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Soft-wall models in AdS/QCD generally have dilaton and scalar fields that vary with the fifth-

dimension coordinate. These fields can be parametrized to yield hadron mass spectra with linear radial

trajectories and to incorporate spontaneous breaking of chiral symmetry. We show how to construct scalar

potentials which lead to such solutions.
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I. INTRODUCTION

The correspondence between certain gauge theories in
four dimensions and gravitational theories in higher di-
mensions has proven to be a very fruitful one. It allows for
the calculation of physical observables in a strongly
coupled gauge theory, where perturbation theory is inap-
plicable, by performing a corresponding calculation in a
classical gravitational theory. This general gauge/gravity
duality was originally inspired by the anti–de Sitter/con-
formal field theory (AdS/CFT) correspondence, and as
such the metric usually takes the form of anti–de Sitter
space in five dimensions [1–4]. QCD, the gauge theory of
the strong interactions, is strongly coupled at low energies.
Heretofore, if one wanted to understand the structure of
hadrons, then the only reliable means was via numerical
computations in lattice gauge theory. Aside from lattice
gauge theory, one must resort to models. The discovery of a
gravitational dual to QCD would be a fantastic achieve-
ment. Unfortunately, the gravitational dual is not known,
nor is it known whether one exists even in principle.
Deriving such a duality from a fundamental theory, such
as string theory, is referred to as the top down approach.
The bottom up approach assumes that such a dual exists,
and it models QCD by an effective five-dimensional grav-
ity theory. One would like to incorporate the essential
features of QCD into such a model. Such effective five-
dimensional models are generically referred to as AdS/
QCD, and allow for the computation of physical quantities
in QCD such as mass spectra [5–11], form factors [12–16],
and thermodynamic observables [17–24].

The first model to be constructed via the bottom up
approach is referred to as the hard-wall model [6,25,26];
it simply places an infrared cutoff on the fifth-dimensional
coordinate. This cutoff breaks the conformal symmetry by
hand, and allows for the introduction of the QCD scale.
The soft-wall model improves upon the hard wall, both
physically and mathematically, by using a dilaton field to
suppress the infrared contributions in a softer and continu-
ous fashion [7]. This model is a mathematical improve-
ment on the hard wall, because the geometry is everywhere
continuous and thus avoids discontinuities and/or singular-

ities which may exist in a hard-wall setup. The soft-wall
model is a physical improvement because the dilaton field
is parametrized as a function of the fifth-dimensional co-
ordinate in order to provide linear radial trajectories for the
meson masses. There have been numerous improvements
and variations on these models, some of which attempt to
incorporate confinement [27] and chiral symmetry break-
ing [28]. In the latter case, a scalar field which is dual to the
condensation of the quark bilinear operator in QCD is
included. As such, the behavior of this scalar field in the
extra-dimensional geometry corresponds to the properties
of chiral symmetry in the gauge theory. In an AdS/QCD
model, this scalar field can be parametrized to incorporate
both spontaneous and explicit breaking of chiral symmetry.
As mentioned above, in bottom up models the dilaton

and scalar fields are parametrized to reproduce certain
important features of QCD, namely, confinement and spon-
taneous and explicit chiral symmetry breaking. In almost
all cases, these background fields are imposed by hand, and
are not derived as the solution to any equations of motion.
There are (at least) two reasons that a well-defined action is
desirable within AdS/QCD models. First, one needs a
proper set of background equations in order to add pertur-
bations to the geometry which can give access to transport
coefficients in the dual field theory. Second, a well-defined
action may provide insight as to how such a model could
arise from a top down approach. In order to meet these
goals, one must know the potential which gives rise to such
backgrounds. Some recent work on this subject was done
in [29], where the authors explore the correspondence
between the potential and the running coupling in the
dual field theory.
A notable case where the potential was determined is the

dynamical soft-wall model of [30]. There, an auxiliary
scalar field is introduced in addition to the dilaton, and a
scalar potential is derived which has the soft-wall model as
a solution to the equations of motion. Throughout the
aforementioned work, some attempt is made to identify
this auxiliary scalar field with a closed string tachyon field
in string theory. Instead of this identification, one can
promote the scalar field to a matrix valued field and iden-
tify it as dual to the quark bilinear operator �qq which is

PHYSICAL REVIEW D 81, 086009 (2010)

1550-7998=2010=81(8)=086009(11) 086009-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.086009


responsible for chiral symmetry breaking. However, [30]
and the majority of other AdS/QCD models, such as those
in [7,12,31], have the (light) quark condensate proportional
to the (light) quark mass, � / mq. This is in contrast to

QCD, where the condensate has a nonvanishing limiting
value as mq ! 0. An exception is the phenomenological

model of [28] which parameterizes the fields in such a way
as to allow mq and � to be varied independently.

In this paper we attempt to bridge the gap between the
dynamical model [30] and phenomenological models of
chiral symmetry breaking, such as [28], by demonstrating
how to compute a potential given a phenomenological
parametrization of the dilaton and/or scalar fields. This
methodology is an improvement upon [30] in two respects.
First, it is more general in that the potential can be found
for many reasonable parametrizations of the dilaton and
scalar fields. Second, even in the case considered in [30],
our resulting potential is both simpler and less constrained,
as discussed in Sec. IV.

