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It has by now been established that standard QCD factorization using transverse momentum dependent

parton distribution functions fails in hadroproduction of nearly back-to-back hadrons with high transverse

momentum. The essential problem is that gauge-invariant transverse momentum dependent parton

distribution functions cannot be defined with process-independent Wilson line operators, thus implying

a breakdown of universality. This has led naturally to proposals that a correct approach is to instead use a

type of generalized transverse momentum dependent factorization in which the basic factorized structure

is assumed to remain valid, but with transverse momentum dependent parton distribution functions that

contain nonstandard, process-dependent Wilson line structures. In other words, to recover a factorization

formula, it has become common to assume that it is sufficient to simply modify the Wilson lines in the

parton correlation functions for each separate hadron. In this paper, we will illustrate by direct counter-

example that this is not possible in a non-Abelian gauge theory. Since a proof of generalized transverse

momentum dependent factorization should apply generally to any hard hadroproduction process, a single

counterexample suffices to show that a general proof does not exist. Therefore, to make the counter-

argument clear and explicit, we illustrate with a specific calculation for a double spin asymmetry in a

spectator model with a non-Abelian gauge field. The observed breakdown of generalized transverse

momentum dependent factorization challenges the notion that the role of parton transverse momentum in

such processes can be described using separate correlation functions for each external hadron.
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I. INTRODUCTION

There has been much recent activity devoted to the study
of parton transverse momentum in high energy hadronic
collisions. Observables that are sensitive to parton trans-
verse momentum can potentially provide new insight into
the structure of hadrons. However, to interpret data it is
important to understand the extent to which familiar per-
turbative QCD (pQCD) factorization approaches can be
extended to situations that involve parton transverse mo-
mentum. In this paper, we specifically address recent ef-
forts to apply the usual general framework of pQCD
factorization (with some modifications) to describe parton
transverse momentum in collisions between high energy
hadrons with production of a pair of nearly back-to-back
high transverse momentum hadrons or jets in the final
state:

H1 þH2 ! H3 þH4 þ X: (1)

The distribution of transverse momentum inside the collid-
ing hadrons can be probed, for example, by measuring the
small imbalance in the distribution of transverse momen-
tum between the final state pair (see, e.g., [1,2]). Parton
transverse momentum also plays a central role in the
generation of spin asymmetries.

For a discussion of the relevant issues, it will be impor-
tant to first clearly define our terminology. Very generally,
a QCD factorization theorem [3] is said to be valid if an
observable (such as a cross section) can be written as a
convolution product of factors that describe different re-
gions of parton momentum. Schematically, one expects for
process (1):

d� ¼ H ��H1
��H2

� �H3
��H4

þ p:s:c: (2)

Here, the symbol � denotes all relevant convolution inte-
grals and traces, and a sum over different types of partons
and subprocesses is understood. The hard factor H de-
scribes the short range behavior in the hard collision be-
tween partons, while �H1

and �H2
are the parton

distribution functions (PDFs) for initial state hadrons H1

and H2. The �H3
and �H4

are fragmentation functions for

final state hadronsH3 and H4. In general, a soft factor may
also be needed, though we will not write it explicitly. The
symbol ‘‘p.s.c.’’ indicates that power suppressed correc-
tions are neglected.
A transverse momentum dependent (TMD) factorization

theorem (also called unintegrated factorization or
kT-factorization) is said to be valid if the role of parton
transverse momentum can be taken into account by using
PDFs and FFs in Eq. (2) which depend explicitly on parton
transverse momentum. In a TMD-factorization formula,
one therefore refers to TMD PDFs and TMD FFs (or
‘‘unintegrated’’ PDFs and FFs).
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TMD-factorization should be contrasted with the more
common collinear factorization theorems, applicable to
cases where observables are not sensitive to intrinsic trans-
verse parton momentum. In the collinear factorization
theorems, transverse momentum is integrated over inside
the definitions of the standard PDFs and FFs. These are the
standard ‘‘integrated’’ PDFs and FFs which are expressible
as well-defined, process-independent operator matrix ele-
ments [4]. The process-independence means that the inte-
grated PDFs and FFs can be parametrized by experimental
data and then later reused in calculations to make first-
principle predictions for future experiments. Thus, this
universality property of the standard integrated PDFs and
FFs lends great predictive power to the standard pQCD
approaches, and is a basic component of the standard col-
linear factorization theorems.

It is natural to hope that an analogous universality
property applies to the TMD PDFs and TMD FFs in a
TMD-factorization formula. In that case, wewould say that
standard TMD-factorization is valid, where we will ex-
plicitly use the word ‘‘standard’’ to refer to the universality
condition. If a standard TMD-factorization formula were
valid for the process in (1), then it would be possible to
calculate cross sections using the same TMD PDFs and FFs
that are parametrized in other processes like deep inelastic
scattering (DIS) or the Drell-Yan (DY) process. However,
as we will discuss in more detail, TMD-factorization is not
generally valid for the process in Eq. (1).

The essential complication arises from longitudinally
polarized gluons that couple soft and collinear subgraphs
to the hard part and which, at first sight, appear to break
topological factorization graph-by-graph at leading power.
Dealing with these ‘‘extra’’ gluons is one of the main issues
that must be dealt with in all factorization proofs in pQCD.
In DIS, for example, it is found that after summing over all
graphs (and applying appropriate approximations), a Ward
identity argument allows the extra gluon contributions to
be factored into contributions which correspond to Wilson
lines (also called gauge links) in the definitions of the PDFs
or FFs [3]. However, in order to justify the approximations
that allow an application of the Ward identity, it is neces-
sary to first perform certain contour deformations on the
gluon momentum [5]. For DIS, the contour deformations
must be consistent with having extra gluon attachments
between hadron spectators and a final state struck quark.
Similar steps apply to DY, but there the contour deforma-
tions should correspond to extra attachments between had-
ron spectators and an initial state quark. (See also Ref. [6].)
The result is that theWilson line for the quark TMD PDF in
DIS is future pointing while the Wilson line for a quark
TMD PDF in DY is past pointing [7]. The difference in
Wilson line direction has been shown to result in a sign flip
for the Sivers function (a particular type of TMD PDF) in
DYas compared to DIS [7]. Strictly speaking, this could be
regarded as a breakdown of standard TMD-factorization

because the Sivers function is not truly universal in DIS
and DY. However, since a sign flip is easily accounted for,
it is more appropriate to say that the Sivers function in DIS
and DY possesses a type of ‘‘modified’’ universality. The
relationship between correlation functions in DIS and DY
is further discussed in Ref. [8].
The problems that occur with TMD-factorization for

Eq. (1) are much more complicated because there one
must deal with extra gluons that connect spectators to
both initial and final state partons. The result is that the
contour deformations necessary for a factorization proof
prevent a direct application of the usual Ward identity
arguments. This problem was observed by Bomhof,
Mulders, and Pijlman [9] who found that the Wilson lines
needed for gauge-invariant TMD PDFs and FFs in hadro-
production of hadrons are not generally process indepen-
dent. Although the extra gluon attachments eikonalize, the
resulting sums of eikonal factors do not correspond to the
simple future or past pointingWilson lines that are found in
DIS and DY. In [9] it was shown at the level of a single
extra gluon that the TMD PDFs and FFs (assuming con-
sistent definitions exist) are nonuniversal because they
require, at a minimum, process-dependent Wilson lines.
Hence, there is a violation of the universality property
necessary for standard TMD-factorization.
Similar problems are encountered in proofs of collinear

factorization for hadron-hadron scattering, but there one is
saved by cancellations between graphs that occur after
integration over transverse momentum (see, e.g., Ref. [5]
and also more recent work in Ref. [10]). Since these
cancellations are not point-by-point in transverse momen-
tum, they do not generally apply to TMD-factorization.
To address the role of nonuniversal Wilson lines, the

concept of a generalized TMD-factorization formula was
later developed [11,12]. In this approach, it is assumed that
the only deviation from standard TMD-factorization is that
the TMD parton correlation functions (PDFs and FFs) must
contain process-dependent Wilson lines. Schematically,
instead of Eq. (2) one must assume a more complicated
expression of the form

d� ¼ X
j;c

H j;c ��
½WLc;j

1
�

H1;j
��

½WLc;j
2
�

H2;j
��

½WLc;j
3
�

H3;j
� �

½WLc;j
4
�

H4;j

þ p:s:c: (3)

