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The Press-Ryden-Spergel (PRS) algorithm is a modification to the field theory equations of motion,

parametrized by two parameters (� and �), implemented in numerical simulations of cosmological

domain wall networks, in order to ensure a fixed comoving resolution. In this paper we explicitly

demonstrate that the PRS algorithm provides the correct domain wall dynamics in (N þ 1)-dimensional

Friedmann-Robertson-Walker universes if �þ �=2 ¼ N, fully validating its use in numerical studies of

cosmic domain evolution. We further show that this result is valid for generic thin featureless domain

walls, independently of the Lagrangian of the model.
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I. INTRODUCTION

The dynamics of cosmological domain walls has been
investigated using both high-resolution numerical simula-
tions and a semianalytical velocity-dependent one-scale
model [1–7]. Most of these studies were motivated by the
suggestion [8] that a frozen domain wall network could be
responsible for the observed acceleration of the Universe
(see also [9–12]). Although, current observational con-
straints on the equation of state parameter of dark energy
strongly disfavor domain walls as a single dark energy
component [13,14], they are unable to rule out a substantial
impact of a frustrated domain wall network on the accel-
eration of the Universe around the present time. However,
analytical and numerical results strongly support the con-
jecture that no frustrated domain wall network, accounting
for a significant fraction of the energy density of the
Universe today, could have emerged from realistic phase
transitions. These results, on their own, seem to rule out
any significant contribution of domain walls to the dark
energy budget. However, they rely heavily on the validity
of the so-called Press-Ryden-Spergel (PRS) algorithm
used in cosmological domain wall network simulations.

Domain walls have a constant physical thickness, and,
consequently, their comoving thickness decreases propor-
tionally to the inverse of the cosmological scale factor. In
numerical studies of cosmological domain wall evolution
the rapid decrease of the comoving domain wall thickness
would be a serious problem since it would imply that
domain walls could be resolved only during a small frac-
tion of the simulation dynamical range. The PRS algorithm
is a modification to the field theory equations of motion,
implemented in numerical simulations of cosmological
domain wall evolution, allowing for a fixed comoving
resolution. It has been argued that the PRS algorithm [1]
provides the correct domain wall dynamics in 3þ 1 di-

mensions, as long as �þ �=2 ¼ 3 (� and � are the PRS
algorithm parameters of Ref. [1]). Although this claim is
strongly supported by numerical tests, it has never been
proven that the same Nambu-Goto effective action is re-
covered in the thin wall limit. In this paper we eliminate
this shortcoming, extending the analysis to generic thin
featureless domain walls in Friedmann-Robertson-Walker
(FRW) universes with an arbitrary number of spatial
dimensions.

II. THE PRS ALGORITHM I

Consider the Goldstone model with a single real scalar
field � described by the Lagrangian

L ¼ X � Vð�Þ; (1)

where X ¼ ��;��
;�=2 and Vð�Þ is the potential. This

model admits domain wall solutions if the potential, Vð�Þ,
has, at least, two discrete degenerate minima. Varying the
action,

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
L; (2)

with respect to the scalar field�, one obtains the following
equation of motion:

1ffiffiffiffiffiffiffi�g
p ð ffiffiffiffiffiffiffi�g

p
�;�Þ;� ¼ @V

@�
: (3)

Here g ¼ detðg��Þ and g�� is the metric tensor. In this

paper the Einstein summation convention will be used only
with greek indices [such as in Eq. (3)].
In a flat FRW universe, the line element is

ds2 ¼ a2ð�Þð�d�2 þ dx � dxÞ; (4)

where að�Þ is the scale factor, � ¼ dt=a is the conformal
time, t is the physical time, and x are comoving coordi-
nates. The equation of motion for the scalar field � given
by Eq. (3) becomes
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€�þ ðN � 1ÞH _��r2
x� ¼ �a2

@V

@�
; (5)

where a dot represents a derivative with respect to confor-
mal time, N is the number of spatial dimensions, H ¼
_a=a, and r2

x is the comoving Laplacian. A static straight
domain wall solution oriented along the x direction can be
obtained by choosing initial conditions such that� ¼ �ðxÞ
with _� ¼ 0 and €� ¼ 0 [we take x ¼ ðx1; x2; x3Þ and x1 ¼
x]. Equation (5) preserves the physical thickness of the
domain walls so that the comoving thickness is propor-
tional to a�1. This is a problem for cosmological domain
wall network simulations since the comoving thickness of
the domain walls decreases very rapidly and can be re-
solved only during a small fraction of the simulation
dynamical range.

