
Two-particle correlations in high-energy collisions and the gluon four-point function

Adrian Dumitru1,2,3 and Jamal Jalilian-Marian2,3

1RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA
2Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, New York 10010, USA

3The Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
(Received 4 February 2010; published 12 May 2010)

We derive the rapidity evolution equation for the gluon four-point function in the dilute regime and at

small x from the JIMWLK functional equation. We show that beyond leading order in Nc the mean field

(Gaussian) approximation where the four-point function is factorized into a product of two-point functions

is violated. We calculate these factorization breaking terms and show that they contribute at leading order

in Nc to correlations of two produced gluons as a function of their relative rapidity and azimuthal angle,

for generic (rather than back-to-back) angles. Such two-particle correlations have been studied experi-

mentally at the BNL-RHIC collider and could be scrutinized also for pp (and, in the future, also AA)

collisions at the CERN-LHC accelerator.
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I. PRODUCTION OF TWO CORRELATED
PARTICLES

The evolution of QCD amplitudes with energy is de-
scribed by the Balitsky hierarchy [1] or, equivalently, by
the JIMWLK [2] functional renormalization group equa-
tions. They essentially represent generalizations of the
well-known Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-
tion [3] for the evolution of the two-point function to
evolution equations for arbitrary n-point functions includ-
ing the nonlinear effects due to high gluon density. In the
unitarity limit of high parton density the Balitsky hierarchy
is not closed: the derivative of any n-point function with
respect to energy (or rapidity Y � logE) involves all
m-point functions (m � n). In the dilute regime, however,
the hierarchy can be truncated to obtain closed evolution
equations for each n-point function.

Prior work in this field has mostly focused on the evo-
lution of the two-point function and its perturbative uni-
tarization at high energies. The purpose of this paper is to
point out that information on the four-point function could
be obtained from two-particle correlations in inelastic
high-energy collisions in a certain kinematic regime (see
below). Computation of multiparticle production in high
energy collisions [4] relies on the use of factorization
theorems [5] which ensure that the small-x divergences
of the observables can be absorbed into the JIMWLK
evolution of the n-point functions.

We argue that even in the dilute regime the B-JIMWLK
equation for the four-point function cannot be factorized as
a product of two BFKL two-point functions. We show that
the terms that violate this factorization actually contribute
to the correlation function at leading order in Nc.

We consider the correlation of two particles with trans-
verse momenta p?, q? (we shall drop the subscript? from
now on to avoid cluttering of notation) and rapidities yp,

yq, respectively:

Cðp;qÞ ¼
�

dN2

d2pdypd
2qdyq

�
�

�
dN

d2pdyp

��
dN

d2qdyq

�
:

(1)

When p and q are on the order of a few GeV it is necessary
to subtract the background of uncorrelated particle pairs to
reveal the structure of the correlation function. The brack-
ets denote an average over events and the momentum
distributions shall be normalized according to

Z
d2pdyp

�
dN

d2pdyp

�
¼ hNi; (2)

Z
d2pdypd

2qdyq

�
dN2

d2pdypd
2qdyq

�
¼ hN2i; (3)

where hNi is the total average multiplicity per event. It has
been argued in Ref. [6] that in the high-energy limit (but
fixed p, q, yp, yq) the leading contribution to Cðp;qÞ is due
to diagrams such as the one depicted in Fig. 1. For these
diagrams the hard amplitudes are disconnected but the
correlations arise because for either one (or both) of the
colliding hadrons the ladders in the amplitude and/or the
conjugate amplitude connect to the same color source.
These two-point functions are essentially the unintegrated
gluon distributions of the hadrons; they are of order 1=g2

when the transverse momentum in the ladder is below the
saturation momentum Qs of the corresponding hadron.
Diagrams such as Fig. 1 should dominateCðp; qÞ even at

high (but not asymptotically high) transverse momentum,
p; q * Qs, provided one considers generic relative angles
cos� � p � q=ðjpjjqjÞ (in particular, away from the region
of ‘‘back-to-back’’ jets, � ’ �). On the other hand, at
leading order in �s, when p; q � Qs the gluon pair should
originate from the same ladder. When the rapidity differ-
ence between the two produced gluons and the two beams
are smaller than �1=�s, the ladder is DGLAP-ordered
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which would lead to Cðp; qÞ being dominated by contribu-
tion of back-to-back jets [�ðpþ qÞ]. When jyp � yqj *
1=�s the delta-function gets smeared out by a BFKL-
ordered ladder in between the produced gluons (Mueller-
Navelet jets [7]). Instead, here we consider the situation
where p, q are somewhat larger than but on the order ofQs;
also, jyp � yqj should be significantly smaller than the

