
Flat-top oscillons in an expanding universe

Mustafa A. Amin*

Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

David Shirokoff†

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 19 February 2010; published 29 April 2010)

Oscillons are extremely long lived, oscillatory, spatially localized field configurations that arise from

generic initial conditions in a large number of nonlinear field theories. With an eye towards their

cosmological implications, we investigate their properties in an expanding universe. We (1) provide an

analytic solution for one-dimensional oscillons (for the models under consideration) and discuss their

generalization to three dimensions, (2) discuss their stability against long wavelength perturbations, and

(3) estimate the effects of expansion on their shapes and lifetimes. In particular, we discuss a new,

extended class of oscillons with surprisingly flat tops. We show that these flat-topped oscillons are more

robust against collapse instabilities in (3þ 1) dimensions than their usual counterparts. Unlike the

solutions found in the small amplitude analysis, the width of these configurations is a nonmonotonic

function of their amplitudes.
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I. INTRODUCTION

A number of physical phenomenon from water waves
traveling in narrow canals [1], to phase transitions in the
early Universe [2] exhibit the formation of localized, long-
lived energy density configurations, even without gravita-
tional interactions. The reason for their longevity are var-
ied. Some configurations are stable due to conservation of
topological or nontopological charges, while some are long
lived due to a dynamical balance between the nonlineari-
ties and dissipative forces.

Relativistic, scalar field theories (with nonlinear poten-
tials) form simple yet interesting candidates for studying
such phenomenon. Some well-studied examples include
topological solitons in the 1þ 1-dimensional Sine-
Gordon model and nontopological solitons such as Q-balls
[3]. The Sine-Gordon soliton is stationary in time, whereas
the Q-balls are oscillatory in nature. Both have conserved
charges, which make them stable (at least without coupling
to gravity). This paper deals with another interesting ex-
ample of such localized configurations called oscillons
(also called breathers). Like the Sine-Gordon soliton,
they can exist in real scalar fields, and like the Q-balls
they are oscillatory in nature. Unlike both of the above
examples they do not have any known conserved charges
(however, see [4] for an adiabatic invariant). In general
they decay, however their lifetimes are significantly longer
than any natural time scales present in the Lagrangian.
Along with their longevity, another fascinating aspect of
oscillons is that they emerge naturally from relatively
arbitrary initial conditions.

Not all scalar field theories support oscillons. In the next
section we discuss the requirements for the potential. Here,
we note that the requirement is satisfied by a large number
of physically well-motivated examples. For example, the
potential for the axion, as well as almost any potential near
a vacuum expectation value related to symmetry breaking,
support oscillons. Oscillons have also been found in the
restricted standard model SUð2Þ �Uð1Þ, [5–7].
Oscillons first made their appearance in the literature in

the 1970s [8]. They were subsequently rediscovered in the
1990s [9]. Oscillons are not exact solutions and (very
slowly) radiate their energy away. The amplitude of the
outgoing radiation (in the small amplitude expansion) has
been calculated by a number of authors, see for example
[10–12]. Characterization of their lifetimes and related
properties using the ‘‘Gaussian’’ ansatz for the spatial
profile was done in [13] (also see references therein). The
importance of the dimensionality of space for these objects
has been discussed in [14,15].
Their possible applications in early Universe physics has

not gone unnoticed. For example, they could be relevant
for axion dynamics near the QCD phase transition [16].
The properties of oscillons in a 1þ 1-dimensional expand-
ing universe (in the small amplitude limit) have been
discussed in [7,17]. Their importance during bubble colli-
sions and phase transitions have been discussed in [18]. In
[19], interactions of oscillons with each other and with
domain walls were studied in 2+1 dimensions.
In this paper, we point out what is required of scalar field

potentials to support oscillons. We then derive the fre-
quency as well as the spatial profile of the oscillons for a
class of models under consideration. We show that the
spatial profile can be very different from a Gaussian, an
ansatz often made in the literature. In particular, we derive
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the nonmonotonic relationship between the height and the
width of the oscillons, and discuss the importance of this
feature for the stability of oscillons (see [20] for a some-
what related analysis for Q-balls). To the best of our
knowledge, this has not been done previously in the litera-
ture in the context of oscillons. We consider the stability of
oscillons against small perturbations, mainly with spatial
variations comparable to the width of the oscillons. We
also comment on a possible, narrow band instability at
higher wave numbers.

Oscillons could have important applications in cosmol-
ogy, especially in the early Universe. With this in mind, we
discuss the changes in the profile and the loss of energy
from these oscillons due to expansion.

The properties of oscillons can depend significantly on
the number of spatial dimensions. In this paper, for sim-
plicity we always start with 1þ 1-dimensional scenarios
where analytic treatment is often possible. We then extend
our results to the physically more interesting case of 3þ 1
dimensions, analytically where possible and numerically
otherwise. We extend previous analysis to the interesting
‘‘flat-top’’ oscillons because of our new systematic method
for capturing the entire range of possible amplitudes, while
still using the methods from the small amplitude expan-
sion. Our expansion, which can also be thought of as a
single frequency approximation, allows us to use results
existing in the literature for time periodic, localized
solutions.

Although interesting as classical solutions, a quantum
treatment can lead to changes in oscillon lifetimes [21].
Another question worth investigating is the stability of
oscillons coupled to other fields. These two questions are
beyond the scope of this paper.

The rest of the paper is organized as follows: In Sec. II,
we give a brief overview of oscillons in scalar field theo-
ries. In Sec. III, we introduce a simple model that is used
throughout the paper. Section IV deals with the derivation
of the shape and frequency of the oscillons in the absence
of expansion. Section V focuses on linear stability of
oscillons. Section VI discusses the effects of expansion.
Our conclusions and future directions are presented in
Sec. VII.

