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We evaluate the shadowing effect in deeply virtual and real Compton scattering on nuclei in the

framework of the color dipole model. We rely on the soft photon wave function derived in the instanton

vacuum model and employ the impact parameter dependent phenomenological elastic dipole amplitude.

Both the effects of quark and the gluon shadowing are taken into account.
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I. INTRODUCTION

Compton scattering, �� þ p ! �þ p, with initial pho-
tons both real or virtual, has been a subject of intensive
theoretical and experimental investigation [1–16]. While in
the case of deeply virtual Compton scattering (DVCS),
where the initial photon is highly virtual, the QCD facto-
rization has been proven [5,7,8] and the amplitude can be
expressed in terms of the generalized parton distributions
(GPD) [1–15]; in the case of real Compton scattering
(RCS) the available theoretical tools are rather
undeveloped.

On the one hand, as it has been shown in [17,18], for
large momentum transfer �? it is possible to factorize the
RCS amplitude [19,20] and express it in terms of the
distribution amplitudes of the proton. On the other hand,
it is possible to express the amplitude of the process via the
minus first moment of GPDs at zero skewedness [5,21,22].

DVCS and RCS on a proton have been studied recently
within the color dipole approach in [23,24]. Here we ex-
tend that study to nuclear targets. The DVCS process on a
nuclear target has been measured at HERA by the
HERMES Collaboration [25] and may also be studied at
the future Electron Ion Collider (EIC) and Large Hadron
Electron Collider (LHeC) [26,27]. The RCS may be mea-
sured at the LHC, as a subprocess in hadron-hadron colli-
sions in ultraperipheral kinematics. Since both DVCS and
RCS are studied in the high-energy kinematics, the nuclear
effects reveal themselves as shadowing corrections.

The general framework for evaluation of the shadowing
corrections is the Gribov-Glauber approach [28]. While in
the asymptotic high-energy ‘‘frozen’’ regime the shadow-
ing corrections were studied in [29,30], we use an approach
that is also valid for intermediate energies. Also, we take
into account the gluon shadowing corrections, which ap-
pear for xB & 10�3 and give a sizable contribution for
xB � 10�5.

The paper is organized as follows. In Sec. II we review
the general formalism of the color dipole approach. In

Sec. III we discuss the frequently used frozen approxima-
tion that is valid for asymptotically large energies. In
Sec. IV we discuss the method that will be used for
calculations of nuclear shadowing effects and demonstrate
that for asymptotically large energies it reproduces the
results from Sec. III. In Sec. V we discuss the gluon
shadowing and its effect on the DVCS and RCS observ-
ables. In Sec. VI the wave function of a real photon is
evaluated in the instanton vacuum model. In Sec. VII we
present the results of numerical evaluation, and in Sec. VIII
we draw conclusions.

II. COLOR DIPOLE MODEL

The color dipole model is particularly efficient at high
energies, where the dominant contribution to the Compton
amplitude comes from gluonic exchanges. Then the gen-
eral expression for the Compton amplitude on a nucleon
has the form

AðijÞ
��ðs;�Þ ¼ eðiÞ� eðjÞ�

Z 1

0
d�1d�2d

2r1d
2r2 ��

ðiÞ
f ð�2; ~r2Þ

�Adð�1; ~r1;�2; ~r2; �Þ�ðjÞ
in ð�1; ~r1Þ; (1)

where eðiÞ� is the photon polarization vector; �1;2 are the

light-cone fractional momenta of the quark and antiquark;
~r1;2 are the transverse distances in the final and initial

dipoles, respectively; � is the momentum transfer in the
Compton scattering; Adð� � �Þ is the scattering amplitude
of the dipole on the target (proton or nucleus); and

�ðiÞ
inðfÞð�; ~rÞ are the wave functions of the initial and final

photons in the polarization state i [31].
At high energies in the small angle approximation,

�=
ffiffiffi
s

p � 1, the quark separation and fractional momenta
� are preserved, so

A dð�1; ~r1;�2; ~r2;Q
2;�Þ��ð�1��2Þ�ð~r1� ~r2Þ

�
Z
d2b0ei ~� ~b0 ImfN�qqð ~r1; ~b0;�1Þ;

(2)
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is the gluon GPD of the target, P0 ¼ Pþ �, �P ¼ ðPþ
P0Þ=2, G��ðxÞ is the gluon loop operator, and L1ðx; yÞ is
the Wilson factor required by gauge covariance. For this
GPD we use a Gaussian parametrization [32–34],
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where �0ðxÞ, R2
0ðxÞ, and BðxÞ are the free parameters fixed

from the deep inelastic scattering (DIS) and �p scattering
data. We shall discuss them in more detail in Sec. VII. The
parametrization (5) does not depend on the longitudinal
momentum transfer and decreases exponentially as a func-
tion of�2. Since the parametrization (5) is an effective one
and is valid only in the small-x region, we do not assume
that it satisfies general requirements, such as positivity [35]
and polynomiality [3] constraints.