Our paper is organized as follows. In Sec. II we identify
the basic ingredients of the AdS/QCD model and elements
of the AdS/CFT dictionary which we will use. In Sec. III
we give the relevant Einstein equations, and equations for
the background fields which generate the desired metric. In
Sec. IV we find the scalar potential when the fields have
power-law profiles. In Sec. V we show how to find the
potentials for models wherein the fields are allowed to have
more complicated profiles. In Sec. VI we provide concrete
examples of some parametrizations which lead to analytic
potentials. In Sec. VII we discuss what happens if the
potential is restricted to a form which has only quadratic
and quartic terms in the scalar field. We conclude the paper
in Sec. VIII.

II. INGREDIENTS OF THE MODEL

We are interested in dynamically generating phenome-
nological AdS/QCD backgrounds. Following [30], we as-
sume that the matter which supports the metric is a set of
two scalar fields: � and �. These scalar fields interact
through a scalar potential Vð�;�Þ; it will be our goal to
determine suitable potentials which lead to phenomeno-
logically desirable backgrounds.

We would like to have a background which has the
following characteristics:

(1) The metric in the string frame should be exactly
five-dimensional anti–de Sitter space.

ds2string ¼
L2

z2
½�dt2 þ dxidx

i þ dz2�: (1)

Here L denotes the AdS curvature radius, the index i
runs over the three spatial dimensions, and z denotes
the extra (fifth) dimension.

(2) At asymptotically large z the dilaton should behave
as �ðzÞ � z2.

(3) The mass of the dilaton should take a value such that
the dual operator in the 4D field theory has a physi-
cally relevant mass dimension.

Points 1 and 2 are necessary ingredients for a soft-wall
model. Such a background leads to linear radial trajectories
in the resulting meson spectrum (m2

n � n), in agreement
with the data [7]. Point 3 is related to the mass of the
dilaton. The relationship between the field’s mass and the
dimension � of the dual field theory operator is given by
the AdS/CFT dictionary [1–4].

m2L2 ¼ �ð�� 4Þ: (2)

We will show that we are able to keep this parameter
arbitrary in many of our solutions, but of course we want
the corresponding gauge theory operator dimension to be
physically relevant, and the mass of the dilaton should not
violate the Breitenlohner-Freedman stability bound [32]
which states that m2

�L
2 � �4.

The above points are the only necessary requirements
for a soft-wall type of model. If, in addition to this, we
would like to associate the scalar field � with the operator
responsible for chiral symmetry breaking, �qq, we require
the following:
(4) The mass of the scalar field should bem2

� ¼ �3=L2.

(5) At small z the scalar field should behave as �ðzÞ ¼
Azþ Bz3 þ � � � .

(6) At asymptotically large z the scalar field should
behave as �ðzÞ � z.

Because the dimension of the operator �qq is 3, we require
that m2

� ¼ �3=L2. If the scalar field � is dual to the

operator responsible for chiral symmetry breaking, then
in the UV (z ! 0) regime it should have a profile which
can be expanded as in item 5 above with the coefficients A
and B proportional to the quark mass and the chiral con-
densate, respectively (cf. [4,6,28]). Often in this work we
will consider the chiral limit of zero quark mass; in this
case the coefficient A vanishes, and chiral symmetry is
broken spontaneously. It was also argued in [33–35] that
the scalar field � should behave linearly at large z so as to
realize the nonrestoration of chiral symmetry at large n,
again in agreement with the linear radial trajectories
present in the data.1 Note that to properly be dual to this
operator, the field � should be charged under the bulk
chiral symmetry, meaning it should be complex and matrix
valued. We have introduced a single real scalar field for
simplicity, but we will discuss promotion of this field to a
complex, matrix valued one in Sec. VII.
Before proceeding, let us make some comments on the

relation of our approach to that of standard AdS/CFT. In

1It is important to note there is not a consensus in the literature
regarding chiral symmetry restoration in highly excited hadrons.
For an opposing viewpoint, see [36]. The requirement of chiral
symmetry restoration at large n would require different field
profiles at large z. We will not address such a model within the
context of this work.
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the usual AdS/CFTapproach, a conformal field theory (e.g.
N ¼ 4 supersymmetric Yang-Mills theory) is deformed
by introducing operators into the field theory Lagrangian.
From the gravity point of view, one takes an existing bulk
geometry (e.g. AdS5) and introduces fields into this back-
ground. Near the UV boundary, these fields act as free,
noninteracting fields on AdS5. As one moves into the
interior of the AdS space, the geometry will no longer be
AdS5 due to the backreaction induced by the new bulk
fields.

In this work, we compute all backreaction by introduc-
ing the fields into the Lagrangian and then solving the
equations of motion for all values of the radial coordinate,
including the interior of the AdS space. As mentioned in
point 1 above, we have chosen the metric to be exactly
AdS5, and thus the potentials which we detail in this work
lead to exactly AdS5 metrics after all backreaction of the
fields is taken into account.

Our choice of metric is made simply to reduce the
amount of freedom which exists in the equations of mo-
tion; the methods which we detail here could easily be
extended to metrics which are warped versions ofAdS5. Of
course, one could introduce deformations into the back-
grounds which we detail below in the usual AdS/CFTway;
such deformations would, in general, introduce backreac-
tion which would cause the metric to be no longer exactly
AdS5 for all values of the radial coordinate.

Now that we have detailed the set of requirements for
our model and clarified our approach, let us now proceed to
derive the relevant background equations and attempt to
find potentials and solutions which have the characteristics
we have outlined above. We will see that it is quite difficult
to create a simple phenomenological model which satisfies
all of the above requirements.

