
QCD running coupling in low-energy region

Gurjav Ganbold*

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
and Institute of Physics and Technology, 210651 Ulaanbaatar, Mongolia

(Received 18 March 2010; published 5 May 2010)

We estimate the QCD effective charge �s in the low-energy region by exploiting the conventional

meson spectrum within a relativistic quantum-field model based on analytic confinement. The ladder

Bethe-Salpeter equation is solved for the masses of two-quark bound states. We found a new, independent,

and specific infrared-finite behavior of QCD coupling below energy scale 1 GeV. Particularly, an infrared-

fixed point is extracted at �sð0Þ ’ 0:757 for confinement scale � ¼ 345 MeV. As an application, we

estimate masses of some intermediate and heavy mesons and obtain results in reasonable agreement with

recent experimental data.
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I. INTRODUCTION

The study of QCD behavior at large distances is an
active field of research in particle physics because many
interesting and novel behaviors are expected at low ener-
gies below 1 GeV (see, e.g., [1,2]). Understanding of a
number of phenomena such as quark confinement, hadro-
nization, the effective coupling, and nonvanishing vacuum
expectation values, etc. requires a correct description of
hadron dynamics in the infrared (IR) region. However, the
well-established conventional perturbation theory cannot
be used effectively in the IR region and it is required either
to supply some additional phenomenological parameters
(e.g., ‘‘effective masses,’’ anomalous vacuum averages,
etc.), or to use some nonperturbative methods (lattice
simulations [3], power correction [4], string fragmentation
[5], Dyson-Schwinger equations, etc.). There exists a phe-
nomenological indication in favor of a smooth transition
from short-distance to long-distance physics [4].

One of the fundamental parameters of nature, the QCD
effective coupling �s, can provide a continuous interpola-
tion between the asymptotical free state, where perturba-
tion theory works well, and the hadronization regime,
where nonperturbative techniques must be employed.

QCD predicts the functional form of the energy depen-
dence of �s on energy scale Q, but its actual value at a
given Q must be obtained from experiment. This depen-
dence is described theoretically by the renormalization
group equations and measured at relatively high energies
[6,7]. A self-consistent and physically meaningful predic-
tion of the QCD effective charge in the IR regime remains
one of the actual problems in particle physics.

The present paper is aimed to determine the QCD ef-
fective charge in the low-energy region by exploiting the
hadron spectrum. In doing so we extend our previous
investigations [8–10], where we provided new, indepen-
dent, analytic, and numerical estimates on the lowest glue-

ball mass, conventional meson spectrum, and the weak
decay constants by using a fixed (‘‘frozen’’) value of �s.
The obtained results were in reasonable agreement with
experimental evidence.
Below we take into account the dependence of �s on

mass scale M and develop a phenomenological model to
describe the IR behavior of �s. We determine the meson
masses by solving the ladder Bethe-Salpeter (BS) equa-
tions for two-quark bound states. The consideration is
based on a relativistic quantum-field model with analytic
confinement (AC) and has a minimal number of parame-
ters, namely, the confinement scale � and the constituent
quark masses mf, (f ¼ fud; s; c; bg). First, we derive the

meson mass formula and adjust the model parameters by
fitting heavy meson masses (M � 2 GeV). Hereby, we
determine corresponding values of �sðMÞ from a smooth
interpolation of the newest experimental data on the QCD
coupling constant. Having adjusted model parameters, we
estimate �sðMÞ in the low-energy domain by exploiting
meson masses below �1 GeV. As an application, we
estimate some intermediate and heavy meson masses (1<
M< 9:5 GeV). Finally, we extract a specific IR-finite
behavior of the QCD coupling and conclude briefly recall-
ing the comparison with often-quoted results and recent
experimental data.

II. EFFECTIVE COUPLING OF QCD

The polarization of QCD vacuum causes two opposite
effects: the color charge g is screened by the virtual quark-
antiquark pairs and antiscreened by the polarization of
virtual gluons. The competition of these effects results in
a variation of the physical coupling under changes of
distance �1=Q, so QCD predicts a dependence �s ¼:
g2=ð4�Þ ¼ �sðQÞ. This dependence is described theoreti-
cally by the renormalization group equations and deter-
mined experimentally at relatively high energies [6,7].
Nowadays, determinations of �s remain at the forefront
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ments on this subject were summarized in a number of
articles [2,11,12]. Summary of the recent experimental
measurements of �s (Fig. 1) and particular values of �s

at intermediate energies (Table I) are given by referring to
[7,11].