The prefactor ðkþ �
2Þ2ðk� �

2Þ2 in (5) guarantees con-

vergence of the integrals in the parametrization (2). In the
forward limit, the amplitude (2) reduces to the saturated
parametrization of the dipole amplitude proposed by
Golec-Biernat and Wüsthoff (GBW) [36],
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Generally, the amplitude fN�qqð� � �Þ involves nonperturbative
physics, but the asymptotic behavior for small r is con-
trolled by pQCD [37],

fN�qqð ~r; ~�; �Þr!0 / r2;

up to slowly varying corrections � lnðrÞ.
Calculation of the differential cross section also involves

the real part of the scattering amplitude, whose relation to
the imaginary part is quite straightforward. According to

[38], if the limit lims!1ðImf
s� Þ exists and is finite, then the

real and imaginary parts of the forward amplitude are
related as

Re fð� ¼ 0Þ ¼ s� tan
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:

(7)

In the model under consideration the imaginary part of the
forward dipole amplitude indeed has a power dependence
on energy, Imfð� ¼ 0; sÞ � s�, so (7) simplifies to

ReA
ImA

¼ tan

�
�

2
ð�� 1Þ

�
� 	: (8)

This fixes the phase of the forward Compton amplitude,
which we retain for nonzero momentum transfers, assum-
ing similar dependences for the real and imaginary parts.
Finally we arrive at

AðijÞ
�� ¼ ð	þ iÞeðiÞ� ðq0ÞeðjÞ� ðqÞ
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For the cross section of unpolarized Compton scattering,
from (9) we obtain
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: (10)

III. NUCLEAR SHADOWING IN THE FROZEN
LIMIT

Nuclear shadowing signals the closeness of the unitarity
limit. Hard reactions possess this feature only if they have a
contribution from soft interactions. In DIS and DVCS the
soft contribution arises from the so-called aligned jet con-
figurations [39], corresponding to �qq fluctuations very
asymmetric in sharing the photon momentum, � � 1.
Such virtual photon fluctuations, having large transverse
separation, are the source of shadowing [40].
Calculation of nuclear shadowing simplifies consider-

ably in the case of long coherence length [41], i.e. long
lifetime of the photon fluctuations, when it considerably
exceeds the nuclear size. In this case Lorentz time dilation
‘‘freezes’’ the transverse size of the fluctuation during
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propagation though the nucleus. Then the Compton ampli-
tude of coherent scattering, which leaves the nucleus in-
tact, has the same form as Eq. (9) with a replacement of the
nucleon Compton amplitude by the nuclear one,

Im fN�qqðr; �;�Þ ) ImfA�qqðr; �;�Þ
¼

Z
d2bei

~�� ~b½1� e�ImfN�qqðr;�;�¼0ÞTAðbÞ	;
(11)

where b is the impact parameter of the photon-nucleus
collision and TAðbÞ ¼

R1
�1 dz
Aðb; zÞ is the nuclear thick-

ness function, given by the integral of nuclear density
along the direction of the collisions. In this expression
we neglect the real part of the amplitude, which is particu-
larly small for a coherent nuclear interaction.
For incoherent Compton scattering, which results in

nuclear fragmentation without particle production (quasi-
elastic scattering), the cross section has the form [42]
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� �qqðrÞTAðbÞ

���������
2

: (12)

Here Bel is the t slope of elastic dipole-nucleon amplitude.
In this equation we treated the term quadratic in the dipole
cross section as a small number and expanded the expo-
nential in curly brackets.

IV. ONSET OF NUCLEAR SHADOWING

A. Coherent Compton scattering

The regime of frozen dipole size discussed in the pre-
vious section is valid only at very small xB in DVCS or at
high energies in RCS. However, at medium small xB a
dipole can ‘‘breath,’’ i.e. vary its size, during propagation
through the nucleus, and one should rely on a more so-
phisticated approach.