total rapidity window between the two beams; and, most
importantly, the relative azimuthal angle is � � �, such

that the transverse momenta of the produced gluons do not
cancel.
We note that two-particle correlations away from the

back-to-back regime have recently been measured at the
BNL-RHIC accelerator at

ffiffiffi
s

p ¼ 200 GeV (per colliding
nucleon pair) for proton-proton, deuteron-gold, and gold-
gold collisions [8–10]. For the former systems only a
narrow peak due to fragmentation of the triggered parton
have been observed. For collisions of heavy ions, on the
other hand, Cðp; qÞ exhibits a ‘‘ridge’’-like structure: it is
narrow in � but extends over several units in �y ¼ jyp �
yqj. The absence of measurable correlations in pp and dþ
Au collisions may be due to the smallness of the saturation
momentum Qs for a proton or deuteron at RHIC energy.
Also, the measurements from RHIC might be expected to
be rather sensitive to the initial conditions for the evolution
equation at moderately small x0. At the higher energies of
CERN’s LHC collider, the saturation momentum of a
proton measured from the central rapidity region is ex-
pected to be on the order of 1 GeV and such correlations
could be sufficiently strong to provide information about
the QCD four-point function at small x.
The diagrams like the one from Fig. 1 arise from facto-

rization of the four-point functions in the field of the
projectile/target into products of two-point functions [6]
(unintegrated gluon distributions). Doing so, however,
picks up only the leading-Nc contribution to the four-point
function. More generally, Cðp;qÞ is given by

�
dN2

d2pdypd
2qdyq

�
¼ g12

64ð2�Þ6 ðfgaa0fg0bb0fgcc0fg0dd0 Þ
Z Y4

i¼1

d2ki
ð2�Þ2k2i

L�ðp; k1ÞL�ðp; k2Þ
ðp� k1Þ2ðp� k2Þ2

L�ðq; k3ÞL�ðq; k4Þ
ðq� k3Þ2ðq� k4Þ2

�h�	a
Aðk2Þ�	b

Aðk4Þ�A
cðk1Þ�A

dðk3Þ�	a0
Bðp� k2Þ�	b0

Bðq� k4Þ�B
c0 ðp� k1Þ�B

d0 ðq� k3Þi (4)

¼ g12

64ð2�Þ6 ðfgaa0fg0bb0fgcc0fg0dd0 Þ
Z Y4

i¼1

d2ki
ð2�Þ2k2i

L�ðp; k1ÞL�ðp; k2Þ
ðp� k1Þ2ðp� k2Þ2

L�ðq; k3ÞL�ðq; k4Þ
ðq� k3Þ2ðq� k4Þ2

�h�	a
Aðk2Þ�	b

Aðk4Þ�A
cðk1Þ�A

dðk3Þih�	a0
Bðp� k2Þ�	b0

Bðq� k4Þ�B
c0 ðp� k1Þ�B

d0 ðq� k3Þi (5)

In the second step we have assumed factorization of the
wave functions of projectile and target. L� denotes the
Lipatov vertex which satisfies

L�ðp; k1ÞL�ðp; k2Þ ¼ � 4

p2
½�ij�nm þ �ij�nm


� ki1ðp� k1Þjkn2ðp� k2Þm (6)

L�ðp; kÞL�ðp; kÞ ¼ � 4k2

p2
ðp� kÞ2: (7)

The expression (5) is depicted in Fig. 2. Here, �ðrÞ
denotes the color charge density per unit transverse area
at a transverse coordinate r and �ðkÞ is its Fourier trans-
form. Its two-point function is related to the unintegrated

gluon distribution �ðx; k2Þ via

h�	aðkÞ�bðk0ÞiðxÞ ¼ 1

�s

�ab

N2
c � 1

ð2�Þ3�ðk� k0Þ�ðx; k2Þ:
(8)