III. BACKGROUND EQUATIONS

In the Einstein frame, the action can be written in its
canonical form

S E ¼ 1

16�G5

Z
d5x

ffiffiffiffiffiffiffiffiffiffi�gE
p �

RE � 1

2
@��@��

� 1

2
@��@

��� Vð�;�Þ
�
: (3)

Here R denotes the Ricci scalar, G5 stands for the five-
dimensional gravitational constant, and the subscript E
denotes the Einstein frame. Note that our conventions are
such that the fields � and � are dimensionless while
Vð�;�Þ has dimensions of energy squared. The energy
momentum tensor which is derived from this action is

8�G5T�� ¼ 1
2ð@��@��þ @��@��� g��LÞ; (4)

L � 1
2@��@��þ 1

2@��@
��þ Vð�;�Þ: (5)

We assume that in the string frame there is a nontrivial

coupling of the dilaton to the Ricci scalar. As such, the
string and Einstein frame metrics are related by the con-
formal transformation

g
string
�� ¼ e2a�gE��; (6)

where a is a constant which depends on the coupling of the
dilaton to the Ricci scalar in the string frame action.
Because the metric is static and depends only on the
extra-dimensional coordinate z, we make the usual as-
sumption that the fields themselves are only functions of
this coordinate.
There are four nontrivial background equations. We will

work with the following combinations, where G�� denotes

the Einstein tensor:

gttGtt � gzzGzz ¼ 8�G5ðgttTtt � gzzTzzÞ
¼ 1

2g
zzð½�0ðzÞ�2 þ ½�0ðzÞ�2Þ; (7)

gttGtt þ gzzGzz ¼ 8�G5ðgttTtt þ gzzTzzÞ ¼ �Vð�;�Þ;
(8)

h� ¼ @V

@�
; (9)

h� ¼ @V

@�
: (10)

As usual, h � r�r� and r� denotes the covariant de-

rivative with respect to the background metric. Using the
presumed form of the metric expressed by Eqs. (1) and (6),
these become

6a�00ðzÞ þ ½�0ðzÞ�2ð6a2 � 1Þ � ½�0ðzÞ�2 þ 12a�0ðzÞ
z

¼ 0;

(11)

3e2a�ðzÞ z
2

L2

�
a�00ðzÞ � 3a2½�0ðzÞ�2 � 6

z
a�0ðzÞ � 4

z2

�

¼ Vð�ðzÞ; �ðzÞÞ; (12)

e2a�ðzÞ z
2

L2

�
�00ðzÞ � 3a½�0ðzÞ�2 � 3�0ðzÞ

z

�

¼ @V

@�

���������¼�ðzÞ;�¼�ðzÞ
; (13)

e2a�ðzÞ z
2

L2

�
�00ðzÞ � 3�0ðzÞ

�
a�0ðzÞ þ 1

z

��

¼ @V

@�

���������¼�ðzÞ;�¼�ðzÞ
: (14)

These equations are not all independent. Because the po-
tential depends on z only through the fields, we have
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d

dz
Vð�ðzÞ; �ðzÞÞ ¼ @V

@�
�0ðzÞ þ @V

@�
�0ðzÞ: (15)

This relation allows one to eliminate either (14) or (13).
So far we have kept the constant a arbitrary; its value can

be fixed by examining (11). Consider this equation in the
limit of large z, where the dilaton is required to be qua-
dratic in z. Assuming

�ðzÞ ¼ �z2; (16)

with � a constant, Eq. (11) becomes

½�0ðzÞ�2 ¼ 36a�þ 4�2z2ð6a2 � 1Þ: (17)

In the limit of large z, the constant term can be dropped.
The solution to the resulting differential equation gives
�ðzÞ � z2 at large z. This is in contradiction with the
desired behavior detailed in Sec. II. The only way to avoid
this problem is by choosing

a ¼ �1=
ffiffiffi
6

p
(18)

so that the z2 term drops out in the above equation. With
this choice, one is able to have the desired quadratic dilaton
and linear scalar field at large z. We must choose the

positive sign so as to keep � real. Thus, we will fix a ¼
1=

ffiffiffi
6

p
for the remainder of this work. It is quite interesting

that this value of a appears frequently in the literature and
can arise quite naturally from noncritical string theory
[10,11,30,37,38]. With this value of the a, the string frame
action is

Sstring ¼ 1

16�G5

Z
d5x

ffiffiffiffiffiffiffiffiffi�gs
p

e�2�

�
Rs þ 4@��@��

� 1

2
@��@

��� e�4�=3Vð�;�Þ
�
: (19)

Here we are using the subscript s to distinguish the string
frame from the Einstein frame. The field � is a scaled
version of �,

� ¼
ffiffi
3
8

q
�: (20)

The authors of [30] considered this action based on string
theory considerations. In fact, the normalization of the
kinetic term for the dilaton above is exactly the same as
that which often appears in a low energy effective action
for string theory (cf. Sec. 3.7 of [39]). We have shown that
this is the only possible dilaton-scalar action which is
consistent with our desired behavior outlined in Sec. II.
In other words, if the kinetic term in (19) were normalized
differently, one could not satisfy all of the requirements in
Sec. II.