Note that there are two separate q2 scale regions in
which a running coupling may be considered. The space-
like region (q2 ¼ �Q2 < 0 with relativistic momentum
transfer Q2) is related to scattering processes while time-
like domain (q2 ¼ M2 > 0, whereM is the hadron mass) is
often used for annihilation and decay processes. The con-
sistent description of QCD effective coupling �s in these
domains remains the goal of many studies because only
asymptotically the two definitions can be identified but at
low momentum they can be very different (see, e.g. [16]).
Particularly, the behavior of one-loop analytic running
coupling [17] in timelike and spacelike domains is plotted
in Fig. 2.

Many quantities in hadron physics are affected by the IR
behavior of the coupling in different amounts.
Nevertheless, the long-distance behavior of �s is not well
defined, it needs to be more specified [18–20], and correct
description of QCD effective coupling in the IR regime
remains one of the actual problems in particle physics.
Particularly, one of the most precise determinations of �s

near the low-energy region is done by studying �-lepton
decays reporting central values ranging from 0.318 to 0.344
[21–23].

An attempt to extrapolate the perturbative approach to
the long-distance QCD has been made, it has been sug-
gested that �s freezes at a finite and moderate value [24],

and this behavior could be the reason for the soft transition
between short- and long-distance behaviors.
Different nonperturbative approaches have been pro-

posed to deal with the IR properties of �s. Particularly,
methods, based on gauge-invariant Schwinger-Dyson
equations (SDE), concluded that an IR-finite coupling
constant may be obtained from first principles [25]. New
solutions for the gluon and ghost SDE have been obtained
with better approximations, which led to a new value for
the IR coupling constant at the origin [26,27]. Many works
within the lattice simulations have been devoted in recent
years to the study of the QCD running coupling constant
either in the perturbative regime [28,29] or in the deep IR
domain [30]. Note that the results of various nonperturba-
tive methods for the QCD invariant coupling may differ
among themselves in the IR region due to the specifications
of the used methods and approximations. Particularly, the
results obtained by lattice simulations and SDE methods
demonstrate a considerable variety of IR behaviors of �s.
An extraction of experimental data of �exp

s ðQ2Þ below
1 GeV compared with the meson spectrum within analytic
perturbation theory has been performed [31] and a sum-
mary of data was presented (see Fig. 2). The earliest
attempts to obtain �s in the IR region were made in the
framework of the quark-antiquark potential models by
using the Wilson loop method [32–36]. Convenient inter-
polation formulas between the large momentum perturba-
tive expression and a finite IR-fixed point have been used in
hadron spectrum studies with �0

s=� ’ 0:19–0:25 [36].

FIG. 1 (color online). Measurements of �s as a function of the
respective energy scale Q versa QCD predictions (curves) [11].

TABLE I. Some measurements of �s at intermediate energies.

Process Q (GeV) �sðQÞ Reference

� decays 1.78 0:330� 0:014 [11]

Q �Q states 4.1 0:239� 0:012 [13]

� decays 4.75 0:217� 0:021 [14]

Q �Q states 7.5 0:1923� 0:0024 [11]

� decays 9.46 0:184� 0:015 [11]

eþe� jets 14.0 0:170� 0:021 [15]

FIG. 2. The one-loop massless analytic running coupling in the
spacelike and timelike domains (taken from [17]).
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Within a fully relativistic treatment it was shown that a
�-meson mass much heavier than the � mass could be
obtained with �0

s=� ’ 0:265 [37] while a similar result
within a one-loop analytic coupling method predicted
�0
s=� ’ 0:44 [38]. A phenomenological hypothesis was

adopted that the gluon acquires an effective dynamical
mass mg � 370 MeV (at �QCD � 300 MeV) that resulted

in �0
s=� ’ 0:26 [39]. Various event shapes in eþe� anni-

hilation can be reproduced with an averaged value
h�0

s=�i ’ 0:2 on interval � 1 GeV [4].

