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I. INTRODUCTION

The further progress in understanding the phase struc-
ture of quantum chromodynamics (QCD) at nonzero tem-
perature and density is very important in view of the recent
experiments at RHIC and also planned at LHC and FAIR.
From the theoretical point of view, it can be divided into
some regions of ‘‘phase space’’: perturbative QCD, lattice
QCD, phenomenological models, etc.

As known, perturbative QCD works well at asymptoti-
cally high densities [1] or temperatures [2], where the QCD
coupling �s is small. For lower densities and temperatures
the MIT bag model can be of use [3]. It is a phenomeno-
logical model that effectively includes strong interactions
via a bag constant.

The bag model has taken an interesting turn with the
detailed analysis [4] of the lattice data [5]. The surprise of
this analysis is that at zero chemical potential it reveals a
term quadratic in temperature as the leading correction to
the ideal gas term in the pressure. The most recent data [6]
indicate that this is generic: that the equation of state of the
MIT bag model gets modified as1

pðTÞ ¼ aT4 � T2�T2 � B; with Tmin < T < Tmax:

(1)

As noted, the novelty is the T2 term, while the remaining
two are the standard bag terms, with B a bag constant and a
a parameter. A common choice is to take a from perturba-
tion theory up to one loop order. Tmin is close to a critical
temperature Tc (or some approximate ‘‘Tc’’ for a cross-
over). A small difference between Tc and Tmin may vary
with the model. Tmax is set by perturbation theory such that
to leading orders it is applicable only for temperatures
higher than Tmax.

While numerical simulations on the lattice can be of use
at nonzero temperature when the quark density is quite
small, standard Monte Carlo techniques are not of use in
cold dense matter because of poor convergence called the
sign problem. On the other hand, there are arguments in the
literature [7] that in QCD long perturbative series (or the

UV renormalons) result in the so-called quadratic correc-
tions. From this point of view, the T2 term in (1) is nothing
else but an example of the quadratic correction. If so, then
it is natural to expect that at zero temperature the equation
of state of the MIT bag model can also get modified by a
quadratic correction as2

pð�Þ ¼ b�4 ��2��2 � B; with �min <�<�max;

(2)

where again b is a parameter to be fixed from perturbation
theory up to one loop order. The �2 term is a quadratic
correction.�min is expected to be close to a critical value of
�, while �max is set by leading orders of perturbation
theory. Note that � stands for the baryon chemical poten-
tial, here and below.
Until recently, the lattice formulation and effective field

theories were the main computational tools to deal with
nonweakly coupled gauge theories. The situation changed
drastically with Maldacena duality (AdS/CFT) [10] that
resumed interest in another tool, string theory. The original
duality was for conformal theories, but various perturba-
tions (deformations) produce gauge/string duals with a
mass gap, confinement, and chiral symmetry breaking [11].
In this Letter we continue a series of recent studies [12–

14] devoted to a search for an effective string theory
description of strong interactions. Since precise recipes
for finding the string theory dual to QCD are still unknown,
our strategy is based on deformations of AdS/CFT. The
deformation we are pursuing turned out to be successful in
providing a systematic approach to the quadratic correc-
tions. Indeed, in [12], the quadratic correction was found in
the two-current correlator. Later, the model was extended
to Euclidean signature for computing the heavy quark
potential, where the quadratic correction occurs as a linear
term in the potential at short distances [13]. Subsequent
comparison [15] with the meson spectrum made it clear
that the model should be taken seriously. Moreover, it was
also extended to finite temperature. As a result, the T2 term
in the pressure (1) was found [14]. In addition, this model
results in the spatial string tension [16] and the expectation
value of the Polyakov loop [17], which are remarkably
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1Rob Pisarski called it a ‘‘fuzzy’’ bag model for the pressure
[4].

2Such a parametrization of the quark matter equation of state
was also considered in the context of phenomenology of hybrid
stars [8] and Quarkyonic phase [9].
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consistent with the lattice. Thus, there are reasons to
believe that this deformation also provides a good approxi-
mation for a string dual to cold quark matter.

II. THE MODEL

Let us first explain the model to be considered. We take
the following ansatz for the ten-dimensional background
geometry which is a deformed product of the extremal
Reissner-Nordström black hole in Euclidean AdS5 and a
five-dimensional sphere (compact space X)3

ds2 ¼ l2

z2
Hðfdt2 þ d~x2 þ f�1dz2Þ þH�1d�X;

H ¼ eð1=2Þcz2 ; f ¼ ð1� ðz=zþÞ2Þ2ð1þ 2ðz=zþÞ2Þ;
(3)

where zþ ¼ ð2=q2Þð1=6Þ. The deformation is due to the
same z-dependent factor H as those of [12–14], with c
being a parameter whose value will be fixed shortly. Note
that (3) is smooth and complete at z ¼ zþ such that the
inverse period of t is equal to ��1 ¼ T ¼ 0, with T the
temperature. We also take a constant dilaton and discard
other (if any) background fields.