With this normalization one recovers the LO
k?-factorization formula for the single-inclusive distribu-
tion from the diagram 3 with the standard prefactor [11]:

dN

d2pdy
¼ 4�s

Nc

N2
c � 1

	0

p2

Z
d2k

�Aðx1; k2Þ
k2

� �Bðx2; ðp� kÞ2Þ
ðp� kÞ2 ; (9)

where 	0 is the transverse area of the collision (note that in

FIG. 1. Correlated production of two particles with generic
relative azimuthal angle at leading order. The blobs denote the
unintegrated gluon distribution of the projectile A or target B,
respectively, and the light-cone momenta are x1;2 ¼ ðp= ffiffiffi

s
p Þ�

expð�ypÞ, z1;2 ¼ ðq= ffiffiffi
s

p Þ expð�yqÞ.
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our convention �ðx; k2Þ is the density of gluons per unit
transverse area and it therefore contains a factor of 1=	0).

In a mean field (and large Nc) approximation one may
factorize the four-point functions from Eq. (5) into prod-
ucts of two-point functions,

h�a�b�c�di ¼ �ab�cdð�2Þ2 þ �ac�bdð�2Þ2
þ �ad�bcð�2Þ2 þ � � � ; (10)

where �2 � h��i, and the momentum dependence of the
two-point function has been suppressed. Then, one of the
nine contractions corresponds to the square of the single-
inclusive distribution: contract the first � with the third and
the second with the fourth, for both projectile and target.
The color factor for this diagram is1

fgaa0fg0bb0fgcc0fg0dd0 h�	a
A�A

cih�	b
A�A

dih�	a0
B�B

c0 i
� h�	b0

B�B
d0 i (11)

� fgaa0fg0bb0fgcc0fg0dd0�
ac�bd�a0c0�b0d0 ¼ N2

cðN2
c � 1Þ2:

(12)

The remaining eight diagrams correspond to a color factor
of (we take Fig. 1 as an example)

fgaa0fg0bb0fgcc0fg0dd0 h�	a
A�A

cih�	b
A�A

dih�	a0
B�

	b0
Bi

� h�B
c0�B

d0 i (13)

� fgaa0fg0bb0fgcc0fg0dd0�
ac�bd�a0b0�c0d0 ¼ N2

cðN2
c � 1Þ:

(14)

Thus, two-particle correlations are suppressed by a factor
ofN2

c � 1 as compared to uncorrelated production. For this
reason, the leading-Nc ansatz (10) may not capture the
complete result for Cðp; qÞ. Below, we derive the evolution
equation for the four-point function from JIMWLK. We
determine the corrections beyond the mean-field and
large-Nc approximations to the right-hand side of (10)
and show that these corrections contribute at the same
order in Nc to the correlation function.
In this regard, we should point out that Nc corrections to

the two-point function in the dense regime were found to
be exceptionally small [12]. However, this needs not be
true for the four-point function. In fact, we shall argue
below that we do not expect Nc corrections to the four-
point function to be anomalously small, even in the dilute
regime. A verification or falsification of this expectation
via exact numerical solutions would be very valuable.

II. EVOLUTION EQUATION FOR THE FOUR-
POINT FUNCTION

In this section we present the equation describing the
rapidity evolution of the four-point function h�a

r�
b
�r�

c
s�

d
�s i

obtained from the JIMWLK equations, which include
terms of subleading order in Nc. In this context it is more
natural to work in coordinate space, so r, s, �r, �s denote
transverse coordinates; the four-point function in momen-
tum space can be obtained by Fourier transform. We also
find it preferable to work with the fields � rather than the
color charge densities �; at leading order and in covariant
gauge, they are related in coordinate space by

A�ðxþ; rÞ � ����ðxþ; rÞ ¼ �g����ðxþÞ 1

r2
?
�ðxþ; rÞ;

(15)

for a hadron moving at the speed of light in the negative
z-direction. Since this field also satisfies Aþ ¼ 0, the only
nonvanishing field strength is F�i ¼ �@i�. In momentum
space we have the relation k2�ðkÞ ¼ g�ðkÞ.
The JIMWLK evolution equation for the four-point

function to lowest order in the fields can be shown to be

FIG. 2. Correlated production of two particles with generic
relative azimuthal angle at leading order. The blobs denote the
four-point functions for the projectile A or target B, respectively.