III. MODEL

Color confinement in QCD is an attempt to explain the
physics phenomenon that color charged particles are not
observed. However, the reasons for quark confinement may
be somewhat complicated. Particularly, within a quantum-
field model, the quark confinement may be explained as the
absence of quark poles and thresholds in Green’s function.
Following this idea, the conception of AC assumes that the
QCD vacuum is realized by the self-dual vacuum gluon
fields which are stable versus local quantum fluctuations
and related to the confinement and chiral symmetry break-
ing [40]. This vacuum gluon field serves as the true mini-
mum of the QCD effective potential [41]. The vacuum of
the quark-gluon system has the minimum at the nonzero
self-dual homogenous background field with constant
strength. Then, the quark and gluon propagators in the
background gluon field represent entire analytic functions
in Euclidean space [42]. In previous papers [10,43] we
developed relativistic quantum-field models with AC.
Similar ideas have been realized in infrared confinement
by introducing an IR cutoff within a Nambu-Jona-Lasino
model [44,45].

The Bethe-Salpeter equation is an important tool for
studying the relativistic two-particle bound states in a field
theory framework [46]. Numerical calculations indicate
that the ladder BS equation with a phenomenological
model can give satisfactory results (for a review, see
[47]). Particularly, a BS formalism adjusted for QCD was
developed to extract values of �s below 1 GeV by com-
parison with known meson masses [31].

Our purpose is to investigate QCD effective (running)
charge in the low-energy levels by exploiting the spectrum
of conventional mesons. For the spectra of two-quark
bound states we consider a relativistic quantum-field
model based on analytic (or infrared) confinement and
solve the ladder BS equation.

Following previous papers [10,43] we consider a model
Lagrangian

L ¼ � 1

4
ðFA

�� � gfABCAB
�AC

� Þ2

þX
f

ð �qaf½��@
� �mf þ g��

CA
C
��abqbfÞ; (1)

where AC
� is the gluon adjoint representation (� ¼

f1; . . . ; 4g); FA
�� ¼ @�AA

� � @�AA
�; f

ABC is the SUcð3Þ
group structure constant (fA; B; Cg ¼ f1; . . . ; 8gÞ; qaf is the

quark spinor of flavor f with color a ¼ f1; 2; 3g and mass
mf; g is the coupling strength, ��

C ¼ i��t
C; and tC is the

Gell-Mann matrices.
Remember, that within the model the quark and gluon

propagators ~Sðp̂Þ and ~DðpÞ in (1) are entire analytic func-
tions in the Euclidean space.

A. Confinement and Green’s functions

The effective charge is strongly governed by the detailed
dynamics of the strong interaction and may depend on
some of the most fundamental Green’s functions of
QCD, such as the gluon and quark propagators [48]. The
Green’s functions in QCD are tightly connected to con-
finement and are ingredients for hadron phenomenology.
However, any widely accepted and rigorous analytic solu-
tions to these propagators are still missing. One may
encounter difficulties by defining the explicit quark and
gluon propagator at the confinement scale. Nowadays, IR
behaviors of the quark and gluon propagators are not well-
established and need to be more specified [18].
The matrix elements of hadron processes at large dis-

tance are integrated characteristics of the vertices, quark
and gluon propagators, and the solution of the BS equation
should not be too sensitive on the details of propagators.
Taking into account the correct global symmetry properties
and their breaking (and by introducing additional physical
parameters) may be more important than the working out
in detail of propagators (e.g., [49]). In previous papers we
exploited simple forms of quark and gluon propagators
[10,43] which were entirely analytic functions in
Euclidean space and behaved similarly to the explicit
propagators dictated by AC [42].
Following [10] we introduce the quark propagator as

follows:

~S ab
m ðp̂Þ ¼ �ab

ip̂þmf½1� �5!ðmf=�Þ�
�mf

� exp

�
�p2 þm2

f

2�2

�
; (2)

where p̂ ¼ p��� and !ðzÞ ¼ ð1þ z2=4Þ�1. The sign �
corresponds to the self- and antiself-dual modes of the
background gluon fields. In (2) chiral symmetry breaking
is induced by AC. The interaction of the quark spin with
the background gluon field results in a singular behavior
~S�ðp̂Þ � 1=mf in the massless limit mf ! 0. This ex-

presses the zero-mode solution (the lowest Landau level)
of the massless Dirac equation in the presence of an
external gluon background field and generates a nontrivial
quark condensate [10] indicating the broken chiral sym-
metry as mf ! 0.
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Recent theoretical results predict an IR behavior of the
gluon propagator. A gluon propagator identical to zero at
the momentum origin was considered in [50,51] while
another propagator was of order 1=m2

g [4], where mg is

the dynamical gluon mass [52]. A renormalization group
analysis [53] and numerical lattice studies simulating the
gluon propagator are consistent with an IR-finite behavior
[54]. We consider a gluon propagator

