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We investigate magnetic monopole solutions of the non-Abelian Dirac-Born-Infeld (DBI) action

describing two coincident non-BPS D9-branes in flat space. Just as in the case of kink and vortex

solitonic tachyon solutions of the full DBI non-BPS actions, as previously analyzed by Sen, these

monopole configurations are singular in the first instance and require regularization. We discuss a suitable

non-Abelian ansatz that describes a pointlike magnetic monopole and show it solves the equations of

motion to leading order in the regularization parameter. Fluctuations are studied and shown to describe a

codimension three BPS D6-brane, and a formula is derived for its tension.
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I. INTRODUCTION

Tachyon condensation has been a subject of consider-
able investigation via the physics of non-Bogomol’nyi-
Prasad-Sommerfield (BPS) D-branes (for a comprehensive
review see [1]). Such tachyons arise quite naturally in the
open string spectrum when one considers non-BPS D-
branes in type IIA or IIB string theories. A growing body
of research has developed in open string field theory (for a
review see [2] or [3,4] for more recent works), boundary
string field theory (BSFT) [5–8], and various effective
actions around the tachyon vacuum [9–13] to demonstrate
Sen’s results [1] concerning the fate of the open string
vacuum in the presence of tachyons.

In related developments, it was also shown that D-brane
charges take values in appropriate K-theory groups of
space-time. A major result is that all lower-dimensional
D-branes can be considered in a unifying manner as non-
trivial excitations on the appropriate configuration of
higher-dimensional branes. In type IIB, it was demon-
strated by Witten in [15] that all branes can be built from
sufficiently many D9–anti-D9 pairs. In type IIA, Horava
described how to construct BPS Dðp� 2k� 1Þ-branes as
bound states of unstable Dp-branes [16].

The mechanism of tachyon condensation into lower-
dimensional BPS D-branes has been verified in some cases
at the level of tachyon effective actions. In [17], Sen
showed that tachyon kink solutions (that represent codi-
mension one BPS D-branes) exist even when one considers
the full nonlinear Dirac-Born-Infeld (DBI)-like action of a
non-BPS D-brane in a flat background. Compared to their
counterpart obtained in the truncated theories [7,18–20],
these kinks are singular and require regularization.
Remarkably, it was shown that in the limit where the
regularization parameter is removed, the effective theory
of fluctuations about the regularized tachyon kink profile,

which depends only on a single spatial world-volume
coordinate, are precisely those of a codimension 1 BPS
D-brane and is described by a DBI action. Furthermore Sen
also showed that in brane-antibrane systems, in which a
single complex tachyon field is present, regularized vortex
solutions to the equations of motion derived from the DBI
non-BPS action exist, which naturally depend on two
spatial world-volume coordinates. Analysis of the fluctua-
tions in this case again showed that to leading order, they
are those of a codimension 2 BPS D-brane as described by
the appropriate full nonlinear DBI action.
In [21], we investigated the generalization of tachyon

kink solutions to the case of the full nonlinear non-Abelian
action of two coincident non-BPS D-branes. We showed
that, in certain cases, starting with two non-BPS D9-
branes, the fluctuations about the regularized non-
Abelian tachyon kink profile describe a coincident pair of
BPS D8-branes.
In this paper, we want to investigate codimension 3

magnetic monopole solutions, arising from the same
DBI-like action of two coincident non-BPS D9-branes,
which correspond to one BPS D6-brane. Monopole solu-
tions in certain truncations of tachyon models have already
been studied in [18]. In [19] the authors extended their
results to include all higher derivatives using the BSFT
approach and thus argued the ansatz for the tachyon mono-
pole introduced in [18] survives higher derivative correc-
tions. In this paper we wish to investigate magnetic
monopole solutions arising from the full nonlinear non-
Abelian DBI-like action, i.e., without assuming an action
truncated in an expansion in derivatives of the tachyon
field. From our understanding of the DBI tachyon kink
and vortex solutions discussed above, we expect (and find)
that such monopole solutions will again be singular in the
first instance and require regularization. We find solutions
that are in perfect agreement with those obtained in BSFT
and so provide an independent check of the tachyon mono-
pole ansatz first presented in [18,19].
Our starting point will be the effective description of two