FIG. 3. Single-particle production from k?-factorization at
leading order. The blobs denote the unintegrated gluon distribu-
tion of the projectile A or target B, respectively.

1Not including factors of Nc which will enter once h��i is
expressed through � via Eq. (8).

TWO-PARTICLE CORRELATIONS IN HIGH-ENERGY . . . PHYSICAL REVIEW D 81, 094015 (2010)

094015-3



d

dY
h�a

r�
b
�r�

c
s�

d
�s i ¼

g2Nc

ð2�Þ3
Z

d2z

�
�a
z�

b
�r�

c
s�

d
�s

ðr� zÞ2 þ �a
r�

b
z�

c
s�

d
�s

ð�r� zÞ2 þ �a
r�

b
�r�

c
z�

d
�s

ðs� zÞ2 þ �a
r�

b
�r�

c
s�

d
z

ð�s� zÞ2 � 4
�a
r�

b
�r�

c
s�

d
�s

z2

�

þ g2

�

Z d2z

ð2�Þ2
�
fe
aff
b

ðr� zÞ � ð �r� zÞ
ðr� zÞ2ð�r� zÞ2 ½�

e
r�

f
�r � �e

r�
f
z � �e

z�
f
�r þ �e

z�
f
z 
�c

s�
d
�s

þ fe
aff
c
ðr� zÞ � ðs� zÞ
ðr� zÞ2ðs� zÞ2 ½�

e
r�

f
s � �e

r�
f
z � �e

z�
f
s þ �e

z�
f
z 
�b

�r�
d
�s

þ fe
aff
d
ðr� zÞ � ð �s� zÞ
ðr� zÞ2ð�s� zÞ2 ½�

e
r�

f
�s � �e

r�
f
z � �e

z�
f
�s þ �e

z�
f
z 
�b

�r�
c
s

þ fe
bff
c
ð �r� zÞ � ðs� zÞ
ð�r� zÞ2ðs� zÞ2 ½�

e
�r�

f
s � �e

�r�
f
z � �e

z�
f
s þ �e

z�
f
z 
�a

r�
d
�s

þ fe
bff
d
ð �r� zÞ � ð �s� zÞ
ð�r� zÞ2ð�s� zÞ2 ½�

e
�r�

f
�s � �e

�r�
f
z � �e

z�
f
�s þ �e

z�
f
z 
�a

r�
c
s

þ fe
cff
d
ðs� zÞ � ð �s� zÞ
ðs� zÞ2ð�s� zÞ2 ½�

e
s�

f
�s � �e

s�
f
z � �e

z�
f
�s þ �e

z�
f
z 
�a

r�
b
�r

�
: (16)

This expression neglects contributions from higher n-point functions on the right-hand side; in the dilute regime, i.e. when
the transverse momenta of the produced particles are higher than the saturation momenta of the colliding hadrons, this
approximation should be justified.

In order to derive the color structure of corrections beyond the large-Nc approximation, we factorize the product of four-
point functions on the right-hand side of Eq. (16) into products of two-point functions. This Gaussian approximation
reduces the evolution equation for the four-point function to a product of two BFKL equations (for the two-point function)
plus extra terms which provide corrections to the factorization (10). The result is

d

dY
h�a

r�
b
�r�

c
s�

d
�s i ¼

d

dY
½�ac�bd�2

�r��s�
2
r�s þ �ab�cd�2

s��s�
2
r��r þ �ad�bc�2

r� �s�
2
�r�s
 �

�s

2�2

Z
d2z½Fabcd

0 þ Fabcd
1 þ Fabcd

2 

(17)