IV. POWER-LAW SOLUTIONS

Let us first try to construct potentials which have solu-
tions where � is purely a power law in z. As such, we make
the ansatz

�ðzÞ ¼ �0z
n: (21)

Of course, only certain powers of z appear in the ingre-
dients of our model outlined in Sec. II, but it is just as easy
to work with a general n at this stage. Equation (11) gives
the solution for �,

�ðzÞ ¼ n
ffiffiffi
6

p
12ð1þ 2nÞ�

2
0z

2n: (22)

Here we have assumed a Dirichlet boundary condition on
� so that �ð0Þ ¼ 0. With this choice, the Einstein frame
metric is asymptotically anti–de Sitter.
Inserting the solutions for the fields into (12) and (13)

yields the system

Vð�ðzÞ; �ðzÞÞ ¼ e2�=
ffiffi
6

p

L2

�
�12þ ð�0nz

nÞ2
2ð1þ 2nÞ ð2n� 7Þ

� ð�0nz
nÞ4

4ð1þ 2nÞ2
�
;

(23)

@V

@�

���������¼�ðzÞ;�¼�ðzÞ
¼ 2e2�=

ffiffi
6

p

ffiffiffi
6

p
� ð�0nz

nÞ2
2ð1þ 2nÞ ð2n� 4Þ

� ð�0nz
nÞ4

4ð1þ 2nÞ2
�
: (24)

As mentioned previously, we need not consider Eq. (14)
since it is not independent of the two listed above.
The challenge now is to determine the potential Vð�;�Þ.

The authors of [30] assume that the potential can be
derived from a superpotential and use this fact to help
determine V. We will take a different route. By examining
the structure of the above equations we notice two facts.
First, both equations contain the same exponential factor.
This leads us to believe that the potential can be written as

Vð�;�Þ ¼ e2�=
ffiffi
6

p
~Vð�;�Þ: (25)

This form of the potential is also natural on the grounds
that the exponential factor arises due to the transformation
between the string and Einstein frames. ( ~V is the string
frame potential.) Second, we notice that the only powers of
z which appear in the above system of equations are z2n

and z4n. Motivated by this, and the fact that we know the
power-law behavior of both � and �, we make the ansatz

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2
½c0 þ c1�þ c2�

2 þ c3�
2

þ c4�
4 þ c5��2�: (26)

The terms proportional to � and �2 give rise to the terms
containing z2n, while the terms proportional to �2, �4, and
��2 give rise to the z4n terms. One should then insert this
ansatz into the background equations (23) and (24), match

J. I. KAPUSTA AND T. SPRINGER PHYSICAL REVIEW D 81, 086009 (2010)

086009-4



the coefficients of z on each side of the equation, and try to
solve for the coefficients c0 . . . c5.

The resulting system of equations does have a solution.
Even more remarkably, the solution only determines five of
the six coefficients. For example, c1 . . . c6 can be written in
terms of c3 as follows:

c0 ¼ �12; (27)

c1 ¼ 4
ffiffiffi
6

p
; (28)

c2 ¼ nðn� 4Þ
2

; (29)

c4 ¼ n2ðc3 � 6nð1þ nÞÞ
24ð1þ 2nÞ2 ; (30)

c5 ¼ nð3n� c3Þffiffiffi
6

p ð1þ 2nÞ : (31)

At first sight, one may be concerned about the term
linear in � in (26). But when one expands the Einstein
frame potential, one finds

Vð�;�Þ � �12

L2
þ 4þ c3

L2
�2 þ nðn� 4Þ

2L2
�2

�
�
nð4þ c3 þ 4n� 2n2Þffiffiffi

6
p ð1þ 2nÞL2

�
��2 . . . (32)

In fact, the value of c1 which solves the background
equations is also the value which ensures the expansion
of the potential has no linear terms. This form of the
potential is exactly what we would expect from the AdS/
CFT correspondence. The first term is the usual cosmo-
logical constant term, which is followed by the mass terms
of the two scalar fields. Evidently, we should identify

c3 ¼
ðm�LÞ2 � 8

2
: (33)

Some comments are in order regarding this arbitrary
mass. Astute readers will notice that an arbitrary mass
term m� and a field �, which behaves as z2n near the

AdS boundary, do not agree with the standard AdS/CFT
correspondence where the fields near the boundary behave
as

�ðz ! 0Þ � Az�ð1þ . . .Þ þ Bz4��ð1þ . . .Þ: (34)

This discrepancy is due to two facts. First, we have two
scalar fields with particular scaling�� �2 near the bound-
ary, and second there is an interaction term proportional to
��2 in (32). Consider the background equation (13) for the
field � near z ¼ 0 where the fields are small. The right-
hand side depends on @V=@�, and using (32), we see that
the leading term is m�� as expected. However, the final

term in (32) contributes a term proportional to �2. For the
solutions we consider, � is proportional to �2 near the

boundary, and thus this term cannot be neglected with
respect to the termm�� in (13). This is significant because

it means that the equation of motion (13) does not reduce to
that of a free scalar field on AdS5 near the boundary. The
original papers on AdS/CFT (cf. [4]), assumed the fields in
question were free (i.e. noninteracting) near the boundary,
and this is the reason for the discrepancy of our results with
the usual AdS/CFT ones. If one requires agreement with
the usual AdS/CFT prescription, one can easily do so by
requiring that the interaction term in (32) vanish. This
leads to the requirement that

4þ c3 ¼ 2n2 � 4n; (35)

and hence

ðm�LÞ2 ¼ 2nð2n� 4Þ; (36)

which is in agreement with standard AdS/CFT. For a
quadratic dilaton (n ¼ 1), we have ðm�LÞ2 ¼ �4, the

same value found in [30]. Unfortunately, this requires an
operator of dimension �� ¼ 2 which does not correspond

to any local gauge invariant operator in QCD. For the
remainder of this work, we will choose to continue to
keep m� arbitrary as much as possible. Because the stan-

dard AdS/CFT dictionary does not apply except for par-
ticular values of m�, field theory interpretations of the

operator dual to � will require a careful analysis which
is beyond the scope of this work. This issue does not arise
for the field �. Regardless of the value of m�,

m2
�L

2 ¼ nðn� 4Þ: (37)

