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The degenerate leptogenesis is studied when the degeneracy in two of the heavy right-handed neutrinos

[the third one is irrelevant if �� � symmetry is assumed] is due to �L � ðLe � L� � L�Þ discrete

symmetry. It is shown that a sizable leptogenesis asymmetry (" � 10�6) is possible. The level of

degeneracy required also predicts the Majorana phase needed for the asymmetry and this prediction is

testable since it is the same phase, which appears in the double � decay. Implications of nonzero reactor

angle �13 are discussed. It is shown that the contribution from sin2�13 to the leptogenesis asymmetry

parameter may even dominate. An accurate measurement of sin2�13 would have important implications

for the mass degeneracy of heavy right-handed neutrinos.
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I. INTRODUCTION

The purpose of this paper is to study degenerate [i.e.
when two of the three right-handed neutrinos are (nearly)
degenerate] leptogenesis in a seesaw mechanism where the
mass matrix for right-handed neutrinos has �� � symme-
try and the degeneracy is the result of �L � ðLe � L� � L�Þ
discrete symmetry. This is studied in a generic seesaw
gauge model [1], in which in addition to the usual fermions
and SULð2Þ Higgs doublets, there are three SULð2Þ—sin-
glet right-handed neutrinos Ni

Rði ¼ e;�; �Þ with �� �
symmetry and two Higgs with quantum numbers given
below:

Le: ð2;�1;0Þ; �ð1Þ: ð2;�1;0Þ; Ne
R: ð1;�1;1Þ

eR: ð1;�2;0Þ
L���: ð2;0;�1Þ; �ð2Þ: ð2;0;�1Þ; N�;�

R : ð1;1;�1Þ
�R;�R: ð1;0;�2Þ

�: ð1;0;0Þ
�0: ð1;2;�2Þ; (1)

where the numbers in the parentheses, respectively, corre-
spond to SULð2Þ and Uið1Þ quantum numbers. It is impor-
tant to remark that as a result of �� � symmetry the
leptogenesis asymmetry parameter is proportional to
�m2

sol [2,3] rather than �m2
atm, and in general an unknown

Majorana phase which, however, also appears in the neu-

trinoless double � decay. This was studied for the hierar-
chal (M2 � M1) leptogenesis. Now a study is made for
degenerate leptogenesis when the degeneracy is the result
of �L discrete symmetry for the right-handed heavy neutri-
nos sector. This degeneracy is protected by the symmetry
(although global) and as such would be softly broken. It is
shown that a sizable lepton asymmetry (" ≿ 10�6) is pos-
sible. The level of degeneracy needed for this to occur also
predicts the Majorana phase needed for the asymmetry.
This is the distinguishing feature of the model considered.
In general, the asymmetry parameter is proportional to

the product of degeneracy parameter ð�MM Þ�1 and a

CP-violating phase; the fixation of this product to get a
sizable leptogenesis parameter does not necessarily predict
one from the other. This is because they do not get related,
in contrast to the model considered here; see, for example,
[4,5]. Since the phase involved is the same which occurs in
the neutrinoless double � decay, this prediction is testable.
Further the effect of a nonzero reactor angle �13 on lepto-
genesis is considered in some detail. It is shown that the
contribution from sin2�13 to the leptogenesis asymmetry
parameter may even dominate. As such an accurate mea-
surement of sin2�13 would have important implications for
the mass spectrum of heavy right-handed neutrinos, par-

ticularly for M2�M1

M2þM1
.

The Yukawa couplings of neutrinos with Higgs, using
�� � symmetry for right-handed neutrinos only, is given
by

LY ¼ g11 �LeeR ~�ð1Þ þ ½g22 �L��R þ g23 �L��R þ g32 �L��R þ g33 �L��R� ~�ð2Þ þ hcþ h11 �LeNe�
ð2Þ

þ ½h22 �L�ðN� þ N�Þ þ h32 �L�ðN� þ N�Þ��ð1Þ þ hcþ f11N
T
e CNe�

0 þ f12N
T
e CðN� þ N�Þ�þ hc

þ ½f22ðNT
�CN� þ NT

�CN�Þ þ f23ðNT
�CN� þ NT

�CN�Þ� ��0; (2)
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where

~� ¼ �i�2�
�; � ¼ �0

���
� �

; ~� ¼ �þ
�0

� �
:

One can also write Yukawa couplings of quarks with Higgs
doublets, in the same fashion as for the charged lepton as
follows:

LY ¼ G11
�LuuR�

ð1Þ þG22
�LccR’

ð2Þ þG33
�LttR�

ð2Þ

þ ~G11
�LudR ~�ð1Þ þ ð ~G22

�LcsR þ ~G23
�LcbR

þ ~G32
�LtsR þ ~G33

�LtbRÞ ~�ð2Þ: (3)

A remark about Yukawa couplings is in order. The model
contains two Higgs doublets �ð1Þ and �ð2Þ, the former is
coupled to the first generation while the latter to second
and third generations. Then the quantum number given in
Eq. (1) dictates the couplings as in Eqs. (2) and (3). Except
for heavy SUð2Þ singlet right-handed neutrinos, 2 $ 3
symmetry is not the symmetry of the Lagrangian in
Eq. (2). The Yukawa couplings with quarks will not be
considered further as they are not relevant for what follows.
In general, the Yukawa couplings used above are complex.
It is convenient to introduce Yukawa coupling matrices Yl

and YD:

Yl ¼
g11 0 0
0 g22 g23
0 g32 g33

0
@

1
A; YD ¼

h11 0 0
0 h22 h23
0 h32 h33

0
@

1
A:
(4)

Then the charged lepton and Dirac neutrino mass matrices
are

Ml ¼
g11v1 0 0
0 g22v2 g23v2

0 g32v2 g33v2

0
@

1
A (5)

mD ¼
h11v2 0 0
0 h22v1 h22v1

0 h32v1 h32v1

0
@

1
A (6)

while MR is

MR ¼
f11�

0 f12� f12�
f12� f22�

0 f23�
0

f12� f23�
0 f22�

0

0
@

1
A; (7)

where h�1;2i ¼ v1;2, h�i ¼ �, h�0i ¼ �0. It is convenient
to have a basis in which Yl and MR are simultaneously
diagonal:

Yl ! Ŷl ¼ U�1
L YlUE: (8)

Correspondingly (for left-handed doublets Li and right-
handed singlets EiR),

Li ! ULLi; EiR ! UREiR; (9)

where i ¼ e;�; � is the flavor index.

It is pertinent to remark that, by imposing the �� �
symmetry at the Lagrangian level only on the SUð2Þ singlet
right-handed neutrinos, a well-known problem [6,7] for
simultaneous imposing of �� � symmetry on the left-
handed charged leptons and the left-handed neutrinos is
avoided. For example, in the basis where charged leptons
are diagonal, this would imply m� ¼ m�. �� � �� sym-

metry can, however be imposed on mD independent of the
�� � symmetry for the right-handed neutrinos, giving
h22 ¼ h33 implying in turn the maximum atmosphere mix-
ing angle and �13 ¼ 0. We would not impose this symme-
try exactly and in fact consider the consequence of its
breaking, in particular �13 � 0, which has important im-
plications for the leptogenesis asymmetry parameter. It
may, in fact, dominate depending on the value of sin2�13.
Thus an accurate measurement sin2�13 would be of great
interest.

II. MASS MATRICES IN SEESAW MECHANISM
WITH �L DISCRETE SYMMETRY

As is well known,MR as given in Eq. (7) is diagonalized
by a mixing matrix with sin2�023 ¼ 1

2 and �013 ¼ 0, i.e. by

V ¼
cos�012 sin�012 0

� sin�012ffiffi
2

p cos�012ffiffi
2

p � 1ffiffi
2

p

� sin�0
12ffiffi
2

p cos�0
12ffiffi
2

p 1ffiffi
2

p

0
BB@

1
CCAPð�Þ; (10)

where Pð�Þ is the diagonal phase matrix (consisting of
nontrivial Majorana phases �1, �2, and �3). Thus,

VTMRV ¼ M̂R ¼ diagðM̂1; M̂2; M̂3Þ (11)

with M̂i ¼ Mie
2i�i , i ¼ 1; 2; 3 and

tan2�012 ¼
2

ffiffiffi
2

p
f12�

ðf22 þ f23 � f11Þ�0 (12)

M̂ 3 ¼ M3e
2i�3 ¼ ½f22 � f23��0e2i�3 : (13)

Then the effective Majorana mass matrix for the light
neutrinos is

M� ¼ m̂DM̂
�1
R m̂T

D; (14)

where m̂D is the Dirac matrix in

�N1
�N2

�N3

� � �e

��

��

0
@

1
A

basis:

m̂ D ¼ mDV
�

and the corresponding Yukawa matrix is

Ŷ D ¼ YDV
�: (15)
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Before proceeding further, let me display the Higgs
potential for � fields:

VH ¼ �2
1j�1j2 þ�2j�2j2 þ�3ð�y

1�2 þ�y
2�1Þ

þ �1ð�y
1�1Þ2 þ �2ð�y

2�2Þ2 þ �3ð�y
1�2 þ�y

2�1Þ2
� �4ð�y

1�2 ��y
2�1Þ2 þ �5ð�y

1�1Þð�y
2�2Þ: (16)

When the symmetry is broken

~� i ¼ Hþ
i

vi þ hi þ iai

� �
; i ¼ 1; 2: (17)

Because of the presence of the terms �3 and �4 in Eq. (16),
when the symmetry is broken, each pair of Higgs particles
ðh1; h2Þ; ða1; a2Þ and ðHþ

1 ; H
þ
2 Þ mixes. Further, when the

resulting mass matrices are diagonalized, one of the
charged Higgs and one of the neutral Higgs acquire zero
masses and as such are eaten up byWþ and Z0 to give them
masses. As a result, one has four massive physical Higgs
particles, one charged Hþ and three neutral H, h, and A0.
Because of the presence of the Majorana mass term

HM ¼ NTCMRN þ H:c: (18)

providing explicit breaking of family lepton number, flavor
changing interactions can arise due to radiative corrections
and are controlled by elements ofMR and have been shown
to be calculable and finite [8]. At one loop level such
corrections arise due to charged Higgs and have been
shown [8] to be highly suppressed. It may be remarked
here that the Higgs potential for � fields can be included
but even after breaking of the symmetry there is no mixing
between� and� fields.�0 gives mass to one of the neutral
gauge bosons and makes it super heavy.� is not coupled to
gauge bosons. But both� and�0 give mass to right-handed
neutrinos.

We now apply �L discrete symmetry on the purely heavy
right-handed neutrino part of the Lagrangian (2), i.e.,

Ni ! ei	LNi (19)

which leaves only the f12 term invariant so that

f11 ¼ 0 ¼ f22 ¼ f33: (20)

As a result

M̂ 1 ¼ Me2i�1 ; M̂2 ¼ �Me2i�2 ¼ Me2i�
0
2 ; (21)

whereM ¼ ffiffiffi
2

p jf12�j, �0
2 ¼ �2 þ 


2 so that the minus sign

in Eq. (21) has been absorbed in the redefinition of the
Majorana phase �2. Further �

0
12 ¼ � 


4 . To break the �L

discrete symmetry so as to obtain near degeneracy of M1

andM2, we assume jf22�0j, jf23�0j, jf11�0j � jf12�j, and
f22 ’ f23 so that the third right-handed neutrino becomes
sterile with M3 ’ a few eV. Then it is easy to see that

[�M ¼ M2�M1

2 , M ¼ M2þM1

2 ]

�M

M
¼ j�j; tan�012 ¼ �1� �0; (22)

where

� ¼ ðf22 þ f23 þ f11Þ�0

2
ffiffiffi
2

p
f12�

; �0 ¼ ðf22 þ f23 � f11Þ�0

2
ffiffiffi
2

p
f12�

:

(23)

The degree of degeneracy needed for providing sizable
asymmetry (see Sec. III) requires j�j ’ 10�3 and corre-
spondingly�0 is also of the same order. A remark about the
sterile neutrino would be in order. Even if �L discrete
symmetry is broken, the sterile neutrino cannot mix with
any of the active neutrinos unless �� � symmetry is also
broken for right-handed neutrinos [1]. Even then the pri-
mordial nucleosynthesis bound on the active member of
neutrino at t	 1s: N� < 3:1 implies that the oscillation of
active neutrinos into the sterile one should obey the bound
�m2sin22� � 1:6
 10�6 eV2 which excludes the �� !
�s and �e ! �s oscillations and as such do not effect the
atmospheric and solar neutrino solutions [9].
The effective Majorana mass matrix for light neutrinos,

given in Eq. (14), is

M� ¼ m̂DM̂
�1
R m̂T

D ¼ Â; (24)

where Â is a 3
 3 matrix with matrix elements

a11 ¼ h211v
2
2Affiffiffi

2
p

a12 ¼ h11ð2h22Þv1v2Bffiffiffi
2

p
a13 ¼ h11ð2h32Þv1v2B

a22 ¼ 1
2ð4h222v2

1ÞC
a23 ¼ 1

2ð2h22Þð2h32Þv2
1C

a33 ¼ 1
2ð4h232Þv2

1C:

(25)

Here

A ¼ e�ið�1þ�0
2
Þ

M

�
cos

��

2
� i

�M

M
sin

��

2

�
¼ C

B ¼ � e�ið�1þ�0
2
Þ

M
c0s0

�
�M

M
cos

��

2
� i sin

��

2

�
;

(26)

where

�� ¼ 2ð�1 � �0
2Þ c0s0 ¼ �1

2: (27)

If one assumes �� ! �� symmetry for theM�, then h22 ¼
h32 would imply, as is well known, maximal �23 ¼ �
=4,
�13 ¼ 0, and m3 ¼ 0. If �23 is not exactly maximal, or
�13 � 0, then �� ! �� symmetry for left-handed neutri-

nos is broken but m3 is still zero since the second and third
columns of mD given in Eq. (6) are identical [6]. However,
present experiments indicate that the breaking has to be

small. Thus defining h� ¼ h22�h33
2 , where j hþh� j � 1, we
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have, neglecting j hþh� j2,ffiffiffi
2

p ða12 � a13Þ ¼ ðh11v2Þð2hþv1Þ
�
2
h�
hþ

	
B

ða22 � a23Þ ¼ 1

2
ð4h2þv2

1Þ
�
4
h�
hþ

	
C

a23 ¼ 1

2
ð4h2þv2

1ÞC:

(28)

To quantify the breaking and in order not to introduce too
many parameters, we assume the maximal atmospheric

angle, but �13 � 0. The M� as given in Eq. (24) can be
diagonalized with the matrix [6]

U ¼
c s s2

� s�s2ffiffi
2

p cþs2ffiffi
2

p � 1ffiffi
2

p

� sþs2ffiffi
2

p c�s2ffiffi
2

p 1ffiffi
2

p

0
B@

1
CA
 diagðei�1 ; ei�2 ; ei�3Þ;

(29)

where c ¼ cos�12, s ¼ sin�12, �12 is solar mixing angle
and s2 ¼ sin�13, �13 is the reactor angle. Finally, then the
elements of M� are

a11 ¼ e�ið�1þ�2Þm
�
cos

�

2

�
1� �m

m
cos2�12

�
� i sin

�

2

�
cos2�12 � �m

m

��
ffiffiffi
2

p
a12ð13Þ ¼ e�ið�1þ�2Þm

�
sin2�12

�
�m

m
cos

�

2
þ i sin

�

2

	
� s2

��
1� cos2�12

�m

m

�
cos

�

2
þ i

�
�m

m
� cos2�12

�
sin

�

2

��

2a22ð33Þ ¼ e�ið�1þ�2Þm
�
cos

�

2

�
1þ �m

m
cos2�12

�
þ i sin

�

2

�
�m

m
þ cos2�12

�
� 2s2 sin2�12

�
�m

m
cos

�

2
þ i sin

�

2

��

a23 ¼ e�ið�1þ�2Þm
�
cos

�

2

�
1þ �m

m
cos2�12

�
þ i sin

�

2

�
�m

m
þ cos2�12

��

� ¼ 2ð�1 � �2Þ
m ¼ m2 þm1

2
; �m ¼ m2 �m1

2
:

(30)

Some combinations of the above parameters are needed to calculate the asymmetry parameter in leptogenesis, which are
now summarized. Calculation of =½2a12a13a�112a�23� from Eqs. (25) and (30) and equating them gives

c02s02 sin½2ð�1 � �0
2Þ�

M2
2 �M2

1

M3
1M

3
2

¼ � 1

jh11v2j4j2h22v1j2j2h32v2j2
m1m2



�
c2s2ðm2

2 �m2
1Þ þ

1

2
s22 cos2�12

m2
1 þm2

2

�8m1m2c
2s2sin2 �

2 � 2c2s2ðm1 �m2Þ2
 !	

sin�:

(31)

Further calculating j2a11a23 � 2a12a13j from the same equations and equating them gives

m1m2½1þOðs22Þ� ¼
1

M1M2

½jh11v2j2j2h22v1jjh32v2j�: (32)

