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The time evolution of collective modes in an expanding ultrarelativistic and (effectively) Abelian

plasma is studied in the hard-loop approximation semianalytically by means of integrodifferential

equations. A previous treatment is generalized to arbitrary orientation of wave vectors with respect to

the direction of anisotropy and thus to a fully 3þ 1 dimensional situation. Moreover, initial fluctuations

are allowed in both gauge fields and currents, which is necessary in the case of (stable) longitudinal

modes. For unstable (Weibel) modes, this generalization of initial conditions reduces drastically the lower

bound on the delay in the onset of growth that was found previously by considering only collective gauge

fields as seeds. This makes it appear much more likely that non-Abelian plasma instabilities seeded by

small initial rapidity fluctuations could play an important role in the early stage of heavy-ion collisions at

LHC energies.
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I. INTRODUCTION

Fits of hydrodynamical models to the experimental re-
sults at the Relativistic Heavy Ion Collider (RHIC) [1–3]
are often interpreted as an indication of an extremely fast
thermalization, or at least isotropization, of the quark-
gluon plasma that is assumed to have formed with initial
temperatures significantly above the deconfinement tem-
perature. The inferred thermalization time of & 1 fm=c is
so short that is hard to understand from a perturbative
framework such as the (original) bottom-up thermalization
scenario [4–6]. Together with the low inferred value for the
specific shear viscosity, it seems to clearly favor strong-
coupling approaches, in particular those based on gauge-
gravity duality [7].

However, as pointed out first by Ref. [8], a weak-
coupling approach has to take into account the inevitable
presence of non-Abelian (chromo-Weibel) plasma insta-
bilities [9–12], which produce nonperturbatively large
gauge fields that may lead to important, qualitative mod-
ifications of bottom-up thermalization [13–17]. Plasma
instabilities and associated turbulent phenomena may
even be responsible for a strong reduction of the effective
shear viscosity [18]. A complete scenario, even of just the
early stages of the evolution, is still missing, but would
clearly be needed to decide, first, whether the thermaliza-
tion of the quark-gluon plasma at RHIC is indeed a strong-
coupling phenomenon and, second, what to expect if the
early stage of heavy-ion collisions at the higher energies at
the Large Hadron Collider (LHC) is probing a regime
where weak-coupling approaches based on (resummed)
perturbative quantum chromodynamics (QCD) become
relevant.

At sufficiently weak coupling, the collective dynamics
of a non-Abelian plasma can be described to leading order
by an effective field theory produced by integrating out the
hard modes corresponding to real (as opposed to virtual)

plasma constituents. For anisotropic plasmas, the resulting
hard-loop effective theory [19] is a generalization of the
well-studied hard-thermal-loop effective theory [20–22].
The corresponding effective field equations are nonlocal,
but can be made local at the expense of introducing a
continuous set of auxiliary fields [23] which arise naturally
when solving gauge-covariant Boltzmann-Vlasov equa-
tions [24–27]. In the hard-loop approximation, these aux-
iliary fields depend on the velocity vector of the hard
particles whose hard momentum scale is integrated out.
The instabilities in a stationary homogeneous plasma

with momentum-space anisotropy have been studied in
this approximation in [8,28–31] for the case of weak fields,
where the dynamics is effectively Abelian. In the Abelian
case, instabilities grow exponentially until they are large
enough to modify the distribution of the hard particles,
typically giving rise to fast isotropization. In the non-
Abelian case, nonlinear self-interactions of the collective
fields may hinder this evolution, which can only be studied
by a numerical (real-time lattice) treatment. The first nu-
merical simulations of non-Abelian plasma instabilities
have only considered modes that are constant in the direc-
tions transverse to the direction of momentum anisotropy
[32]. In this situation there is a short stagnation of the
exponential growth when the non-Abelian regime is en-
tered, after which localized Abelianization occurs together
with continued exponential growth. However, in the more
generic case of fully 3þ 1-dimensional evolution [33,34],
such local Abelianization appears to get largely destroyed.
Instead, a turbulent cascade [15,35] is formed where the
growth is reduced to a linear one (see however [36,37]).
This was also found in more extensive simulations with
stronger anisotropies in [38], although only when initial
fields were already nonperturbatively large.
In Ref. [39] the hard-loop effective theory for stationary

anisotropic plasmas was extended to the case of a boost-
invariant, longitudinally expanding distribution of plasma
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particles, which is closer to the actual situation in the
earliest stage of heavy-ion collisions. In the expanding
case, more and more modes become unstable as the ex-
pansion increases the momentum anisotropy, while the
growth rate of each unstable mode decreases with the
density of the plasma. In [40] first numerical results for
the non-Abelian evolution were obtained, albeit still re-
stricted to the effectively 1þ 1-dimensional situation of
modes that are constant in transverse directions. In this
case, continued approximately exponential growth was
observed (albeit only exponential in the square root of
proper time due to the linearly decreasing density of the
plasma).

