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The addition of an A4 family symmetry and extended Higgs sector to the standard model can generate

the tribimaximal mixing pattern for leptons, assuming the correct vacuum expectation value alignment of

the Higgs scalars. Deviating this alignment affects the predictions for the neutrino oscillation and neutrino

mass observables. An attempt is made to classify the plethora of models in the literature, with respect to

the chosen A4 particle assignments. Of these models, two particularly popular examples have been

analyzed for deviations from tribimaximal mixing by perturbing the vacuum expectation value align-

ments. The effect of perturbations on the mixing angle observables is studied. However, it is only

investigation of the mass-related observables (the effective mass for neutrinoless double beta decay and

the sum of masses from cosmology) that can lead to the exclusion of particular models by constraints from

future data, which indicates the importance of neutrino mass in disentangling models. The models have

also been tested for fine-tuning of the parameters. Furthermore, a well-known seesaw model is generalized

to include additional scalars, which transform as representations of A4 not included in the original model.

DOI: 10.1103/PhysRevD.81.093002 PACS numbers: 14.60.Pq

I. INTRODUCTION

The experimental evidence of neutrino oscillations im-
plies massive neutrinos, which contradicts the predictions
of the standard model (SM). There are currently many
experiments focused on precise measurements of the neu-
trino mass and mixing parameters: neutrino physics can be
said to have entered the ‘‘precision era.’’

Global fits to the latest neutrino oscillation data [1–4]
show that the leptonic mixing, or Pontecorvo-Maki-
Nakagawa-Sakata, matrix UPMNS is very close to the tribi-
maximal mixing (TBM) matrix

UTBM �
2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

0
BB@

1
CCA; (1)

first proposed in Ref. [5]. Since the allowed deviations
from TBM can only be small (not more than 10–15%),
this mixing pattern represents at least a zeroth order ap-
proximation to lepton mixing [6]. It is completely different
from the mixing in the quark sector, and has motivated
extensive research into models of family symmetries [7].

Some of the discrete family symmetries used in the
literature are1: A4, S3, S4, T

0, �ð27Þ and �ð81Þ; there are
also models that employ continuous symmetries such as
SUð3Þ or SOð3Þ. The A4 models have a very economical
structure in terms of group representations and field con-
tent. The most general mass matrix leading to TBM can be
shown to be invariant under one of the group generators [7]
(see the Appendix). Furthermore, the use of A4 can be

geometrically motivated: it is the symmetry group of the
regular tetrahedron, and the angle between two faces is
2�TBM, where sin2�TBM ¼ 1

3 . These characteristics have

led many authors to construct and/or study models
based on A4. Some models generate neutrino masses via
effective dimension-5 operators, some apply the type I
seesaw mechanism, whereas others use the type II, or the
type I þ II seesaw mechanisms. Table I is an attempt to
classify the vast number of models,2 according to the
chosen A4 assignment of the lepton doublets, lepton sin-
glets and, if appropriate, the seesaw particles.3 The major-
ity fall into the first four categories.
Very often the TBM scheme is obtained only approxi-

mately, or with the cost of fine-tuning and/or various
assumptions, such as vacuum expectation value (VEV)
alignment. These alignments are chosen, or the models
are explicitly constructed, in order to reach alignment,
resulting in a certain mixing pattern (in this case TBM).
However, corrections to the VEV alignment are expected,
be it from renormalization, higher order operators, or the
tree-level exchange of heavy fermions, for example. The
aim of this paper is to study the effects of VEV-
misalignment on the neutrino mass and lepton mixing
observables. There already exist some numerical analyses
[12,13,31,54,59] focused on specific A4 models. In addi-
tion, the effects of higher order operators have been studied
in A4 [59] and S4 [64,65] models, where the unperturbed
VEV alignments predict exact TBM. This work empha-
sizes that observables related to neutrino mass (that is, the

*james.barry@mpi-hd.mpg.de
†werner.rodejohann@mpi-hd.mpg.de
1See the review in Ref. [7] for a list of references.

2An earlier, much less complete classification can be found in
[61].

3There are also models that use the inverse and linear seesaw
mechanisms [62], as well as the inverse type III seesaw mecha-
nism [63], with the same particle assignments as type D models.
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effective mass for neutrinoless double beta decay (0���)
and the sum of neutrino masses for cosmology) provide the
best possibility to disentangle the models. Furthermore,
and in contrast to previous studies, a more general VEV-
misalignment is allowed for. The analysis in the present
paper is focused on models of types A and B that predict
TBM, as well as generalizations of these models to include
more Higgs singlets.

In this analysis,4 the chosen VEValignment is modified
by random complex deviations, perturbing the neutrino and
charged lepton mass matrices from their original structure
(M� and M‘) to the perturbed ones, M0

� and M0
‘. The

resulting neutrino mixing angles and mass-squared differ-
ences can be compared with current data (Table II). The
well-known standard parametrization of the PMNS mixing
matrix is

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13
s12s23 � c12c23s13e

i� �c12s23 � s12c23s13e
i� c23c13

0
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where cij � cos�ij, sij � sin�ij and �12, �13, �23 (0 �
�ij � �=2) are the three mixing angles. There are three
phases in Eq. (2): � is the CP violating Dirac phase, and �2

and �3 are Majorana phases, with 0 � �, �2, �3 � 2�. The

two Majorana phases, �2 and �3, do not affect the neutrino
oscillation probability, but have an influence on the ampli-
tude for 0���.
One can also perform a ‘‘fine-tuning test’’ for each

model, by examining the values that the mass matrix
parameters must take in order to give the correct mass-
squared differences, before perturbations are applied.
Since these parameters generally originate from the prod-

TABLE II. Best-fit values and allowed n� ranges for the global three flavor neutrino oscillation parameters, from Ref. [3].