In this paper we employ the description of the onset of
shadowing developed in [43] and based on the light-cone
Green function technique [44]. The propagation of a color
dipole in a nuclear medium is described as motion in an
absorptive potential, i.e.

i
@Wðz2; r2; z1; r1Þ

@z2
¼ ��r2Wðz2; r2; z1; r1Þ

��ð1� �Þ

� i
Aðz2; r2Þ� �qqðr2Þ
2

Wðz2; r2; z1; r1Þ;
(13)

where the Green function Wðz2; r2; z1; r1Þ describes the
probability amplitude for propagation of the dipole state
with size r1 at the light-cone starting point z1 to the dipole
state with size r2 at the light-cone point z2. Then the
shadowing correction to the amplitude has the form

�Aðs; ~�?Þ¼
Z
d2bei

~�� ~b?
Z
z1
z2

dz1dz2
Aðb;z1Þ
Aðb;z2Þ

�
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2r2 ��fð�;r2Þ� �qqðr2Þ
�Wðz2;r2;z1;r1Þ� �qqðr1Þ�inð�;r1Þeikminðz2�z1Þ;

where

kmin ¼
Q2�ð1� �Þ þm2

q

2��ð1� �Þ :

Equation (13) is quite complicated and in the general
case may be solved only numerically [45]. However, in
some cases an analytic solution is possible. For example, in
the limit of long coherence length, lc � RA, relevant for
high-energy accelerators like LHC, one can neglect the
‘‘kinetic’’ term / �r2Wðz2; r2; z1; r1Þ in (13) and get the

Green function in the frozen approximation [44],

Wðz2; r2; z1; r1Þ ¼ �2ðr2 � r1Þ exp
�
� 1

2
� �qqðr1Þ

�
Z z2
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d�
Að�; bÞ
�
: (14)

Then the shadowing correction (16) simplifies to

�Aðs;�?Þ¼
Z
d2bei

~�?� ~b?
Z
z1
z2

dz1dz2
Aðz1;bÞ
Aðz2;bÞ
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Z 1

0
d�d2r�2

�qqðr;bÞ ��fð�;rÞexp
�
�1

2
� �qqðrÞ

�
Z z2

z1

d�
Að�;bÞ
�
�inð�;rÞeikminðz2�z1Þ:

(15)

If we neglect the real part of the amplitude and the longi-
tudinal momentum transfer kmin (which is justified for
asymptotically large s), and average over polarizations,
then taking the integral over z1;2 ‘‘by parts’’ in (15), we

get for the elastic amplitude
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Aðs;�?Þ ¼ 2
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d2bei
~�?� ~b?
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0
d�d2r ��fð�; rÞ
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�
1� exp

�
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2
� �qqðrÞ

Z þ1

�1
d�
Að�; bÞ

��

��inð�; rÞ: (16)

Another case where an analytical solution is possible is
when the effective dipole sizes are small and the function
� �qqðrÞ may be approximated as

� �qqðrÞ � Cr2: (17)

This approximation cannot be precise even at high virtual-
ityQ2 in DVCS, since there are contributions of the aligned
jet configurations mentioned above, which permit large
dipoles even for large Q2. Moreover, such aligned jet
configurations of the dipole provide the main contribution
to nuclear shadowing [40]. Nevertheless, for the sake of
simplicity we use this approximation in order to estimate
the magnitude of the shadowing corrections in the region
xB 2 ð10�3; 10�1Þ. The approximation (17) is well justi-
fied on heavy nuclei. Namely, nuclear shadowing is inde-
pendent of the form of the dipole cross section for large
dipole sizes, above the saturation point, r2 > 4=Q2

s , where
the typical value of the saturation momentum is Q2

s �
1 GeV2 for heavy nuclei. Indeed, in this case the nucleus
is ‘‘black.’’ Therefore the shape of the dipole cross section
matters only at r2 < r2s ¼ 0:16 fm2. This size is suffi-
ciently small for using the r2 approximation (17).
Numerically, the approximation (17) was tested in [45]—
it was found that the discrepancy between the approxima-
tion (17) and the exact numerical solution of (13) changes
the nuclear shadowing for DIS only within 10%.We expect
that within the same accuracy the approximation (17) is
valid for DVCS.