Another useful relation is obtained by calculating j2a12a13j from Eqs. (25) and (30) and equating them:

jc2s2ððm2
2 þm2

1Þ cos�� 2m1m2Þ þ i sin�ðc2s2ðm2
2 �m2

1Þ þ s22 cos2�12ðm2
2 þm2

1ÞÞj
¼ c02s02

m1m2

M1M2

½ðM2 �M1Þ2 þ 4M1M2sin
2ð�1 � �0

2Þ�; (33)

where terms of order s22 compared to 1 and ðc2s2Þ=ð1� 2c2s2Þ and of order s22ðm2
2 �m2

1Þ compared to (m2
2 þm2

1) have been

neglected and Eq. (32) has been used. This gives, on neglecting terms of order s42ð�mm Þ2, s82, and s62ð�mm Þ,
�
c2s2

�
ðm2 �m1Þ2 þ 4m1m2sin

2 �

2

	
þ cos2�12

c2s2
m2

2 þm2
1

2m1m2

s22½2c2s2ðm2
2 �m2

1Þ þ s22 cos2�12ðm2
2 þm2

1Þ�
�

¼ c02s02
m1m2

M1M2

½ðM2 �M1Þ2 þ 4M1M2sin
2ð�1 � �0

2Þ�: (34)

In the present case, when c02s02 ¼ 1
4 , the relations (31) [on using Eqs. (32) and (34)] become [�� ¼ 2ð�1 � �0

2Þ]
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sin�� ¼ �sin22�12
�m=m

�M=M
sin�

��
1þ 1

sin22�12

�
1� sin22�12sin

2 �

2

��
cos2�12r

0
	

(35)

sin 22�12

�
sin2

�

2
þ ð�m=mÞ2

�
1þ 8

cos2�12
sin42�12

r0ðsin22�12 þ r0 cos2�12Þ
�	

¼
�
ð�M=MÞ2 þ sin2

��

2

	
; (36)

where

r0 ¼ s22=ð�m=mÞ ¼ sin2�13=ð�m=mÞ:

Now the Yukawa couplings jh11v2j, j2hþv1j, and j h�hþ j can
be evaluated. From Eqs. (25) and (28)

jh11v2j2 ¼ ja11j
jCj ; j2hþv1j2 ¼ 2

ja23j
jCj

j2hþjj2h�jv2
1 ¼

ja22 � a33j
2jCj :

(37)

From Eqs. (30)

ja11j ¼ m

�
1� sin22�12sin

2

�
�

2

�
� 2 cos2�12

�m

m

þO

��
�m

m

�
2
�	

1=2

ja23j ¼ m

2

�
1� sin22�12sin

2

�
�

2

�
þ 2 cos2�12

�m

m

þO

��
�m

m

�
2
�	

1=2

ja22 � a33j ¼ 2ms2 sin2�12

�
sin2

�
�

2

�
þ
�
�m

m

�
2
	
1=2

(38)

while from Eq. (26)

jCj ¼ 1

M

�
cos2

��

2
þ
�
�M

M

�
2
sin2

��

2

	
1=2

’ 1

M

�
1� sin2

��

2

	
(39)

neglecting ð�MM Þ2 compared to 1, which on using Eq. (36)
becomes

jCj ’ 1

M

�
1� sin22�12sin

2

�
�

2

�
þO

��
�M

M

�
2
�

þO

��
�m

m

�
2
�
þOðs22Þ

	
1=2

: (40)

Thus,

jh11v2j2 ¼ Mm

�
1� 2 cos2�12

�m

m
� sin22�12sin

2 �

2

	
1=2



�
1� sin22�12sin

2 �

2

	�1=2

j2hþv1j2 ¼ Mm

�
1þ 2 cos2�12

�m

m
� sin22�12sin

2 �

2

	
1=2



�
1� sin22�12sin

2 �

2

	�1=2

j2h�v1j2 ¼ Mms22sin
22�12

�
sin2

�

2
þ
�
�m

m

�
2
	



�
1� sin22�12sin

2 �

2

��1
�
1þO

�
�m

m

�	
:

(41)

III. LEPTOGENESIS

As is well known [3,4,10,11], the leptogenesis asymme-
try is given by [11]


i ¼ 1

8


X
k�i

1

v2
i Rii

Im

�
ðRikÞ2f

�
M2

k

M2
i

�	
; (42)

whereMi denotes the heavy Majorana neutrino masses, Rij

are defined by

R ¼ m̂y
Dm̂D ¼ VTmy

DmDV
�: (43)