Here, H c;j is the hard part for subprocess j and color

routing c. For each subprocess and routing of color through
the hard part, there is in general a different set of TMD
PDFs and TMD FFs corresponding to the different Wilson
line structures that they contain. In the above notation

�
½WLc;j

1
�

H1;j
is a gauge-invariant TMD PDF for hadron H1

with a Wilson line [WLc;j
1 ] corresponding to subprocess j

and color routing c. Analogous notation is used for the
other process-dependent correlation functions. [There are
also possible soft factors not shown explicitly in Eq. (3)].
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Each term in Eq. (3) has the same basic factorized structure
as in Eq. (2), involving distinct (though process-dependent)
TMD PDFs and FFs for all external hadrons. The TMD
PDFs and FFs have the usual structure of a pair of field
operators and a Wilson line with an expectation value
corresponding to a specific external hadron state. The
only difference from the standard case is that they are
equipped with nonstandard and potentially complex
Wilson line structures. In particular, Eq. (3) contains no
matrix element of the form hH1H2j � � � jH1H2i. So, by
generalized TMD-factorization we mean that a TMD-
factorization formula is recovered simply by replacing
the Wilson lines in the definitions of the correlation func-
tions by nonstandard ones, which may be different for each
hard subprocess and for each way of routing color through
the hard part. The TMD PDFs needed in a generalized
TMD-factorization formula for Eq. (1) could be totally
different from the ones parametrized in, e.g. DIS and DY.

A conjectured TMD-factorization of the form of Eq. (3)
is a basic assumption in a number of recent studies [11–
16]. The minimal Wilson line structures needed for Eq. (3)
can be determined by considering a single extra gluon at a
time, radiated from each of the external hadrons and at-
taching everywhere in the hard subprocess. The resulting
process-dependent gauge-invariant correlation functions
have been tabulated in Refs. [11,12]. These correlation
functions have also been used to calculate physical observ-
ables such as weighted spin asymmetries [13,14].

Collins and Qiu [17] verified explicitly that standard
TMD-factorization fails in a sample calculation of a single
spin asymmetry (SSA). That is, they showed in an explicit
calculation that the process-dependence of the Wilson line
structures observed in Ref. [9] indeed corresponds to non-
universality for the TMD PDFs. For their calculation, they
used a model Abelian theory and calculated the effect of a
single extra gluon. An explicit illustration of the violation
of standard TMD-factorization was also given for unpolar-
ized scattering in Ref. [18], again using a model Abelian
gauge theory. The two-gluon example for unpolarized
scattering is important as it directly illustrates that standard
TMD-factorization cannot generally be recovered by re-
scaling the hard part with a constant color factor. (Compare
this with the procedure of Refs. [19].) In Ref. [20], it was
shown explicitly that the observed breakdown of standard
TMD-factorization described in Refs. [17,18] is consistent
with the generalized TMD-factorization proposed in
Refs. [11,12,15], again within the Abelian theory.

However, all the cases studied so far have only consid-
ered graphs with extra gluons radiated from one of the
hadrons at a time. What is missing is a treatment of non-
Abelian gluons radiated from different hadrons simulta-
neously. If a generalized TMD-factorization approach is
possible, then extra gluons radiated from all hadrons si-
multaneously must be shown to eikonalize and factorize
after a sum over graphs. Given the complex color structures

that arise in a non-Abelian gauge theory, it is unclear that
such a procedure is possible in real QCD.
The purpose of this paper is to show explicitly that even

generalized TMD-factorization breaks down in a non-
Abelian gauge theory at the level of two extra gluons. In
other words, the violation of standard TMD-factorization,
already found in previous work, cannot be dealt with
simply by replacing the Wilson lines in the standard corre-
lation functions by more complicated ones and summing
over different subprocesses and color structures as in
Eq. (3).
As seen in Ref. [17], the basic reasons for a breakdown

of standard TMD-factorization are illustrated most directly
in a calculation of an SSA with a single extra gluon. We
will find analogously that the breakdown of generalized
TMD-factorization in a non-Abelian gauge theory is most
easily illustrated in a calculation of a double Sivers effect
in a double transverse spin asymmetry (DSA). As in
Refs. [17,18] we will use a model field theory to describe
the quarks, spectators and hadrons. A proper counterex-
ample to generalized TMD-factorization must verify that
terms which violate generalized TMD-factorization graph-
by-graph do not cancel in a sum over graphs. This is most
easily done in a simple spectator model that restricts the
number of relevant Feynman graphs.
In Sec. II we discuss the particular model and describe

the procedure for deriving a violation of generalized TMD-
factorization. In Sec. III we review the steps for factoriza-
tion with one extra gluon. We explicitly review the break-
down of standard TMD-factorization for two extra gluons
from one hadron in Sec. IV. In Sec. V we discuss the
generalized TMD-factorization formula that is required
to recover a factorized structure. In Sec. VI we demonstrate
that the generalized TMD-factorization formula is incon-
sistent with having extra gluons radiated from both hadrons
simultaneously. We end with concluding remarks in
Sec. VII.

II. SETUP

A simple model field theory provides a direct illustration
of why factorization fails in a gauge theory, while avoiding
the complications of dealing with a large number of
Feynman graphs. We will continue to use the model field
theory of Refs. [17,18,21], though with a few important
differences. The hadrons continue to correspond to differ-
ent flavors. The ‘‘quarks’’ continue to correspond to scalar
fields �f, while the ‘‘hadron’’ fields Hf and the spectator

‘‘diquarks’’ c f are Dirac spinors. The subscript f ¼ 1, 2

labels flavor. The main difference from Refs. [17,18,21]
which we will introduce is that the gauge field will be the
massless SUðNcÞ non-Abelian gauge field. (In QCD Nc ¼
3.) By contrast, Refs. [17,18] used a massive Abelian
gauge field that coupled with different charges, g1 and
g2, to the quarks and diquarks in hadrons H1 and H2. In
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this paper, the non-Abelian gauge field couples with equal
strength to the quarks in each hadron, g1 ¼ g2 ¼ g.

We also will introduce one more field: The hard sub-
process will be described by an exchange of a hypothetical
newmassive color-neutral U(1) gauge boson which wewill
call X. It couples with strengths �0

1ð2Þ to quarks of flavor

1(2). Hence, the hard subgraph has a trivial color structure.
This will allow us to study the role of extra gluons in a non-
Abelian gauge theory, while limiting the number of
Feynman graphs that need to be explicitly considered,
and eliminating color flow directly through the hard part.
It is important to emphasize that the general conclusions of
this paper do not depend on this specific model for the hard
subprocess. What is important is that color is carried by
both the initial and final state partons. A proof of general-
ized TMD-factorization for such processes should be gen-
eral and apply to any hard hadroproduction process with
observed hadrons in both the initial and final states. If it
fails for a specific example, then no general proof exists. In
cases where color is exchanged in the hard process, the
Wilson line structures for the TMD PDFs in Eq. (3) are
determined after first expanding the color matrices of the
hard subprocess into different routings following the pro-
cedure described in Ref. [12]. The steps in this paper then
apply to each term in a series of color routings, and similar

contradictions with generalized TMD-factorization can be
found. Our choice of hard subprocess is to make the
illustration of why generalized TMD-factorization fails
as clear as possible.
The basic graph contributing to hadroproduction of

high-pt hadrons, with no extra gluon attachments, is shown
in Fig. 1. Because of the trivial color structure of the hard
part, and the simplicity of our model of quarks and specta-
tors, there is only one subprocess and one color flow. So a
generalized TMD-factorization formula corresponding to
Eq. (3) can only involve one term.
We work in the center-of-mass frame where the incom-

ing hadron H1 is initially moving with large rapidity in the
forward plus direction with no transverse momentum,
while H2 is initially moving with large rapidity in the
minus direction with no transverse momentum. Each had-
ron splits into an active ‘‘quark’’ which enters the hard
subgraph, and a spectator ‘‘diquark’’ which enters the final
state. The quarks interact in the hard part by exchanging a
hard colorless vector boson X, with momentum q where
jq2j is large, jq2j � M2