The PRS algorithm consists of the following modifica-
tion to the equations of motion:

€�þ �H _��r2
x� ¼ �a�

@V

@�
; (6)

where� and� are constants. By taking� ¼ 0 it is possible
to fix the comoving thickness of the domain walls so that
they can be resolved throughout the full dynamical range
of the simulations. Moreover, it was shown that if �þ
�=2 ¼ 3 the dynamics of planar domain wall in a (3þ 1)-
dimensional FRW universe would be maintained [1].

III. THE PRS ALGORITHM II

Changing the space-time coordinates, in Eq. (6), from
ð�;xÞ to ð�; yÞ, defined by

@

@�
¼ 1

a�=2
@

@�
; (7)

y ¼ a�=2x; (8)

yields

@2�

@�2
þ

�
�þ �

2

�
H

@�

@�
�r2

y� ¼ � @V

@�
; (9)

where r2
y ¼ a��r2

x and H ¼ a��=2H .

In Minkowski space-time (a ¼ 1) a planar static domain
wall solution oriented along the y direction will be given by
� ¼ �sðlÞ with

d2�s

dl2
¼ @V

@�
; (10)

with l ¼ y (we take y ¼ ðy1; y2; y3Þ and y1 ¼ y). If the
domain wall is boosted along the positive y direction, the
planar domain wall solution to Eq. (9) is still � ¼ �sðlÞ,
but now l ¼ �ðy� v�Þ where v is the domain wall veloc-
ity and � ¼ t. In this case @l=@� ¼ ��v and @l=@y ¼ �.

Consider the more general case of a curved domain wall
in a (3þ 1)-dimensional flat FRW universe. The general-

ization to N þ 1 dimensions is trivial, and for simplicity it
will be made only at the end of the section. In the following
we shall assume that the thickness of the domain walls is
very small compared to their curvature radii, so that a rapid
change of � occurs only in the direction orthogonal to the
wall [15]. It is convenient to choose spatial coordinates
ðu; w; zÞ such that locally the walls are coordinate surfaces
satisfying the condition u ¼ const. In this case, the domain
wall is parametrized by the coordinates w and z, and it
moves along the u direction. It is useful to choose an
orthogonal coordinate system in which w ¼ const and z ¼
const are lines of curvature so that the coordinate curves
coincide with the principal directions of curvature of the
surface defined by u ¼ const. It is always possible to
construct such a coordinate system in the vicinity of any
nonumbilic point (in which the two principal curvatures
exist and are not equal) of a surface embedded in a flat
space [16].
If the domain wall has velocity v, then the domain wall

solution is still given by � ¼ �sðlÞ with
@l

@�
¼ ��v;

@l

@su
¼ �;

@l

@sw
¼ @l

@sz
¼ 0; (11)

where dsi ¼ jd~rij is the arclength along direction ui and
d~ri ¼ hiduiûi (ûi is the unit vector along the direction ui).
We shall use the gauge freedom to choose a coordinate u,
which measures the arclength along the direction perpen-
dicular to the domain wall, so that hu ¼ 1 and dsu ¼ du.
Therefore, one has

@�

@�
¼ ��v

d�s

dl
;

@�

@u
¼ �

d�s

dl
; (12)

@2�

@�2
¼ ð�vÞ2 d

2�s

dl2
� @ð�vÞ

@�

d�s

dl
: (13)