~DAB
��ðpÞ ¼ �AB���

1� expð�p2=�2Þ
p2

¼ �AB���

Z 1=�2

0
dse�sp2

: (3)

It represents a modification of gluon propagator defined in
[10] and exhibits an explicit IR-finite behavior ~Dð0Þ �
1=�2. For simplicity ~DðpÞ in (3) is given in Feynman
gauge.

Note that the propagators in Eqs. (2) and (3) do not have
any singularities in the finite p2 plane in Euclidean space,
thus indicating the absence of a single quark (gluon) in the
asymptotic space of states. In fact, an IR parametrization is
hidden in the confinement scale �.

B. Two-quark bound states

We allow that the coupling remains weak (�s < 1) in the
hadronization region. Then, the consideration may be re-
stricted within the ladder approximation sufficient to esti-
mate the meson spectrum with reasonable accuracy. The
leading-order contribution to the two-quark (q �q) bound
states is determined by the partition function

Zq �q ¼
ZZ

D �qDq exp

�
�ð �qS�1qÞ

þ g2

2
hð �q�AqÞð �q�AqÞiDg;

hð	ÞiD ¼:
Z

DAe�ð1=2ÞðAD�1AÞð	Þ: (4)

Our model has a minimal number of parameters,
namely, the scale of confinement � and the constituent
quark masses ðmud;ms; mc;mbÞ.

Below we briefly introduce the basic steps entering into
our model on the example of the quark-antiquark bound
states [10] defined by Zq �q in (4).

First, we allocate the one-gluon exchange between col-
ored biquark currents

L2 ¼ g2

2

X
f1f2

ZZ
dx1dx2ð �qf1ðx1Þi��t

Aqf1ðx1ÞÞDAB
��ðx1; x2Þ

� ð �qf2ðx2Þi��t
Bqf2ðx2ÞÞ (5)

and isolate the color-singlet combinations. We perform a
Fierz transformation

ði��Þ���ði��Þ ¼
X
J

CJ 
OJOJ; J ¼ fS; P; V; A; Tg;

where CJ ¼ f1; 1; 1=2;�1=2; 0g and OJ ¼
fI; i�5; i��; �5��; i½��; ���=2g. For systems consisting

of quarks with different masses it is important to go to
the relative coordinates in the center-of-masses system and
introduce the relative masses 	i ¼: mi=ðm1 þm2Þ. Then,
introduce a system of orthonormalized basis functions
fUQðxÞg, where Q ¼ fnr; l; �g are the radial, orbital, and

magnetic quantum numbers. Diagonalize L2 on basis
fUQðxÞg and use a Gaussian path-integral representation

for the exponential

eL2 ¼: e
ðg2=2ÞP

N

ðJ 2
N Þ

¼ hegðBN JN ÞiB;
hð	ÞiB ¼:

Z Y
N

DBNe
�ð1=2ÞðB2

N Þð	Þ; h1iB ¼ 1

by introducing a colorless biquark current JN and auxil-
iary meson fields BN with N ¼ fQ; J; f1; f2g. Then

Zq �q ¼
�ZZ

D �qDq expf�ð �qS�1qÞ þ gðBNJN Þg
�
B
:

By taking explicit path integration over quark variables we
obtain

Zq �q ! Z ¼ hexpfTr ln½1þ gðBN VN ÞS�giB;
where VN ðx; yÞ is a vertex function.
Introduce a hadronization ansatz and this will identify

BN ðxÞ with meson fields carrying quantum numbers N .
We isolate all quadratic field configurations (� B2

N ) in the

’’kinetic’’ term and rewrite the partition function for me-
sons [10]:

Z ¼
Z Y

N

DBN exp

�
� 1

2

X
NN 0

ðBN ½�NN 0

þ �s
NN 0 �BN 0 Þ �Wres½BN �
�
; (6)

where the interaction between mesons is described by the
residual part Wres½BN � � 0ðB3