X. Within the model, the final state
high transverse momentum hadrons or jets are represented
simply by on-shell final state quarks.
The polarization dependent differential cross section at

zeroth order in g is,

E3E4

d�

d3k3d
3k4

¼ �1
2�

2
2�

02
1 �

02
2 N

2
c

8sð2�Þ6
Z d4k1

ð2�Þ4
d4k2
ð2�Þ4 ð2�Þ

4�4ðk1 þ k2 � k3 � k4Þ
�ðk1 þ k3Þ � ðk2 þ k4Þ

ðk1 � k3Þ2 �M2
X

�
2

�
1
2 TrD½ð6p1 þmH1

Þð1þ �5s1Þð6p1 � 6k1 þmc 1
Þ�

ðk21 �m2
q1Þ2

1
2 TrD½ð6p2 þmH2

Þð1þ �5s2Þð6p2 � 6k2 þmc 2
Þ�

ðk22 �m2
q2Þ2

� ð2�Þ2�ððp1 � k1Þ2 �m2
c 1
Þ�ððp2 � k2Þ2 �m2

c 2
Þ: (4)

The factor of N2
c comes from tracing over the unit color

triplet matrices in the upper and lower color loops in Fig. 1.
We will use the approximation that the struck partons are
collinear to the directions of their parent hadrons. So, kþ1 �
pþ
1 and k�2 � p�

2 . The minus component of k1 and the plus
component of k2 are small (order �2=pþ

1 ) and can be
neglected inside the hard part. We also define x1 ¼
kþ1 =p

þ
1 and x2 ¼ k�2 =p

�
2 , and s is the usual Mandelstam

variable for center-of-mass energy squared. The transverse
spin vectors s1ð2Þ label the transverse spin for hadronsH1ð2Þ
and are normalized such that the extreme values are s21ð2Þ ¼
1. The subscriptD on TrD½� � �� indicates a trace over Dirac
indices.
After evaluating the �-functions, this cross section

easily factorizes:

E3E4

d�

d3k3d
3k4

¼ 1

2s

Z d2k1T

ð2�Þ2 H ðk1; k3; k4Þ
�
Nc�

2
1x1ð1� x1Þ
16�3

1
2 TrD½ð6p1 þmH1

Þð1þ �5s1Þð6p1 � 6k1 þmc 1
Þ�

½k21T � x1ð1� x1Þm2
H1

þ ð1� x1Þm2
q1 þ x1m

2
c 2
�2
�

�
�
Nc�

2
2x2ð1� x2Þ
16�3

1
2 TrD½ð6p2 þmH2

Þð1þ �5s2Þð6p2 � 6k2 þmc 2
Þ�

½k22T � x2ð1� x2Þm2
H2

þ ð1� x2Þm2
q2 þ x2m

2
c 2
�2
�
; (5)

where the hard part is,

H ðk1; k3; k4Þ ¼ �02
1 �

02
2

2x1x2s

�ðk1 þ k3Þ � ðk3 þ 2k4 � k1Þ
ðk1 � k3Þ2 �M2

X

�
2
: (6)

The remaining factors in braces in Eq. (5) are what is expected from the zeroth order expansion of the standard operator
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definition of a TMD PDF. For hadron H1, for example, the zeroth order TMD PDF is

½�H1
ðx1; k1TÞ�Oð1Þ ¼ Nc�

2
1x1ð1� x1Þ
16�3

1
2 TrD½ð6p1 þmH1

Þð1þ �5s1Þð6p1 � k1 þmc 1
Þ�

½k21T � x1ð1� x1Þm2
H1

þ ð1� x1Þm2
q1 þ x1m

2
c 2
�2 (7)

and similarly for hadron H2. Note that k2T is not kinemati-
cally independent of k1T : k2T ¼ k3T þ k4T � k1T . Also,
x1 � ðkþ3 þ kþ4 Þ=pþ

1 and x2 � ðk�3 þ k�4 Þ=p�
2 . To keep the

expression simple, we have written Eq. (6) in terms of
exact parton momenta, k1, k2, k3, k4, though we remark
that in the correct final formula these should be replaced by
the approximate on-shell parton momenta appropriate for a
hard subgraph [22].

When treating higher order graphs, we will always work
in Feynman gauge, where the contour deformations needed
in a derivation of factorization are most straightforward.
For factorization to work, it must be possible to identify
any uncanceled collinear or soft singularities as contribu-
tions to nonperturbative correlation functions. Some of
these singularities correspond to Wilson line contributions,
and are therefore essential for maintaining gauge
invariance.

Before continuing we should mention that there are a
number of general complications involved in deriving
TMD-factorization that will not be addressed here because
they are not directly related to the main reasons that
generalized TMD-factorization fails. The most naive defi-
nitions of TMD correlation functions include extra diver-
gences that need to be removed by appropriate
redefinitions (see Ref. [23] and references therein for an
overview of issues related to the precise definition of a
TMD PDF). One particular complication is that the Wilson
lines in these definitions cannot be exactly lightlike without
containing extra ‘‘light-cone’’ divergences which corre-
spond to partons moving with large rapidity opposite to
the direction of their parent hadrons. Proposed solutions
involve either tilting the Wilson line away from the exactly
lightlike direction [4], or dividing out by extra gauge-
invariant factors [6,24–26]. Furthermore, an exactly cor-
rect factorization formula requires a soft factor to account
for gluons with all components small. The other parton

correlation functions tend to overlap in the soft region, and
a fully correct definition of a TMD PDF requires extra
factors to remove the overlap.
There has been much significant recent work devoted to

finding a fully consistent definition of the TMD PDF.
However, our main concern in this paper is only with the
general color structure of the Wilson lines inside the matrix
elements for the external hadrons. Therefore, for our pur-
poses it will be sufficient to continue to treat the direction
of the main Wilson lines in the TMD PDFs as being light-
like, and we will not address the role of a soft factor or the
overlap of regions. Finally, we will restrict consideration to
the limit of very large relative transverse momentum
(large-pt) where one expects standard pQCD methods to
be most appropriate, and we do not consider the possibility
of recovering a type of TMD-factorization appropriate in
the small-x limit [27].
Having discussed the basic graph in Fig. 1, the next step

is to consider graphs dressed with extra gluons. The graphs
which can contribute to the Wilson line insertions are those
in which extra, nearly on-shell gluons connect different
subgraphs—for example, graphs with gluons connecting
the p1-collinear lines to the outgoing struck quark lines or
to the p2-collinear lines. Normally, one expects the sum of
such graphs to contribute to the Wilson line in the TMD
PDF for H1, after application of a Ward identity. The
primary issue is that the approximations that normally
allow Ward identities to be applied are only valid after
certain contour deformations on the extra momentum in-
tegrals. Namely, to apply a Ward identity, it must be
possible to approximate an extra gluon by a longitudinally
polarized one with a large component of longitudinal
momentum. Then the extra gluon momentum can be con-
tracted with the hard scattering matrix element and a Ward
identity argument can be applied directly. However, when
virtual gluons attach to a spectator line, they give contri-
butions from the ‘‘Glauber’’ region, meaning that if l is the
momentum of an extra gluon, then jlþj and jl�j are both
much smaller than jljT . In the Glauber region, the approx-
imations needed for the Ward identity are not valid. For
factorization to work, it must be possible to first deform the
contour out of the Glauber region (see, for example,
Refs. [6]). Alternatively, factorization could be recovered
if there is a cancellation between graphs, as in the standard
proofs of integrated (collinear) factorization. The basic
problem with TMD-factorization found in previous work
[11,12,15,17,18] is that the necessary contour deforma-
tions needed to treat the Glauber region are inconsistent
with a direct application of the standard Ward identity
arguments. Namely, they are in different directions for

FIG. 1. Basic graph contributing to hadroproduction with no
extra gluons.
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different graphs depending on whether the interaction is in
the initial or final state.

So, we will only consider graphs that can yield contri-
butions from the Glauber region. Since real gluons can
never be in the Glauber region, we will only consider
graphs with virtual gluons. Also, as long as no restrictions
are placed on the target remnant momenta, graphs with
spectator-spectator interactions cancel [5] in the integra-
tion over final states [28]. Similar cancellations occur
between different cuts of the same graph for active-
spectator interactions after parton transverse momentum
is integrated over, and are needed in the standard proofs of
collinear factorization [5]. A counter-proof of TMD-
factorizaton therefore needs to show that such cancella-
tions generally fail when transverse parton momentum is
explicitly taken into account. A specific example of such a
noncancellation was given in Ref. [18] and will be re-
viewed in Sec. IV. In graphs with attachments between
active quarks, there are not enough Dirac �-matrices to
give spin dependence to the TMD PDFs. Such graphs will
therefore not affect our discussion of single and double
spin asymmetries at lowest nonvanishing order.
Furthermore, graphs with a scalar-scalar-gluon-gluon ver-
tex do not give leading power contributions to eikonal
factors.

