)

Our IVMD model estimate is in a very good agreement
with the average experimental values quoted in the PDG
[49]: b� ¼ ð1:76	 0:22Þ GeV�2. This value is very close
to that originally reported by the CELLO Collaboration
[89], obtained from an extrapolation from high-Q2 data to
low Q2 by means of generalized vector meson dominance,
b� ¼ ð1:4	 1:3	 2:6Þ GeV�2 given in [90], and b� ¼
ð1:4	 0:8	 1:4Þ GeV�2 given in [91].

To end this section, we turn to the rare decay Z ! �0�,
which probes the transition form factor in the physical
region. From Eq. (35) with parameters (38) we get
jFZ!�0�ðM2

ZÞ=FZ!�0�ð0Þj ¼ 0:014ð2Þ, a comfortable order

of magnitude smaller than the upper experimental bound

(15), but not as small as predicted by several models
(� 10�4, see, e.g., [50] and references therein).

VII. REGGE MODELS

In the previous section we have considered the simplest
possible implementation of IVMD, with just one vector-
meson state. However, the large-Nc limit of QCD involves
tree-level diagrams with infinitely many states, including
the radial excitations. That way the matching to the QCD
correlators can be accomplished [42,43,47], as well as the
correct asymptotic behavior of the pion charge form factor
[46] may be obtained. In this section we analyze the pion
transition form factors in the framework of Regge models
with infinitely many radially excited vector-meson states.
Based on the success of the Veneziano-Lovelace-

Shapiro dual resonance model (see, e.g., [92,93] and refer-
ences therein) Suura [94] and Frampton [95] proposed
analytic models. The general form reads

F�0���� ðQ2; AÞ ¼ X
V�;V!

FV�
ðq21ÞFV!

ðq22ÞG�V�V!
ðq21; q22Þ

ðq21 �M2
V�
Þðq22 �M2

V!
Þ

þ ðq1 $ q2Þ; (41)

whereFV�
andFV!

are the current-vector meson couplings,

while G�V�V!
is the coupling of two vector mesons to the

pion. The situation is depicted in Fig. 4. At the soft photon
point, corresponding to the neutral pion decay �0 ! 2�,
the chiral anomaly matching condition imposes the nor-
malization
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FIG. 2 (color online). The pion transition form factor in the
spacelike region Q2 ¼ �t > 0. The dots, squares, and diamonds
correspond to the CELLO [89], CLEO [97], and BABAR [7] data,
correspondingly. The line is the incomplete-vector-meson-
dominance fit with formula (35) and parameters (38).
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FIG. 3. The ��2 ¼ 2:3 and 4.6 contours, corresponding to the
68% and 90% confidence levels, in the MV � c plane for the fit
with the IVMD ansatz (35). The central values yield �2=DOF ¼
0:6.
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F�0���� ð0; 0Þ ¼ X
V�V!

2FV�
ð0ÞFV!

ð0ÞG�V�V!
ð0; 0Þ

M2
V�
M2

V!

¼ 1

4�2f�
: (42)

This consistency constraint, realized in nature, can be al-
ways satisfied in models by an appropriate choice of the
couplings. In Ref. [45] we analyzed the transition form
factor with the help of formula (41) with the coupling
constants FV taken as constants (as requested asymptoti-
cally by the matching of spectral densities to QCD) and
allowing for constant diagonal couplings in G�V�V!

. As a

result, a constant PDA of Eq. (6) was extracted. The
corresponding pion transition form factor has the asymp-
totic behavior � logðQ2=�2Þ=Q2, however with physical
values of the model parameters it overshoots the data in the
region above Q2 � 1 GeV2, thus does not properly repro-
duce the data.3

In the analysis below we use a more sophisticated ap-
proach, namely, the factorizable product suggested by
Dominguez [96] in the dual description of radiative decays,

F�0��� ðtÞ ¼ 1

4�2f�
fbðtÞ; (43)

where

fbðtÞ ¼ 1

Bðb� 1;
M2

V

a Þ
X1
n¼0

�ð2� bþ nÞ
�ðnþ 1Þ�ð2� bÞ

� 1

anþM2
V � t

: (44)