where

Fabcd
0 � fa
bfc
d

ðr� sÞ2
ðr� zÞ2ðs� zÞ2 �

2
r��r�

2
s��s þ fa
dfb
c

� ðr� �rÞ2
2ðr� zÞ2ð�r� zÞ2 �

ðr� sÞ2
2ðr� zÞ2ðs� zÞ2 þ ðr $ s; �s $ �rÞ

�

� �2
r��s�

2
�r�s

Fabcd
1 � fa
bfc
d

��
1

ðr� zÞ2 �
ðs� rÞ2

ðr� zÞ2ðs� zÞ2
�
�2
r��r�

2
z��s þ ðr $ �s; s $ �rÞ

�

þ fa
dfb
c
��

1

ðr� zÞ2 �
ð�r� rÞ2

ðr� zÞ2ð �r� zÞ2 �
1

ð�s� zÞ2 þ
ð �s� �rÞ2

ð �r� zÞ2ð�s� zÞ2
�
�2
r��s�

2
z�s þ ðr $ s; �s $ �rÞ

�

Fabcd
2 � fa
bfc
d

��� ðr� sÞ2
ðr� zÞ2ðs� zÞ2 �

1

ðr� zÞ2 �
1

ðs� zÞ2
�
�2
z� �r�

2
z��s � ðs $ �sÞ

�
� ðr $ �rÞ

�
:

(18)

In (18) all terms in F0, F1, and F2 are to be duplicated with
the substitutions indicated explicitly in the brackets.
Second, all terms in F0 and F1 are to be duplicated again
substituting a $ b and r $ �r. Then, all terms in F0 and F1

should be duplicated a third time exchanging c $ d and
s $ �s. Furthermore, all terms in F2 are to be duplicated
while letting b $ c and r $ �s. Finally, the terms obtained
in the last substitution (only) in F2 should be duplicated
exchanging c $ d and r $ �r.

The first term in (17) provides the leading-Nc contribu-
tion to the four-point function. The second term gives

corrections beyond the large-Nc factorization (10). Since
an analytic solution to the evolution equation for the four-
point function is not within our reach, a numerical inves-
tigation of these terms and their magnitude would be
extremely useful. Nevertheless, from

@Yh�a�b�c�di � �sNc�
ab�cdð�2Þ2 þ �sf

ac
fbd
ð�2Þ2;
with �2ðYÞ � e�sNcY (19)

one might expect that, generically, the solution to this
equation has the following color structure:
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h�a�b�c�di � �ab�cdð�2Þ2 þ �ac�bdð�2Þ2
þ �ad�bcð�2Þ2þ (20)

1

Nc

fac
fbd
ð�2Þ2 þ 1

Nc

fab
fcd
ð�2Þ2

þ 1

Nc

fad
fbc
ð�2Þ2: (21)

(Note that the various two-point functions depend on dif-
ferent coordinates/momenta and so each of the above terms
is distinct.) The color factors emerging from the products
of the Kronecker tensors have already been discussed
above, Eqs. (12) and (14). However, some of the products
of a leading-Nc term from the first line (20) with a
subleading-Nc term from the second line (21) also contrib-
ute at the same order N2

cðN2
c � 1Þ. For example,

1

Nc

�a0c0�b0d0fgaa0fg0bb0fgcc0fg0dd0f
ab
fcd


¼ Nc�
ac�bdfab
fcd
 ¼ N2

cðN2
c � 1Þ: (22)

This shows that some of the subleading-Nc contributions
from the four-point function actually enter Cðp; qÞ at lead-
ing order, compare to Eq. (14). Previous results from the
literature [6] (also see [13]) are therefore not complete.
Nevertheless, the correlations described here should still
extend over several units in jyp � yqj [13]. Quantitative
results for the JIMWLK four-point function and for the
corresponding two-particle correlations Cðp;qÞ as func-

tions of the transverse momenta p, q, relative azimuth �
and relative rapidity jyp � yqj remain to be found.

In summary, we have argued that two-particle correla-
tions from high-energy collisions may provide some in-
sight into the QCD four-point function. This should be the
case, in particular, when the transverse momenta of the
produced particles are not very much higher than the
saturation momenta of the colliding hadrons and when
their relative azimuthal angle is sufficiently less than �.
The narrow (in both azimuthal and polar angle) jetlike
fragmentation peak should sit on top of a ‘‘background’’
which is broader in the relative rapidity jyp � yqj.
If expanded in powers of Nc, the leading contribution to

the four-point function is given by the product of two
BFKL two-point functions. However, we find that genuine
B-JIMWLK subleading-Nc corrections also appear in the
correlation function Cðp;qÞ, at leading nonvanishing order
in Nc. The correlations mentioned here represent an inter-
esting opportunity to study the nontrivial structure of the
four-point function of the B-JIMWLK hierarchy, both
theoretically and experimentally.
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