N Þ.
The leading-order term of the polarization operator is

�s
NN 0 ðzÞ ¼:
ZZ

dxdyUN ðxÞ�s
JJ0 ðz; x; yÞUN 0 ðyÞ;
(7)

and the Fourier transform of its kernel reads

�s
JJ0 ðp; x; yÞ ¼: �s

Z
dzeipz
JJ0 ðz; x; yÞ

¼ 4g2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CJCJ0

p
9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞDðyÞ

q Z d4k

ð2�Þ4 e
�ikðx�yÞ

� Tr½OJ
~Sm1

ðk̂þ 	1p̂ÞOJ0 ~Sm2
ðk̂� 	2p̂Þ�;

(8)
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where Tr ¼: Trc Tr�
P

�; Trc and Tr� are traces taken on

color and spinor indices, correspondingly, while
P

� im-
plies the sum over self-dual and antiself-dual modes.

We diagonalize the polarization kernel on the orthonor-
mal basis fUN g:
ZZ

dxdyUN ðxÞ
JJ0 ðp; x; yÞUN 0 ðyÞ ¼ �NN 0

N ð�p2Þ

that is equivalent to the solution of the corresponding
ladder BS equation. We rewrite


N ð�p2Þ ¼ 8CJ

3�3

Z
d4kjVJðkÞj2�N ðk;pÞ;

VJðkÞ ¼:
Z

d4xUJðxÞ
ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
e�ikx;

�N ðk;pÞ ¼: 1

24
Tr½OJ

~Sm1
ðk̂þ 	1p̂ÞOJ0 ~Sm2

ðk̂� 	2p̂Þ�; (9)
where VJðkÞ is a vertex and �N ðk; pÞ is the kernel of the
polarization operator.

In relativistic quantum-field theory a stable bound state
of n massive particles shows up as a pole in the S-matrix
with a center-of-mass energy. Accordingly, the physical
mass of the meson may be derived from the equation

1þ �s
N ðM2
N Þ ¼ 0; �p2 ¼ M2

N : (10)

Then, with a renormalization

ðBN ½1þ �s
N ð�p2Þ�BN Þ ¼ ðBN ½1þ �s
N ðM2
N Þ

þ �s
_
N ðM2

N Þ
� ½p2 þM2

N �BN Þ
¼ ðBR½p2 þM2

N �BRÞ;
_
N ðzÞ ¼: d
N ðzÞ

dz
;

BRðxÞ ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s

_
N ðM2
N Þ

q

 BN ðxÞ

(11)

the partition function takes the conventional form

Z ¼
Z

DBR exp

�
� 1

2
ðBR½p2 þM2

N �BRÞ �Wres½BR�
�
:

(12)

C. Conventional meson spectrum and running coupling

We use the meson mass M as the appropriate character-
istic parameter, so the coupling �̂sðMÞ is defined in a
timelike domain. On the other hand, most of known data
on �sðQÞ are possible in the spacelike region. The con-
tinuation of the invariant charge from the spacelike to the
timelike region (and vice versa) was elaborated by making
use of the integral relationships between the QCD running
coupling in Euclidean and Minkowskian domains (see, e.g.
[19,55]).
Below we consider the most established sectors of had-

ron spectroscopy, the pseudoscalar Pð0�þÞ and vector
Vð1��Þ mesons.
The dependence of meson masses on �̂s and other

parameters is defined by Eq. (10). Note that the polariza-
tion kernel 
N ð�p2Þ is real and symmetric that allows us
to find a simple variational solution to this problem.
Choosing a trial Gaussian function for the ground state [10]

UðxÞ¼ 2a

�
expf�a�2x2g; �4

Z
d4xjUðxÞj2 ¼ 1; a>0;

(13)

we obtain a variational form of Eq. (10) for meson masses
as follows:

1 ¼ ��̂sðMJÞ 
 
Jð�;MJ;m1; m2Þ

¼ 8�̂sCJ

3�2ðm1=�Þðm2=�Þ 
 exp
�
M2

J � ðm1 þm2Þ2
2�2

ð	2
1 þ 	2

2Þ
�

 max
0<c<2

½cð2� cÞ2�
ZZ1
0

dudwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=u� 1Þð1=w� 1Þp
Q2

� exp

�
�M2

Jð	1 � 	2Þ2
4�2Q

�


�
2�J

Q
þM2

J

�2

�
	1	2 þ ð	1 � 	2Þ2

2Q

�
1� �J

2Q

�	
þm1m2

�2

�
1þ �J!