II. AGENTLE INTRODUCTION TOOSCILLONS IN
SCALAR FIELDS

Oscillons are extremely long-lived, oscillatory, spatially
localized field configurations that exist in a large number of
nonlinear scalar field theories. We find it convenient to
visualize an oscillon as a spatially localized, smooth enve-
lope of the field value oscillating with a constant frequency.
To get a heuristic understanding of what kind of the po-
tentials support oscillons, let us consider the equation of
motion for a 1þ 1-dimensional scalar field

h’� V0ð’Þ ¼ 0; @2t ’� @2x’þ V0ð’Þ ¼ 0; (1)

where V0ð’Þ ! m2’ as ’ ! 0. Let us approximate the
oscillon field configuration as ’ðt; xÞ ��ðxÞ cos½!t�. For
a localized configuration, as we move far enough away
from the center (whereby the nonlinearity in the potential
is irrelevant), we get

�!2�� @2x�þm2�� 0: (2)

Again, because we are looking for a smooth, localized
configuration, we must have !2 <m2. For regions near
the center of the configuration, we expect @2x�< 0 for the
lowest energy solutions. This means that for the equation to
be satisfied,

V0ð�Þ �m2�< 0:

Thus, for oscillons to exist in potentials with a quadratic
minimum, we require V 0ð’Þ<m2’ for some range of the
field value.
It is not too difficult to think of physically motivated

potentials satisfying this requirement. For example, the
potential for the QCD axions Vð’Þ ¼ m2f2½1�
cosð’=fÞ� where f is the Peccei-Quinn scale and m is
the mass, or any symmetry breaking potential expanded
about its vacuum expectation value. Both potentials ‘‘open
up’’ a little when we move away from the minimum.
The above (heuristic) argument does not provide a rea-

son for the longevity of oscillons. For oscillons, their
shape, which determines their Fourier content, guarantees
that the amplitude at the wave number of the outgoing
radiation is exponentially suppressed (at least for the small
amplitude oscillons). For details see [21] and the subsec-
tion on radiation in this paper.

III. THE MODEL

We begin with the action for a real scalar field in a dþ
1-dimensional, spatially flat, homogeneous, expanding
universe (@ ¼ c ¼ 1):

Sdþ1 ¼
Z
ðadxÞddt

�
1

2
ð@t’Þ2 � 1

2a2
ðr’Þ2 � Vð’Þ

�
; (3)

where

Vð’Þ ¼ 1

2
m2’2 � �

4
’4 þ g

6
’6; (4)

aðtÞ is the dimensionless scale factor and �, g > 0. As we
have discussed, what is crucial for the existence of oscil-
lons is

V0ð’Þ �m2’< 0;

for some range of the field. The potential [Eq. (4)] is the
simplest model which captures the effect we wish to ex-
plore, namely, a nonmonotonic relationship between the
height and width and its implication for stability. However,
apart from detailed expressions, our results are general and
not restricted to the particular shape of the potential.
We find it convenient to work with dimensionless space-

time variables as well as fields. Using ðt; xÞ ! m�1ðt; xÞ
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and ’ ! m��1=2’ as well as g ! ð�=mÞ2g the action
becomes

Sdþ1 ¼ m3�d��1
Z
ðadxÞddt

�
1

2
ð@t’Þ2 � 1

2a2
ðr’Þ2

� Vð’Þ
�
; (5)

with

Vð’Þ ¼ 1

2
’2 � 1

4
’4 þ g

6
’6:

The classical equations of motion are given by

@2t ’�r2

a2
’þH@t’þ ’� ’3 þ g’5 ¼ 0; (6)

where g is the only free parameter in the potential andH ¼
_a=a. We will be concentrate on the case where g � 1. This

gives a controlled expansion in powers of g�1=2, which
allows us to derive an analytic form for the profile. Our
approach is similar to the small amplitude expansion, with
the important difference that it captures the entire range of
amplitudes for which oscillons exist. Moreover, in our
analysis we show that the flat-top oscillons are stable
against small amplitude, long wavelength perturbations
on time scales of order g.

IV. OSCILLON PROFILE AND FREQUENCY

In this section we derive the spatial profile of the oscil-
lons in our model in a 1þ 1- and 3þ 1-dimensional
Minkowski universe. We include the effects of expansion
in Sec. VI. For simplicity, we begin with the 1þ
1-dimensional case.

A. Profile and frequency in 1þ 1 dimensions

The equation of motion is

@2t ’� @2x’þ ’� ’3 þ g’5 ¼ 0: (7)

To extract the oscillon profile, we introduce the follow-
ing change of variables:

’ðt; xÞ ¼ 1ffiffiffi
g

p �ð�; yÞ; t ¼ !�1�; y ¼ x=
ffiffiffi
g

p
;

(8)

where

!2 ¼ 1� g�1�2:

Here, �2 characterizes the change in frequency due to the
nonlinear potential. We define �0 ¼ �ð0; 0Þ ¼ ffiffiffi

g
p

’0 and

choose @t’ð0; xÞ ¼ @��ð0; xÞ ¼ 0. Note that � and�0 are
not independent of each other. Their relationship will be
determined from the requirement that the solution is peri-
odic in time, smooth at the origin and vanishing at spatial
infinity. With the change of variables (8), and collecting
powers of g, the equations become

@2��þ�þ g�1½��2@2��� @2y���3 þ�5�
¼ O½g�3=2�: (9)