Then Eq. (13) yields forWðz2; r2; z1; r1Þ the well-known
evolution operator of harmonic oscillator, although with
complex frequency

Wðz2; r2; z1; r1Þ ¼ a

2�i sinð!�zÞ exp
�

ia

2 sinð!�zÞ ½ðr
2
1 þ r22Þ

� cosð!�zÞ � 2 ~r1 � ~r2	
�
;

!2 ¼ �2iC
A

��ð1� �Þ ;
a2 ¼ �iC
A��ð1� �Þ=2: (18)

Notice that for DVCS in the kinematics of the HERMES
experiment [25] the coherence length

lc � 1

2mNxB
� 1:7 fm

is comparable with the mean internucleon spacing in nuclei
and is much smaller than the radii of heavy nuclei.
Therefore the frozen approximation employed in [29] can-
not be used for an interpretation of HERMES data; instead

one should rely on the Green function method described
above.

B. Incoherent scattering

In addition to the coherent processes that leave the recoil
nucleus intact, a large contribution to photon production
comes from incoherent Compton scattering, where the
target nucleus breaks up. Using the missing mass technique
one can select events �A ! �A� in which the nucleus
breaks up to fragments without production of mesons. In
this case one can employ completeness of the final states,
which greatly simplifies the calculations.
The analysis of such processes in electroproduction of

vector mesons was done in [46], and its extension to the
DVCS and RCS is quite straightforward and yields

d�

dt

���������?¼0
¼ 1

16�

Z
d2bdz
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(19)
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Aðz2; bÞ� �qqð ~r1; sÞ�inð�; ~r1Þ: (21)

At sufficiently high energies one can rely on the frozen
approximation introduced in the previous section, and this
formula may be simplified [47],
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2
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�
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2
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��
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(23)
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Correspondingly the cross section (19) takes the form
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dt
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2
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���������
2

: (24)

This expression reproduces Eq. (12) derived in the frozen

limit. It is easy to see that in the limit of a transparent
nucleus, � �qqTA � 1, the cross section Eq. (24) rises line-

arly with A. However, in the limit of a very opaque nucleus
(black disk limit), � �qqTA � 1, the absorptive exponential

factor in (24) terminates the contribution of central impact

parameters, and d�=dtj�?¼0 / A1=3.

In case of the approximation (17), we may use the
explicit expression (18) for the Green function
Wðz2; ~r2; z1; ~r1Þ to get
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V. GLUON SHADOWING

It has been known since [48] that in addition to the quark
shadowing inside nuclei there is also a shadowing of
gluons, which leads to attenuation of the gluon parton
distributions. While nuclear shadowing of quarks is di-
rectly measured in DIS, the shadowing of gluons is poorly
known from data [49,50], mainly due to the relatively large
error bars in the nuclear structure functions and their weak
dependence on the gluon distributions, which only comes
via evolution. The theoretical predictions for the gluon
shadowing strongly depend on the implemented model—
while for xB * 10�3 they all predict that the gluon shad-
owing is small, for xB & 10�3 the predictions vary in a
wide range (see the review [50], and references therein).
Since in this paper we also make predictions for the LHC
energy range, the gluon shadowing corrections should be
taken into account as well.

In the framework of the color dipole model the gluon
attenuation factor Rg was evaluated in the Gribov-Glauber

approach in [51]. It was found convenient to evaluate the
gluon attenuation ratio Rg defined as

Rgðx;Q2; bÞ ¼ GAðx; Q2; bÞ
TAðbÞGNðx;Q2; bÞ ;

where GNðx;Q2; bÞ is the impact parameter dependent
gluon GPD, relating it to the shadowing corrections in
DIS with longitudinally polarized photons,

Rgðx;Q2; bÞ � 1� ����p
L ðx; Q2; bÞ

TAðbÞ���p
L ðx;Q2Þ ; (27)

where ����p
L ¼ ���A

L � A���p
L is the shadowing correc-

tion at impact parameter b, and ���p
L ðx;Q2Þ is the total

photoabsorption cross section for a longitudinal photon.
The process with longitudinal photons is chosen because
the aligned jets configurations are suppressed by powers of
Q2, so that the average size of the dipole is small, hr2i �
1=Q2, and nuclear shadowing mainly originates from
gluons.
As it was shown in [51],

����p
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where 
Aðb; zÞ is the nuclear density and �ðx;Q2;�zÞ is
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Z 0:1

x
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3�2Q2 ~b2
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;

with
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~b 2 ¼ ð0:65 GeVÞ2 þ �GQ
2; � ¼ iB