The function fbðtÞ depends on three parameters: the
lowest-lying vector-meson mass, MV , the string tension,
	 ¼ a=ð2�Þ, and the asymptotic fall-off parameter, b. The
mass formula is then MVðnÞ2 ¼ anþM2

V . The function
(45) fulfills the normalization condition

fbð0Þ ¼ 1: (45)

For x 
 y one has Bðx; yÞ � �ðyÞx�y, hence in the asymp-
totic region of M2

V � t 
 ðb� 1Þa we find

fbðtÞ �
�ðM2

V

a þ b� 1Þ
�ðM2

V

a Þ

�
a

M2
V � t

�
b�1

: (46)

The TW bounds are satisfied if b > 1:5.
We remark that in Ref. [46] this version of the Regge

approach was used to describe the charge form factor. We
have shown that it can be accurately reproduced up to
Q2 � 6 GeV2, while the pQCD result greatly undershoots
the experiment. The onset of pQCD occurs at extremely
high (‘‘cosmological’’) values of Q2.
We now proceed with the application of the presented

Regge model to the pion transition form factor. Taking a ¼
1:3 GeV2 (which correspond to the string tension 	 ¼
ð455 MeVÞ2), a �2 fit of formula (43) to the joint
CELLO, CLEO, and BABAR data yields

MV ¼ 0:672ð25Þ GeV; b ¼ 1:81ð3Þ; (47)

with �2=DOF ¼ 1. The fit is shown in Fig. 5 with the
dashed line. Since b > 1:5, the fit satisfies the TW bounds.
For the logarithmic slope at the origin we find b� ¼
2:1ð2Þ GeV�2. We also get, with smoothing the spectral
density in the physical region, the ratio
jFZ!�0�ðM2

ZÞ=FZ!�0�ð0Þj ¼ 0:0014ð4Þ, which is comfort-

ably below the experimental bound and an order of mag-
nitude smaller than the IVMD fit of Sec. VI B.
We can further try to improve the agreement with the

BABAR data by explicitly separating the first pole as fol-
lows:
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FIG. 5 (color online). The pion transition form factor in the
spacelike region Q2 ¼ �t > 0. The dots, squares, and diamonds
correspond to the CELLO [89], CLEO [97], and BABAR [7] data,
correspondingly. The dashed line is the results of the Regge fit
with formula (43) and parameters (47). The dotted line shows the
Regge fit with Eq. (48) and parameters (49). Finally, the solid
line corresponds to the subtracted Regge model of Eq. (50) and
parameters (51).

FIG. 4. The pion transition form factor in Regge models. The
labels V� and V! denote the infinite vector meson towers with

the � and ! quantum numbers.

3As already mentioned, we stress that taking theQ2 ! 1 limit
is an operational way of extracting the leading twist PDA; this is
different than describing the current data within this limit.
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F�0��� ðtÞ ¼ 1

4�2f�

�
c

M2
V

M2
V � t

þ ð1� cÞ
�fbðtÞ
�fbð0Þ

�
; (48)

where �fbðtÞ is obtained from Eq. (45) with the n ¼ 0 term
omitted from the sum.We impose the TW bound by setting
b ¼ 1:5. Then (with a ¼ 1:3 GeV2) we find

c ¼ 0:95ð2Þ; MV ¼ 709ð9Þ MeV; (49)

with �2=DOF ¼ 0:85, b� ¼ 1:9ð1Þ GeV�2, and
jFZ!�0�ðM2

ZÞ=FZ!�0�ð0Þj ¼ 0:01ð1Þ. The corresponding

curve is presented in Fig. 5 with the dotted line.
Finally, we take a subtracted Regge model, in analogy to

the model of Sec. VIB of the form

F�0��� ðtÞ ¼ 1

4�2f�
½1� cþ cfbðtÞ�: (50)