Let us consider solutions of the form

�ð�; yÞ ¼ �1ð�; yÞ þ g�1�3ð�; yÞ þ . . . (10)

Again collecting powers of g, we get

@2��1 þ�1 ¼ 0;

@2��3 þ�3 ¼ �2@2��1 þ @2y�1 þ�3
1 ��5

1:
(11)

The first equation in (11) has a solution of the form

�1ð�; yÞ ¼ �ðyÞ cos�: (12)

To determine the profile �ðyÞ, we look at the second
equation in (11). Substituting �1ð�; yÞ into this equation,
we get

@2��3 þ�3 ¼ ½��2�þ @2y�þ 3
4�

3 � 5
8�

5� cos�;
þ ½14�3 � 5

16�
5� cos3�� 1

16�
5 cos5�: (13)

We are looking for solutions that are periodic in �. The
term ½. . .� cos� will lead to a term linearly growing with �.
Hence, we must have

@2y�� �2�þ 3
4�

3 � 5
8�

5 ¼ 0: (14)

This equation has a first integral, the ‘‘conserved energy’’

Ey ¼ 1
2ð@y�Þ2 þUð�Þ; (15)

where Uð�Þ ¼ � 1
2�

2�2 þ 3
16�

4 � 5
48�

6. If we demand

spatially localized solutions, we require Ey ¼ 0.

Furthermore, requiring that the profile be smooth at the
origin, we must have @y�ð0Þ ¼ 0. This immediately yields

(also see Fig. 1)

�2 ¼ 3
8�

2
0 � 5

24�
4
0: (16)

Note that there is a critical value �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27=160

p
(or �c ¼ffiffiffiffiffiffiffiffiffiffiffi

9=10
p

) beyond which localized solutions do not exist. The
profile equation becomes

ð@y�Þ2 ¼ �2�2 � 3
8�

4 þ 5
24�

6: (17)

Integrating the above equation yields

�ðyÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

1þ u cosh½2�y�

s
; (18)

where

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=�cÞ2

q
; �0 ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffi
1� u

p
: (19)

We have introduced the variable 0< u< 1, which simpli-
fies the appearance of the equations and controls the shape
of the oscillons through �. We will come back to a more
detailed analysis of this solution, but first we solve for the
second order correction to this solution, �3:
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@2��3 þ�3 ¼ ½14�3 � 5
16�

5� cos3�� 1
16�

5 cos5�: (20)

The solution with �3ð0; yÞ ¼ @��3ð0; yÞ ¼ 0 is

�3ð�; yÞ ¼ 1
96ð3�3 � 4�5Þ cos�þ 1

128ð5�5 � 4�3Þ cos3�
þ 1

384�
5 cos5�: (21)

The full solution becomes

�ð�; yÞ ¼ �cos�þ �3

24g

�
1

4
ð3� 4�2Þ cos�

� 3

16
ð4� 5�2Þ cos3�þ 1

16
�2 cos5�

�
: (22)

Note that the corrections to �1 are strongly supressed for
g � 1. Even for moderately large g� 5, the factor in the
denominator is �100, making �1 a rather good approxi-

mation. From now on we will mainly concern ourselves
with �1.
Reverting back to the original variables (8), the solution

for �< �c (equivalently, �0 <�c) is

’ðt; xÞ ¼ ’0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u

1þ u cosh½2�x= ffiffiffi
g

p �
s

cosð!tÞ þO½g�3=2�;
(23)

where

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=�cÞ2

q
; ’0 ¼ �0ffiffiffi

g
p ¼ �cffiffiffi

g
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� u

p
;

!2 ¼ 1� g�1�2:

(24)

Here, ’0 is the amplitude of the profile at the origin and
scales as 1=

ffiffiffi
g

p
.

Let us now investigate the solution for the profile.
Figure 2 (top left) shows this solution for different valued
of �. Notice that as � approaches �c (equivalently, �0 !
�c, u ! 0), the oscillon profile begin to deviate from the
‘‘sech’’ profile and has a flat top. Given this solution, one
can derive the width of the oscillon as a function of its
height. Defining the width to be the x value where the
profile falls by 1=e of its maximum

xe ¼ 1

’0

2ffiffiffi
3

p ð1þ uÞ�1=2cosh�1

�
e2ð1þ uÞ � 1

u

�
: (25)

As u ! 0 we simply have xe � 1=’0, which is consistent
with the small amplitude analysis (see Fig. 3). Meanwhile,
u ! 1 yields a spatially uniform solution.
We end this subsection by writing down an expression

for the energy of these oscillons:

Eosc ¼ ’0

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� uÞp tanh�1

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� u

1þ u

s �
þO½g�3=2�: (26)

Note that as � ! 0 (u ! 1) we have Eosc � 2
ffiffiffiffiffiffiffiffi
2=3

p
’0

1 1 D

100 50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

x

g

g
x

3 1 D

100 50 0 50 100
0.0

0.2

0.4

0.6

0.8

1.0

r

g

g
r

FIG. 2. The above figure shows the spatial profiles of oscillons for different values of the amplitude at the center. For �0 � �c ¼ffiffiffiffiffiffiffiffiffiffiffi
9=10

p
we get the usual sech-like profile, which is consistent with the small amplitude analysis. As �0 approaches �c, the oscillons

become wider with surprisingly flat tops. Unlike the 1þ 1-dimensional case, in 3þ 1 dimensions, we approach the flat-top profiles
from above. Distances are measured in units of the m�1.