Given the background metric (3), we can now find the
corresponding gauge potential from the condition of Weyl
invariance on a string world sheet. To leading order in �0 it
is given by

�A
� ¼ r�F�� þOð�0Þ ¼ 0: (4)

Here �A
� is, in fact, a renormalization group beta function

on the world sheet.
For a pure electric potential A0ðzÞ, (4) becomes

@zð ffiffiffi
g

p
g00gzz@zA0Þ ¼ 0: (5)

The solution is given by A0ðzÞ ¼ C1e
cz2 þ C2, with Ci

constants. If we choose the constants so that at c ¼ 0 the
solution is reduced to that of Reissner-Nordström (A6), we
find

A0ðzÞ ¼ i

�
�

ffiffiffi
3

p
2

q

c
ðecz2 � 1Þ þ�

�
: (6)

Finally, we impose the condition A0ðzþÞ ¼ 0 and as a
result get � as a function of q

�ðqÞ ¼
ffiffiffi
3

p
2

q

c
ðecz2þ � 1Þ: (7)

Following the AdS/CFT dictionary [11], we identify the
parameters � and �, as defined in (A7), with the baryon
chemical potential and the baryon number density,
respectively.

III. ESTIMATE OF THE QUADRATIC
CORRECTION

Our first goal will be to analyze the nondeformed model.
That is, we take c ¼ 0 for (3) and (6). Using the formulas
(3) and (A7), we can show that Eq. (7) yields, up to a
constant multiple, a unique solution �ð�Þ. Explicitly, it is
given by

�ð�Þ ¼ 4b�3: (8)

This is the desired result, corresponding in QCD to the fact
that for low temperatures and large chemical baryon po-
tentials the baryon number density is proportional to the
cube of the potential.
To fix the constant of proportionality, we need some

knowledge of the exact string theory dual to QCD or
some additional insight. Since the former is beyond our
grasp at present, we match the parameter b with that of
perturbative QCD neglecting perturbative interactions
among the quarks. In doing so, we first find the pressure

by integrating dp
d� ¼ �. In terms of the quark chemical

potential �q ¼ �=Nc, it is pð�qÞ ¼ bN4
c�

4
q. Finally, we

have

b ¼ 1

12�2

Nf

N3
c

: (9)

Here Nf is the number of quark flavors and Nc is the

number of colors.
Now let us return and discuss the deformed model. At

large baryon density (or equivalently at large q) it is

reasonable to represent (7) as a series
ffiffi
3

p
2

q
c

P
n¼1

cn

n! �
ð 2
q2
Þðn=3Þ. If we take the two leading terms of the series,

then we can easily invert the function �ðqÞ. Finally, using
Eq. (A7), we find the leading correction to (8)

�ð�Þ ¼ 4b

�
�3 � 1

2
�2

?�þOð1Þ
�
; with �? ¼ 3

ffiffiffi
c

2

r
:

(10)

In the homogeneous case the pressure is obtained by
integrating the above expression over �

pð�Þ ¼ bð�4 ��2
?�

2 þOð1ÞÞ: (11)

This is our main result. It includes the �2 term, as
expected.
Making an estimate requires some numerics. First, let us

consider the light ðu; dÞ quarks. In this case, the value of c
is fixed from the slope of the Regge trajectory of �ðnÞ
mesons [18]. This gives c � 0:9 GeV2 [12]. So, we find for
the value of the quadratic correction

�2
? � 4:1 GeV2: (12)

In contrast, a simple estimate of the corresponding coeffi-
cient of perturbative QCD with Nf ¼ 2 results in [1]

3For completeness, we include a brief summary of the relevant
results concerning the Reissner-Nordström black holes in the
Appendix.
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2
ðm2

u þm2
dÞ � 6� 10�4 GeV2: (13)

Here we have used that mu ¼ 3 MeV and md ¼ 6 MeV.
Thus, our model predicts that the �2 term being negli-

gible in a pure perturbative region �max <� gets strongly
enhanced in the intermediate region �min <�<�max.

Next, let us discuss the effect of the strange quark. For
Nf ¼ 3, (13) becomes 9ðm2

u þm2
d þm2

sÞ, which is cer-

tainly valid near the upper limit �max, where � � 3ms.
A simple algebra shows that its value is of order 0:1 GeV2,
with ms � 0:1 GeV. It is still smaller than (12), so the
effect of the strange quark is not dominant.

Finally, let us estimate the range of � for the model of
interest. A crude estimate of the lower limit can be made by
using the positivity of the baryon density and the pressure.
It gives that �min is of order �?. If we assume that as at
finite T on the lattice [6], where Tmin � 1:5Tc, in the model
of interest �min � 1:5�c, then using (12) we arrive at a
critical chemical potential of 1.3 GeV, which is reasonable
phenomenologically. A crude estimate of the upper limit
can be made by assuming that at � ¼ �max the contribu-
tion of the �2 term in the pressure is 1 order of magnitude
smaller than that of the leading�4 term. This gives�max �
3:3�? or, in terms of �c, �max � 5�c.