We remark that, because the TMD factorization break-
ing effects are due to the Glauber region where all compo-
nents of gluon momentum are small, the interactions
responsible for breaking TMD factorization are associated
with large distance scales.

In our specific model, a large number of graphs vanish
simply because of the highly simple color structure in-
volved. Examples are shown in Fig. 2. They vanish because
their color factors include a trace around a color loop of a
single SUðNcÞ generator, TrC½ta� ¼ 0. (The C on the
TrC½� � �� denotes a trace over triplet color indices.)

Hence, the relevant types of graphs are represented by
Figs. 3–8. If a generalized TMD-factorization formula is
possible, then the sum over all such graphs must produce a
factorized form like Eq. (3) with a Wilson line structure in
the TMD PDF or FF for each hadron separately. We will
consider each type of graph in the following sections.

III. ONE EXTRA GLUON

We begin the investigation of diagrams by reviewing the
steps for determining the contribution from a single extra
gluon. As in Ref. [17], we focus on the calculation of an
SSA. We start with graphs of the type shown in Fig. 3,
where the extra gluon attaches on the side of the hard part
nearest to its parent hadron. Any spin asymmetry disap-
pears in the zeroth order cross section, Fig. 1 because there
are too few Dirac matrices to produce a nonzero result in
the traces with �5.
Consider, for example, Fig. 3(a). The arrow on the gluon

line indicates that it is collinear to H1. By first deforming
the l integral out of the Glauber region to the H1-collinear
region, one may replace the intermediate struck quark line
of momentum k3 � l by the eikonal factor

tagn
�
1

�lþ þ i�
¼ �gtan

�
1 P:V:

1

lþ
� igtan

�
1 ��ðlþÞ; (8)

where n�1 	 ð0; 1; 0tÞ. The sign on the i� is determined by

the direction of the contour deformation. For the spin-
dependent part, the attachment of the extra gluon at the
spectator produces a factor at leading power equal to

ta

2
TrD½ð6p1 þmH1

Þ�5s1ð6p1 � 6k1 þ6 lþmc 1
Þ

� �þð6p1 � 6k1 þmc 1
Þ�

� 2ita�jks
j
1l

kpþðmH1
ð1� x1Þ þmc 1

Þ: (9)

When this expression is combined with the imaginary part
of Eq. (8), the factors of �i and i combine and a contri-
bution to an SSA is obtained. The �jk is the two-

dimensional Levi-Civita symbol with �12 ¼ 1.
If the extra gluon is on the other side of the cut as in

Fig. 3(b), the eikonal factor is

tagn�1
�lþ � i�

¼ �gtan�1 P:V:
1

lþ
þ igtan�1 ��ðlþÞ: (10)

The factor from the attachment at the spectator is,

FIG. 2. Typical cases of graphs that vanish when extra gluons are considered because of the trivial color factor, TrC½ta� ¼ 0.
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ta

2
TrD½ð6p1 þmH1

Þ�5s1ð6p1 � 6k1 þ6 lmc 1
Þ

� �þð6p1 � 6k1 þ6 lþmc 1
Þ�

� �2ita�jks
j
1l

kpþðmH1
ð1� x1Þ þmc 1

Þ: (11)

When this is combined with the imaginary part of Eq. (10),
the factors of i and �i combine and a contribution to an
SSA is again obtained. It is exactly equal to the one found
in Fig. 3(a) as it must be since the graphs are related by
Hermitian conjugation.

Analogous steps apply to Figs. 3(c) and 3(d). The differ-
ent shadings on the arrows is to emphasize that they are
radiated from H2 rather than H1. Now, after a contour
deformation l can be made collinear to the minus direction,
and a vector n

�
2 ¼ ð1; 0; 0tÞ is used instead of n

�
1 . The

eikonal factors are,

tagn	2
�l� þ i�

¼ �gtan	2P:V:
1

l�
� igtan	2��ðl�Þ (12)

for Fig. 3(c) and

tagn	2
�l� � i�

¼ �gtan	2P:V:
1

l�
þ igtan	2��ðl�Þ (13)

for Fig. 3(d).
In our calculation of the SSA, p2 is unpolarized so there

is no factor of i coming from the attachment to the upper
spectator. Therefore, it is only the real principal value
contributions that are kept in Eqs. (12) and (13). Note

that there can be no double Sivers effect at the level of
one extra gluon because there must be at least one extra
gluon from each of the hadrons for their PDFs to have spin
dependence.
The tas in Eqs. (8) and (10) combine with the tas in

Eq. (9) and (11) to produce an overall color factor equal to

TFðN2
c � 1Þ: (14)

Exactly the same color factor also arises when l is collinear
to p2 as in Figs. 3(c) and 3(d).
The remaining type of single-gluon graphs are those in

Fig. 4. For the lines collinear toH1 the eikonal propagators
are

TrC½ta�gn�1
�lþ þ i�

¼ �gTrC½ta�n�1 P:V:
1

lþ

� igTrC½ta�n�1 ��ðlþÞ; (15)

from Fig. 4(a) and

TrC½ta�gn�1
lþ þ i�

¼ þgTrC½ta�n�1 P:V:
1

lþ

� igTrC½ta�n�1 ��ðlþÞ; (16)

from Fig. 4(b). The sum of these graphs gives a contribu-
tion equal to

� 2igTrC½ta��n�1 �ðlþÞ: (17)

If the color factor in Eq. (17) did not vanish, then it would

FIG. 3. Extra gluon attachments that are consistent with the standard Wilson line structure. The difference in shading on the arrow at
the eikonal attachments for (a, b) and (c, d) is to emphasize that the gluons are from different hadrons. They correspond to p1 in (a, b)
and to p2 in (c, d).
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contribute to an SSAwhen the factor of i combines with the
factor of i in Eq. (9). The same result is obtained from the
Hermitian conjugate graphs. In a totally unpolarized cross
section, there would be no contribution from Eq. (17),
regardless of the color factor, since it is imaginary.

A symmetric analysis applies if the extra gluon is instead
radiated from hadron H2 as in Figs. 4(c) and 4(d). In that
case n1 is replaced by n2 and l

þ is replaced by l�. Since p2

is unpolarized, it is the real parts of the eikonal factors that
contribute. Thus, since the real parts cancel between
graphs, the eikonal factors from Fig. 4(c) and 4(d) do not
contribute to the unpolarized TMD PDF of hadron H2.

The uncanceled terms like Eq. (17) would ordinarily
signal a breakdown of standard TMD-factorization be-
cause they are not consistent with the standard Wilson
line structure in a TMD PDF. This is exactly what is
observed for the Abelian gauge theory calculation in
Ref. [17]. In our non-Abelian example, however, these
single extra gluon contributions to a ‘‘factorization anom-
aly’’ are exactly zero because they happen to include the
trivial color factor:

Tr C½ta� ¼ 0: (18)

So, in our specific non-Abelian calculation, Eqs. (8) and
(10) are the only eikonal propagators that contribute to an
SSA at the level of just one extra gluon.

The nonvanishing eikonal factors [coming from
Figs. 3(a) and 3(b)] are exactly what is obtained from an

order g expansion of the Wilson lines in the standard
definition of the TMD PDFs:

�½n1�
H1

ðx1; k1TÞ ¼ x1p
þ
1

Z dw�d2wt

ð2�Þ3 e�ix1p
þ
1 w

�þikt�wt

� hH1; s1j�y
1;jð0; w�;wtÞU½n1�

jk ½0; w�
��1;kð0ÞjH1; s1i: (19)

The standard Wilson line operator U½n1�
jk ½0; w� is inserted

between the two scalar quark fields. The triplet color
indices j, k are shown explicitly to emphasize the flow of
color. The full Wilson line insertion is

U½n1�
jk ½0; w� ¼ ½Vy

wðn1Þ�jj0 ½Iðn1Þ�j0k0 ½V0ðn1Þ�k0k; (20)

where

½Vwðn1Þ�jj0 ¼ P exp

�
�igta

Z 1

0
d�n1 � Aaðwþ �n1Þ

�
jj0
;

(21)

with P denoting a path-ordering operator. The superscript
[n1] in Eq. (19) refers to the direction of the main leg of the
Wilson line, starting from point 0. The extra gluon attach-
ment in Fig. 3(a) on the left side of the cut contributes to
½V0ðn1Þ�k0k while the extra gluon in Fig. 3(b) contributes to
½Vy

wðn1Þ�jj0 . To close the Wilson line and ensure that it is

exactly gauge invariant, the path needs a transverse link at
light-cone infinity [29],

FIG. 4. Graphs of the type that led to a violation of TMD-factorization in Ref. [17]. Gluons radiated fromH1 are illustrated in (a) and
(b); gluons radiated from H2 are illustrated in (c) and (d). The Hermitian conjugate graphs should also be included. These graphs
vanish in our model because of their trivial color factor.
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½Iðn1Þ�jj0 ¼ P exp

�
�igta

Z
C
dz�Aa

�ðzÞ
�
jj0
; (22)

where C is a path in the transverse direction connecting the
points, ð0;1;wtÞ and ð0;1; 0tÞ. In a derivation of TMD-
factorization in Feynman gauge, contributions to the link at
infinity do not arise explicitly. (See, e.g., Refs. [3,8,23] and
references therein for a review of the steps for resumming
collinear gluon attachments and identifying the resulting
gauge links.)