1 1 D

3 1 D

c
2

c

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0 g 0

2
g

1
2

FIG. 1. The above figure shows �2, which characterizes the
change in frequency of oscillation due to the nonlinearities in the

potential. The critical �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27=160

p
can be obtained from the

requirement that the nodeless solution is smooth and localized in
space. Note that in 1þ 1 dimensions, � is monotonic in�0. This
is not the case in 3þ 1 dimensions. Frequency is measured in
units of the m.
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whereas for � ! �c (u ! 0), Eosc ! 1. In the next sub-
section we extend our results to 3þ 1 dimensions.

B. Profile and frequency in 3þ 1 dimensions

In this section we extend the results of the previous
section to a 3þ 1-dimensional Minkowski space-time.
Although we are unable to obtain an analytic form for
the profile, the important qualitative (and some quantita-
tive) aspects of the solutions can still be understood. In
particular, we derive a critical amplitude and frequency for
which the solution becomes spatially homogeneous and
argue that the relationship between the height and width is
nonmonotonic.

The equation of motion (assuming spherical symmetry)
is given by

@2t ’� @2r’� 2

r
@r’þ ’� ’3 þ g’5 ¼ 0: (27)

We can follow the same procedure used in the previous
subsection to arrive at the equation for the profile

@2��þ 2

�
@��� �2�þ 3

4
�3 � 5

8
�5 ¼ 0; (28)

where � ¼ r=
ffiffiffi
g

p
. This is where we first encounter the

difficulty associated with three dimensions. We can no
longer obtain a first integral due to the 2=�ð@��Þ term.

However, we can still get a bound on � by requiring that
the solutions are spatially localized (see [22] for an analy-
sis of a similar profile equation in the context ofQ-balls). It
is convenient to define an energy E�, which in the absence

of the ð2=�Þ@�� term, is a constant of motion:

E� ¼ 1
2ð@��Þ2 þUð�Þ; (29)

where Uð�Þ ¼ � 1
2�

2�2 þ 3
16�

4 � 5
48�

6. With this defi-

nition the equation of motion takes on an intuitive form

dE�

d�
¼ � 2

�
ð@��Þ2: (30)

This means that as we move away from � ¼ 0, we move
from a higher E� trajectory to a lower one. With the

requirement that the solution is ‘‘localized’’ (more specifi-
cally, � / ��1e��� as � ! 1), we need E� ! 0 as � !
1. Requiring that the solution is smooth at � ¼ 0 requires
@�� ¼ 0 at � ¼ 0. This implies that for a localized solu-

tion we must have E� � 0. Equivalently, Uð�0Þ � 0,

which in turn implies that � � �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27=160

p
. For this

critical value �c, we get a special solution [with �cð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffi
9=10

p
], which is homogeneous is space. For 0<�< �c

we get nonzero spatial derivatives.
For each � in the range 0<�<�c, only special, dis-

crete values of �0ðnÞ [n corresponding to the number of
nodes] will yield solutions that satisfy our requirement
� / ��1e��� as � ! 1. From these, the n ¼ 0 ones are

the oscillon profiles we are looking for. The numerically
obtained profiles are shown on the right in Fig. 2.
From Fig. 3, it is easy to see that the relationship

between the heights and widths of the oscillons is non-
monotonic. We know that for � � �c (ie. �0 � �c), the
usual small amplitude expansion yields solutions that have
the property that their widths decrease with increasing
amplitude. We also know that for � ¼ �c (�0 ¼ �c) the
width will be infinite. Thus, as in the 1þ 1-dimensional
scenario, we expect the width to be a nonmonotonic func-
tion of the central amplitude. This is indeed what is seen
from the numerical solutions of the profile equation as
shown in Fig. 3. Note that the width is a multivalued
function of the amplitude beyond �0 ¼ �c.
Nevertheless, it still approaches the homogeneous solution
via the flat-top profiles. The multivalued relationship be-
tween � and �0 is shown in Fig. 1.

C. Radiation

The oscillon solution does not solve the equation of

motion exactly. We have ignored terms of O½g�3=2� as
well as outgoing radiation. The problem of calculating
the outgoing radiation in the small amplitude limit (not
the flat tops) has been addressed in the literature (see
[10,12]). Our intention here is to point out that for flat
tops, the radiation will still be small.
As shown in [21], the amplitude of the outgoing radia-

tion can be estimated by the amplitude of the Fourier
transform of the oscillon at the radiation wave number

kr �
ffiffiffi
8

p
m (also see [13]). For small amplitude oscillons,

this is exponentially small �e�1=’0 . Let us estimate what
changes are expected when we move to the flat-top oscil-
lons. As we have seen, already our solutions have the form,

1 1 D

3 1 D

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0 g 0

w
id

th g

FIG. 3. The above figure shows the nonmonotonic relationship
between the width and height of oscillons in 1þ 1 and 3þ 1

dimensions. Note that as �0 approaches �c ¼
ffiffiffiffiffiffiffiffiffiffiffi
9=10

p
, the

oscillons become wider with flat tops. Unlike the 1þ
1-dimensional case, in 3þ 1 dimensions, we obtain flat-top
profiles when �0 approaches �c from above. Distances are
measured in units of the m�1.
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’ðt; xÞ ¼ 1ffiffiffi
g

p �

�
�;

xffiffiffi
g

p
�
: (31)

Where the function �ð�; yÞ is independent of g. The
Fourier transform of ’ can be determined from the
Fourier transform of � using

’ðt; kÞ ¼ �ð�; ffiffiffi
g

p
kÞ: (32)

Now �ðt; xÞ is determined entirely by �. Hence, for any
given �, the Fourier transform of ’ gets narrower as g is
increased. Thus, by increasing g we can make the ampli-
tude at the radiating wave number as small as we want.
Note that even though the Fourier transform of a flat-top
oscillon resembles a ‘‘sinc’’ function, rather than a sech,
this is true only for wave numbers near zero. Since the flat-
top oscillons are smooth solutions, their Fourier transforms
still exhibit a rapid asymptotic decay. The argument in 3+1
dimensions will be similar.