�
m1

�

�
!

�
m1

�

�	�
; (14)

where Q ¼: 1þ cðuþ wÞ, �J ¼ f1; 1=2g, and �J ¼
f1;�1g for J ¼ fP; Vg.

Further we exploit Eq. (14) in different ways, by solving
either for �̂s at given masses, or forMJ at known values of
coupling. In doing so, we adjust the model parameters by
fitting available experimental data.

Note that any physical observable must be independent
of the particular scheme and mass by definition, but in (14)
we obtain �s depending on scaled masses
fMJ=�; m1=� and m2=�g, where � is the scale of
confinement. This kind of scale dependence is most pro-
nounced in leading-order QCD and often used to test and
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specify uncertainties of theoretical calculations for physi-
cal observables. Conventionally, the central value of �sð�Þ
is determined or taken for � equaling the typical energy of
the underlying scattering reaction. There is no common
agreement of how to fix the choice of scales. Particularly,
in [10] we fixed the parameter � by fitting light meson
weak decay constants.

Below we solve Eq. (14) for different values of confine-
ment scale. As a particular case, first we choose �1 ¼
345 MeV.

(1) We can extract intermediate values of �sðMVÞ in
interval 2–10 GeV from a smooth interpolation of
known data from Table I. Particularly,

�̂ sð9460Þ ¼ 0:1817; �̂sð3097Þ ¼ 0:2619;

�̂sð2112Þ ¼ 0:3074; �̂sð2010Þ ¼ 0:3138:

(15)

Hereafter, masses are given in units of MeV.

Then, we adjust the constituent quark masses
fmud;ms; mc;mbg by solving a set of equations:

1þ �̂sð9460Þ 
 
Vð�1; 9460; mb;mbÞ ¼ 0;

1þ �̂sð3097Þ 
 
Vð�1; 3097; mc; mcÞ ¼ 0;

1þ �̂sð2112Þ 
 
Vð�1; 2112; ms; mcÞ ¼ 0;

1þ �̂sð2010Þ 
 
Vð�1; 2010; mud; mcÞ ¼ 0;

(16)

with known masses of mesons �ð9460Þ,
J=�ð3097Þ, D�

sð2112Þ, and D�ð2010Þ. We fix a par-
ticular set of model parameters as follows:

� ¼ �1 ¼ 345 MeV; mud ¼ 192:56 MeV;

ms ¼ 293:45 MeV; mc ¼ 1447:59 MeV;

mb ¼ 4692:51 MeV: (17)

(2) Having fixed the model parameters, we solve an
inverse problem, to find �s values in the region
below 1 GeV as follows:

�̂ sð138Þ ¼ �
�1
P ð�1; 138; mud; mudÞ ¼ 0:7131;

�̂sð495Þ ¼ �
�1
P ð�1; 495; mud; msÞ ¼ 0:6086;

�̂sð770Þ ¼ �
�1
V ð�1; 770; mud; mudÞ ¼ 0:4390;

�̂sð892Þ ¼ �
�1
V ð�1; 892; mud; msÞ ¼ 0:4214:

(18)

In Fig. 3 we plot our low-energy estimates (18) in
comparison with the three-loop analytic coupling,
its perturbative counterpart (both normalized at the
Z-boson mass), and the massive one-loop analytic
coupling [31].

(3) As an application, with particular choice of parame-
ters (17) we calculate masses of other mesons:
Dð1870Þ, Dsð1970Þ, �cð2980Þ, Bð5279Þ, B�ð5325Þ,
Bsð5370Þ, Bcð6286Þ, and �bð9389Þ. Hereby, the cor-
responding �sðMÞ are extracted from Fig. 1.
Our estimates of meson masses along experimental
data [2] are shown in Table II. The relative error of
our estimate does not exceed 3.5% in a wide range
of mass.

TABLE II. Masses M of conventional mesons (in units of MeV) corresponding to effective coupling �̂sðMÞ determined by Eq. (14)
at � ¼ 345 MeV.