�Gð1� �GÞ� ;

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~b4 � i�Gð1� �GÞ�Ceff
A

q
; � ¼ Q2

2mNx
;

� ¼ ixmN�z; t ¼ B
~b2
;

u ¼ t coshð��zÞ þ sinhð��zÞ;
w ¼ ð1þ t2Þ sinhð��zÞ þ 2t coshð��zÞ:

For heavy nuclei we may rely on the hard sphere approxi-
mation, 
AðrÞ � 
Að0Þ�ðRA � rÞ, and simplify (28) to

����pðx;Q2; bÞ � 
2
Að0Þ

Z L

0
d�zðL� �zÞ�ðx;Q2;�zÞ;

where L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
A � b2

q
. For the total cross section after

integration over
R
d2b we may get

����pðx;Q2Þ ¼
Z

d2b����pðx;Q2; bÞ

� �
2
Að0Þ
12

Z 2R

0
d�z�ðx;Q2;�zÞ

� ð16R3
A � 12R2

A�zþ�z3Þ:
The results of evaluation of the gluon shadowing are
presented in Sec. VII.

VI. WAVE FUNCTIONS FROM THE INSTANTON
VACUUM

In this section we present briefly some details of evalu-
ation of the wave function in the instanton vacuum model
(see [52–54], and references therein). The central object of
the model is the effective action for the light quarks in the
instanton vacuum, which in the leading order in Nc has the
form [53,54]

S ¼
Z

d4x

�
N

V
ln�þ 2�2ðxÞ � �c ðp̂þ v̂�m

� c �Lf �� � �m � fLÞc
�
;

where �m is one of the matrices, �m ¼ 1, i ~, �5, i ~�5, c ,
and � are the fields of constituent quarks and mesons,
respectively, N=V is the density of the instanton gas, v̂ �
v��

� is the external vector current corresponding to the

photon, L is the gauge factor,

Lðx; zÞ ¼ P exp

�
i
Z x

z
d��v�ð�Þ

�
; (29)

which provides the gauge covariance of the action, and
fðpÞ is the Fourier transform of the zero-mode profile.

In the leading order in Nc, we have the same Feynman
rules as in perturbative theory, but with a momentum-
dependent quark mass �ðpÞ in the quark propagator

SðpÞ ¼ 1

p̂��ðpÞ þ i0
: (30)

The mass of the constituent quark has a form

�ðpÞ ¼ mþMf2ðpÞ;
where m � 5 MeV is the current quark mass, M �
350 MeV is the dynamical mass generated by the interac-
tion with the instanton vacuum background. Because of the
presence of the instantons the coupling of a vector current
to a quark is also modified,

v̂ � v��
� ! V̂ ¼ v̂þ V̂nonl;

V̂nonl � �2MfðpÞ dfðpÞ
dp�

v�ðqÞ þOðq2Þ: (31)

Notice that for an arbitrary photon momentum q the ex-

pression for V̂nonl depends on the choice of the path in (29)
and as a result one can find in the literature different
expressions used for evaluations [31,55–57]. In the limit
p ! 1 the function fðpÞ falls off as� 1

p3 , so for large p �

�1, where 
 � ð600 MeVÞ�1 is the mean instanton size,
the mass of the quark �ðpÞ � m and vector current inter-

action vertex V̂ � v̂. However, wewould like to emphasize
that the wave function�ð�; rÞ gets contributions from both
the soft and the hard parts, so even in the large-Q limit the
instanton vacuum function is different from the well-
known perturbative result.
We have to evaluate the wave functions associated with

the following matrix elements:

I�ð�; ~rÞ ¼
Z dz�

2�
eið�þð1=2ÞÞq�zþ

�
�
0

�������� �c

�
� z

2
n� ~r

2

�
�c

�
z

2
nþ ~r

2

����������ðqÞ
�
;

(32)

where � is one of the matrices � ¼ ��, ���5, ���. In the

leading order in Nc one can easily obtain

I� ¼
Z d4p

ð2�Þ4 e
i ~p? ~r?�

�
pþ �

�
�þ 1

2

�
qþ

�

� TrðSðpÞV̂Sðpþ qÞ�Þ: (33)

The evaluation of (33) is quite tedious but straightforward.
Details of this evaluation may be found in [31].
The overlap of the initial and final photon wave func-

tions in (10) was evaluated according to

�ðiÞ�ð�; r;Q2 ¼ 0Þ�ðiÞð�; r; Q2Þ
¼ X

�

I��ð�; r�; 0ÞI�ð�; r;Q2Þ; (34)

where summation is done over possible polarization states

� ¼ ��, ���5, ���. In the final state we should use r�� ¼
r� þ n�

q0?�r?
qþ

¼ r� � n�
�?�r?
qþ

, which is related to the
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reference frame with q0? ¼ 0 in which the components

(33) were evaluated.