V. LINEAR STABILITYANALYSIS

In this section we investigate whether oscillons are
stable against small, localized perturbations. As discussed
in the previous section, the periodic oscillon expansion,

formulated in powers of g�1=2, fails to solve the governing
field equations and must expel radiation. In our stability
analysis we ignore the effects of the exponentially sup-
pressed radiation and focus on perturbing the oscillon
profile. The main results of this section are as follows: (i)
On the time scale of order g, 3þ 1-dimensional oscillons
with large amplitudes are robust (their small amplitude
counterparts are not) against localized perturbations with
spatial variations comparable to the width of the oscillon.
(ii) For small wavelength perturbations (compared to the
width of the oscillon), instabilities could exist in discrete,
extremely narrow bands in k space.

We now provide the details essential for reaching the
above conclusions. As done previously, we discuss the 1þ
1-dimensional case first, and then extend the results to 3þ
1 dimensions. Starting with a fixed oscillon profile ’osc

[see Eq. (23)], we linearize about the oscillon by an arbi-
trary function �. Provided the field � remains smaller than
’osc, the linearized dynamics will approximately describe
the perturbation. Let

’ðt; xÞ ¼ ’oscð�; xÞ þ ��ðt; xÞ; (33)

where � � g�1=2 is the amplitude of the perturbation and
we keep ��Oð1Þ. Note that for a linear analysis, � must
also vanish at infinity so that the perturbation �� remains
smaller than the original oscillon. Therefore, we restrict
our analysis to spatially localized perturbations. The field
� then satisfies

@2t �� @2x�þ �� 3’2
osc�þ 5g’4

osc� ¼ 0: (34)

We now wish to determine if all initial conditions � remain
bounded, or whether there exists an unstable initial profile

�ð0; xÞ. The ’2
oscðt; xÞ, ’4

oscðt; xÞ terms act as periodic forc-
ing functions.1 This periodic forcing, somewhat analogous
to pumping ones legs back and forth on a swing, may
deposit energy into the field � and consequently excite
an instability.
A complete treatment of stability may require one to

solve (34) for a complete basis of initial conditions.
Because of the spatially dependent oscillon solution, a
Fourier analysis is difficult. With this in mind, we split
the set of initial conditions into two groups. The first with
spatial variations comparable to the size of the oscillons
and another which varies on much shorter length scales. In
the second case we can approximate the oscillon as a
spatially constant oscillating background. This allows us
to carry out a standard Floquet analysis. Such an analysis

reveals the most dangerous instability band at k� ffiffiffi
3

p
, with

a width �k & g�1�4
0. For large g, this becomes extremely

narrow. In addition, we expect the time scale of these
instabilities to be �g��4

0 . Nevertheless, one should bear

in mind that the slow spatial variation of the oscillon could
still be important.
Now, let us look at the case where the perturbations vary

on length scales comparable to the width of the oscillon in
detail. Note that to leading order, the forcing potential:
�’2

osc is (i) O½g�1�, (ii) smoothly varying with a natural
length xe / ffiffiffi

g
p

, and (iii) oscillating with period 1 in the

variable � ¼ !t. The first observation implies we may use
perturbation theory and seek an expansion for � in inverse
powers of g:

� ¼ �0 þ g�1�1 þ . . . (35)

In the following analysis we shall work out the linear
instabilities to first order in g�1. However, we must keep
in mind that solutions stable to order g�1, may in fact
develop higher order instabilities over longer time scales.
Since we are interested in perturbation with wavelengths
comparable to xe, we rescale the length x ¼ ffiffiffi

g
p

y. To

capture the instability, however, we introduce 2 times:
the original oscillatory time � ¼ !t and a slow time
T ¼ g�1t.2 The introduction of � follows from our focus

1Since�osc oscillates in time, the problem is essentially one of
parametric resonance stability/instability. We are really diago-
nalizing the Floquet matrix—which in this case would really be
an integral operator.

2One may want to know why T ¼ g�1t provides the important
slow time scale. A back of the envelop calculation is as fol-
lows—consider a homogeneous background oscillating at the
oscillon frequency. A naive perturbation series for � in powers of
g�1 exhibits an oscillating term for �0, and then a term which
grows linearly in t for �1. This means �1 becomes the same
order as �0 when tg�1 � 1. Hence, there is a characteristic slow
time T ¼ tg�1. If we let �0 be a function of both � and T, and we
choose �0 correctly, we can ensure that �1 remains small for
long times. In a similar fashion, if we consider higher order
terms in the oscillon expansion, there could be additional insta-
bilities excited over time scales g�2, g�3 etc.
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on perturbations which oscillate near the oscillon fre-
quency. In addition, we require a slow time T to capture
variations in the perturbation. Hence, the field � ¼
�ð�; T; yÞ and the derivative @t becomes

@t ¼ !@� þ g�1@T; (36)

@2t ¼ @2� þ g�1½2@T@� � �2@2�� þO½g�2�: (37)

Upon substitution of Eqs. (35)–(37), in Eq. (34) and col-
lecting powers of g�1 we obtain

@2��0 þ �0 ¼ 0; (38)

@2��1 þ �1 ¼ �½2@T@� � �2@2� � @2y � 3cos2��2ðyÞ
þ 5cos4��4ðyÞ��0: (39)