JPC ¼ 0�þ MP JPC ¼ 0�þ MP JPC ¼ 1�� MV JPC ¼ 1�� MV

�ð138Þ 138 �cð2980Þ 3039 �ð770Þ 770 D�
sð2112Þ 2112

Kð495Þ 495 Bð5279Þ 5339 !ð782Þ 785 J=�ð3097Þ 3097

�ð547Þ 547 Bsð5370Þ 5439 K�ð892Þ 892 B�ð5325Þ 5357

Dð1870Þ 1941 Bcð6286Þ 6489 �ð1019Þ 1022 �ð9460Þ 9460

Dsð1970Þ 2039 �bð9389Þ 9442 D�ð2010Þ 2010

FIG. 3 (color online). Our estimates of �̂sðMÞ in the low-
energy region at different values of confinement scale (red
dots for � ¼ 330 MeV; blue diamonds for � ¼ 345 MeV;
and black squares for � ¼ 360 MeV) compared with the
three-loop analytic coupling �sðQÞ (solid curve), its perturbative
counterpart (dot-dashed curve), and the massive one-loop ana-
lytic coupling (dashed curve) (see Ref. [31]).
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(4) To check the sensibility of the obtained results on
the confinement scale value we recalculated steps 1–
3 for � ¼ 330 MeV and � ¼ 360 MeV. We re-
vealed that the estimated meson masses shown in
Table II do not change considerably (less than
0.5%). The variation of �̂s under changes of � is
shown in Fig. 3.

(5) We perform global evaluation of �̂sðMÞ at the mass
scale of conventional mesons (shown in Table II) by
using the formula

�̂ sðMJÞ ¼ �1=
JðMJ;�; m1; m2Þ
and we plot the resulting curves at different � in
Fig. 5 in comparison with recent low- and high-
energy data of �sðQÞ [31].

D. IR-finite behavior of effective coupling

The possibility that the QCD coupling constant features
an IR-finite behavior has been extensively studied in recent
years (e.g., [56,57]). There are theoretical arguments in
favor of a nontrivial IR-fixed point, particularly, the ana-
lytical coupling freezes at the value of 4�=0 within one-
loop approximation [58]. The phenomenological evidence
for �s finite in the IR region is much more numerous.

We note that the agreement of our estimates of �̂sðMÞ
with other predictions (e.g., [7,16]) turns out to be reason-
able from 2 GeV down to the 1 GeV scale. Below this
scale, different behaviors of �sðMÞ may be expected as M
approaches zero.

Below we consider the IR-fixed point �̂0
s ¼: �̂sð0Þ by

evaluating Eq. (14) for MP ¼ 0 and m1 ¼ m2 ¼ m:

�̂0
s ¼ 3�2m2

8�2
e�

2

�
max
0<c<2

½cð2� cÞ2�

�
ZZ1
0

dudwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=u� 1Þð1=w� 1Þp ð1þ cðuþ wÞÞ2

�
�

2

ð1þ cðuþ wÞÞ2 þ�2ð1þ!2ð�ÞÞ
	��1

: (19)

The dependence of �̂0
s on � ¼: m=� is plotted in Fig. 4.

Note that a value of �̂0
s of order 2 or larger would be

definitely out of line with many other phenomena, such as
nonrelativistic potentials for a charmonium [59] and ana-
lytic perturbation theory [58]. Obviously, this constraint
implies an upper limit to the value of constituent quark
mass: �2 < 0:8 or m< 0:9�.

Since we are searching the IR-fixed point, it is reason-
able to choose the lightest quark mass. Particularly, for
m ¼ mud ¼ 192:56 MeV and � ¼ 345 MeV we obtain

�̂ 0
s ¼ 0:757; or �̂0

s=� ¼ 0:241: (20)

To compare our result with known data on �sðQÞ we
exploit the integral relationships between the QCD running
coupling in Euclidean and Minkowskian domains.