Note that the Wilson line insertion in the standard TMD
PDF of Eq. (19) contracts the color indices of the quark

fields, so�½n1�
H1

ðx1; k1TÞ has no leftover color indices—it is a

real-valued function as is appropriate for a gauge-invariant
probability density.

Similar steps result in the single-gluon contribution to
the Wilson line in the standard TMD PDF for H2 when the
extra gluon is radiated from the upper spectator as in
Figs. 3(c) and 3(d). There the Wilson line insertion instead
points in the direction n2 ¼ ð1; 0; 0tÞ:

�½n2�
H2

ðx2; k2TÞ ¼ x2p
�
2

Z dwþd2wt

ð2�Þ3 e�ix2p
�
2 w

þþikt�wt

� hH2; s2j�y
2;jð0; wþ;wtÞ

�U½n2�
jk ½0; w��2;kð0ÞjH2; s2i: (23)

In the Abelian case considered in Ref. [17], breaking of
standard TMD-factorization was observed for an SSA
because the factorization anomaly terms analogous to
Eq. (17) did not vanish. There, the ‘‘color factor’’ was
the Abelian charge g2 for Abelian ‘‘gluons’’ rather than
the non-Abelian color factor TrC½ta� ¼ 0. That the anoma-
lous terms vanish at the level of one extra gluon in our non-
Abelian example is only due to the highly simple color
structure in the particular hard process that we have con-
sidered. Generally, when color is exchanged in the hard
part, standard TMD-factorization breaking will already
appear at the level of one extra gluon. In our example,
violations of standard TMD-factorization only appear at
the level of two extra gluons or higher.

Schematically, the standard TMD-factorization formula
suggested by the sum of one-extra-gluon graphs in
Figs. 3(a)–3(d) is

d�¼! H ��½n1�
H1

ðx1; k1TÞ ��½n2�
H2

ðx2; k2TÞ
� �ð2Þðk1T þ k2T � k3T � k4TÞ: (24)

Here H is the same hard factor that appeared at zeroth
order in Sec. II. The ‘‘!’’ on the equal sign is to emphasize
that this formula is ultimately incorrect, as explained in
Refs. [17,18]. We will see this explicitly at the level two
extra gluons in the next section.

IV. TWO EXTRA GLUONS

In this section we review the steps for illustrating a
violation of standard TMD-factorization at the level of
two extra gluons radiated from one of the hadrons. The
structure of the resulting TMD-factorization anomaly
terms constrains the possible generalizations of TMD-
factorization, as we will discuss more in Sec. V.
The simple color structure of the hard process strongly

limits the number of nonvanishing graphs. All graphs in
which the second gluon is internal to the hadron subgraph
(e.g. Fig. 5) only give further contributions to a single-
gluon contribution in the standardWilson lines in Eq. (24).
The only nonvanishing graphs that give order g2 contribu-
tions to a Wilson line operator are of the type shown in
Figs. 6–8. All other graphs vanish because they include an
overall color factor TrC½ta� ¼ 0.
We will consider each type of graph in turn in the next

few subsections. We will first identify the graphs that are
consistent with the standard TMD-factorization formula
Eq. (24). Next we will consider the graphs that contribute
to a violation of standard TMD-factorization that were
already discussed in Refs. [18]. The remaining graphs in
Fig. 8 are ultimately responsible for breaking generalized
factorization, so we will put off any further discussion of
them until Sec. VI.

A. Graphs contributing to standard factorization

By repeating the steps of Sec. III, graphs of the type
shown in Figs. 6 lead to the Wilson lines in Eqs. (19) and
(23) for the TMD PDFs of the standard TMD-factorization
formula. The eikonal factors that arise from Figs. 6(a) and
6(b) correspond to keeping the order g Wilson line con-
tribution from each of the TMD PDFs individually.
Figures 6(c) and 6(d) (and related graphs) correspond to
keeping the order g2 Wilson line contributions in one of the
TMD PDFs, and the zeroth order from the other.
The graphs considered up to now exhaust the contribu-

tions obtained by expanding each of the Wilson lines in the
standard TMD-factorization formula Eq. (24) up to order
g2 (in the Wilson line). Therefore, any remaining uncan-
celed contributions from the graphs of the type shown in

FIG. 5. A gluon three-point interaction that contributes to the
single gluon Wilson line attachment.
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Figs. 7 and 8 violate the standard TMD-factorization
formula.

B. Violation of standard TMD-Factorization

The graphs of the type shown in Fig. 7, where two
gluons attach the spectator of one hadron to the opposite
side of the hard subgraph, have been shown in
Refs. [18,20] to be nonvanishing in calculations of both
the unpolarized cross section and an SSA for an Abelian
gauge theory. These graphs, therefore, yield a violation of
the standard TMD-factorization formula Eq. (24).

The contribution to an anomalous SSA requires an
imaginary part from the extra eikonal factors. In

Ref. [18] the imaginary part came from graphs with one
gluon attaching near to the parent hadron and the other
attaching near to the opposite hadron [e.g., Fig. 2(b)].
These graphs vanish in our model because they again
include a color factor TrC½ta� ¼ 0.
The noncancellation of the unpolarized factorization

anomaly, however, remains. It arises from graphs with
both extra gluons radiating from the same hadron and
attaching at the side of the hard subgraph near to the
opposite hadron, as in Fig. 7. To make the violation of
standard TMD-factorization explicit, we will briefly re-
view the steps of Ref. [18]. We are for the moment only
concerned with the unpolarized cross section so we will

FIG. 7. Graphs that contribute to a factorization anomaly. Other graphs that should be included are all other graphs with both gluons
attaching the lower spectator to the k2 and k4 lines at the upper part of the graph. In addition, the anomalous contribution to the TMD
PDF of H2 is obtained by including the graphs with both gluons radiated from p2 and attaching the upper spectator to the k1 and k3
lines. There is a total of 32 graphs of this type, including graphs with both gluons radiated from p2.

FIG. 6. Graphs that contribute to the standard Wilson lines at the level of two extra gluons. The Hermitian conjugate graphs should
also be included, as well as graphs with both gluons collinear to p2.
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temporarily simplify the model of Sec. II by making all the
hadron and spectator fields scalars. We further simplify the
calculation by assuming mq1 ¼ mq2 ¼ mc 1

¼ mc 2
¼ mq.