From the zeroth order equation, the most general solution
for �0ð�; T; yÞ is

�0ð�; T; yÞ ¼ uðT; yÞ cos�þ vðT; yÞ sinð�Þ: (40)

Here, uðT; yÞ and vðT; yÞ are real functions that depend on
the slow time T and space y. Eliminating the secular terms
from the right-hand side of the �1 equation, we obtain

2@Tu ¼ Lv; (41)

2@Tv ¼ �Mu; (42)

where the L and M are both Hermitian operators.
Explicitly,

L ¼ �@2y þ �2 � 3
4�

2ðyÞ þ 5
8�

4ðyÞ; (43)

M ¼ �@2y þ �2 � 9
4�

2ðyÞ þ 25
8�

4ðyÞ: (44)

Since Eqs. (41) and (42) are linear, we can separate vari-

ables via uðT; yÞ ¼ eð1=2Þ�TuðyÞ, vðT; yÞ ¼ eð1=2Þ�TvðyÞ:
�u ¼ Lv; (45)

�v ¼ �Mu; (46)

or equivalently

�2u ¼ �LMu; (47)

�2v ¼ �MLv: (48)

Since both u and v are real fields and L and M are real
operators, the eigenvalues3�2 must also be real. Hence, all
exponents � are either purely real or purely imaginary.
Then, oscillon stability is guaranteed when maxð�2Þ< 0,
or equivalently when the largest real eigenvalue of�ML is
negative. Determining the largest real eigenvalue of �ML
can be done using the analysis performed by Vakhitov and
Kolokolov [23]. Specifically, they exploit properties of the
operator potentials found in L and M to show that
maxð�2Þ< 0 if and only if dN=d�2 > 0. Here, N is the
integral over all space:

N ¼
Z

�2ðyÞdy (50)

and �2 ¼ gð1�!2Þ. From Fig. 4, we can see that
dN=d�2 > 0 for all allowed � in 1þ 1 dimensions.
Thus, 1þ 1-dimensional oscillons are stable against small
perturbations with long wavelengths. Note that to order

g�1, N ¼ 2g1=2Eosc in 1þ 1 dimensions (in 3þ 1 dimen-

sions N ¼ 2g�1=2Eosc.)
The argument of [23] holds for dimensions D ¼ 1, 2, 3.

The discussion above carries over to 3þ 1 dimensions
through the following identifications: y ! � and @2y !
@2� þ ð2=�Þ@� and N ¼ 4�

R
�2ð�Þ�2d�. The result in

3þ 1 dimensions is in sharp contrast with that in 1þ 1
dimensions (see Fig. 4). Unlike the 1þ 1-dimensional
result, not all oscillons are robust against long wavelength
perturbations. Only oscillons with large � (equivalently
small frequency or large amplitudes) are robust. This result
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2 g 1 2
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1000

104

105
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N

FIG. 4. In the above figure we plot N ¼ R
�2dx for the oscillons in 1þ 1 (left) and 3þ 1 (right) dimensions. The stability of

oscillons is determined by the sign of dN=d�2 where �2 ¼ gð1�!2Þ. Note the important difference between the curves in the two
cases. While all oscillons are stable to long wavelength perturbations in 1þ 1 dimensions, this is not the case in 3þ 1 dimensions.
Only those with small frequency (or equivalently, towards the flat-top regime) are robust. Frequency is measured in units of m.

3If they exist.
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makes the large amplitude, flat-topped oscillons in 3þ 1
dimensions particularly interesting.

In the context of Q-balls, N is proportional to the con-
served particle number and plays a role in the stability [20].
A similar interpretation might be possible here, since to

leading order in g�1=2, our solution is periodic in time.
Finally, we note that the behavior of N in 1þ 1 and 3þ 1
dimensions can be understood heuristically. In 1þ 1 di-
mensions, for small �, the amplitude of the profile at the
origin �� whereas the width �1=�. Hence, N � �. For
� ! �c we have increasingly wide oscillons with ampli-
tudes��c. Hence,N diverges. Now for 3þ 1 dimensions,
the behavior at � ! �c is similar to the 1þ 1-dimensional
case. However, at small �, due to the different spatial
volume factor, we get N � 1=�, therefore implying a non-
monotonic behavior in N. Based on a numerical analysis in
the case of dilatonic scalar fields, it was conjectured in
[12], that the stability of oscillon like configurations is
related to the slope of the Eosc vs amplitude curve. In the
large g limit, Eosc / N and the amplitude / �. Hence, their
conjecture is in agreement with our analytic result.

VI. INCLUDING EXPANSION

In this section we consider the effects of expansion on
the lifetimes and shapes of oscillons. We closely follow the
procedure provided in [17] for the small amplitude oscil-
lons. Here, applying their procedure is somewhat subtle
since in the limit g � 1, oscillons tend to be very wide ( /ffiffiffi
g

p
), and the width grows without bound when � ! 0, �c.

Consequently, in these regimes it is easier to break up the
oscillons due to Hubble horizon effects. Nevertheless we
construct approximate solutions when the oscillon width is
small compared to the Hubble horizon.

A. Including expansion in 1þ 1 dimensions

As before, we begin with 1þ 1 dimensions and general-
ize to 3þ 1 dimensions.Wewill work in static de Sitter co-
ordinates where the metric is given by

ds2 ¼ �ð1� x2H2Þdt2 þ ð1� x2H2Þ�1dx2: (51)

Here, H is a constant Hubble parameter.4 In these co-
ordinates, the equation of motion becomes

ð1� x2H2Þ�1@2t ’þ 2xH2@x’� ð1� x2H2Þ@2x’
¼ �V 0ð’Þ; (52)

where ðxHÞ< 1. We will assume thatH � 1 and thatH ¼
�H=g where �H is a small number. The effects of expansion
can be ignored when x � H�1. For oscillons with widths
satisfying xeð�Þ � H�1, the solution to the above equation
is well approximated by the Minkowski space solution.