coincident non-BPS D9-branes proposed in [12]. This
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theory describes a non-Abelian version of the DBI action in
which the tachyon field transforms in the adjoint represen-
tation of the Uð2Þ gauge symmetry of the coincident non-
BPS D9-brane world-volume action. In the original con-
struction of this action and its generalization to coincident
non-BPS Dp-branes, a standard trace prescription (which
we denote as Tr) was taken over the gauge indices. Another
prescription, motivated by string scattering calculations (at
least to low orders in �0 [22,23]), is to take the symme-
trized trace (which we denote by STr) over gauge indices.
In both cases the expression being traced over is the same,
but the STr prescription results, in general, in significantly
more complicated terms in the action compared to Tr. In
this paper wewill adopt the STr procedure, and wewill find
that its implementation in the case of a tachyon monopole
profile is straightforward and leads to the correct expres-
sion for the D6-brane tension.

The structure of the paper is as follows. We begin in
Sec. II with a ‘t Hooft-Polyakov monopole-like ansatz for
the Uð2Þ non-Abelian DBI tachyon world-volume theory
and show how it leads to the correct expression for the
resulting D6-brane tension, realized as a codimension 3
solution of the equations of motion, with a suitable regu-
larization. In Sec. III a study of the fluctuation spectrum
about these monopoles shows them to be precisely de-
scribed by a DBI action of a single BPS D6 brane in flat
space, in the limit where the regularization is removed. We
end with some conclusions and speculations. Finally in the
Appendix, we show how the tachyon monopole ansatz
satisfies the correct Dirac quantization of magnetic charge.

II. THE ‘T HOOFT-POLYAKOV MONOPOLE AND
THE DBI ACTION

We begin by reviewing an effective DBI action for the
coincident non-BPS D9-brane pair [12]. This system is
unstable and it contains a tachyon in its spectrum; in
particular, around the maximum of the tachyon potential,
the theory contains a Uð2Þ gauge field and four tachyon
states represented by a 2� 2 Hermitian matrix-valued
scalar field transforming in the adjoint representation of
the gauge group.

In this paper we are going to use the following DBI
action for the two non-BPS D9-branes:

SDBI ¼ �STr
Z

d10xe��VðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detG��

q
; (2.1)

where

G�� ¼ g��12 þ B��12 þ �D�TD�T þ �F��; (2.2)

where � ¼ 2��0. In Eq. (2.1), g��, B��, and � are,

respectively, the space-time metric, the antisymmetric
Kalb-Ramond tensor, and dilaton fields, whereas 12 is
the 2� 2 unit matrix. The covariant derivative is defined
to be D�T ¼ @�T � i½A�; T�, and the field strength takes

the usual form F�� ¼ @�A� � @�A� � i½A�; A��.

For the potential, we shall assume only that a family of
minima can be found by taking [up to a SUð2Þ rotation]

T ¼ þ1 0
0 �1

� �
; (2.3)

which represent the tachyon on the first D-brane at its
minimum T0 ¼ þ1 and the tachyon on the second D-
brane at its minimum T0 ¼ �1. We shall also assume
that the potential vanishes at T ¼ T0. The monopole solu-
tion of the DBI action (2.1) corresponds in taking the
tachyon and the gauge fields to depend on three world-
volume coordinates xi, with i ¼ 1, 2, 3, whereas �;� ¼
0; 4; . . . ; 9 will label the other world-volume coordinates
including time.
Apart from a Uð1Þ subgroup, the effective theory of two

unstable D-branes admits as a solution the ‘t Hooft-
Polyakov monopole, which in the limit of zero-size core
is of the form

TðxÞ ¼ tðrÞ x � �
r

; AiðxÞ ¼ 1

2
	ijk

xj

r2
�k; (2.4)

where r is the radial distance from the origin in the three
transverse directions [24]. In [25] it was shown that the
limit of zero-size core correctly reproduces also the
Ramond-Ramond couplings of a D6-brane. It is actually
more convenient to work in spherical coordinates

x1 ¼ r cos
; x2 ¼ r sin
 cos�; x3 ¼ r sin
 sin�

(2.5)

to make use of the spherical symmetry of the solution. In
these coordinates the tachyon takes the form