On the other hand, taking into account that � ¼ �ð�; uÞ
and hu ¼ 1,

r2
y� ¼ 1

huhwhz

�
@

@u

�
hwhz
hu

@�

@u

��

¼
��

1

hw

@hw
@u

þ 1

hz

@hz
@u

�
@�

@u
þ @2�

@u2

�
: (14)

The curvature of a curve parametrized by p is defined as
kp ¼ jkpj where kp ¼ dêp=dsp, êp is the unitary tangent

vector to the curve, and dsp is the arclength. The principal

curvatures of a surface, defined by a constant u ¼ u0, are
given by kw ¼ kw � û and kz ¼ kz � û with

k w ¼ 1

hw

�
@ŵ

@w

�
z¼z0

; (15)

k z ¼ 1

hz

�
@ẑ

@z

�
w¼w0

: (16)

The vectors û, ŵ, and ẑ form an orthonormal but, in
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general, noncoordinate basis. Their derivatives can be
calculated using

@ûi

@uj
¼ 1

hi

@hj
@ui

ûj �
X
k

1

hk

@hi
@uk

ûk: (17)

Hence,

k w ¼ � 1

hw

@hw
@u

û; kz ¼ � 1

hz

@hz
@u

û: (18)

The relevant curvature for domain wall dynamics is the
extrinsic curvature, i.e. the ‘‘bending’’ of the wall in rela-
tion to the flat embedding universe. Mathematically this is
measured by the curvature parameter

K ¼ ðkw � ûþ kz � ûÞ ¼ �
�
1

hw

@hw
@u

þ 1

hz

@hz
@u

�
: (19)

Therefore, Eq. (14) can be written as

r2
y� ¼ �K

@�

@u
þ @2�

@u2
: (20)

Inserting this into Eq. (9), taking into account Eqs. (12) and
(13) and the fact that @2�=@u2 ¼ �2d2�s=dl

2, one obtains

� d2�s

dl2
þF

d�s

dl
¼ � @V

@�
; (21)

where

F ¼ � @

@�
ð�vÞ �

�
�þ �

2

�
H�vþK�: (22)

Taking into account Eq. (10), we conclude that F ¼ 0.
Notice, however, that dsw and dsz are not the comoving

arclengths since the comoving space coordinates have been

scaled by a factor a��=2. The comoving curvature parame-
ter is instead

� ¼ a�=2K: (23)

Changing into the original variables ð�;xÞ, we finally find
that

_vþ ð1� v2Þ
��

�þ �

2

�
Hv� �

�
¼ 0: (24)

By setting the parameters � and � to their original values
(� ¼ � ¼ 2) we find that, if the modified equations are to
yield the correct dynamics in a (3þ 1)-dimensional FRW
universe, we must have that �þ �=2 ¼ 3.

In a (N þ 1)-dimensional FRW universe domain walls
are defects withN � 1 spatial dimensions whose dynamics
is still given by Eq. (3) (see Ref. [17] for an analytical
study) with

� ¼ a�=2û � XN�1

i¼1

ki: (25)

Here, ki are the curvature vectors associated with the N �

1 coordinate curves of the domain wall. Hence, the dy-
namics of thin domain walls is unaffected by the PRS
algorithm as long as �þ �=2 ¼ N (the original parame-
ters were � ¼ N � 1 and � ¼ 2). In particular, the dy-
namics planar (� ¼ 0) domain walls is such that

v� / a����=2 / a�N .

IV. GENERIC DOMAIN WALL MODELS

In this section we show that the main result of the
previous section [Eq. (24)] describes the dynamics of
generic thin domain walls, independently of the
Lagrangian,Lð�;XÞ, of the model. We will follow closely
the derivation presented in Ref. [6] where the validity of
Eq. (24) has been demonstrated for planar domain walls.
Varying the action,

S ¼
Z

dt
Z

d3x
ffiffiffiffiffiffiffi�g

p
Lð�;XÞ; (26)

with respect to �, one obtains

1ffiffiffiffiffiffiffi�g
p ð ffiffiffiffiffiffiffi�g

p
L;X�

;�Þ;� ¼ �L;�; (27)

where L;X ¼ @L=@X and L;� ¼ @L=@�.