Furthermore, if we require that m2
�L

2 ¼ �3 as outlined in

Sec. II, the only acceptable values of n are n ¼ 1 and n ¼
3. (This fact was also noted in the recent work [40].) These
are exactly the two different powers of n which appear in
the low and high z regions in a desired phenomenological
model. Putting everything together, we can write the po-
tential as

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2

�
�12þ 4

ffiffiffi
6

p
�þ ðm�LÞ2 � 8

2
�2

þ nðn� 4Þ
2

�2 þ ½8� ðm�LÞ2 þ 6n�k��2

þ 1

2
½ðm�LÞ2 � 8� 12nð1þ nÞ�k2�4

�
: (38)

Here we have defined

k � n
ffiffiffi
6

p
12ð1þ 2nÞ : (39)

This potential admits a solution where the string frame
metric is given by (1), and the fields � and � have power-
law profiles (21) and (22). For the case of n ¼ 1, we have
the dynamical soft-wall model with a quadratic dilaton and
linear scalar field. The potential listed above is an alter-
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native to that given in [30]. We believe that this potential is
an improvement over the latter because it is simpler and
because the mass of the dilaton can be chosen at will.

Of course, the potential listed above is not unique. One
could add terms provided they vanish upon application of
the equations of motion. If a term �Vð�;�Þ is added, the
above solution will still be a solution of the new potential
provided that

�Vð�ðzÞ; �ðzÞÞ ¼ 0; (40)

@ð�VÞ
@�

���������¼�ðzÞ;�¼�ðzÞ
¼ 0; (41)

@ð�VÞ
@�

���������¼�ðzÞ;�¼�ðzÞ
¼ 0; (42)

where �ðzÞ and �ðzÞ are given in (21) and (22). As an
example, a term proportional to

ð�� k�2Þl
will not change the equations of motion provided l � 2.

V. SOLUTIONS FOR GENERAL
PARAMETRIZATIONS

We are now in a position to find potentials for more
complicated field profiles, those which are not exactly
power laws. As mentioned previously, at small z we would
like either�� z or�� z3 depending on whether the quark
mass is zero or not. At large z we require �� z; this is
necessary for a quadratic dilaton (and hence linear radial
trajectories) by (11).

By examining Eq. (38) for n ¼ 1 and n ¼ 3, one notices
that the only differences between these two potentials are
the coefficients of the �4 term and the��2 term. Motivated
by this, let us make an ansatz that the potential can be
written

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2

�
�12þ 4

ffiffiffi
6

p
�þ

�ðm�LÞ2 � 8

2

�
�2

� 3

2
�2 þ f1ð�Þ�4 þ f2ð�Þ��2

�
: (43)

The functions f1 and f2 could, in general, also depend on
�, but we have chosen them to only be functions of � for
simplicity. Let us also assume that � is a monotonically
increasing function of z such that when z is large, � is
large, and when z is small, � is small. Then, to have the
desired scalar field profile, we simply require that

f1ð� ! 1Þ ¼ 1

432
ðL2m2

� � 32Þ; (44)

f2ð� ! 1Þ ¼
ffiffiffi
6

p
36

ð14� L2m2
�Þ; (45)

and

f1ð� ! 0Þ ¼ 1

432
ðL2m2

� � 32Þ; (46)

f2ð� ! 0Þ ¼
ffiffiffi
6

p
36

ð14� L2m2
�Þ; (47)

if the quark mass is nonzero. If the quark mass is zero, we
desire

f1ð� ! 0Þ ¼ 3

784
ðL2m2

� � 152Þ; (48)

f2ð� ! 0Þ ¼
ffiffiffi
6

p
28

ð26� L2m2
�Þ; (49)

with f1 and f2 smooth functions of �. In other words, when
the fields are large, the potential should take the form of
(38) with n ¼ 1, and when the fields are small, the poten-
tial should take the form of (38) with either n ¼ 3 or n ¼
1. One cannot choose any convenient functions f1 and f2;
they must be consistent with the equations of motion. To
see this, for the moment let us assume that the function
�ðzÞ is known and exhibits the desired low and high z
behavior. Let us now determine the functions f1ð�Þ and
f2ð�Þ.
One must go back to the original background equations

(11)–(14) using this potential ansatz. First, one can solve
(11) for �ðzÞ in terms of �ðzÞ. The solution is

�ðzÞ ¼ �0 þ�1

z
þ 1ffiffiffi

6
p

Z z

0

dy

y2

Z y

0
x2½�0ðxÞ�2dx; (50)

where �0 and �1 are integration constants. We would like
�ð0Þ ¼ 0 so that the Einstein frame metric is asymptoti-
cally anti–de Sitter. In order to satisfy this boundary con-
dition, both integration constants must vanish. For
convenience, we now perform an integration by parts so
that

�ðzÞ ¼ 1ffiffiffi
6

p
�Z z

0
x½�0ðxÞ�2dx� 1

z

Z z

0
x2½�0ðxÞ�2dx

�
: (51)

Next, one can take a linear combination of (12) and (13)
such that both the �00 and �02 terms are eliminated. This
equation is

�0ðzÞzþ ��ðzÞ � �2ðzÞ
3

f2ð�ðzÞÞ ¼ 0; (52)

where

� � 1
3½8� ðm�LÞ2�: (53)