Parameter �m2
21ð10�5 eV2Þ sin2�12 sin2�13 sin2�23 j�m2

31jð10�3 eV2Þ
Best-fit 7.67 0.312 0.016 0.466 2.39

1� range 7.48–7.83 0.294–0.331 0.006–0.026 0.408–0.539 2.31–2.50

2� range 7.31–8.01 0.278–0.352 <0:036 0.366–0.602 2.19–2.66

3� range 7.14–8.19 0.263–0.375 <0:046 0.331–0.644 2.06–2.81

TABLE I. Particle assignments of A4 models in the literature. Lepton doublets, charged lepton
singlets and right-handed neutrinos are denoted by Li, ‘

c
i and �c

i , respectively. � denotes the
Higgs triplets in the type II seesaw mechanism. Models that also study the quark sector have the
superscript #, those that embed A4 into a grand unified theory group have the superscript �.
Type Li ‘ci �c

i � References

A1 3 1, 10, 100 � � � � � � [8–17][18]#

A2 1, 10, 100, 3 [19,20]

B1 3 1, 10, 100 3 � � � [11,21–24]# [25,26]� [27–38]

B2 1, 3 [39]#

C1 3 3 � � � � � � [9]

C2 1 [40,41] [42]#

C3 1, 3 [43]

C4 1, 10, 100, 3 [44]

D1 3 3 3 � � � [45,46]� [47,48]

D2 1 [49,50]�
D3 10 [51]�
D4 10, 3 [52]�
E 3 3 1, 10, 100 � � � [53,54]

F 1, 10, 100 3 3 1 or 10 [55]

G 3 1, 10, 100 1, 10, 100 � � � [56]

H 3 1, 1, 1 � � � � � � [57]

I 3 1, 1, 1 1, 1, 1 � � � [58]�
J 3 1, 1, 1 3 � � � [59,60]

4Other approaches to deviations from TBM can be found in
Refs. [66–73].
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uct of some coupling constant with the VEV of a Higgs
scalar, any close relationship between the parameters is
highly unlikely, and could be evidence of fine-tuning in a
particular model [13].

The paper is built up as follows: in Sec. II a type A
model is introduced, it is examined for fine-tuning, the
addition of Higgs singlets is discussed, and the model is
analyzed for deviations from TBM; in Sec. III the same
procedure is followed for a type B seesaw model.
Section IV presents the summary and conclusions, and
for the sake of completeness there is a discussion of the
A4 group in the Appendix.

II. THE ORIGINAL MA/ALTARELLI-FERUGLIO
TYPE A MODEL

In type A models, lepton doublets transform as 3,
charged lepton singlets as 1, 10, 100, and right-handed
neutrinos are absent. In this case the neutrino mass usually
comes from dimension-5 operators. Although Table I con-
tains a long list of references for type A models, many of
these works are phenomenological analyses of the same
few models. The original model by Ma [19] is further
developed in Ref. [8], where also an extra-dimensional
solution to the vacuum alignment problem is provided.5

The models in Refs. [8,19] employ the so-called Ma-
Rajasekaran (M-R) basis for A4, in which neither M� nor
M‘ is diagonal, but the product of the mixing matrices in
each sector leads to TBM. In order to connect A4 models
with the modular symmetry and thus the larger framework
of string theory, the same model can be formulated [11] in
a different basis for A4 [the Altarelli-Feruglio (A-F) basis].
In this basis the charged leptons immediately come out as
diagonal, which means that the neutrino mass matrix is in
the flavor basis, and is diagonalized by the TBM matrix.
The two bases are simply related by a unitary transforma-
tion, and the multiplication rules differ (see the Appendix
for details).

A. The original model in the A-F basis

Along with the usual type A particle assignments for
leptons (Table I), this model has two SM Higgs doublets,
which are invariant under A4, as well as two A4 triplets ’
and ’0, and an A4 singlet �, all three of which are gauge
singlets (Table III). These particle assignments, along with
the A4 multiplication rules, lead to the Lagrangian

LY ¼ yee
cð’LÞ þ y		

cð’LÞ0 þ y


cð’LÞ00

þ xa�ðLLÞ þ xdð’0LLÞ
½þxc�

0ðLLÞ00 þ xb�
00ðLLÞ0� þ H:c:þ . . . ; (3)

where ð3 3Þ transforms as 1, ð3 3Þ0 transforms as 10, and

ð3 3Þ00 transforms as 100, and y�, xa and xd are dimension-
less coupling constants. The notation in Eq. (3) follows the
simplified description from Ref. [11], where the Higgs
doublet fields hu and hd, and the cutoff scale � are set to
1. Thus the term yee

cð’LÞ is in fact yee
cð’LÞhd=�,

xa�ðLLÞ is short for xa�ðLhuLhuÞ=�2 and so on. The
dots stand for higher dimensional operators—in this model
these are suppressed by additional powers of the cutoff �,
as long as the VEVs are sufficiently smaller than �. The
two terms in parenthesis on the third line of Eq. (3) come
from additional Higgs singlets; these were not part of the
original model, but one can show [13] that TBM can still be
achieved with either two or three Higgs singlets in this
model. This will be discussed in Secs. II B and II C.
Upon symmetry breaking, the VEVs of the Higgs singlet

and triplets take the alignments

h�i ¼ ua; h’i ¼ ðv; 0; 0Þ and h’0i ¼ ðv0; v0; v0Þ;
(4)

which lead to the charged lepton mass matrix

M‘ ¼ vd

v

�

ye 0 0
0 y	 0
0 0 y


0
@

1
A; (5)

where vd is the VEV of the Higgs doublet hd. Thus the
charged fermion masses are

me ¼ yevd

v

�
; m	 ¼ y	vd

v

�
; m
 ¼ y
vd

v

�
:

(6)

When only one Higgs singlet (�� 1) is present, the
neutrino mass matrix is

Mð1Þ
� ¼ m0

aþ 2d
3 � d

3 � d
3� 2d

3 a� d
3� � 2d

3

0
B@

1
CA; (7)

with m0 ¼ v2
u

� , a ¼ 2xa
ua
� and d ¼ 2xd

v0
� , where vu is the

TABLE III. Particle assignments of the A-F A4 model. There is
also an additional Z3 symmetry, which decouples the charged
lepton and neutrino sectors, and a Uð1Þ symmetry to generate the
hierarchy of charged lepton masses.

Lepton SUð2ÞL A4

L 2 3
ec 1 1
	c 1 100

c 1 10
Scalar

hu 2 1
hd 2 1
’ 1 3
’0 1 3
� 1 1

5Note that the model in Ref. [19] contains 6 Higgs triplets,
whereas the model in Ref. [8] uses dimension-5 operators.
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VEV of hu. The neutrino mass matrix is diagonalized by
the transformation

UTM�U ¼ v2
u

�
diagðaþ d; a;�aþ dÞ; (8)

with U ¼ UTBM, as in Eq. (1). Thus TBM is achieved, and
the neutrino masses are m1 ¼ m0ðaþ dÞ, m2 ¼ m0a and
m3 ¼ m0ð�aþ dÞ, which results in the sum-rule 2m2 þ
m3 ¼ m1. Here the masses are understood to be complex,
with theMajorana phases still attached. Note that with only
one Higgs singlet it is impossible to get the inverted mass
hierarchy in this model, as shown in Ref. [13].

It is interesting to note that in the case of one Higgs
singlet, with the mass matrix in Eq. (7), some fine-tuning is
required between the parameters a and d for the model to
give the correct neutrino mass-squared differences [13].
This seems rather contrived, since a and d come from the
products of different Yukawa couplings with the VEVs of
the Higgs singlet � and triplet ’0, respectively. As can be
seen in Fig. 1, if both a and d are real (as in Ref. [13]), there
is a linear relationship between the two parameters. If d is
complex (as in this analysis), there is only a slightly greater
allowed region in the a� d parameter space. Note that
w.l.o.g., a can be chosen to be real. There are no perturba-
tions applied in this case, and the parameter m0 is set to
0.025 eV, the typical scale for the mass matrix of normally
ordered neutrinos. In later cases, where the inverted mass
ordering is studied, m0 is fixed to 0.05 eV. The magnitudes
of the parameters a and d (and later also c) are randomly
varied in the range ja; c; dj � 4, with their complex phases
varying from zero to 2�.

B. Two Higgs singlets

Recall that only one Higgs singlet is introduced in the
original model (Table III). However, in the framework of

A4 symmetry it is natural to take advantage of all repre-
sentations of the group, and in this model it is also possible
to achieve TBM with both two and/or three Higgs singlets
[13]. In addition to the Higgs singlet �, the singlets �0 and
�00 can be introduced [Eq. (4)], transforming as 10 and 100
under A4, respectively. The new singlets have the VEVs

h�0i ¼ uc and h�00i ¼ ub: (9)

With only two Higgs singlets, there are three possible
combinations (�, �0; �, �00 and �0, �00), but one can show
[13] that only the singlets �0 and �00 can give rise to TBM.
In this case, the resulting mass matrix is

Mð2Þ
� ¼ m0

2d
3 b� d

3 c� d
3� cþ 2d

3 � d
3� � bþ 2d
3

0
B@

1
CA; (10)

where b ¼ 2xb
ub
� and c ¼ 2xc

uc
� . An additional condition

for TBM is that b ¼ c, which is a consequence of the
necessary 	� 
 symmetry,6 and with this constraint the
eigenvalues turn out to be m1 ¼ m0ð�cþ dÞ, m2 ¼ 2m0c
and m3 ¼ m0ðcþ dÞ, with the new sum-rule m3 �m1 ¼
m2. In this case, w.l.o.g., c can be chosen to be real. The
scatter plots in Fig. 2 show that the c� d parameter space
is quite tightly constrained (note that with additional Higgs
singlets, the inverted mass hierarchy is now possible).

C. Three Higgs singlets

If all three singlets (�, �0 and �00) are present, the
resulting mass matrix is

Mð3Þ
� ¼ m0

aþ 2d
3 b� d

3 c� d
3� cþ 2d

3 a� d
3� � bþ 2d
3

0
B@

1
CA; (11)

and the requirement for exact TBM is that a � b ¼ c,
which again reflects the necessary 	� 
 symmetry.7

Here one can choose real a and complex c and d, w.l.o.g.
This case is equivalent to the original Ma model in
Ref. [19], and here there is more freedom in choosing
parameters, as can be seen from the scatter plots of a�
c� d parameter space in Fig. 3. There is basically no more
tuning necessary in order to generate the correct mass-
squared differences. The eigenvalues of the mass matrix
in Eq. (11), with a � b ¼ c, are m1 ¼ m0ða� cþ dÞ,
m2 ¼ m0ðaþ 2cÞ and m3 ¼ m0ð�aþ cþ dÞ.-4 -3 -2 -1 0 1 2 3 4

a

1.20

1.25

1.30

1.35

1.40

1.45

|d
|

d complex
d real

FIG. 1 (color online). Scatter plot showing allowed regions
(for the 3� ranges of the oscillation parameters) in the a� d
parameter space for the original A-F model, with one Higgs
singlet, normal hierarchy and TBM.