Assuming a (N þ 1)-dimensional FRW metric given by
Eq. (4) and the transformations given by Eqs. (7) and (8),
one obtains

@

@�

�
L;X

@�

@�

�
þ

�
�þ �

2

�
HL;X

@�

@�
�ryL;X � ry�

�L;Xr2
y� ¼ L;�; (28)

with � ¼ N � 1 and � ¼ 2. Notice that, in Minkowski
space-time, a planar static domain wall solution oriented
along the y direction will be given by � ¼ �sðlÞ with

� d

dl

�
L;X

d�s

dl

�
¼ L;�; (29)

with l ¼ y.
Consider the coordinate system ðu;w; zÞ as described in

Sec. II. Suppose that the wall is moving along the direction
u with velocity v. Taking into account that

ryL;X � ry� ¼ @L;X

@u

@�

@u
; (30)

as well as Eqs. (11)–(13) and (20), the equation of motion
(28) yields

� d

dl

�
L;X

d�s

dl

�
þFL;X

d�s

dl
¼ L;�: (31)

Again, since �ðlÞ must be a solution of Eq. (29), one has
F ¼ 0 and, consequently, Eq. (24) remains valid.
Furthermore, although only models with a single real
scalar field have been considered, it is straightforward to
verify that Eq. (24) describes the correct thin domain wall
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dynamics in the context of generic models with various
scalar fields.

V. DOMAIN WALL DYNAMICS IN 2þ 1
DIMENSIONS

The world history of an infinitely thin domain wall in a
flat FRWuniverse can be represented by a two-dimensional
world sheet with x ¼ xð�;	Þ, obeying the usual Goto-
Nambu action. The equations of motion take the form

€xþ 2H ð1� _x2Þ _x ¼ 
�1ð
�1x0Þ0; (32)

_
 ¼ �2H 
 _x2; (33)

with

_x � x0 ¼ 0; (34)


 ¼
�

x02

1� _x2

�ð1=2Þ
; (35)

where dots and primes are derivatives with respect to� and
	, respectively.

Let us define unit normal and tangent vectors as

û ¼ _x

v
; ŵ ¼ x0

C
; (36)

where vð�;	Þ ¼ j _xj and Cð�;	Þ ¼ jx0j. Equation (35)

can now be written as 
 ¼ �C with � ¼ ð1� v2Þ�1=2.
Therefore, the left-hand side of Eq. (32) is given by

€xþ 2H ð1� _x2Þ _x ¼ _v ûþv _̂uþ 2H ð1� v2Þvû;
(37)

where _̂u is proportional to ŵ. Moreover, the right-hand side

of Eq. (32) gives


�1ð
�1x0Þ0 ¼ 1

�

@

@s

�
ŵ

�

�
¼

�
�

�2
û� v

@v

@s
ŵ

�
; (38)

where we have taken into account that @ŵ=@s ¼ �û and
the fact that the physical length along a two-dimensional
domain wall is given by ds ¼ jdxj ¼ Cd	. Henceforth,
the normal component of Eq. (32) yields

_vþ ð1� v2Þð2Hv� �Þ ¼ 0; (39)

which confirms Eq. (24) in the particular case with N ¼ 2.

VI. CONCLUSIONS

In this paper we explicitly demonstrated that the PRS
algorithm provides the correct dynamics of thin featureless
domain walls in FRW universes with an arbitrary number
N of spatial dimensions, if �þ �=2 ¼ N. Our results fully
justify the use of the PRS algorithm in numerical studies of
cosmological domain wall network evolution. Although,
fixing the comoving thickness of the domain walls, using
the PRS algorithm, increases artificially the impact of the
junctions on the overall network dynamics during the
course of the simulations, this effect is negligible for the
light junctions usually considered in such simulations.
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