The loop function fðxÞ containing vertex and self-energy
corrections is

fðxÞ ¼ ffiffiffi
x

p �
2� x

1� x
� ð1þ xÞ ln1þ x

x

�
:

Now ðjv1j2 þ jv2j2Þ ¼ ð174 GeVÞ2 ¼ jvj2. One may take
jv1j2 ¼ jv2j2 ¼ 1

2v
2, so that


1 ¼ 1

8

f

�
M2

2

M2
1

�
1

v2
1R11

Im½ðR12Þ2�: (44)

Using the constraint [2,3]

R11 < 4:3
 10�7v2
1; (45)

obtained from out of equilibrium decay ofM1 ’ 1010 GeV,
one finally obtains the lower limit on 
1:


1 ¼ 1

8

fðxÞ 2:3
 106

v4
1

f=½ðR12Þ2�g; (46)

where x ¼ M2
2

M2
1

, and for M2 ’ M1,
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fðxÞ ¼ � M

4�M
: (47)

Now =½ðR12Þ2� as calculated from Eq. (43) is given by [1]

=½ðR12Þ2� ¼ c02s02
�
jh11v2j2 � 1

2
j2h12v1j2 þ j2h32v1j2

�
2
sin�� ¼ 1

4
fjh11v2j2 � j2hþv1j2 � j2h�v1j2g2 sin��

¼ M2m2cos22�12

�
�m

m

�
2
�
1þ 1

2

sin2�13
ð�m=mÞ

sin22�12
cos2�12

�
sin2

�

2
þ
�
�m

m

�
2
��

2 1

½1� sin22�12sin
2�=2�2 sin��: (48)

Using Eqs. (35) and (46)–(48) along with

cos2�12 ¼ 1
3; sin22�12 ¼ 8

9 (49)


 ’ ð6
 102ÞM
2

v4
1

�m2
solar sin�

��m
m
�M
M

�
2 1

½1� 8
9 sin

2 �
2�2

�
1þ 4

3
r0
�
sin2

�

2
þ
�
�m

m

�
2
��

2
�
1þ 3

8

�
1� 8

9
sin2

�

2

�
r0
	

(50)

’ 2
 10�8

�
M

1010 GeV

�
2 �m2

solar

7:6
 10�5 eV2

�
174 GeV

v

�
4
sin�

��m
m
�M
M

�
2


 1

½1� 8
9 sin

2 �
2�2

�
1þ 4

3
r0
�
sin2

�

2
þ
�
�m

m

�
2
��

2
�
1þ 3

8

�
1� 8

9
sin2

�

2

�
r0
	

(51)

with r0 ¼ sin2�13=ð�m=mÞ, v2
1 ¼ 1

2v
2 ¼ 1

2 ð174 GeVÞ2,
4m�m ¼ �m2

solar, and �m2
solar ¼ 7:6
 10�5 eV2. Using

the neutrino oscillation data [12]

m ’ ð�m2
atmÞ1=2 ¼ 4:9
 10�2 eV (52)

�m

m
¼ 1

4

�m2
solar

�m2
atm

¼ 0:8
 10�2 (53)

sin 2�13 � 4:6
 10�2ð0:016� 0:010Þ (54)

giving

r0 � 5:75ð2� 1:25Þ:
It can be seen from Eq. (51) that the contribution from
sin2�13 may dominate. The Majorana phase � which is
the same as would appear in neutrinoless double �
decay [cf. first of Eq. (34)] can be fixed from Eqs. (35) and
(36). This gives

x½ð1� xÞ þ C� ¼ r2½ð1� xÞðx� 1
9Þð1þ 3

8r
0xÞ2�;

where

x ¼ 1� 8

9
sin2

�

2

C ¼
�
�M

M

�
2
�
8

9
r2A� 1

	

A ¼ 1þ 3r0B; 1 � A � 55

B ¼ 1þ 3

8
r0; 1 � B � 3

for r0 � 5:75. It is clear that 1
9 � x < 1. C is negligibly

small except for x ! 1. In that case we have:
Solution I

sin2
�

2
¼ 9

8

�
�M

M

�
2 8

9 r
2A� 1

8
9 r

2B2 � 1

sin� ¼ 3ffiffiffi
2

p
� 8

9 r
2A� 1

8
9 r

2B2 � 1

�
1=2 �M

M
:

(55)