In the expanding case, even the time evolution in the
weak-field regime is nontrivial and cannot be given in
closed form. However, in Ref. [39] integrodifferential
equations were obtained which made it possible to study
the time evolution semianalytically in the case of effec-
tively 1þ 1-dimensional dynamics. As a preparation of
fully 3þ 1-dimensional real-time lattice studies of non-
Abelian plasma instabilities in expanding plasmas, we
shall generalize the semianalytical treatment of Ref. [39]
to arbitrary wave vectors of the collective modes.

At the same time, we shall generalize to arbitrary initial
conditions, allowing for seeds both in the collective gauge
fields (the case considered in [39,40]) and also in the
auxiliary fields corresponding more directly to colored
fluctuations in the hard particle distribution. While in the
case of stationary anisotropic plasmas little difference was
found between the two possibilities for introducing seed
fields for instabilities, in the expanding case we find that
this generalization reduces dramatically the uncomfortably
long delay of the onset of growth that was observed in
[39,40]. As will be discussed in more detail below, this in
fact reverts some of the negative conclusions of
Refs. [39,40] concerning the possible role of plasma in-
stabilities in heavy-ion collisions for explaining very early
thermalization. While at RHIC energies with parameters
matched from color-glass-condensate scenarios [41], there
is still somewhat too little room for plasma instabilities that
grow from small initial rapidity fluctuations, the situation
at LHC energies, which appeared somewhat marginal in
Refs. [39,40], is now much more favorable with regard to
an important role of such plasma instabilities if the quark-
gluon plasma to be produced at the LHC is described by the
weak-coupling physics underlying the hard-loop-
resummed treatment.

II. HARD-LOOP EFFECTIVE FIELD EQUATIONS
WITH ANISOTROPICALLY EXPANDING

BACKGROUND

A (sufficiently small) gauge coupling g introduces a
hierarchy of smaller momentum scales below the scale of
‘‘hard’’ momenta jpj ¼ p0 of ultrarelativistic plasma con-
stituents. The ‘‘soft’’ scale�g

ffiffiffi
f

p jpj, where f is the typical

hard particle occupation number, is associated with differ-
ent screening phenomena and the various branches of
plasmon propagation. To leading order they are described
by hard (thermal) loop effective theories. When fðpÞ is
anisotropic, the soft scale is also the domain of plasma
instabilities, which constitute the dominant nonequilibrium
effects at weak coupling: the associated rates are para-
metrically larger than any of the scattering processes
among plasma particles.
As long as the amplitude of the gauge fields A � ffiffiffi

f
p jpj,

the evolution of the plasma instabilities is essentially
Abelian and can be studied by a perturbative linear-
response analysis. For a stationary anisotropic plasma,
the evolution is simply exponential in time until non-
Abelian self-interactions might hinder further growth
when A *

ffiffiffi
f

p jpj and thereby delay the isotropization
coming from the backreaction of the collective fields on
the distribution of hard plasma particles. In an expanding
plasma, the Abelian (weak-field) regime is complicated by
the counterplay of increasing anisotropy, which favors the
appearance of plasma instabilities, and dilution of hard
particle densities as well as energy densities in soft collec-
tive fields.
In the following we shall first recapitulate the hard-loop

effective field equations for an anisotropically expanding
non-Abelian plasma as introduced in Refs. [39,40], and
later specialize to the effectively Abelian weak-field re-
gime. In view of the numerical simulations that were
carried out to study the non-Abelian, strong-field regime,
the Abelian evolution can be expected to provide an upper
limit on the strength of plasma instabilities that are seeded
by small initial fluctuations.

A. Boost-invariant expanding background

We assume a color-neutral background distribution of
plasma particles f0ðp;x; tÞ which satisfies

v � @f0ðp;x; tÞ ¼ 0; v� ¼ p�=p0: (2.1)

This is satisfied trivially in a stationary homogeneous
plasma with arbitrary momentum anisotropy. In order to
describe the earliest stage of heavy-ion collisions in the
limit of large nuclei, we consider a plasma that expands in
one spatial direction (the beam axis). Requiring boost
invariance [42] and isotropy in the transverse directions,
we are led to [43,44]

f0ðp; xÞ ¼ f0ðp?; pz; z; tÞ ¼ f0ðp?; p0z; �Þ; (2.2)

where the transformed longitudinal momentum is

p0z ¼ �ðpz � �p0Þ; � ¼ z=t; � ¼ t=�;

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
;

(2.3)

with p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ ðpzÞ2

q
for ultrarelativistic (massless)

particles.
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Introducing the comoving coordinates of proper time �
and space-time rapidity � through

t ¼ � cosh�; � ¼ tanh�;

z ¼ � sinh�; � ¼ cosh�;
(2.4)

we are led to a coordinate system with nontrivial metric

ds2 ¼ g��dx
�dx� � d�2 � dx2

? � �2d�2; (2.5)

where indices from the beginning of the Greek alphabet
will be reserved for the new coordinates. Latin indices will
from now on only refer to the two transverse spatial
directions. Despite the nontrivial metric, we shall only
use ordinary derivatives when writing for instance D� ¼
@� � ig½A�; �� for gauge-covariant derivatives.