6Although	� 
 symmetry is required to get TBM, this forces
one to impose the ad hoc relation b ¼ c.

7It can be shown [13] that the conditions a ¼ b ¼ c, a ¼ b �
c and a ¼ c � b do not simultaneously give TBM and the
correct mass spectrum.
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D. Deviations from TBM in the A-F model

The three mass matrices in Eqs. (7), (10), and (11) are
phenomenologically interesting, and will be numerically
analyzed below. In order to study deviations from TBM,
the VEValignments of the Higgs triplets are perturbed, so
that

h’i ¼ ðv; v�ch1 ; v�ch2 Þ and

h’0i ¼ ðv0; v0ð1þ �1Þ; v0ð1þ �2ÞÞ:
(12)

Furthermore, in the cases of two and three Higgs singlets,

b ¼ cð1þ �3Þ (13)

is defined in order to study the effect of changing the
relative alignment of the Higgs singlets. Recall that the
condition b ¼ c is necessary for TBM in both the two and
three singlet cases.
With the above VEV-misalignment, the charged lepton

mass matrix becomes

M0
‘ ¼ vd

v

�

ye ye�
ch
2 ye�

ch
1

y	�
ch
1 y	 y	�

ch
2

y
�
ch
2 y
�

ch
1 y


0
B@

1
CA: (14)

In the unperturbed case, the mass of each charged lepton l�
is m� ¼ y�vd

v
� [Eq. (6)]. In this analysis, the mass scale

vd
v
� is fixed to the tau mass, and each of the coefficients ye,

y	 and y
 are varied randomly by 10% around their un-

perturbed values. Note that the charged lepton sector is
unaffected by additional Higgs singlets, due to the pres-
ence of a Z3 symmetry (Table III).
The deviated neutrino mass matrix with one Higgs

singlet is

Mð1Þ0
� ¼ m0

aþ 2d
3 � d

3 ð1þ �2Þ � d
3 ð1þ �1Þ

� 2d
3 ð1þ �1Þ a� d

3� � 2d
3 ð1þ �2Þ

0
B@

1
CA;

(15)

and with two Higgs singlets (�0 and �00) is

-1.5 -1 -0.5 0 0.5 1 1.5
c

1.4

1.6

1.8

2

2.2

2.4

|d
|

d complex
d real

(a) Normal hierarchy

-0.5 0 0.5
c

0.5

0.6

0.7

0.8

0.9

1

|d
|

d complex
d real

(b) Inverted hierarchy

FIG. 2 (color online). Scatter plots of the c� d parameter space for the A-F model with two Higgs singlets [Eq. (11)], for normal
and inverted hierarchy, with the condition b ¼ c. In order to emphasize the difference between the complex and real case, the entire
parameter space is not shown: in the complex case jdj ranges up to 4 for the normal hierarchy and 2.5 for the inverted hierarchy.

4
2

0
2

4
a

1
2 3 4d

0

1

2

3

4

c

(a) Normal hierarchy

2

0

2
a

1
2

d

0

1

2

c

(b) Inverted hierarchy

FIG. 3 (color online). Scatter plots of the a� c� d parameter
spaces for the A-F model with three Higgs singlets [Eq. (11)], for
normal and inverted hierarchy, with the condition b ¼ c.
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Mð2Þ0
� ¼ m0

2d
3 cð1þ �3Þ � d

3 ð1þ �2Þ c� d
3 ð1þ �1Þ

� cþ 2d
3 ð1þ �1Þ � d

3� � cð1þ �3Þ þ 2d
3 ð1þ �2Þ

0
B@

1
CA: (16)

The most general case (three Higgs singlets) is

Mð3Þ0
� ¼ m0

aþ 2d
3 cð1þ �3Þ � d

3 ð1þ �2Þ c� d
3 ð1þ �1Þ

� cþ 2d
3 ð1þ �1Þ a� d

3� � cð1þ �3Þ þ 2d
3 ð1þ �2Þ

0
B@

1
CA; (17)

where the condition a � c still holds. One proceeds by
diagonalizing the matrices in Eqs. (15)–(17). The pertur-
bation parameters are in general complex, and the range
j�ðchÞi j � 0:3 is used throughout this work, with the phases
varied freely. W.l.o.g., one can choose the parameters �1
and �ch1 to be real. The other parameters a, b and d are
varied as before, and m0 is also fixed as described above.

It is interesting to compare the deviations from TBM for
different numbers of Higgs singlets, with the same pertur-
bations applied to M‘ in each case [Eq. (14)]. Figure 4
shows the results for the normal mass hierarchy (it is
impossible to get the inverted hierarchy with one Higgs
singlet). There are small differences, and in general one
can conclude that with more singlets, greater deviation
from TBM is possible. However, it is evident that if VEV
alignment deviations are applied, the A4 models deviate
from TBM in a rather random fashion, and it is difficult to
draw any firm conclusions from the plots of mixing angle
observables.

In contrast, the mass-dependent observables
P

mi (the
sum of absolute neutrino masses) and hmeei (the effective
mass for 0���) allow for comparison between the three
cases presented above (Fig. 5), and can in principle be used
to rule out some cases. These two observables are explic-

itly given as

X
mi ¼ m1 þm2 þm3 and

hmeei ¼ jU2
e1m1 þU2

e2m2 þU2
e3m3j:

(18)

It is useful to plot these two quantities against each other, in
both the unperturbed and perturbed case. The solid black
lines in Fig. 5 represent the allowed ranges for normal and
inverted ordering, using the best-fit values of the oscillation
parameters from Table II, and varying the Majorana
phases. The dotted and dashed lines include the 3� varia-
tion in the oscillation data, for normal and inverted order-
ing, respectively. The scatter plots display the results of the
analysis discussed above. The deviations from TBM lead
to more overlap between the normal and inverted hierar-
chies, with two and three Higgs singlets. Increasing the
number of Higgs singlets effectively increases the allowed
range for both hmeei and

P
mi. To give one example of the

consequences of Fig. 5, note from the middle left panel that
if hmeei is experimentally determined to be less than about
0.02 eV, the case with two singlets and normal mass
hierarchy can be ruled out.