For the graphs with the extra gluons on opposite sides of
the cut [Fig. 7(a) and related graphs], the factorization
anomaly for the unpolarized cross section comes from
replacing the extra off-shell quark propagators by their
eikonal propagators. Including all ways of attaching l1
and l2 to the k2 and k4 lines, one finds the same result as
in Ref. [18], but with the Abelian g1 and g2 charges

replaced by the appropriate color factor:

TrC½tatb�g2n�1 n	1
�

1

�lþ1 þi�
þ 1

lþ1 þi�

��
1

�lþ2 �i�
þ 1

lþ2 �i�

�

¼4�2g2n�1 n
	
1 TrC½tatb��ðlþ1 Þ�ðlþ2 Þ: (25)

For the graphs with both extra gluons coupling on the
same side of the cut [Fig. 7(b) and related graphs], the steps
are similar. Again including all ways of attaching l1 and l2
at the upper part of the graph, one finds

TrC½tatb�g2n�1 n	1
��

1

�lþ1 þ i�

��
1

�lþ2 þ i�

�
þ

�
1

lþ1 þ i�

��
1

�lþ2 þ i�

�
þ

�
1

�lþ1 þ i�

��
1

lþ2 þ i�

�
þ

�
1

lþ1 þ i�

��
1

lþ2 þ i�

��

¼ TrC½tatb�g2n�1 n	1
�

1

lþ1 þ i�
þ 1

�lþ1 þ i�

�
�

�
1

lþ2 þ i�
þ 1

�lþ2 þ i�

�

¼ �4�2g2n
�
1 n

	
1 TrC½tatb��ðlþ1 Þ�ðlþ2 Þ: (26)

The anomalous eikonal factor here is the same as in Eq. (25), apart from an overall minus-sign. However, the propagator
denominators for graphs like Fig. 7(a) (both gluons on opposite sides of the cut) are different from the propagator
denominators for graphs like Fig. 7(b) (gluons on the same side). For graphs with the extra gluons on opposite sides of the
cut, one finds the following contribution to the TMD PDF of hadron H1:

I1ðk1TÞ ¼ g2�2
1 TrC½tatb�TrC½tbta�

ð2�Þ12 x1p
þ
1

Z
dk�d4l1d4l2

½2ðpþ
1 � kþ1 Þ þ lþ1 �½2ðpþ

1 � kþ1 Þ þ lþ2 �
ðl21 þ i�Þðl22 � i�Þ½ðk1 � l1Þ2 �m2

q þ i��½ðk1 � l2Þ2 �m2
q � i��

� ð2�Þ3�ðlþ1 Þ�ðlþ2 Þ�ððp1 � k1Þ2 �m2
qÞ

½ðp1 � k1 þ l1Þ2 �m2
q þ i��½ðp� kþ l2Þ2 �m2

q � i��

¼ g2�2
1T

2
FðN2

c � 1Þx1ð1� x1Þ
256�7

Z
d2l1Td

2l2T
Y
j¼1;2

1

l2jT½ðk1T � ljTÞ2 þm2
q�
: (27)

This is the same result as in Ref. [18], except that the gluon is massless and there is a non-Abelian color factor multiplying
the integral. Equation (26) allows for a similar calculation of the remaining contribution to the TMD PDF for hadron H1

from the graphs with the extra gluons on the same side of the cut:

I2ðk1TÞ ¼ �g2�2
1T

2
FðN2

c � 1Þx1ð1� x1Þ
256�7

Z
d2l1Td

2l2T
1

l21Tl
2
2T½ðk1T � l1T � l2TÞ2 þm2

q�½k21T þm2
q�
: (28)

The mismatch in denominators between Eqs. (27) and (28) means that the full contribution I1ðk1TÞ þ I2ðk1TÞ does not
generally vanish point-by-point in k1T . The sum of graphs like Fig. 7 therefore results in uncanceled terms that are not

FIG. 8. Graphs that contribute to a violation of generalized TMD-factorization. Other graphs that should be included are those with
all possible attachments of l1 to the k4 and k2 lines, and all possible attachments of l2 to the k3 and k1 lines, and all Hermitian conjugate
graphs. In total there are 16 graphs of this type.
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accounted for by the standard Wilson lines. Hence, the
standard TMD-factorization formula Eq. (24) fails for un-
polarized scattering.

Exactly analogous observations apply to the TMD PDF
of the other hadron if the two extra gluons are radiated
from the spectator in H2, collinear to the minus direction.
In that case, the eikonal factors analogous to Eqs. (25) and
(26) will instead use a vector n2 and the delta functions
from the eikonal factors will be �ðl�1 Þ and �ðl�2 Þ [30]. So,
both TMD PDFs yield factorization anomalies at the two-
gluon level in the unpolarized cross section.

V. GENERALIZED TMD-FACTORIZATION

From the factorization anomaly terms Eqs. (25) and (26)
one may determine what the modified gauge link structure
must be for the TMD PDF of hadron H1 in a generalized
factorization formula [9,12,15]. In our example, the se-
quence of eikonal factors in the factorization anomaly
terms of Eqs. (25) and (26), including the trace around a
color loop, require a color-traced Wilson loop operator to
be inserted into the definition, Eq. (19), of the TMD PDF
for H1. Each of the eikonal factors in Eqs. (25) and (26)
corresponds to an attachment to a leg of the Wilson loop.
Therefore, the standard TMD PDF in Eq. (24) for H1

should be replaced with

�½n1;ðhÞ�
H1

ðx1; k1TÞ ¼ x1p
þ
1

Z dw�d2wt

ð2�Þ3 e�ix1p
þ
1
w�þikt�wt

� hH1; s1j�y
1;rð0; w�;wtÞUn1

rs ½0; w�
�Un1

ðhÞ�1;sð0ÞjH1; s1i: (29)

This is the same as the standard TMD PDF definition in
Eq. (19) apart from the insertion of the following color-
traced Wilson loop operator:

Un1
ðhÞ ¼ Un1

ij ½0; w�ðUn1y½0; w�Þji
¼ TrC½V0ðn1ÞIðn1ÞVy

wðn1ÞVwðn1ÞIyðn1ÞVy
0 ðn1Þ�:

(30)

The sequence of eikonal factors in Eqs. (25) and (26)
correspond exactly to gluons attaching to the ‘‘V’’
Wilson lines in Eq. (30). As before, the transverse links
at infinity do not contribute to leading power in Feynman
gauge. The color trace corresponds to the trace over the
color loop in the upper part of the graphs in Fig. 7 and is
what is needed to get the factor of TrC½tatb� in Eqs. (25)
and (26). Hence, the terms that violate standard factoriza-
tion arise from expanding the Un1

ðhÞ operator in Eq. (29) up

to order g2 (see also Ref. [20]).
An exactly analogous TMD PDF is obtained for hadron

H2 when both extra gluons are radiated from H2 in the
collinear minus direction and attach to the lower half of the
graph. The main legs of the Wilson loop in the TMD PDF
for H2 point in the direction of a vector n2:

�½n2;ðhÞ�
H2

ðx2; k2TÞ ¼ x2p
�
2

Z dwþd2wt

ð2�Þ3 e�ix2p
�
1
wþþikt�wt

� hH2; s2j�y
2;rð0; wþ;wtÞ

�Un2
rs ½0; w�Un2

ðhÞ�2;sð0ÞjH2; s2i: (31)

Thus, the factorization anomaly terms from Sec. IVB
specify the type of new Wilson line insertions that are
needed if generalized TMD-factorization is to hold. The
generalized TMD-factorization formula is

d�¼! H ��½n1;ðhÞ�
H1

ðx1; k1TÞ ��H½n2;ðhÞ�
2 ðx2; k2TÞ

� �ð2Þðk1T þ k2T � k3T � k4TÞ: (32)

Again, H is the same hard factor that appeared at zeroth
order in Sec. II. The only difference from Eq. (24) comes
from the Un

ðhÞ insertions in the TMD PDFs, indicated by

the (h) superscripts on the individual TMD PDFs in
Eq. (32). We have again included a ‘‘!’’ over the equal
sign to indicate that even this formula will ultimately fail
when the remaining graphs are considered.
Equation (32), with the TMD PDFs defined as in

Eq. (29), follows the method proposed in [9,12,15], and
is the most natural generalization of TMD-factorization.
For the purpose of our counterargument to generalized
TMD-factorization, the crucial point is that the new
Wilson line insertion Eq. (30) involves a trace over color.
If we instead tried contracting the color indices of the new
Wilson lines with the quark fields at points 0 and 
, then we
would obtain the wrong color factor for the anomalous
contribution in Eqs. (25) and (26). An even more serious
problem would be that the generalized TMD-factorization
formula would produce spurious terms at the one-gluon
level, already treated in Sec. III. Namely, single-gluon
attachments to the extra legs of the Wilson line would
introduce factorization anomaly contributions analogous
to Eq. (17), but with different nonvanishing color factors,
contradicting the analysis from Sec. III which found no
violation of standard TMD-factorization at order g in the
expansion of the Wilson lines (polarized or unpolarized).
Thus, consistency between the order-g and order-g2 con-
tributions to the Wilson lines requires that the new Wilson
line structures include the trace over color as in Eq. (30).
Other possible redefinitions of the TMD PDFs are un-

related to the color structure of the Wilson lines in the main
correlation functions. These include the modifications
mentioned in Sec. II, such as tilting the direction of the
Wilson line slightly away from the lightlike direction.
Thus, accounting for all contributions up to order g2, in
the Wilson line, and requiring consistency between differ-
ent orders in g, strongly constrains the possibilities for a
generalization of TMD factorization.
The order-g contribution from a Wilson loop in Eq. (32)

is zero simply because, with one gluon attaching to the
Wilson loop, the color trace in the definition of the Wilson
line operator Eq. (30) involves only one color generator

TED C. ROGERS AND PIET J. MULDERS PHYSICAL REVIEW D 81, 094006 (2010)

094006-12



TrC½ta� ¼ 0. So,

Un1
ðhÞjOðgÞ ¼ Un2

ðhÞjOðgÞ ¼ 0: (33)

Therefore, there is no disagreement between Eq. (32) and
standard factorization, Eq. (24), from graphs with only one
extra gluon. To find a disagreement between the standard
and generalized TMD-factorization formulas [Eqs. (24)
and (32)], at least two gluons need to be collinear to one
of the hadrons as in Sec. IVB.