In this case, leptogenesis asymmetry 
 given in Eq. (50)
gives


 ’ 3
 10�10r

� 8
9 r

2A� 1
8
9 r

2B2 � 1

�
1=2

B: (56)

Thus, 
 is of the right order of magnitude (10�6–10�5) for

1 � ffiffiffiffi
A

p � 7:4 provided that r ’ 4
 103; i.e., �M
M ’ 2


10�6.
Solution II

There is another solution, for which for r0 ¼ 0, sin2 �
2 ¼

1� 1
8

1
r2�1

, i.e. near maximal value as ðr2 � 1Þ> 1. For

r0 � 0, such a solution is modified to

sin2
�

2
¼ 1� 1

8

1

D2r2 � 1

sin�¼ 1ffiffiffi
2

p 1

rD

�
1� 1

r2D2

��1=2
�
1� 1

8D2r2ð1� 1
D2r2

Þ
	
1=2

;

(57)

where D ¼ 1þ r0=24. In this case
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 ’ 2
 10�8 81ffiffiffi
2

p rfðrÞ
�
1þ 4

3

�
1� 1

8

1

D2r2 � 1

�
r0
	
2



�
1þ 1

24D

1

D2r2 � 1
r0
	
;

where

fðrÞ ¼
�
1� 1

8ðD2r2 � 1Þ
�
1=2
�
1� 1

D2r2

�
3=2

: (58)

The asymmetry 
 and sin2�=2 are plotted as a function of r
for r0 ¼ 0, 2, and 5.75 in Figs. 1(a)–1(c) and 2,
respectively.

One can see from the plot that (i) sin2�=2 is near
maximal ( � 0:90) for any r � 1:5 and r0. (ii) For any
given value of r, sin2�13 gives the dominant contribution
to 
, e.g. for r ¼ 2, 
 is 1:5
 10�6 (r0 ¼ 0), 2:0
 10�5

(r0 ¼ 2), and 1:3
 10�4 (r0 ¼ 5:75). (iii) An accurate
measurement of r0 will have important implications for r

and in turn for �MM . The value r ’ 2 implies �M
M ’ 4
 10�3

which gives the degeneracy required for heavy right-
handed neutrinos. It is important to note that CP violation

responsible for the generation of the baryogenesis parame-
ter through leptogenesis comes entirely from Majorana
phase � which is now predicted to be negligible for the

first solution and for the second solution sin2 �
2 � 0:95.

This can in principle be tested in neutrinoless double �
decay, where the effective electron neutrinos mass is given
by

mee ¼ jaj
’ m

�
1� sin22�1sin

2 �

2

	
1=2

’ 4:3
 10�2 eV; for solution I (59)

’ 1:7
 10�2 eV; for solution II: (60)

IV. CONCLUSION

By considering a simple generic seesaw model gauge
model with �� � symmetry for the heavy right-handed
neutrinos, degenerate leptogenesis has been studied, where
the exact degeneracy is due to �L discrete symmetry for the
heavy right-handed neutrinos. When this degeneracy is
slightly broken, an adequate lepton asymmetry (
 ’
10�6–10�5) can be obtained. The level of degeneracy

required in one case is �M
M ’ 10�6, much smaller than �m

m ’
8
 10�3 obtained from neutrino oscillations and in the

second case is �M
M ’ 4
 10�3, which is of the same order

as �m
m ’ 8
 10�3. This in turn predicts the Majorana phase

responsible for the lepton asymmetry. Since the same
phase appears in neutrinoless double � decay, it can in
principle be tested. Further sin2�13 has important implica-
tions for the leptogenesis asymmetry parameter 
 and

degree of degeneracy �M
M needed. Thus, an accurate mea-

surement of sin2�13 will be of great interest.
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FIG. 2 (color online). sin2�=2 as a function of r for different
values of r0. The solid line corresponds to r0 ¼ 0, the dashed line
is for r0 ¼ 2, and the double-dash-dotted line is for r0 ¼ 5:75.
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FIG. 1 (color online). The asymmetry 

 106 as a function of r for different values of r0. The labels (a), (b), and (c) correspond to
r0 ¼ 0, 2, and 5.75, respectively.
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Note added in proof.—After completion of this work,
Werner Rodejohann brought Ref. [13] to my attention.
There the various consequences of Le � L� � L� discrete

symmetry for the light neutrino sector, including degener-
ate leptogenesis, have been discussed in a different context.
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