VII. NUMERICAL RESULTS

In this section we present the results of numerical cal-
culations. In this paper we consider two processes—DVCS
and RCS. While physically they differ only by the kine-
matics, the parametrizations used for scattering with soft
and hard photons are different. For example, for DVCS we
have photons with large Q2—in this region we have
Bjorken scaling, so all the model parameters such as basic
cross section �0 and saturation radius R0 in Eq. (5) should
depend on the Bjorken xB. A widely accepted parametri-
zation that incorporates this features is the GBW parame-
trization [36]. On the contrary, for RCS when Q2 is
vanishingly small, xB vanishes and thus all variables
should depend on Mandelstam s. An example of such
parametrization is the Kopeliovich-Schäfer-Tarasov
(KST) parametrization introduced in [32,33,58,59]. To
the best of our knowledge there is no single parametriza-
tion that incorporates both asymptotic cases. For this rea-
son for DVCS we used the GBW-style parametrization
[34,36] for the nonintegrated gluon density Eq. (5), which
has the form

�0ðxÞ ¼ 23:03 mb ¼ const; (35)

R0ðxÞ ¼ 0:4 fm� ðx=x0Þ0:144; (36)

BðxÞ ¼ B��p!
p � 1
8R

2
0ðxÞ; (37)

where x0 ¼ 3:04� 10�4, and B��p!
pðx;Q2 �
1 GeV2Þ � 5 GeV�2 [60].

For RCS we used a KST-style parametrization, which
has the form [23,24,32–34,58,59].

�0ðsÞ ¼ ��pðsÞ
�
1þ 3

8

R2
0ðsÞ
r2�

�
; (38)

��pðsÞ ¼
�
23:6

�
s

s0

�
0:079 þ 1:45

�
s0
s

�
0:45

�
mb; (39)

R0ðsÞ ¼ 0:88 fm

�
s0

sþ s1

�
2
; (40)

BðsÞ ¼ B��p!
p � 1
8R

2
0ðsÞ; (41)

where s0 � 1000 GeV2, s1 � 3600 GeV2. Note that in the
large-s region considered in this paper we may neglect the
second (Reggeon) term in Eq. (39) and set s1 � 0 in (40).
As one can see from Fig. 1, the shadowing correction is
increasing toward small xB, and for xB � 10�5 the nuclear
cross-section ratio decreases by a factor of 2 compared to
the naive estimate d�A � F2

AðtÞd�N . As a function of the
momentum transfer t, the shadowing correction reveals the
behavior qualitatively similar to the nuclear form factor
FAðtÞ: it steeply drops at small t and has zeros for some t.
Notice, however, that the zero positions in the cross section
do not coincide with the zeros of the form factor. This is a
result of shadowing that suppresses the contribution of the
central part of the nucleus and modifies the b dependence
of the cross section compared to the form factor. Notice
that, as was discussed in [61], if we had sufficiently high
resolution in t, it would be possible to measure the con-
tributions of the ‘‘pure’’ DVCS, without contributions from
the Bethe-Heitler, near the zeros of the form factor.
The Q2 dependence of the nuclear ratio is shown in the

right pane of Fig. 1.
In Fig. 2 we compare the results for the coherent cross-

section ratio evaluated with and without gluon shadowing.
As expected, gluon shadowing is very small at xB * 10�3

and gives �20%–30% contribution for x� 10�5. Similar
dependence is observed for all the other cross sections. In
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FIG. 1 (color online). The nucleus to nucleon cross-section ratio for coherent DVCS as a function of different kinematical variables.
Left: xB dependence of the shadowing, t ¼ tmin, for different Q

2 and A. From bottom to top: Q2 ¼ 5 GeV2 andQ2 ¼ 20 GeV2. Right:
Q2 dependence, t ¼ �0:01 GeV2, for different xB and A. From bottom to top: xB ¼ 10�5 and xB ¼ 10�3.
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what follows, for the sake of brevity we present only results
that include gluon shadowing.