10
-6

10
-5 10

-4
10

-3
10

-2

sin
2 θ13

0.3

0.4

0.5

0.6

si
n2  θ

23

Three singlets
Two singlets
One singlet

(a)

0.00 0.05 0.10 0.15 0.20

|U
e3

|

-0.04

-0.02

0.00

0.02

0.04

J C
P

Three singlets
Two singlets
One singlet

1σ

(b)

FIG. 4 (color online). Scatter plots of (a) sin2�23 against sin
2�13 and (b) JCP against jUe3j for the A-F model, normal hierarchy, with

one (red circles), two (blue plus signs) and three (green crosses) Higgs singlets. The solid and dashed lines denote the 1� and 3�
allowed regions, respectively.
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In general, i.e., without any model constraining the mass
matrices, it is possible for hmeei to vanish for the normal
mass hierarchy. In the case of one Higgs singlet, for
example, vanishing hmeei means that the (1,1) entry of
the mass matrix in Eq. (7) (or Eq. (15) in the perturbed
case) is zero, i.e., a ¼ 2d=3. Using the mass eigenvalues
from Eq. (8), it follows that the ratio of mass-squared
differences is

r ¼ �m2
21

�m2
31

¼ 2aþ d

4a
¼ 1

8
; (19)

which is inconsistent with the data (r should be close to
1=30). Perturbing the VEValignment [Eq. (15)] and setting

the (1,1) entry of Mð1Þ0
� to zero gives r ’ 1

8 ð1þ �2 � 3�1Þ,
which can become sufficiently small. Indeed, in the plot
hmeei can take values well below 10�2 eV. Similar evalu-

ations can be made for the other cases, in this and the next
section.

III. THE ALTARELLI-FERUGLIO TYPE B SEESAW
MODEL

According to the classification introduced in Table I,
type B models have lepton doublets transforming as 3,
charged lepton singlets as 1, 10, 100, and right-handed
neutrinos transforming as 3. Neutrino mass can be gener-
ated by the type I seesaw mechanism or, when weak scalar
triplets are introduced, with the type I þ II seesaw
mechanism.

A. The original A-F seesaw model

The model in Sec. II A can be extended by introducing
right-handed neutrino fields �c, transforming as 3 under A4

[11]. The new Lagrangian contains all the terms in Eq. (3),
along with the additional terms

LYðseesawÞ ¼ yð�cLÞhu þ xA�ð�c�cÞ þ xDð’0�c�cÞ
½þxC�

0ð�c�cÞ00 þ xB�
00ð�c�cÞ0�

þ H:c:þ . . . ; (20)

where y is a coupling constant.8 Most details of the model,
including the VEV alignment in Eq. (4), remain the same,
with the charged lepton mass matrix given by Eq. (5). The
Dirac mass matrixMD

� is yvu times the identity matrix, and
the Majorana mass matrix is

MR ¼
aþ 2d

3 � d
3 � d

3� 2d
3 a� d

3� � 2d
3

0
B@

1
CA�; (21)

where a ¼ 2xA
ua
� and d ¼ 2xD

v0
� . With the type I seesaw

mechanism (M� ¼ ðMD
� ÞTM�1

R MD
� ), the light neutrino

mass matrix is

Mð1Þ
� ¼ m0

3aðaþ dÞ
3aþ d d d

� 2adþd2

d�a
d2�ad�3a2

d�a

� � 2adþd2

d�a

0
B@

1
CA; (22)

with m0 ¼ y2 v2
u

� . As in Eq. (8), the matrix in Eq. (22) is

diagonalized by the TBM matrix, with eigenvalues m1 ¼
m0=ðaþ dÞ, m2 ¼ m0=a and m3 ¼ m0=ð�aþ dÞ, leading
to the sum-rule 2=m2 þ 1=m3 ¼ 1=m1. Note that the in-
verted hierarchy is possible in the seesaw version of this
model, even with only one Higgs singlet.
The fine-tuning test again shows that in order for the

correct values of the mass-squared differences to be repro-
duced, the parameters a and d must take rather specific
values, as shown in Fig. 6. There is a similar amount of
tuning as in the A-F model without seesaw (see Fig. 1).
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FIG. 5 (color online). Scatter plots of hmeei against
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8In Eq. (20) the compact notation of Eq. (3) does not apply.
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B. Two Higgs singlets in the seesaw model

In the original A-F model, the addition of extra Higgs
singlets still allows for TBM, with certain conditions
(Secs. II B and II C). This idea can also be applied to the
seesaw version of the model. Again, it is possible to

introduce singlets �0 and �00, transforming as 10 and 100,
respectively. However, just like the nonseesaw case, the
singlet combinations �, �0 and �, �00 cannot give rise to
TBM. That is only achieved with the two singlets �0 and
�00, resulting in the light neutrino mass matrix

Mð2Þ
� ¼ m0

mð2Þ

�d2 � 2ðbþ cÞd� 3bc 3b2 þ dbþ ðc� dÞd 3c2 þ dcþ ðb� dÞd
� 3c2 � d2 � 2ðbþ cÞd ðc� dÞdþ bðd� 3cÞ
� � 3b2 � d2 � 2ðbþ cÞd