Substituting in the solution for�ðzÞ here, one can solve for
f2:

f2ð�ðzÞÞ�2ðzÞ ¼ 3ffiffiffi
6

p
�ð1� �Þ

z

Z z

0
x2½�0ðxÞ�2dx

þ �
Z z

0
x½�0ðxÞ�2dx

�
: (54)
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Finally, one has to go back to either (12) or (13) and solve for f1ð�Þ. First, let us define some convenient notation,

IðzÞ �
Z z

0
x½�0ðxÞ�2dx: (55)

Then one finds the following solution for f1ð�Þ.
f1ð�ðzÞÞ�4ðzÞ ¼ z2

2
½�0ðzÞ�2 þ 3

2
�2ðzÞ þ 1

6ð1� �Þ f
2
2ð�ðzÞÞ�4ðzÞ

� IðzÞ
2

�
ðm�LÞ2 þ 3�þ 2ffiffiffi

6
p ð1� �Þ f2ð�ðzÞÞ�

2ðzÞ � �

2ð1� �Þ IðzÞ
�
: (56)

Now we see how the functions f1 and f2 are correlated
with the solution �ðzÞ.

Of course we are not finished, because the potential
should be a function of the fields �, � only and should
not depend explicitly on the coordinates. The expressions
for f1 and f2 above need to be rephrased so that they only
depend on the field �. To achieve this, instead of parame-
trizing �ðzÞ, we should specify the inverse relationship
zð�Þ. As before, we assume that z is a monotonically
increasing function of �. For the correct asymptotic be-
havior, we require

zð� ! 1Þ � � (57)

and

zð� ! 0Þ � �; (58)

if the quark mass is nonzero, and

zð� ! 0Þ � �1=3; (59)

if the quark mass is zero. It is now a simple matter to
transform the potential using the relation

�0ðzÞ ¼ 1

z0ð�Þ : (60)

For example,

Ið�Þ ¼
Z �ðzÞ

�ð0Þ
zð�Þ 1

½z0ð�Þ�2
dz

d�
d� ¼

Z �

0

zð�Þ
z0ð�Þd�: (61)

This allows us to compute the potential as a function of the
fields only. For convenience, define

�1ð�Þ � �

1� �

Z �

0

zð�0Þ
z0ð�0Þd�

0; (62)

�2ð�Þ � 1

zð�Þ
Z �

0

zð�0Þ2
z0ð�0Þ d�

0: (63)

Then the solutions for � and the potential are

�ð�Þ ¼ 1ffiffiffi
6

p
�
1� �

�
�1ð�Þ � �2ð�Þ

�
; (64)

�2f2ð�Þ ¼ 3ffiffiffi
6

p ð1� �Þ½�1ð�Þ þ �2ð�Þ�; (65)

�4f1ð�Þ ¼ 1

2

�
zð�Þ
z0ð�Þ

�
2 þ 3

2
�2 þ 1� �

4�
fð�� 1Þ

	 ½�1ð�Þ þ �2ð�Þ�2 þ �2
2ð�Þ � 16�1ð�Þg: (66)

In all,

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2

�
�12þ

ffiffiffi
6

p
2

�½8þ ð1� �Þ

	 ð�1ð�Þ þ �2ð�ÞÞ� � 3�

2
�2 þ 1

2

�
zð�Þ
z0ð�Þ

�
2

þ �� 1

4�
½ð1� �Þ½�1ð�Þ þ �2ð�Þ�2 � �2

2ð�Þ

þ 16�1ð�Þ�
�
: (67)

This set of equations is one of the central results of this
work. Given a phenomenological parametrization zð�Þ,
one needs to do two integrals to determine �1 and �2, after
which point the potential which gives rise to the desired
solution can be determined. In addition, one can see how
the solution for � must be correlated with such a parame-
trization from (64).
The simplicity of the potential is dependent on the

simplicity of the � functions, which are in turn related to
the parametrization zð�Þ. We are free to choose zð�Þ at
will. Unfortunately, there is no guarantee that the potential
has an analytic form, as the integrals (62) and (63) cannot
always be done in closed form. In the following section, we
will give a few examples of parametrizations zð�Þ which
lead to analytic potentials.

VI. EXAMPLES

A simple parametrization zð�Þ which has the correct
behavior when the quark mass is zero is

zð�Þ ¼ 	

�
�þ

�
�


2

�
1=3

�
; (68)

where 
 is a positive dimensionless constant and 	 is a
positive constant with dimension of length. Such a parame-
trization allows for an analytic potential. The relevant
functions which appear in the potential are
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�1ð�Þ ¼ �

18
2ð�� 1Þ ½6y
2=3 � 9y4=3

� 9y2 � 2 lnð1þ 3y2=3Þ�; (69)

�2ð�Þ ¼ 4

27
2ðy1=3 þ yÞ
�
y1=3 � yþ 27

15
y5=3 þ 135

28
y7=3

þ 27

12
y3 � 1ffiffiffi

3
p arctanð ffiffiffi

3
p

y1=3Þ
�
; (70)

where y � 
�. In fact, the above parametrization can be
generalized to

zð�Þ ¼ 	

�
�


2

�
1=3½1þ ð
�Þ2=3n�n: (71)

Both of the integrals involved in the computation of �1 and
�2 can be done analytically without the use of special
functions if n is an integer (though n must be positive in
order for the field � to have the correct asymptotic behav-
ior). The complexity of �1 and �2 appears to increase with
increasing n, so we have quoted the simplest example
above with n ¼ 1.