T ¼ tðrÞxr � � (2.6)

and the gauge fields

Ar ¼ 0; A
 ¼ � 1

2 sin

x�r � �;

A� ¼ 1

2
sin
x
r � �;

(2.7)

where xir ¼ @rx
i, xi�r ¼ @r@�x

i, and so on. The covariant

derivatives of the tachyon are

DrT ¼ t0ðrÞxr � �; D
T ¼ D�T ¼ 0; (2.8)

the gauge field strength

Fr
 ¼ Fr� ¼ 0; F
� ¼ �1
2 sin
xr � �: (2.9)

Finally, the determinant becomes:

� detG ¼ ð1þ �DrTDrTÞðr4sin2
þ �2F2

�Þ: (2.10)

Studying solutions to the equations of motion is equiva-
lent to finding configurations that satisfy the conservation
of the energy-momentum tensor. This approach follows
that used by Sen (see [1], and references therein) in his
study of kink and vortex solitonic solutions to non-BPS
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DBI actions. The energy-momentum tensor associated
with the action (2.1) is

T�� ¼ �STrðVðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detG
p ðG�1Þ��Þ (2.11)

The elements with one r component are

Trr ¼ �STr

�VðTÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4sin2
þ �2F2


�

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �DrTDrT

p
�
;

Tr
 ¼ Tr� ¼ 0:

(2.12)

From the previous expressions it is clear that the conser-
vation equation for the r component reduces to @r Trr ¼ 0.
If we assume that the potential vanishes at infinity, then Trr

must vanish everywhere because of the conservation equa-
tion, hence Trr should vanish for all r. However, for r close
to the origin, the potential is finite and Trr does not vanish,
and so at least for small r we require t0ðrÞ to blow up. This
forces us to consider a regularization of the form

T ¼ t̂ðkrÞxr � � (2.13)

such that in the k ! 1 limit t0ðrÞ goes to infinity while
keeping tðrÞ fixed. In particular, in the large k limit,

DrTDrT ¼ k2 t̂02ðxr � �Þ2; (2.14)

and the energy-momentum tensor that goes like Trr � 1=k
vanishes everywhere as required. This shows that the
monopole solution is indeed a solution to the conservation
equation and hence a consistent solution of the system
equations of motion. Note, however, that it is only strictly
a solution in the limit that k ! 1 [that is, for finite k there
are terms that violate conservation of energy momentum,
which go like Oð1=kÞ and higher, just as in the kink and
vortex cases studied previously by Sen].

Let us now calculate the tension associated with the D6-
brane: the energy-momentum tensor along the directions
orthogonal to the monopole is

T�� ¼ ���� STr½VðTÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �DrTDrTÞðr4sin2
þ �2F2


�Þ
q

�; (2.15)

which, by taking the large k limit and by performing the
following coordinate transformation,

y ¼ t̂ðkrÞ; r � r̂ðyÞ ¼ k�1 t̂�1ðyÞ; (2.16)

becomes, after integrating over the xi world-volume coor-
dinates

Tint
�� ¼ � 1

2
�3=2���

� STr

�Z
dydð� cos
Þd�VðTðyÞÞðxr � �Þ2

�
:

(2.17)

In a similar fashion to the kink and vortex calculations [17]
most of the contribution to T�� comes from a small region

in r space centered around 1
k . We can identify the tension of

the D6-brane as

T 6 ¼ 1

2
�3=2 STr

Z
dð� cos
Þd�dyVðyÞðxr � �Þ2:

(2.18)

The tension of the D6-brane is determined only by the
tachyon potential and does not depend on the explicit form
of the function tðrÞ used in the ansatz to describe the soliton
tachyon configuration. We remark, however, that the above
expression is strictly true in the limit where k ! 1. In this
sense it follows closely similar calculations for the tension
of codimension 1 and 2 D-branes described by the tachyon
kink and vortex cases, respectively [17].
Now we try to evaluate the previous expression by

choosing an explicit expression for the tachyon potential.
One that gives a lot of quantitative agreements with string
theory results is [26]