VI. BREAKDOWN OF GENERALIZED
TMD-FACTORIZATION

We will now directly illustrate a breakdown of the
generalized TMD-factorization formula Eq. (32) by calcu-
lating the anomalous two-gluon contribution to a double
Sivers effect from the graphs in Fig. 8. First, let us sum-
marize the situation so far:

(i) Considering graphs with up to two extra gluons,
there is a one-to-one correspondence between graphs
of the type shown in Fig. 3/Fig. 6 and the contribu-
tions to the Wilson lines in the standard TMD-
factorization formula Eq. (24).

(ii) The sum of graphs with two extra gluons radiated
from one spectator and attaching on the opposite side
of the hard subgraph (as in the graphs of Fig. 7)
results in terms that violate standard TMD-
factorization in unpolarized scattering. These are
the contributions already discussed in Ref. [18].

(iii) The two-gluon factorization anomaly terms found in
Sec. IVB specify which modifications of the Wilson
lines in the TMD PDFs are needed if a form of
factorization is to be recovered. It is found that the
modified TMD PDFs must each contain an extra
color-traced Wilson loop, as in Eq. (29). This result
also follows from the same steps for finding general
Wilson line structures from low order graphs as
discussed in Ref. [12].

(iv) Because of Eq. (33), the generalized TMD-
factorizaton formula Eq. (32) cannot include any
other two-gluon contributions to Wilson lines. In
particular, there can be no contribution that corre-
sponds to graphs like Fig. 8, where one gluon is
radiated collinear to each hadron simultaneously.
These graphs would correspond to separate order-g
contributions from theWilson lines in separate TMD
PDFs. If they are nonzero, then they contribute to a
violation of both standard TMD-factorization in
Eq. (24) and the generalized TMD factorization
formula in Eq. (32). To incorporate such a contribu-
tion, one would have to modify the Wilson line in
each TMD PDF such that it includes a single-gluon
contribution to a factorization anomaly. But this
would contradict Sec. III where it was shown that
there is no violation of standard factorization with
just one gluon. Hence, contributions from graphs

like Fig. 8 cannot be consistently incorporated into
a generalization of factorization simply by modify-
ing Wilson lines in separate correlation functions. If
they give a nonvanishing contribution, then there is a
clear violation of generalized TMD-factorization.

We will therefore prove that generalized TMD-
factorization, Eq. (32), is violated by showing that the
sum of graphs of the type illustrated in Fig. 8 give a
nonvanishing contribution to a DSA.
First, we note that all graphs of the type shown in Fig. 8

include the nonzero color factor

Tr C½tatb�TrC½tbta� ¼ T2
FðN2

c � 1Þ: (34)

Next, we must ensure that there is no cancellation between
graphs.

A. Same side of the cut

In the sum of graphs like Fig. 8(a), where both gluons
are on the same side of the cut, the eikonal factors give a
total contribution equal to�

1

�lþ1 þ i�

��
1

�l�2 þ i�

�
þ

�
1

lþ1 þ i�

��
1

�l�2 þ i�

�

þ
�

1

�lþ1 þ i�

��
1

l�2 þ i�

�
þ

�
1

lþ1 þ i�

��
1

l�2 þ i�

�

¼ �4�2�ðlþ1 Þ�ðl�2 Þ: (35)

Since spin dependence is needed in both H1 and H2 for a
DSA, then there are also two factors corresponding to
Eq. (9) (but with one corresponding to a p2 spectator
attachment). Taking into account both of the resulting
factors of i gives an overall factor of i2 ¼ �1. Combined
with Eq. (35), the relevant factor from extra collinear
gluons is then 4�2�ðlþ1 Þ�ðl�2 Þ. The same result is obtained
from the Hermitian conjugate graphs.

B. Opposite side of cut

The sum of graphs with one extra gluon on each side of
the cut, as in Fig. 8(b), works in much the same way. The
eikonal factors give�

1

�lþ1 � i�

��
1

�l�2 þ i�

�
þ

�
1

lþ1 � i�

��
1

�l�2 þ i�

�

þ
�

1

�lþ1 � i�

��
1

l�2 þ i�

�
þ

�
1

lþ1 � i�

��
1

l�2 þ i�

�

¼ 4�2�ðlþ1 Þ�ðl�2 Þ: (36)

For a DSA, there is a factor of i from a factor analogous to
Eq. (9) for the p1-spectator attachment of the gluon on the
left side of the cut and a factor of �i from a factor
analogous to Eq. (11) (but for a gluon attaching at the
p2-spectator) on the right side of the cut, giving an overall
factor of ið�iÞ ¼ þ1. So, combined with Eq. (36) the
relevant factor from extra gluon attachments is again
4�2�ðlþ1 Þ�ðl�2 Þ.
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C. Together

Summing all graphs of the type shown in Fig. 8, therefore, results in just a single integral. To check it explicitly, one can
use Eqs. (36) [extracting the overall factor of ið�iÞ ¼ 1 that comes with the two spectator attachments] to explicitly
calculate the contribution from graphs with gluons on opposite sides of the cut:

2T2
FðN2

c � 1Þg4
2s

Z d4k1
ð2�Þ4

Z d4k2
ð2�Þ4

Z d4l1
ð2�Þ4

Z d4l2
ð2�Þ4 ð2�Þ

4�4ðk1 þ k2 � k3 � k4Þð2�Þ2�ðlþ1 Þ�ðl�2 Þ

�
�
�02
1 �

02
2

ðk1 þ k3Þ � ðk2 þ k4Þ
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X

�
2 2�jks

j
1l

k
1p

þ
1 ðmH1

ð1� x1Þ þmc 1
Þ

½l21 þ i��½ðk1 � l2Þ2 �m2
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c 1
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� 2�j0k0s
j0
2 l

k0
2 p

�
2 ðmH2

ð1� x2Þ þmc 2
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½l22 � i��½ðk2 � l2Þ2 �m2
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� i��½k21 �m2

q1 � i��
� ð2�Þ2�ððp1 � k1Þ2 �m2

c 1
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c 2
Þ: (37)

Here we have dropped the irrelevant factors of (2E3ð4Þ), �1ð2Þ, and ð2�Þ6 which appeared in Eq. (24). We have also dropped
the l1 and l2 dependence inside the factor in braces. This is permitted because the �-functions will set lþ1 and l�2 to zero, and
because the other components yield power suppressed corrections. The �-functions can be used to evaluate the kþ1 , k

�
1 , k

þ
2 ,

k�2 , l
þ
1 , l

�
2 and k2T integrals, and the l�1 and lþ2 integrals can be evaluated by contour integration. The result is

T2
FðN2

c � 1Þg4
s

Z d2k1T

ð2�Þ2
Z d2l1T

ð2�Þ2
Z d2l2T
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2T½k21T þ � � ��½ðl1T � k1TÞ2 þ � � ��½ðk3T þ k4T � k1TÞ2 þ � � ��½ðl2T � k3T � k4T þ k1TÞ2 þ � � �� : (38)

The factor H ðk1; k3; k4Þ is now the hard part in Eq. (3).
The symbol ‘‘� � �’’ in the denominators refers to terms that
involve only x1, x2 and masses. For graphs with both
gluons on the same side of the cut, exactly the same result
(with the same overall sign) is obtained by using Eq. (35)
and taking into account the overall factor of i2 ¼ �1 that
comes from the two spectator attachments. There are,
again, identical results coming from the Hermitian conju-
gate graphs.