Another parametrization for zero quark mass which
leads to the desired behavior is

zð�Þ ¼ 	�1=3


2=3f1þ ð
�Þ1=3½arctanðð
�Þ1=3Þ � �=2�g :
(72)

This parametrization was found by examining the behavior
of the integral appearing in �2ð�Þ. The integrand must

behave as �4=3 for small �, and as �2 for large �.
Solving the differential equation

z2ð�Þ
z0ð�Þ ¼ 3

	


2
½ð
�Þ4=3 þ ð
�Þ2� (73)

leads to the above parametrization. With this parametriza-
tion, the solutions for �1 and �2 are

�1ð�Þ ¼ �

7
2ð1� �Þ
�
�y2=3 þ 1

2
y4=3 þ 61

6
y2 þ 7y8=3

þ ð7y3 þ 9y7=3Þ
�
arctanðy1=3Þ � �

2

�

þ lnð1þ y2=3Þ
�
; (74)

�2ð�Þ ¼ 9y2 þ 7y8=3

7
2

�
1þ y1=3

�
arctanðy1=3Þ � �

2

��
;

(75)

where again y ¼ 
�. This can be generalized to other
potentials by solving the differential equation

z2ð�Þ
z0ð�Þ ¼ 	


3

d

d�

�
ð
�Þ7=3

�
9

7
þ ð
�Þ2=3n

�
n
�
; (76)

and requiring z to have the correct asymptotic behavior.
This method again leads to an analytic potential for n being
an integer, though the simplest result is that given above
with n ¼ 1.
It is tempting to try to use functions such as the expo-

nential and hyperbolic tangent to parametrize zð�Þ.
However, we have not found any applicable parametriza-
tion using these functions where both of the relevant
integrals appearing in �1 and �2 have an analytic solution.

VII. POTENTIALS QUADRATIC AND QUARTIC IN
THE SCALAR FIELD

As mentioned in the Introduction, in order for the field �
to be dual to the operator �qq it should be a complex, matrix
valued field. So far, we have only considered � to be a real
scalar field. In order to address this difficulty, one can
simply promote the field with the replacement

1
2�

2 ! �y�; (77)

where the extra factor of 1=2 is introduced to give a
canonical action for a complex scalar field. However, one
will notice that all of the potentials which were constructed
in the previous section contain fractional powers of �, and
hence such a replacement is less than desirable. If the
action is a function of �2 only, then such a promotion is
possible. Below, we will discuss two methods which allow
one to construct potentials which depend only on �2.
The first method we use to determine a potential which

is a function of �2 only is to modify the ansatz (43) so that
the functions f1 and f2 are functions of � only. More
generally, let us assume

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2
½F0ð�Þ þ F2ð�Þ�2 þ F4ð�Þ�4�; (78)

with the F functions to be determined. This strategy in-
volves parametrizing zð�Þ instead of zð�Þ, but the general
steps involved are similar to the cases already discussed.
The challenge is to find a parametrization with the desired
behavior that leads to an analytic expression for �ð�Þ. The
latter can be determined from (11) to be

�ð�Þ ¼ �61=4
Z �

0

�
d

d�
ln

�
zð�Þ2
z0ð�Þ

��
1=2

d�: (79)

In practice, it often is easiest to start somewhere in the
middle by parametrizing some intermediate quantity such
as �0ð�Þ. It turns out that a parametrization of the form

½�0ð�Þ�2 ¼
ffiffiffi
6

p
�

�7
6 þ 3

2
�
n

1þ 
�n

�
(80)

has the desired asymptotic behavior and leads to analytic
solutions for both �ð�Þ and zð�Þ. In general, these solu-
tions involve hypergeometric functions. A notable special
case is if n ¼ 1=2. Then the solutions are
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zð�Þ ¼ 	�1=6

6½ð
 ffiffiffiffi
�

p Þ1=3 � ð1þ 

ffiffiffiffi
�

p Þ1=3� ; (81)

�ð�Þ ¼ 23=4

35=4


�
Gð�Þ �Gð0Þ

þ ln

�
8þ 3

ffiffiffi
7

p
8þ 9


ffiffiffiffi
�

p þGð�Þ
��

; (82)

with

Gð�Þ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 


ffiffiffiffi
�

p Þð7þ 9

ffiffiffiffi
�

p Þ
q

: (83)

For this parametrization define

Rð�Þ ¼
ffiffiffi
6

p
2

zð�Þ
z0ð�Þ ; (84)

and make use of the calculus relations

�00ðzÞ ¼ �z00ð�Þ=½z0ð�Þ�3; (85)

�0ðzÞ ¼ �0ð�Þ=z0ð�Þ; (86)

�00ðzÞ ¼ �00ð�Þ
½z0ð�Þ�2 �

�0ð�Þz00ð�Þ
½z0ð�Þ�3 : (87)

Then the background equations (12) and (14) can be writ-
ten

F0ð�Þ þ F2ð�Þ�2ð�Þ þ F4ð�Þ�4ð�Þ
¼ �12� 8Rð�Þ � R2ð�Þ þ 1

3R
2ð�Þ½�0ð�Þ�2; (88)

2F2ð�Þ�ð�Þ þ 4F4�
3ð�Þ

¼ 2

3
�00ð�ÞR2ð�Þ

�
ffiffiffi
6

p
Rð�Þ�0ð�Þ

3

�
5þ Rð�Þ � 1

3
Rð�Þ½�0ð�Þ�2

�
: (89)

These equations can be solved to determine the F func-
tions, and hence the potential in terms of the known
functions �ð�Þ and Rð�Þ. Notice that there are only two
equations for the three F functions; we have some freedom
to choose one of the F functions at will. One possible

choice is F0 ¼ �12þ 4
ffiffiffi
6

p
�� 3

2��
2, which is the same

as the form in the ansatz (43). The resulting solutions for
F2 and F4 are quite complicated. In addition to this fact,

the leading term in the small field expansion of F4 is�
�5=6,

which is in contradiction with a well-defined conformal
limit: Vð� ! 0; � ! 0Þ ¼ �12=L2.