VðTÞ ¼
ffiffiffi
2

p
T 9

coshð ffiffiffiffi
�

p
TÞ ¼

ffiffiffi
2

p
T 9

X1
i¼0

E2ið
ffiffiffiffi
�

p
yÞ2iðxr � �Þ2i
ð2iÞ! ;

(2.19)

where Ei is the ith Euler number. We see that in order to
compute the tension of the D6-brane we need to evaluate

STr ½ðxr � �Þ2m� ¼ Tr½ðxr � �Þ2m� ¼ 2: (2.20)

Therefore, the tension becomes

T 6 ¼
ffiffiffi
2

p
T 9�

3=24�
Z 1

0
dy

1

coshð ffiffiffiffi
�

p
yÞ ¼ ð2�

ffiffiffiffiffi
�0p
Þ3T 9;

(2.21)

which correctly reproduces the D-brane tension descent
relation between the T 9 and the T 6 tension.

III. WORLD-VOLUME ACTION ON THE
MONOPOLE

This section is devoted to analyzing the world-volume
fluctuations of the tachyon monopole background de-
scribed in the previous section. We plan to show that the
world-volume theory of the monopole condensed on a
Dp-brane results in a Dðp� 3Þ-brane, described by an
action with a Uð1Þ gauge theory. Although our analysis
involves the presence of non-Abelian tachyon and gauge
fields, what follows is similar to [17] because all our
computations are carried out inside the STr operation, in
which objects are effectively commutative. We begin by
recasting the ansatz for the monopole in the following way:

Tð ~xÞ ¼ fðrÞxi�i; Aið ~xÞ ¼ gðrÞ	ijkxj�k; (3.1)

where gðrÞ ¼ 1=ð2r2Þ and fðrÞ ¼ tðrÞ=r. We make the
following ansatz for the fluctuating fields:
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�Tð ~x; �Þ ¼ Tð ~x� ~�ð�ÞÞ ¼ fðr̂Þðxi ��ið�ÞÞ�i;

�Aið ~x; �Þ ¼ Aið ~x� ~�ð�ÞÞ ¼ gðr̂Þ	ijkðxj ��jð�ÞÞ�k;

�A�ð ~x; �Þ ¼ � �Aið ~x; �Þ@��i þ a�ð�Þ � 1: (3.2)

In the previous expressions, �ið�Þ are scalar fluctuations
that depend on the world-volume coordinate of the D-
brane, and we have defined

r̂ 2 ¼ ðxi ��ið�ÞÞðxi ��ið�ÞÞ: (3.3)

Using the fact that at the end we have to take the symme-
trized trace, we can write @� �T ¼ �@��

i@i �T and
½ �A�; �T� ¼ �@��

i½ �Ai; �T� to obtain

D�
�T ¼ �Di

�T@��
i; (3.4)

and similarly, using the fact that @� �Aj ¼ �@��
i@i �Aj and

defining f�� � @�a� � @�a�, we have

F�� ¼ �Fij@��
i@��

j þ f��1; F�j ¼ �@��
i �Fij;

Fi� ¼ � �Fij@��
j; Fij ¼ @i �Aj � @j �Ai � i½ �Ai; �Aj�:

From these we can proceed to compute the matrix elements
of our determinant. By defining

gij � �Di
�TDj

�T þ � �Fij (3.5)

we have

G�� ¼ G�� G�j

Gi� Gij

� �

¼ ��� þ �f�� þ gij@��
i@��

j �@��
igij

�gij@��
j 
ij þ gij

 !
:

Next, we introduce a new matrix Ĝ�� whose elements are

Ĝ�� � G�� þ @��
iGi� and Ĝi� ¼ Gi�, namely,

Ĝ �� ¼ Ĝ�� Ĝ�j

Ĝi� Ĝij

 !