0
B@

1
CA; (23)

with mð2Þ ¼ 3ðb3 þ c3 � ðbþ cÞd2Þ, b ¼ 2xB
ub
� and c ¼

2xC
uc
� . The condition b ¼ c is required for exact TBM, as

before, and once again the Z3 symmetry means that the
charged lepton sector is unaffected. The neutrino mass
eigenvalues are m1 ¼ m0=ð�cþ dÞ, m2 ¼ m0=2c and
m3 ¼ m0=ðcþ dÞ, and the mass sum-rule 1=m3 � 1=m1 ¼
1=m2 applies. The scatter plots in Fig. 7 show the allowed

regions in c� d parameter space, and exhibit a similar
level of tuning as the one singlet case (Fig. 6).

C. Three Higgs singlets in the seesaw model

If there are three Higgs singlets present, the light neu-
trino mass matrix is given by

-3 -2 -1 0 1 2 3
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(a) Normal hierarchy
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(b) Inverted hierarchy

FIG. 6 (color online). Scatter plots of the a� d parameter space for the A-F seesaw model, with one Higgs singlet, for normal and
inverted hierarchy.
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FIG. 7 (color online). Scatter plots of the c� d parameter space for the A-F seesaw model, with two Higgs singlet, for normal and
inverted hierarchy.
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Mð3Þ
� ¼ m0

mð3Þ M
ð3Þ; (24)

where the elements of the symmetric matrix Mð3Þ are

Mð3Þ
11 ¼ 3a2 � d2 � 3bc� 2ðaþ bþ cÞd; (25)

Mð3Þ
12 ¼ �d2 þ ðaþ bþ cÞdþ 3ðb2 � acÞ; (26)

Mð3Þ
13 ¼ 3c2 þ ðbþ c� dÞdþ aðd� 3bÞ; (27)

Mð3Þ
22 ¼ 3c2 � d2 � 3ab� 2ðaþ bþ cÞd; (28)

Mð3Þ
23 ¼ 3a2 þ da� 3bcþ ðbþ c� dÞd; (29)

Mð3Þ
33 ¼ 3b2 � d2 � 3ac� 2ðaþ bþ cÞd; (30)

and mð3Þ ¼ 3ða3 � 3abcþ b3 þ c3 � ðaþ bþ cÞd2Þ.
Once again, the condition a � b ¼ c is required for exact
TBM. In this case the neutrino mass eigenvalues become
m1 ¼ m0=ða� cþ dÞ, m2 ¼ m0=ðaþ 2cÞ, m3 ¼
m0=ð�aþ cþ dÞ, and there is more freedom in choosing
parameters, as shown in the scatter plots of a� c� d
parameter space in Fig. 8. As in the nonseesaw model,
for three singlets hardly any tuning is necessary.

D. Deviations from TBM in the A-F seesaw model

The seesaw model can be analyzed for deviations from
TBM due to VEV misalignment, following the procedure
outlined in Sec. II D above, with the same limits for the
parameters. The VEValignment is perturbed as in Eq. (12)
and, for the cases of two or three singlets, as in Eq. (13).

With the deviated Higgs triplet alignments of Eq. (12), the
charged lepton mass matrix is again defined by Eq. (14),
and the light neutrino mass matrix is

Mð1Þ0
� ¼ 3m0

mð1Þ0

ððd1 � 3aÞ2 � 4d2d3Þ �2d23 þ 3ad2 � d1d2 �2d22 þ 3ad3 � d1d3
� ðd22 � 6ad3 � 4d1d3Þ 9a2 þ 3d1a� 2d21 � d2d3
� � ðd23 � 6ad2 � 4d1d2Þ

0
B@

1
CA;

mð1Þ0 ¼ 27a3 � 9aðd21 þ 2d2d3Þ þ 2ðd31 � 3d1d2d3 þ d32 þ d33Þ;
(31)

with d1 ¼ d, d2 ¼ dð1þ �1Þ and d3 ¼ dð1þ �2Þ. The
deviated neutrino mass matrix for two Higgs singlets is

Mð2Þ0
� ¼ 3m0

mð2Þ0 M
ð2Þ0; (32)

where the elements of the symmetric matrix Mð2Þ0 are

Mð2Þ0
11 ¼ d21 � ð3cþ 2d2Þð3bþ 2d3Þ; (33)

Mð2Þ0
12 ¼ 9b2 þ 3d3b� 2d23 þ 3cd1 � d1d2; (34)

Mð2Þ0
13 ¼ 9c2 þ 3d2c� 2d22 þ 3bd1 � d1d3; (35)

Mð2Þ0
22 ¼ ðd2 � 3cÞ2 � 2d1ð3bþ 2d3Þ; (36)

Mð2Þ0
23 ¼ �2d21 � ðd2 � 3cÞðd3 � 3bÞ; (37)

Mð2Þ0
33 ¼ ðd3 � 3bÞ2 � 2d1ð3cþ 2d2Þ; (38)

and
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FIG. 8 (color online). Scatter plots of the a� c� d parameter
space for the A-F seesaw model, with three Higgs singlet, for
normal and inverted hierarchy, with the condition b ¼ c.
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mð2Þ0 ¼ �6d1ðd2ð3bþ d3Þ þ 3cd3Þ
þ ðd3 � 3bÞ2ð3bþ 2d3Þ þ ðd2 � 3cÞ2ð3cþ 2d2Þ
þ 2d31; (39)

for three Higgs singlets, the deviated mass matrix is

M0
� ¼ 3m0

mð3Þ0 M
ð3Þ0; (40)

where the elements of Mð3Þ0 are

Mð3Þ0
11 ¼ ðd1 � 3aÞ2 � ð3cþ 2d2Þð3bþ 2d3Þ; (41)