The nuclear ratio for incoherent scattering, ��A ! �A0,
is shown in Fig. 3. It turns out that the effect of shadowing
at small xB is twice as strong as for the coherent case. As a

function of t, the nuclear cross section is almost a con-
stant—due to the nucleus breakup the nuclear cross section
is not suppressed by FAðtÞ and decreases only as a function
of the nucleon form factor FNðtÞ. The Q2 dependence of

without gluons
with gluons
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FIG. 2 (color online). The nucleus to nucleon cross-section ratio for coherent DVCS as a function of different kinematical variables.
Left: shadowing as a function of Bjorken xB with and without gluon shadowing for different nuclei, t ¼ tmin, Q

2 ¼ 5 GeV2. Right: t
dependence for different A. xB ¼ 10�3, Q2 ¼ 5 GeV2.
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the nuclear ratio is quite similar to what was found for the
coherent case.

For coherent RCS, �A ! �A, the results of the evalu-
ation are shown in Fig. 4. Similar to DVCS, the cross
section is steeply falling with center of mass energy W
[for DVCS xB / 1=W2 at fixed ðQ2; tÞ]. As a function of the
momentum transfer t, the shadowing correction reveals the
behavior qualitatively similar to the case of coherent
DVCS (see Fig. 1) It steeply decreases similar to the
behavior of the nuclear form factor FAðtÞ.

For the incoherent RCS, �A ! �A0, the results of the
evaluation are shown in Fig. 5. Similar to the coherent case,
the cross section is decreasing as a function ofW, down to
the values an order of magnitude smaller than would give a
simple sum of the nucleon cross sections. As a function of
t, the cross section is almost constant because of the
absence of the nuclear form factor.

VIII. CONCLUSIONS AND PROSPECTS

In this paper we considered DVCS and RCS on nuclear
targets within the color dipole model. Results for the
coherent shadowing are presented in Sec. VII. We found
that the magnitude of nuclear shadowing is large and is
important for analysis of DVCS and RCS data. It may
cause a substantial suppression of the nuclear DVCS cross
section. We observed that for the incoherent case, the
shadowing is stronger than for the coherent case. This
happens since the incoherent cross section is proportional
to the survival probability of the dipole, so it vanishes in

the black disk limit ( / A1=3). At the same time, the coher-

ent cross section saturates at a value / A2=3. For the RCS,
the shadowing is larger than for the DVCS, since a real
photon fluctuates to dipoles of a larger size than a virtual
one.

Our results for DVCS and RCS can be applied to eA
collisions at future electron-ion colliders (EIC and LHeC
[26,27]). Currently data for nuclear DVCS are available
from the HERMES experiment at HERA [25]; however,

the values of Bjorken xB are too large to produce any
sizable shadowing effects. Besides electron beams, the
usual source of quasireal photons, one can also use beams
of charged hadrons. Provided that the transverse overlap of
the colliding hadrons is small, i.e. the transverse distance b
between the centers of the colliding particles exceeds the
sum of their radii, b > R1 þ R2, the electromagnetic inter-
action between colliding particles becomes the dominant
mechanism. Such processes called ultraperipheral colli-
sions can be studied in pp, pA, and AA collisions. In
particular, one can access RCS in the reaction

A1 þ A2 ! A1 þ �þ A2: (42)

The typical virtualities hQ2
�� i of the intermediate photon ��

are controlled by the form factors of the colliding particles
and are small:

hQ2
�� i & 3

R2
A

� 0:1 GeV2

A2=3
; (43)

where A is the atomic number of the hadron (A ¼ 1 for a
proton) interacting electromagnetically, i.e. emitting the
photon, while the second hadron interacts strongly.
Thus, hQ2

�� i is of the order of the soft hadronic scale, so
the intermediate photon can be treated as a free Weizscker-
Williams one, i.e. the amplitude of the process (42) can be
described in terms of RCS.
These processes at the LHC will allow one to study RCS

at very high energies. The possibility of observation of
such processes experimentally has been demonstrated by
the STAR [62–64] and PHENIX [65] experiments at
RHIC. It is expected that at LHC photon-proton collisions
at energies up to

ffiffiffiffiffiffiffi
s�p

p
& 8� 103 GeV can be observed

[66].
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