� G�� G�j

Gi� Gij

� �
þ @��

i Gi� Gij

0 0

� �

¼ ��� þ f�� @��j

Gi� Gij

� �
: (3.6)

If we were considering matrices whose elements were

commuting, then clearly detG�� ¼ detĜ�� because in

that case the determinant would be invariant under the
addition of a multiple of a row (column) to another row
(column). This property follows from the fact that if each
element in a row (column) is a sum of two terms, the
determinant equals the sum of the two corresponding
determinants. In our case the entries of the matrix G��

are suð2Þ algebra-valued elements, and therefore it is not
clear a priori whether in this case that result should hold.
However, notice that also in our case

detĜ�� �
��������G�� þ @��

iGi� G�j þ @��
iGij

Gi� Gij

��������
¼
��������G�� G�j

Gi� Gij

��������þ
�������� @��

iGi� @��
iGij

Gi� Gij

��������
(3.7)

and the latter determinant is zero because @��
i, being

proportional to the identity in group space, commutes

with all the other elements and, therefore, detG�� ¼
detĜ��. Using the same arguments, we perform a final

redefinition by introducing the matrix ~G�� whose elements

are ~G�� ¼ Ĝ�� þ Ĝ�j@��
j and ~G�j ¼ Ĝ�j, namely,

~G�� ¼ ~G��
~G�j

~Gi�
~Gij

 !

� Ĝ�� Ĝ�j

Ĝi� Ĝij

 !
þ Ĝ�j 0

Ĝij 0

 !
@��

j

¼ ��� þ f�� þ @��
i@��i @��i

@��i Gij

 !
: (3.8)

Now, we take the determinant of the previous expression.
Notice that the determinant of Gij is given by (2.10) upon

the replacement of r by j ~x� ~�ð�Þj. This determinant has
an explicit factor of k2, which becomes dominant in the
large k limit; hence, we can ignore the off-diagonal con-

tributions in computing det ~G��. We have

� det ~G�� � � detGij det ~G��: (3.9)

So substituting this into the action gives

S ¼ ��1=2 STr
Z

d7�
Z

drdð� cos
Þd�Vðt̂ðkrÞÞkt̂0ðkrÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4sin2
þ �2F
�

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detð ~G��Þ

q
: (3.10)

Performing the coordinate transformation in (2.16) and
taking the large k limit, we find

S ¼ � 1

2
�3=2 STr

Z
d7�

Z
dydð� cos
Þd�VðyÞðxr � �Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ~G��

q
¼ �T 6

Z
d7�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ~G��

q
; (3.11)

where

~G�� ¼ ��� þ �f�� þ @��
i@��i: (3.12)

This we recognize as the action of a BPS D6-brane, with
the correct Uð1Þ gauge theory.

IV. CONCLUSIONS

In this paper, we have investigated codimension 3 mag-
netic monopole solutions arising from the DBI-like action
of two coincident non-BPS D9-branes. We have shown the
existence of singular monopoles that require regularization
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in a similar fashion to the kink and vortex soliton solutions
investigated by Sen in [17]. An analysis of the fluctuations
shows that in the limit where the regularization is removed,
we recover the correct DBI action corresponding to a
single BPS D6-brane. This extends the earlier results found
by using truncated DBI-like actions [18]. Our results are
complementary to those presented in [19] within the BSFT
framework, where the authors showed that the basic
tachyon monopole ansatz survives all higher order deriva-
tive corrections. Our results put magnetic monopoles
alongside kinks and vortices as the possible products of
tachyon condensation occurring in the full nonlinear, non-
BPS DBI actions and which yield fluctuation spectra that
are described by the full DBI action corresponding to
codimension 1, 2, and 3 BPS branes.

These results were obtained within the framework of the
non-BPS action presented in [12]. Recently, in [14], a
modified version of this action (based on the results of
[27,28]) has been proposed. In this modified version, the
tachyon field carries internal Pauli matrices �1 and �2 and
was obtained by considering the disk level S-matrix ele-
ment of one Ramond-Ramond field and three tachyon
fields. In [14] the modified action was shown to be con-
sistent with the S-matrix element of one gauge field and
four tachyon fields. The modified action amounts to a
multiplication of the tachyon potential VðTiÞ in the sym-
metrized trace version of the non-BPS action [12] by a

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2 ½Ti; Tj�½Ti; Tj�
q

, where Ti ¼ T�i, i ¼ 1, 2.