However, in the tail of the oscillon profile we cannot ignore
the effects of expansion. Nevertheless, taking advantage of
the exponential decay of the profile in the tails, we can
linearize Eq. (52) and obtain a solution using the WKB
approximation.
We carry out the change of space-time variables and

redefinition of the field as was done in the nonexpanding
case, Eq. (8). Again collecting powers of g, we get

@2��1 þ�1 ¼ 0;

@2��3 þ�3 ¼ f��2 þ y2 �H2g@2��1 � @2y�1 ��3
1 þ�5

1:

(53)

In the case of the Minkowski background, we chose an
initial condition @t’ð0; xÞ ¼ 0, which picked out one of the
two linearly independent solutions of the first equation in
(53). However, in the expanding universe we need to keep
the general solution

�1ð�; yÞ ¼ �ðyÞ
2

e�i� þ c:c; (54)

where �ðyÞ can be complex and c:c stands for complex
conjugate. The ‘‘profile’’ equation is given by

f�2 � ðy �HÞ2g�� @2y�� 3
4j�j2�þ 5

8j�j4� ¼ 0 (55)

and includes the effect of expansion through the ðy �HÞ2
term. We now analyze different regimes as seen in Fig. 5.
For ðy �HÞ2 � �2, the equation admits solutions identical to
the nonexpanding case [see Eq. (23)]. In the region
yeð�Þ � y � � �H�1, where yeð�Þ is the approximate
width of the oscillon [Eq. (25)], the profile has the form

�ðyÞ 	 �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ uÞ

u

s
exp½��y�;

yeð�Þ � y � � �H�1:

(56)

Since this is an exponentially decaying solution, we can
ignore the nonlinear terms in the potential when y �
yeð�Þ:

@2y�þ fðy �HÞ2 � �2g� 	 0 yeð�Þ � y: (57)

For y > � �H�1, the above equation has a WKB solution5 in
the form of an outgoing wave:

�ðyÞ 	 �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð1þ uÞ

u �Hy

s
exp

�
���2

4 �H
þ i

2
�Hy2

�
: (58)

The amplitude of the outgoing wave was chosen using
the WKB connection formula to match the oscillon profile
in Eq. (56). In terms of the original variables, we obtain

4The assumption of H being constant is for simplicity. The
analysis carries over to a time dependent H as long as the
frequency of oscillation ! � H. 5assuming the WKB condition �H=�2 � 1 is satisfied
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’ðt; xÞ ¼’0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þu

1þucosh½2�x= ffiffiffi
g

p �
s

cosð!tÞþO½g�3=2�

jxj��ð ffiffiffi
g

p
HÞ�1;

’ðt; xÞ ¼’0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þuÞ�
g1=2Hjxju

s
e�ð��2=4gHÞ cos

�
!t� 1

2
Hx2

�
;

�ð ffiffiffi
g

p
HÞ�1 �jxj<H�1; (59)

where

u¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�=�cÞ2

q
; ’0¼�cffiffiffi

g
p

ffiffiffiffiffiffiffiffiffiffiffi
1�u

p
; !2¼1�g�1�2:

(60)

Our solution matches that of [17] in the limit � � �c.
However, as � gets larger the coefficient in front of the
traveling wave captures the effects of the flat-top solutions.
We will return to the above solution when we discuss the
rate of energy loss by oscillons after considering the effects
of expansion in 3þ 1 dimensions.

We end the section by reminding ourselves of the as-
sumptions required for this solution to be valid: (i) g � 1,
(ii) H <O½g�1�, and (iii)

xeð�Þ � �ð ffiffiffi
g

p
HÞ�1: (61)

For any H, the solution is not valid when � ! 0 or �c.
Also note that for a given H � 1, there always exists a g,
which violates condition (iii) for all allowed �.

B. Including expansion in 3þ 1 dimensions

Now, let us include the effects of expansion for the 3þ
1-dimensional cases. The metric in the static de Sitter co-
ordinates (assuming spherical symmetry) is given by

ds2 ¼ �ð1� r2H2Þdt2 þ ð1� r2H2Þ�1dr2 þ r2d�2:

(62)

Following a procedure similar to the one we laid out for the
1þ 1-dimensional case, we get the profile equation:

f�2�ð� �HÞ2g��@2��� 2

�
@���3

4
j�j2�þ5

8
j�j4�¼0;

(63)

where � ¼ r=
ffiffiffi
g

p
. The effect of expansion is included

through the ð� �HÞ2 term. For a given �, let the approximate
width of the oscillon be �eð�Þ. In the region �eð�Þ � � �
� �H�1, the profile has the form

�ð�Þ 	 fð�Þ 1
�
exp½���� �eð�0Þ � � � � �H�1:

(64)

The lack of an analytic solution, prevents us from specify-
ing fð�Þ. Reverting back to the original variables, the
solution in the spatially oscillatory regime is given by

’ðt; rÞ ¼ ðg�1=2�Þ1=2 fð�Þffiffiffiffiffiffiffiffiffi
Hr3

p e�ð��2=4gHÞ

� cos

�
!t� 1

2
Hr2

�
�ð ffiffiffi

g
p

HÞ�1 � r < H�1; (65)

where !2 ¼ 1� g�1�2.