Mð3Þ0
12 ¼ 9b2 þ 3d3b� 2d23 þ ðd1 � 3aÞð3c� d2Þ; (42)

Mð3Þ0
13 ¼ 9c2 þ 3d2c� 2d22 þ 3bd1 � d1d3 þ 3aðd3 � 3bÞ;

(43)

Mð3Þ0
22 ¼ �ð3aþ 2d1Þð3bþ 2d3Þ þ ðd2 � 3cÞ2; (44)

Mð3Þ0
23 ¼ 9a2 þ 3d1a� 2d21 þ 3bðd2 � 3cÞ þ 3cd3

� d2d3; (45)

Mð3Þ0
33 ¼ �ð3aþ 2d1Þð3cþ 2d2Þ þ ðd3 � 3bÞ2; (46)

and
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FIG. 9 (color online). Scatter plots of mixing angle observables for the A-F seesaw model [11], with one, two and three Higgs
singlets, for both the normal and inverted hierarchy.
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mð3Þ0 ¼ 27a3 � 9að9bcþ d21 þ 2d2d3Þ þ 27b3

� 9bð2d1d2 þ d23Þ � 6d1d3ð3cþ d2Þ
þ ðd2 � 3cÞ2ð3cþ 2d2Þ þ 2d31 þ 2d33; (47)

with d1, d2 and d3 as defined above. The effect of changing
the relative singlet alignment is studied by setting b ¼
cð1þ �3Þ in both the two and three singlet cases.

Figures 9 and 10 show scatter plots for the mixing
angles, from diagonalization of Eqs. (31), (32), and (40).
Again, there are small differences, and in general the
deviations from TBM can become larger with increasing
number of singlets. However, there is little discriminative
power with regards to the number of singlets, and also with
respect to the model treated in Sec. II.

In spite of this, the mass-dependent observables, plotted
in Fig. 11, allow some conclusions to be drawn. For
instance, in the one singlet case there is a distinct separa-
tion of normal and inverted hierarchy, and the normal

hierarchy case is very different to the nonseesaw model
(Fig. 5). As another example, if the normal mass hierarchy
is favored by experiment and hmeei is measured to be
0.05 eV, the upper left panel of Fig. 11 shows that the
seesaw model with one singlet can be ruled out. In general,
note that deviations from TBM have less effect on the mass
observables in the seesaw model.

IV. CONCLUSION

The present paper is a study of deviations from TBM due
to VEV misalignment in A4 models. After an attempt to
classify the vast amount of literature according to the
representations of A4 under which the lepton doublets,
lepton singlets and seesaw particles transform, two par-
ticularly popular examples from classes A and B have been
focused on. The models have been checked for tuning and
then generalized, in the sense that extra singlets, trans-
forming under representations of A4 that are not used in
the original models, are added. In general, the more sin-
glets that are introduced, the less tuning there is. The most
general VEV misalignment is allowed for, and the conse-
quences for the lepton mixing observables are studied.
Since these quantities have little discriminative power,
the focus is shifted to the observables related to neutrino
mass. The scatter plots of hmeei �

P
mi parameter space

are different in each model, and allow one to distinguish
different models, even after deviation of the VEV align-
ment. This is an indication of the importance of neutrino-
less double beta decay and cosmological mass
determination in disentangling neutrino mass models.
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APPENDIX: A4 TETRAHEDRAL SYMMETRY

The following is an outline of the A4 symmetry group
[9,27,74], upon which the models in this analysis are
based.

1. Introduction to A4

A4 is the alternating group of order 4, and is also the
group of all even permutations of four objects, isomorphic
to the group of rotational symmetries of the regular tetra-
hedron. It is a finite, non-Abelian subgroup of SO(3) [35]
and SU(3). A4 has 12 elements, which can be divided into 4
conjugacy classes with membership 1, 3, 4 and 4. The
dimensionality theorem implies that there are 4 irreducible
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representations with dimension dj such that
P

jd
2
j ¼ 12.

The only solution is d1 ¼ d2 ¼ d3 ¼ 1 and d4 ¼ 3, and
the representations are labeled as 1, 10, 100 and 3, which
means that there are three one-dimensional representations
and one three-dimensional representation. The character

table of A4 is shown in Table IV, with ! � ei2�=3 the cube
root of unity.9

2. Different bases for A4

There are two bases for A4 commonly used in lepton
family symmetry models: the Ma-Rajasekaran (M-R) basis
and the Altarelli-Feruglio (A-F) basis.

a. Ma-Rajasekaran basis

A4 can be generated by two basic permutations S and T,
given by S ¼ ð4321Þ and T ¼ ð2314Þ, where the generic
permutation ð1; 2; 3; 4Þ ! ðn1; n2; n3; n4Þ is denoted by
ðn1n2n3n4Þ. It follows that

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1; (A1)

which defines a ‘‘presentation’’ of the group. The one-
dimensional unitary representations are generated by

1: S ¼ 1 T ¼ 1;

10: S ¼ 1 T ¼ ei2�=3 � !;

100: S ¼ 1 T ¼ ei4�=3 � !2;

(A2)

and the three-dimensional unitary representation (in this
basis) is built up from the generators

S ¼
1 0 0
0 �1 0
0 0 �1

0
@

1
A; T ¼

0 1 0
0 0 1
1 0 0

0
@

1
A: (A3)

The 3� 3 matrices of the natural three-dimensional rep-
resentation 3 are

C1:

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA;

C2:

0 0 1

1 0 0

0 1 0

0
BB@

1
CCA;

0 0 1

�1 0 0

0 �1 0

0
BB@

1
CCA;

0 0 �1

1 0 0

0 �1 0

0
BB@

1
CCA;

0 0 �1

�1 0 0

0 1 0

0
BB@

1
CCA;

C3:

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA;

0 1 0

0 0 �1

�1 0 0

0
BB@

1
CCA;

0 �1 0

0 0 1

�1 0 0

0
BB@

1
CCA;

0 �1 0

0 0 �1

1 0 0

0
BB@

1
CCA;

C4:

1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA;

�1 0 0

0 1 0

0 0 �1

0
BB@

1
CCA;

�1 0 0

0 �1 0

0 0 1

0
BB@

1
CCA; (A4)

where each matrix can be generated by S and T in Eq. (A3).
It is evident that the characters of the 3 representation (the
last column of Table IV) are simply the traces of the
matrices in each class.

The multiplication rules are given by

1� 1 ¼ 1; (A5)

1 0 � 100 ¼ 1; (A6)

1 00 � 10 ¼ 1; (A7)

1 0 � 10 ¼ 100; (A8)

1 00 � 100 ¼ 10; (A9)

3� 3 ¼ 1þ 10 þ 100 þ 3as þ 3s; (A10)

where 3as and 3s are ‘‘asymmetric’’ and ‘‘symmetric’’
combinations, respectively. If 3a � ða1; a2; a3Þ and 3b �
ðb1; b2; b3Þ are two triplets transforming by the matrices in
Eq. (A4), then the three singlets and two triplets in the
product in Eq. (A10) are

TABLE IV. Character table of A4, where n represents the
number of elements in each conjugacy class.

Class n 
1 
10 
100 
3

C1 1 1 1 1 3

C2 4 1 ! !2 0

C3 4 1 !2 ! 0

C4 3 1 1 1 �1

9Note that! ¼ ei2�=3 ¼ �1=2þ ffiffiffi
3

p
=2 satisfies!2 ¼ !� and

1þ!þ!2 ¼ 0.
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1 ¼ a1b1 þ a2b2 þ a3b3; (A11)

1 0 ¼ a1b1 þ!2a2b2 þ!a3b3; (A12)

1 00 ¼ a1b1 þ!a2b2 þ!2a3b3; (A13)

3 1 � ða2b3; a3b1; a1b2Þ; (A14)

3 2 � ða3b2; a1b3; a2b1Þ: (A15)

b. Altarelli-Feruglio basis

In the M-R basis, the generator S in Eq. (A3) is diagonal.
However, one can also represent A4 in a basis where T is
diagonal, obtained through the unitary transformation:

T0 ¼ VyTV ¼
1 0 0
0 ! 0
0 0 !2

0
@

1
A; (A16)

S0 ¼ VySV ¼ 1

3

�1 2 2
2 �1 2
2 2 �1

0
@

1
A; (A17)

where

V ¼ 1ffiffiffi
3

p
1 1 1
1 !2 !
1 ! !2

0
@

1
A: (A18)

It is known that the most general mass matrix leading to
TBM,

mTBM
� ¼

A B B
� 1

2 ðAþ BþDÞ 1
2 ðAþ B�DÞ

� � 1
2 ðAþ BþDÞ

0
B@

1
CA (A19)

is invariant with respect to S0 : ðS0ÞTmTBM
� S0 ¼ mTBM

� .
Note that the matrix V is the so-called ‘‘magic matrix,’’,
which appears in some A4 models as the unitary matrix that
diagonalizes the charged lepton mass matrix. In the S0, T0
basis, the multiplication rules are identical to those in
Eqs. (A5)–(A10), but the product of two triplets gives the
composition of the following irreducible representations:

1 ¼ a1b1 þ a2b3 þ a3b2; (A20)

1 0 ¼ a3b3 þ a1b2 þ a2b1; (A21)

1 00 ¼ a2b2 þ a1b3 þ a3b1; (A22)

3s � 1

3
ð2a1b1 � a2b3 � a3b2; 2a3b3 � a1b2

� a2b1; 2a2b2 � a1b3 � a3b1Þ; (A23)

3 as � 1

3
ða2b3 � a3b2; a1b2 � a2b1; a1b3 � a3b1Þ:

(A24)

3. Equivalence of the two bases

The model presented in Sec. II A can be formulated in
the M-R basis, using the same particle assignments and the
Lagrangian in Eq. (3). With the product decomposition
rules in Eqs. (A11)–(A15), and the triplet VEV alignment

h’i ¼ ðv; v; vÞ and h’0i ¼ ðv0; 0; 0Þ; (A25)

the charged lepton and neutrino mass matrices are

M‘ ¼ vd

v

�

ye ye ye
y	 y	!

2 y	!
y
 y
! y
!

2

0
@

1
A;

M� ¼ vu

�

a 0 0
� a d
� � a

0
@

1
A:

(A26)

In this case, M‘ is diagonalized by the magic matrix
[Eq. (A18)], and M� is diagonalized by

V� ¼
0 1 0
1ffiffi
2

p 0 � 1ffiffi
2

p
1ffiffi
2

p 0 1ffiffi
2

p

0
B@

1
CA; (A27)

which combines with V in Eq. (A18) to give UTBM. The
neutrino mass matrix in Eq. (A26) is equivalent to that in
Eq. (7), with the change of basis induced by V. Thus the
two bases lead to equivalent models, with the triplet VEV
alignments in the charged lepton and neutrino sectors
effectively swapped [compare Eqs. (4) and (A25)]. Note
that the change of basis will change the relative phases of
the eigenvalues of M�.
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