For large tachyon field values it was argued in [28] that
one may compute the STr by expanding VðTiÞ and that
such modifications resulted in effectively the potential
VðTÞ being multiplied by a factor of T4. The resulting
modified potential still vanishes as T ! 1, so tachyon
condensation is still expected to occur. Indeed, one might
argue that since the tachyon field configurations describing
kinks, vortices, and, as we have shown, monopoles, are
‘‘large’’ almost everywhere in the regularized theory [the
tachyon field is infinite everywhere except at the maximum
of VðTÞ where it is zero, in the unregularized theory], this
large T approximation is justified. Nevertheless, it would
be interesting to see the details of tachyon condensation in
such a modified DBI action, including an analysis of the
fluctuation spectrum, and to see whether they give the same
results starting with the unmodified action in [12]. A first
glance shows that at the very least, the formulas for the
various tensions of the codimension 1, 2, and 3 BPS branes
will change in that VðTÞ will be replaced by VðTÞT4.

Finally, we have only discussed tachyon condensation in
flat space. When one considers curved backgrounds, there
are nonvanishing Ramond-Ramond forms, and thus Wess-
Zumino (WZ) terms appear in the actions of both BPS and
non-BPS branes. Therefore it is natural to consider the
origin of such Wess-Zumino terms when BPS D-branes
emerge as a result of tachyon condensation. This has been
studied some time ago in [25] in the case where a normal

trace (as opposed to a symmetrized trace) prescription is
taken for the WZ term in the non-BPS D-brane action.
More recently [29,30] have studied higher order derivative
corrections to the WZ terms in non-BPS D-brane actions
via disk amplitude S-matrix calculations. It is certainly an
interesting question to consider how such corrections mod-
ify the results of [25] when one considers tachyon con-
densation producing codimension 1, 2, and 3 BPS D-
branes.
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APPENDIX: DIRAC QUANTIZATION OF
MAGNETIC CHARGE

To evaluate the magnetic charge associated with the
ansatz (2.4), we need to have a definition of the magnetic
field. In a Uð2Þ gauge theory, there is no unambiguous
definition, but in a spontaneously broken theory, with
unbroken group Uð1Þ, provided that the fields are close to
the vacuum, a magnetic field can be defined:

FEM
�� ¼ 1

2F
a
��T̂

a; (A1)

where T̂a is a unit vector that points along the direction of
the ‘‘Higgs’’ field (in the present case the adjoint tachyon

field Ta). In particular, T̂a ¼ xa

r and the physical magnetic

field becomes

Bi ¼ 1

2
	ijkF

EM
jk ¼ 1

4
	ijkF

a
jk

xa

r
: (A2)

To find the total magnetic flux that is equal to the magnetic
charge m, we have to integrate the magnetic field over S21,
the 2-sphere at infinity. The magnetic chargem enclosed in
some Gaussian surface � enclosing the magnetic charge
density is given by

m ¼
Z
S21

BidSi ¼ lim
r!1

1

4

Z
S2
	ijkF

a
jk

xa

r
dSi: (A3)

Now dSi ¼ 	ijkdx
j ^ dxk, so

m ¼ lim
r!1

1

2

Z
S2
Fa
jk

xa

r
dxj ^ dxk (A4)

in polar coordinates, and we can write

dxj ^ dxk ¼ @mx
jðr; 
; �Þ@nxkðr; 
; �Þd�m ^ d�n; (A5)

where �n, n ¼ 1, 2, correspond to the coordinates 
 and�.
We have

m ¼ lim
r!1

1

2

Z
S2
Fa
jk

xa

r
@mx

jðr; 
;�Þ@nxkðr; 
;�Þd�m ^ d�n

¼ lim
r!1

Z
S2
Fa

�

xaðr; 
; �Þ
r

d
d�; (A6)
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where the S2 has radius r. Using the definition of
xaðr; 
;�Þ and the expressions derived before for Fa


�,

we find

m ¼ � 1

2

Z
S21

sin
d
d� ¼ �2�: (A7)

The Dirac quantization of magnetic charge requires that

m ¼ 2�n

e
(A8)

for a charge m magnetic monopole where e is the electric
charge. From the definition of the covariant derivative of
the tachyon field Ta it is clear that e ¼ �1. So for an n ¼
þ1 magnetic monopole, the magnetic charge is

m ¼ 2�n

e
¼ �2�: (A9)
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