C. Energy loss due to expansion

In this subsection, we discuss the energy loss suffered by
oscillons due to the expanding background. As before, we
start with the 1þ 1-dimensional scenario and then general-
ize to 3þ 1 dimensions. The energy lost by an oscillon
whose width is small compared to H�1 is given by

dEosc

dt
¼ �Tx

t jX�X; (66)

where T
	

 is the energy momentum tensor of the scalar

field. We have ignored the dependence of the metric on x.
We take X to be in the region sufficiently far away from the
center. More explicitly, we consider X such that

�ð ffiffiffi
g

p
HÞ�1 � jXj<H�1: (67)
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FIG. 5. In an expanding background, if the width is small compared to H�1, the flat space solution is adequate for distances much
less than �ð ffiffiffi

g
p

HÞ�1. For distances larger than this, but still smaller than H�1, the oscillon feels the expansion, and loses energy in the

form of outgoing waves (see inset in Fig. 5). Distance is measured in units of the m�1.
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Using Eq. (59) in (66), we get (to leading order inHX2 and

g�1=2)

dEosc

dt
	 �’3

0

� ffiffiffi
3

4

s
ð1þ uÞ3=2

u

�
exp½���2=2gH� (68)

In [17], a similar expression was provided in the limit
where u ! 1. Oscillons are known to lose energy very
slowly for a long time and then suddenly disintegrate.
Our calculation cannot capture this disintegration. We
therefore take the following as an upper bound on the
lifetime of an oscillon (approximated by the time it take
for it to lose most of its energy due to expansion effects)

T & Eosc

��������dEosc

dt

���������1

¼ 1

’2
0

� 8utanh�1½
ffiffiffiffiffiffiffi
1�u
1þu

q
�

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p
ð1þ uÞ

�
exp½��2=2gH�; (69)

where

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�=�cÞ2

q
; ’0 ¼ �cffiffiffi

g
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1� u

p
: (70)

The terms in (. . .) are corrections for the deviation from the
sech profile. We plot the lifetime as a function of the �2 in
Fig. 6. We should not trust this curve in the limit � ! 0,
�c, since our assumption of xeð�Þ � ð ffiffiffi

g
p

HÞ�1 is broken

here. Note the scaling with g: T � g exp½�2=ðgHÞ�.
A numerical investigation of oscillon lifetimes in a 1þ

1-dimensional expanding background was carried out in
[7]; however, no analytic calculation was provided for the
lifetime. Our analytic results seem to be in good qualitative

agreement with their paper. Note that Eosc � g�1=2�2 for

small �, which tells us that the lifetime T �
exp½Eosc=g

3=2H�, is in agreement with the empirical for-
mula inferred in their paper (also see Fig. 2 in [7]).

A similar calculation can be carried out in 3þ 1 dimen-
sions. The rate of energy loss is then given by (to leading

order in g�1=2)

dEosc

dt
	 � 4�ffiffiffi

g
p f2ð�Þ�e���2=ð2gHÞ: (71)

Here, we have used Eq. (65). The lifetime is then given by

T &
Nð�Þ

8�f2ð�Þ�ge��
2=ð2gHÞ: (72)

Note that 2Eoscð�Þ ¼ g1=2Nð�Þ up to leading order in
powers of g. We plot the approximate lifetime of an
oscillon in a 3þ 1-dimensional scenario in Fig. 6. The
lifetime is maximized at �< �c. In plotting the lifetime,
the numerically obtained Nð�Þ and fð�Þ had errors of
about 1%. Again, we stress that one should think about
the above curve somewhat qualitatively since higher order
instabilities are ignored. It would be interesting to numeri-
cally check the above analysis using a full 3þ
1-dimensional evolution.

VII. CONCLUSIONS

In this paper, we pointed out what is required for scalar
field potentials to support oscillons. We found that the
spatial profiles can be very different from a Gaussian, an
ansatz often made in the literature. In particular, we de-
rived the nonmonotonic relationship between the height
and the width of the oscillons, and discussed the impor-
tance of this feature for the stability of oscillons. We
showed that the flat-topped oscillons are more stable in
three dimensions to long wavelength perturbations as com-
pared to their usual Gaussian counterparts. To the best of
our knowledge, this had not been done previously in the
literature in the context of oscillons. Oscillons could have
important applications in cosmology, especially in the
early Universe. With this in mind, we discussed the
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FIG. 6. The above plot shows the time it takes for an oscillon to lose most of its energy due to the expanding background. The plot
assumes an H ¼ 10�3 and g ¼ 10. The lifetime is sensitive to the combination �g exp½�2=ðgHÞ�. Our result is only valid when � is

not too close to 0 or �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27=160

p
, since for these value our assumption re � �ð ffiffiffi

g
p

HÞ�1 breaks down. Note that the lifetime should

be interpreted qualitatively, since we are not allowing for instabilities that lead to the oscillon’s abrupt disintegration. Time is measured
in units of m�1.
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changes in the profile, loss of energy from these oscillons
due to expansion, and estimated their lifetimes. We pro-
vided analytic results for the 1þ 1-dimensional scenario,
and extended analytically where possible to 3þ 1 dimen-
sions and numerically otherwise.

A number of questions related to this work require
further investigation. Our expressions for lifetime and
arguments for stability, especially in 3þ 1 dimensions in
the flat-top regimes should be checked with a detailed
numerical investigation. The question of the possible small
wavelength, narrow band instability needs to be resolved
rigorously. Recently, [24] discussed oscillons in the pres-
ence of gravity (an oscillaton). It would be interesting to
revisit this problem in the context of our large energy, flat-

top oscillons. A study of oscillons emerging from (p)re-
heating-[25,26] like initial conditions in the early Universe
is currently in progress.
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