On the basis of algebraic simplicity, an alternative is to
choose F4 to be constant. It is then straightforward to solve
for F0 and F2. For small values of �, these functions have
the expansions

F0ð�Þ ¼ �12þ
ffiffiffi
6

p

2

x½4þ 3x1=6 þOðx1=3Þ�; (90)

F2ð�Þ ¼ �3
2 � 9

2x
1=6 þOðx1=3Þ; (91)

with x � 
2�. This solution appears to be consistent;
however, it suffers from the drawback that the potential
is quite complicated, and that the small field expansion of

F0 contains fractional powers of � starting with �7=6.
Thus, in this solution the mass of the dilaton is not well
defined. This solution adheres to all of the ingredients we
set out in Sec. II except for point 3.
We now detail a second way to determine a potential

which is a function of �2 and is thus a good candidate for a
dynamical model of chiral symmetry breaking. As above,
we will sacrifice point 3 in the ingredients of the model by
choosing a nonstandard dilaton mass.
One may have noticed that the general potential (67)

simplifies greatly in the special case � ¼ 1. This corre-
sponds to m2

�L
2 ¼ 5. If one naively uses the AdS/CFT

dictionary to compute the dimension of the corresponding
operator in this case, one finds �� ¼ 5, which is non-

renormalizable. We are unsure whether it is simply coin-
cidence that this choice simplifies the potential greatly, or
whether there is some physics hidden here. Such a choice is
certainly nonstandard, though it could be acceptable within
the context of effective field theories. However, it should
be emphasized that in light of the discussion in Sec. IV, any
use of the standard AdS/CFT dictionary in regards to the
field � should be approached with caution due to the fact
that it does not reduce to a free field near the AdS
boundary.
With the choice of ðm�LÞ2 ¼ 5, the potential (61) be-

comes2

Vð�;�Þ ¼ e2�=
ffiffi
6

p

L2

�
�12þ 4

ffiffiffi
6

p
�� 3

2
�2 þ

ffiffiffi
6

p
2

�Ið�Þ

� 1

4
Ið�Þ2 � 4Ið�Þ þ 1

2
½I0ð�Þ�2

�
; (92)

where Ið�Þ is defined in (61). Notice that only one of the
integrals appears, and all reference to the function �2 has
disappeared in the potential. At this point we can simply
parametrize Ið�Þ to fit our needs. Any parametrization of I
will do, provided that for small or large � the function
behaves as

Ið�Þ ! n

2
�2; (93)

where n is the desired power of the scalar field in this
regime [i.e. �ðzÞ � zn]. For example, if one chooses

Ið�Þ ¼ �2

2

�
3þ ð
�Þ2
1þ ð
�Þ2

�
; (94)

with
 a constant, one gets the desired asymptotic behavior

2One should take care when making this simplification due to
the presence of ð�� 1Þ in the definition of the function �1.
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for zero quark mass. All factors of �2 can be promoted to
�y�without any problem. Another such parametrization is

Ið�Þ ¼ �2

2
þ 1


2
ln½1þ 
2�2�: (95)

The solutions for the fields �ðzÞ and �ðzÞ could then be
found numerically from (61) and (64).

VIII. CONCLUSION

In this paper we addressed the problem of constructing
models of AdS/QCD. Specifically, we showed how to
construct a potential for dilaton and scalar fields that leads
to an AdS/QCD model with many essential features of
QCD. Given a suitable parametrization zð�Þ or zð�Þ, we
show how to construct a potential Vð�;�Þ which has a
solution with the desired properties; as such, the main
results of this paper are (64) and (67). Linear radial tra-
jectories, conformal symmetry breaking, and both sponta-
neous and explicit chiral symmetry breaking can be
incorporated. The desired ingredients of the model as de-
tailed in Sec. II are numerous, and the fact that such a
solution can be dynamically generated at all within such a
simple setup is somewhat surprising. It is especially inter-
esting that the mass of the dilaton can be kept arbitrary
throughout much of the analysis. However, as discussed in
Sec. IV, traditional field theory interpretations of dual
operators via the standard AdS/CFT dictionary are ques-
tionable, except for particular values of the dilaton mass.

Explicit examples of potentials were given, at least for
the case when the light quark mass is zero, although this
was only for purposes of illustration and not a limitation in

principle. We have also not discussed the stability of the
examples we provide, as that analysis would be beyond the
scope of this work. Before calculating physical observables
within the context of such a solution, its stability would
have to be checked. In order to incorporate chiral symme-
try breaking, the scalar field we introduce into our action
needs to be promoted to a matrix valued field, and this
requirement complicates the analysis. However, we find
that a nonstandard dilaton mass choice greatly simplifies
the results.
One might have expected to find simple expressions for

the potential since the Lagrangian for QCD is so simple to
write down. However, there is no reason for this to be so
and, unfortunately, the analytic expressions in our illustra-
tive examples are not so simple, although the general
structure is. It remains a challenge to find a simple ex-
pression for the potential that leads to the desired proper-
ties for the dilaton and scalar fields. Nevertheless, the
potentials given here can be useful in the context of had-
ronic structure. We also believe that the methods we have
outlined here may be useful for the determination of po-
tentials in other bottom up AdS/QCD models, and at finite
temperature.
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