Particularly, there exists a relation [19]

�sðq2Þ ¼ q2
Z 1

0

ds

ðsþ q2Þ2 �̂sðsÞ (21)

valid for the case of massless pion. By substituting s ¼ tq2

into (21) one rewrites

�sðq2Þ ¼
Z 1

0

dt

ð1þ tÞ2 �̂sðtq2Þ: (22)

Then, for q2 ! 0 we obtain

�sð0Þ ¼ �̂sð0Þ
Z 1

0

dt

ð1þ tÞ2 ¼ �̂sð0Þ 
 1: (23)

Therefore, we may conclude that our result (20) is in
reasonable agreement with often-quoted estimates

�0
s=� ’ 0:19–0:25 ½36�; �0

s=� ’ 0:265 ½37�;
�0
s=� ’ 0:26 ½39�; h�0

s=�i1 GeV ’ 0:2 ½4�; (24)

and phenomenological evidences [31,38]. The obtained
IR-fixed value of the coupling constant is moderate, it
depends on the mass of constituent quark ðu; dÞ, so one
can insert this value into perturbative expressions to be
compatible with the experimental data.
By interpolating smoothly obtained results in (20), (18),

and (15) into the intermediate-energy region we define �̂s

on a wide interval 0.14–9.5 GeV. Some particular cases of
the dependence �s on mass scale M at different model
parameters are plotted in Fig. 5.
It is important to stress that we do not aim to obtain the

behavior of the coupling constant at all scales. At moderate
M2 ¼ �p2 we obtain �s in coincidence with the QCD
predictions. However, at large mass scale (above 10 GeV)
�̂s decreases much faster than expected by QCD predic-
tion. The reason is the use of confined propagators in the

FIG. 4 (color online). Dependence of IR-fixed point �0
s on the

scaled quark mass �2 ¼ ðm=�Þ2 at fixed confinement scale � ¼
345 MeV.
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form of entire functions, Eqs. (2) and (3). Then, the con-
volution of entire functions leads to a rapid decreasing (or a
rapid growth in Minkowski space) of physical matrix
elements once the hadron masses and energies of the
reaction have been fixed. Consequently, the numerical
results become sensitive to changes of model parameters
at large masses and energies.

IV. CONCLUSION

To conclude, we provide an estimate of QCD effective
charge in the low-energy region (below 1 GeV) by exploit-
ing the conventional meson spectrum within a relativistic
quantum-field model based on analytic (or infrared) con-
finement. The new results obtained in the previous section
are summarized in Figs. 3–5 and Table II.

We demonstrate that global properties of the low-energy
phenomena such as QCD running coupling and conven-
tional meson spectrum may be explained reasonably in the
framework of a simple relativistic quantum-field model of
quark-gluon interaction based on analytic (or infrared)
confinement. Our guess about the symmetry structure of
the quark-gluon interaction in the confinement region has
been tested and the use of simple forms of propagators has
resulted in quantitatively reasonable estimates.

Despite its pure model origin, the approximations used,
and questions about the very definition of the coupling in

the IR region, our approach demonstrates a new, indepen-
dent, and specific IR-finite behavior of QCD coupling and
we extract a particular IR-fixed point at �̂sð0Þ ’ 0:757 for
confinement scale � ¼ 345 MeV. As an application, we
performed estimates on intermediate and heavy meson
masses and the result was in reasonable agreement with
experimental data. Our estimates may be improved further
by using iterative schemes, but the aim is to obtain a
qualitative understanding of QCD effective coupling in
the IR region.
The suggested model in its simple form is far from real

QCD but we conclude that the analytic confinement con-
ception combined with BS method may provide us with a
rather satisfactory correlated understanding of low- and
intermediate-energy phenomena from few hundreds MeV
to few GeV.
Note that further improvements of measurements of �s

will be difficult while it is unlikely that QCD perturbation
theory will considerably improve existing predictions.
Therefore, further developments of theoretical predictions
within nonperturbative methods and reapplication of im-
proved models may have successes in this field.
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FIG. 5 (color online). Summary of estimates of �̂sðMÞ in interval from 0 to 10 GeV at different values of confinement scale. In the
left panel,� ¼ 330 MeV (red dots),� ¼ 345 MeV (blue diamonds), and� ¼ 360 MeV (black squares) compared with �sðQÞ (in the
right panel) defined in low-energy (open diamonds) and high-energy (open circles) experiments. Also shown are the three-loop
analytic coupling (solid curve), its perturbative counterpart (dot-dashed curve), both normalized at the Z-boson mass, and the massive
one-loop analytic coupling (dashed curve) (for details see Ref. [31]).
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