Setting MV ¼ 770 MeV and a ¼ 1:3 GeV2 yields the op-
timum values for the remaining parameters

c ¼ 0:984ð4Þ; b ¼ 2:05ð3Þ; (51)

with �2=DOF ¼ 0:7. Since the value of b is consistent with
2, the model gives very similar results to the model with the
single vector-meson state considered in Sec. VI B. Hence
we find b�¼1:69ð1ÞGeV�2, and jFZ!�0�ðM2

ZÞ=
FZ!�0�ð0Þj¼0:021ð4Þ. The corresponding curve is pre-

sented in Fig. 5 with the solid line. Within the present
model we see that the higher radially excited states of the
vector mesons, �0; �00; . . . and !0; !00; . . . , are weakly
coupled.

We also zoom the low-Q2 range in Fig. 6. All the
considered fits practically overlap in the displayed range,
in agreement with the observation that IVMD could not be
rejected even at Q2 � 8 GeV2. Our analysis shows that
higher energy data do in fact favor IVMD at the level of 7
standard deviations.

VIII. ASYMMETRY PARAMETER

As mention in the Introduction, in the BABAR kinematic
setup �q21 < 0:6 GeV2 and �q22 > 3 GeV2, suggesting
A� 0:9–0:97, hence A is not strictly 1. This departure
has significance for the fits and the obtained parameters,
which should not be forgotten in precision analyses. We
take as an example the IMVD model, which now becomes

F�0��� ð�Q2Þ

¼ 1

4�2f�
�

�
1� c

�
1� 4M4

V

4M4
V þ 4M2

VQ
2 þ ð1� A2ÞQ4

��
:

(52)

Fitting with A ¼ 1, 0.975, and 0.95 yields, respectively,
c ¼ 0:986, 0.978, 0.974, and MV ¼ 748, 754, 768 MeV.
We note significantly different values of the optimum
parameters, with MV closest to the physical value for A ¼
0:95. The corresponding curves are displayed in Fig. 7.

IX. CONCLUSIONS

These are our main findings:
(i) The Terazawa-West bound, asserted for the real part

of the pion transition form factor, need not be ful-
filled in field-theoretic approaches. We provide an
explicit counter-example with the low-energy
Georgi-Manohar model, where the chiral anomaly
is fulfilled but the transition form factor does not
vanish at t ! �1. Provided this feature holds in
QCD, it opens a possibility of explaining the
BABAR experimental data with models incorporating
the incomplete vector-meson dominance.

(ii) Moreover, the coefficient in the Terazawa-West
bound, estimated with the help of a phenomenologi-
cal parametrization of the pion parton distribution
functions, is large, extending an order of magnitude
above the BABAR data. Thus, even if it holds in the
absence of polynomial contributions to the real part,
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FIG. 6 (color online). Same as Fig. 5 for a smaller range of Q2.
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FIG. 7 (color online). The IMVD fit of Eq. (53) with A ¼ 1,
0.975, and 0.95, denoted with solid, dashed, and dotted lines,
respectively.
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it is completely ineffective for the momentum range
of interest.

(iii) Already the simplest model with the incomplete
vector-meson dominance, incorporating a single
vector-meson state, is capable of reproducing the
data in the whole available experimental range, 0<
Q2 < 35 GeV2.

(iv) Within the Regge approach, where infinitely many
radially excited states are included, the data can be
fitted both ways: satisfying or violating the TW
bound. The agreement with the experiment is satis-
factory, both near Q2 ’ 0, where the anomaly value
and the slope of the form factor are reproduced, as
well as in the intermediate CLEO range and the
high-Q2 BABAR range.

(v) An additional constraint on the models in the time-
like region of momenta follows from the rare Z !
�0� decay. We use this bound in our considerations.
For the considered models it is comfortably satisfied.

(vi) Finally, we note that the numerical fits are quite
sensitive to the photon momentum asymmetry pa-
rameter, A, which leads to sensitivity in the physical
parameters, such as the vector meson mass, and
sensitivity of the transition form factor in the asymp-
totic range. Since A is not strictly 1, the effect of the
kinematic cuts should be considered in precision
analyses.
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