The integral in Eq. (38) is not generally zero as can be
checked by considering a fixed q 	 k3T þ k4T . However,
there is no corresponding factorization anomaly term con-
tained in an expansion of Eq. (32) up to order g2 in the
Wilson lines. The modified Wilson lines in the TMD PDFs
of the generalized TMD-factorization formula are speci-
fied by the factorization anomaly terms that arise when
gluons are radiated from just one hadron at a time, as in
Sec. IV. However, the resulting generalized TMD-
factorization formula is in contradiction with graphs like
Fig. 8, where there are simultaneously gluons radiated
from H1 and H2. Thus, generalized TMD factorization
breaks down at the two-gluon level.

Indeed, at up to two gluons, the generalized TMD-
factorization formula Eq. (32) gives no contribution to a
DSA beyond what is predicted by the standard TMD-
factorization formula Eq. (24). The only factorization
anomaly contribution from Eq. (32) is to the unpolarized
cross section, and arises from graphs with both extra

gluons radiated from the same hadron. There must be at
least one gluon coming from each hadron at the same time
to have spin dependence in both hadrons simultaneously.
So, the only contribution to a double Sivers effect that
violates standard TMD-factorization is from the sum of
graphs in Fig. 8, and these are not accounted for in Eq. (32).
To recover the factorization anomaly in the DSA, one
would have to somehow allow each TMD PDF to have a
nonvanishing factorization anomaly contribution at the
level of one extra gluon. This, however, would contradict
the single-extra-gluon treatment of the SSA in Sec. III.
Therefore, a TMD-factorization formula cannot be recov-
ered by simply modifying the Wilson lines in each TMD
PDF separately. We have thus illustrated a specific example
of a violation of generalized TMD-factorization.
One can interpret the breakdown of generalized TMD-

factorization visually by imagining the flow of color in the
factorized expression, Eq. (32), as compared to the original
unfactorized graph. The graph in Fig. 8(b), for example,
must correspond to the product of two single-gluon con-
tributions to the Wilson lines in Eq. (32), if that formula is
correct. The resulting color structure can be visualized as
in Fig. 9. The narrow double lines represent the Wilson
lines in each TMD PDF. The box shaped Wilson lines
represent the extra color-traced Wilson loops in Eq. (32).
The color trace over each of the Wilson loops means that
only a color singlet gluon can be exchanged between a
Wilson loop and a spectator at the single-gluon level, as
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illustrated by the factors representing the TMD PDFs in
Fig. 9. Therefore, these contributions to the TMD PDFs
must vanish. By contrast, in the original unfactorized
graph, the interlaced color flow of the two gluons means
there is no problem with exchanging nonsinglet color, as
illustrated by the color flow diagram in Fig. 10. This
corresponds to the nonzero color factor in Eq. (34).

VII. DISCUSSION AND CONCLUSION

We have shown that a generalized TMD-factorization
formula like Eq. (3)/Eq. (32) does not in general exist for
back-to-back hadroproduction of high-pt hadrons due to
the nontrivial interplay of gluons that are collinear to both
hadron directions. The failure of generalized TMD-
factorization calls into question results that use it as a
starting assumption. This includes calculations of weighted
cross sections which retain a memory of the nonuniversal-
ity of the TMD PDFs.

It is interesting to note that the same complications do
not seem to arise if the gauge field is Abelian. In that case,
the Abelian ‘‘color factors’’ can be identified with coupling
constants, such as in the model from Ref. [17]. Then the
contribution to a DSA from graphs like Fig. 8 is indeed just
a product of single-gluon contributions to Wilson loops
from separate correlation functions (which are nonzero in

the Abelian case). Therefore, there is no obvious contra-
diction with generalized TMD-factorization for the
Abelian case, at least at the level of graphs discussed
here. While a full proof of generalized TMD-factorization
for the Abelian gauge theory does not yet exist, the break-
down of generalized TMD-factorization that we have
found is a specific consequence of the non-Abelian nature
of QCD.
It is worth stressing that the failure of generalized TMD-

factorization occurs in a regime where factorization would
ordinarily be expected to apply; namely, for hard processes
with larg-pt. Moreover, it should not be thought that the
breakdown of generalized TMD-factorization is specific to
a DSA or SSA. We have calculated for a DSA with color
singlet boson exchange for the hard part in order to max-
imize the simplicity of the argument, but the reasons for the
breakdown are quite general. The counter-example we
have provided in this paper is sufficient to show that a
general proof does not exist. That is, it is not possible to
consistently define TMD PDFs for each hadron separately,
even if we allow for process dependence in the Wilson line
structures. To encounter the same complications with gen-
eralized TMD-factorization in an unpolarized cross sec-
tion, one needs the type of noncancellation that was found
in Sec. IVB (which comes from having two gluons col-
linear to one hadron), but with at least one more gluon
collinear to the opposite hadron. An example of the type of
graph which can produce a violation of generalized TMD
factorization in the unpolarized cross section is shown in
Fig. 11.
Furthermore, the contribution from extra gluon attach-

ments (which lead to factorization breaking) should not be
thought of as negligible higher order corrections. They
correspond to soft and collinear divergences in higher
order hard scattering calculations. In real QCD, they are
nonperturbative gluons in the strong coupling regime. For
the perturbation series to have sensible convergence prop-
erties, it must be possible to rearrange terms such that the
extra soft and collinear gluons are resummed to all orders
into TMD PDFs. We also remark that, at the level of many
extra gluons, there are more graphs with gluons collinear to
both hadrons simultaneously (which led to a breakdown of

FIG. 10 (color online). Color flow in the unfactorized graph
with a single gluon collinear to each of the incoming hadrons as
in Fig. 8. The thick solid red and dotted blue lines again illustrate
the flow of color. Nonsinglet color can easily be exchanged and
results in a nonzero contribution. Compare with Fig. 9.

FIG. 9 (color online). Color flow resulting from the single gluon contributions for each of the Wilson loops in the TMD-factorization
formula Eq. (32). H is the standard zeroth order hard part and the second two factors are the TMD PDFs. The narrow double lines
represent Wilson lines. The boxes associated with each of the TMD PDFs correspond to the Wilson loops. The thick solid red and
dotted blue lines illustrate the flow of color in each TMD PDF. Each of the contributions to a TMD PDF shown here is exactly zero
because each includes a factor TrC½ta� ¼ 0.
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generalized TMD-factorization) than graphs with gluons
radiated from one hadron only.

While the observation of generalized TMD-factorization
breaking leads to frustrating practical difficulties in cross
section calculations, it should not necessarily be regarded
as a purely negative result. The question of whether trans-
verse momentum effects can be meaningfully associated
with parton transverse momentum in separate parton cor-
relation functions for each hadron is intrinsically important
in the search for an improved fundamental understanding
of QCD dynamics in hard collisions. A counterproof im-
plies the existence of effects which challenge normal par-
tonic intuition, and suggests new avenues of research.
While naive factorization fails, the fact that the extra
gluons eikonalize suggests that Wilson lines still may
play a role. Insight might be gained, for example, from
methods currently being applied to small-x physics (e.g.
[31,32]). Another possibility is to model factorization
breaking effects by directly calculating factorization

breaking phase contributions in perturbation theory, but
with explicit infrared and collinear cutoffs.
It is possible to understand the origin of the generalized

TMD-factorization breakdown intuitively as arising from
nonlinear effects in the phases acquired by partons as they
pass through the Aþ and A� fields of the colliding hadrons.
If the overall phase were simply the product of the phases
induced by the Aþ fields from hadron H1 and the A

� fields
from hadron H2, then one could associate any process-
dependent phases induced by the Aþ field in hadron H1

with a modified Wilson line for the TMD PDF of H1 and,
likewise, any process-dependent phases induced by the A�
field from H2 could be associated with a modified Wilson
line for the TMD PDF of H2. However, in the non-Abelian
theory the role of the A� gluons in H2 is affected by the
presence of the Aþ gluons fromH1 and visa-versa. A direct
example of this is Fig. 8/Eq. (38), where a single A� gluon
exchanged between H2 and the opposite-side struck quark
gives a nonzero contribution, but only because there is
simultaneously an Aþ gluon exchanged between H1 and
the other struck quark. This means that one cannot address
the role of phases induced by the Aþ and A� fields inde-
pendently, but instead must deal with them simultaneously.
The result is a kind of nonperturbative correlation which
cannot be identified as arising strictly from gluons coming
from either hadron independently, but only from the
combination.
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