IV. CONCLUDING COMMENTS

(i) Having derived the equation of state, we can easily
develop finite � thermodynamics. In particular, for the
energy density, we have � ¼ bð3�4 ��2

?�
2 þOð1ÞÞ.

Combining with (11), we find the expression for the trace
anomaly

�� 3p

�4 ¼ 2b
�2

?

�2
þOð1Þ: (14)

In addition, for the speed of sound C2
s ¼ dp

d� we get

C2
sð�Þ ¼ 1

3

�
1� 1

3

�2
?

�2
þOð1Þ

�
: (15)

All the above formulas are similar to those of [14] at finite
T.

(ii) Here we used the model based on the deformation of
the Reissner-Nordström solution. Certainly, such a phe-
nomenologically motivated way is out of the mainstream
of (academic) AdS/CFT, where the background geometry
follows from the equations of supergravity and fundamen-
tal matter is introduced via D-brane embeddings in the
probe approximation with Nc � Nf. One of the advan-

tages of our approach is that it allows us to incorporate the
backreaction due to the gauge potential on the background
geometry. What really fits better to QCD remains to be
seen.

(iii) In the phenomenological parametrization of [8] the
coefficient in front of the �2 term arises from the strange
quark mass as well as color superconductivity. As a result,

it is proportional to m2
s � 4�2. Its value is 1 order of

magnitude smaller than ours (12).
The formula (2) was also suggested, by analogy with the

deformed bag model (1), in the context of Quarkyonic
matter [9]. Our interpretation of the �2 term as a power
correction differs from that of [9], where it is interpreted as
due to nonperturbative corrections. However, in the inter-
mediate region of interest some matching conditions be-
tween the two regimes may be possible.
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APPENDIX

In this appendix we review the relevant results concern-
ing the Reissner-Nordström solutions in five dimensions.
Most of this material can be found in [19].
For the Einstein-Maxwell action with cosmological con-

stant, we take

I ¼ � 1

16�GN

Z
d5x

ffiffiffi
g

p �
R� l2F2 þ 12

l2

�
: (A1)

Here GN is the five-dimensional Newton’s constant.
With a pure electric gauge potential4

A0ðrÞ ¼ i

�
�

ffiffiffi
3

p
2l

q

r2
þ�

�
; (A2)

a solution of the equations of motion for the metric (with
Euclidean signature) takes the spherically symmetric form

ds2 ¼ fdt2 þ f�1dr2 þ r2d�2
3;

f ¼ 1� m

r2
þ q2

r4
þ r2

l2
:

(A3)

The parameters m and q are, respectively, related to the
mass and charge of the black hole as

M ¼ 3VolðS3Þ
16�GN

m; Q ¼
ffiffiffi
3

p
VolðS3Þ
4�GN

q: (A4)

Here VolðS3Þ is the volume of a unit 3-sphere.
The solution (A3) is asymptotic at r ¼ 1 to S3 � S1. A

scaling that reduces it to a solution with R3 � S1 may be
made as follows. If we introduce a dimensionless parame-

ter � and make the transformation r ! �ð1=4Þr, t !
��ð1=4Þt, m ! �l6m, q ! �ð3=4Þl5q, then in the large �
limit we obtain

4The parameter � is reserved for future use.
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ds2 ¼ l2

z2
ðfdt2 þ f�1dz2 þ d~x2Þ;

f ¼ 1�mz4 þ q2z6;

(A5)

where z ¼ l2=r. In the process, we have also introduced
local coordinates yi near a point P 2 S3 such that d�2

3 ¼P
dy2i , and then set xi ¼ �ð1=4Þlyi.
Having derived the desired solution for the metric, we

can easily obtain that for the gauge potential. From (A2),
we have

A0ðzÞ ¼ i

�
�

ffiffiffi
3

p
2

qz2 þ�

�
: (A6)

When we go to R3 � S1, we get that the radius of S3 is

proportional to �ð1=4Þ and so diverges for � ! 1. Hence,
the corresponding volume is also becoming infinite and

looks like V3 ¼ �ð3=4Þl3VolðS3Þ. If we introduce the charge

density � ¼ Q=V3, then the second equation of (A4) be-
comes

� ¼ 3
ffiffiffi
3

p
bq; (A7)

where b ¼ l2=ð12�GNÞ. The difference between S3 � S1

and R3 � S1 is obvious: in the first case q is related to the
charge of the black hole, while in the second case it is
related to its charge density.
The metric (A5) is smooth and complete if the period of

t is � ¼ 4�
jf0ðzþÞj , where zþ is the smallest real positive root

of fðzÞ ¼ 0.
For T ¼ 0, the black hole becomes extremal so that

4m3 ¼ 27q4. In this case the function fðzÞ takes the form
f ¼ ð1� ðz=zþÞ2Þ2ð1þ 2ðz=zþÞ2Þ;

with zþ ¼ ð2=q2Þð1=6Þ: (A8)
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