In addition to space-time rapidity �, we also introduce
momentum-space rapidity y for the massless particles
according to

p� ¼ p?ðcoshy; cos�; sin�; sinhyÞ: (2.6)

In comoving coordinates, we then have

p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ �2ðp�Þ2

q
¼ p0 cosh�� pz sinh�

¼ p? coshðy� �Þ; (2.7)

p� ¼ �p�=�
2 ¼ ðpz cosh�� p0 sinh�Þ=�

¼ p0z=� ¼ ½p? sinhðy� �Þ�=�: (2.8)

Equation (2.1), where the space-time derivatives act at
fixed p? and pz, becomes

ðp�@�Þf0jp� ¼ 0 (2.9)

with fixed p� and thus fixed p?, y, � as opposed to fixed
p�. This is solved by any function of the form f0ðp;x; tÞ ¼
f0ðp?; p�Þ, taking into account that p� depends on � and�

according to (2.8). We choose

f0ðp; xÞ ¼ fisoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ p2

�=�
2
iso

q
Þ ¼ fiso

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þ

�
p0z�
�iso

�
2

s �
(2.10)

which corresponds to a locally isotropic distribution on the
hypersurface � ¼ �iso with increasingly oblate
momentum-space anisotropy at � > �iso but prolate anisot-
ropy for � < �iso.

1 We shall also have to consider a lowest
value of proper time, �0, where a particle description of the
plasma constituents begins to make sense. Depending on
whether the parameter �iso is smaller or larger than �0, we
shall consider a plasma that starts with oblate or prolate
momentum distribution.

The particle distribution function (2.10) has the same
form as the one used in Refs. [28,29,32,34], but the anisot-
ropy parameter � introduced therein is now space-time
dependent according to

�ð�Þ ¼ ð�=�isoÞ2 � 1; (2.11)

and the normalization factor Nð�Þ of Refs. [29,32,34] is
unity. (The anisotropy parameter 	 used in Ref. [17] is
related to � by �� 	�2 for large anisotropies.) The be-
havior �� �2 at large � corresponds to having a free-
streaming background distribution. In a more realistic
collisional plasma, � will have to grow slower than this.
In the first stage of the original bottom-up scenario [13],

ignoring plasma instabilities, one would have had ��
�2=3. In Ref. [14] it was argued that plasma instabilities

reduce the exponent to �� �1=2, whereas Ref. [17] re-

cently presented arguments in favor of �� �1=4. All these
scenarios typically consider � � 1, so below we shall
mostly concentrate on the case �iso < �0 and thus high
anisotropy for all � > �0, but in the simplified case of a
collisionless free-streaming expansion. However, we shall
also discuss instabilities in prolate phases for which we
need to set �iso > �0.

B. Hard-expanding-loop effective field equations

In an approximately collisionless plasma, the gauge-
covariant Boltzmann-Vlasov equations for color charge
carrying perturbations 
fa have the form

v �D
faðp;x; tÞ ¼ gv�F
��
a @ðpÞ� f0ðp;x; tÞ: (2.12)

In comoving coordinates we write

V �D
fajp� ¼ gV�Fa
��@

�
ðpÞf0ðp?; p�Þ; (2.13)

where in place of the lightlike vector v� ¼ p�=p0 con-
taining a unit 3-vector we introduced the new quantity

V� ¼ p�

p?
¼

�
coshðy� �Þ; cos�; sin�;

1

�
sinhðy� �Þ

�
;

(2.14)

which is normalized so that it has a unit 2-vector in the
transverse plane.
Equation (2.13) can be solved in terms of an auxiliary

field W�ðx;�; yÞ which satisfies

V �DW�j�;y ¼ V�F��; (2.15)

and


fðx;pÞ ¼ �gW�ðx;�; yÞ@�ðpÞf0ðp?; p�Þ: (2.16)

Expressed in terms of the auxiliary field W, the induced
current in comoving coordinates reads

1Notice that �iso is just a parameter of the background distri-
bution and does not refer to the time where isotropization of the
plasma eventually occurs through interactions.
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j� ¼ gtR
Z d3p

ð2�Þ32p0
p�
fðx;pÞ

¼ �g2tR
Z 1

0

p?dp?
8�2

Z 2�

0

d�

2�

�
Z 1

�1
dyp� @f0

@p�

W�ðx;�; yÞ; (2.17)

where tR is a suitably normalized group factor. Now for
each ð�; yÞ (i.e., fixed v) the scale p? (related to energy by
p0 ¼ p? coshy) can be integrated out.

With the particular background distribution function
(2.10) we obtain

j� ¼�m2
D

1

2

Z 2�

0

d�

2�

Z 1

�1
dyV�

�
1þ �2

�2iso
sinh2ðy��Þ

��2

�
�
ViWi þ �2

�2iso
V�W�

�
; (2.18)

where

m2
D ¼ �g2tR

Z 1

0

dpp2

ð2�Þ2 f
0
isoðpÞ (2.19)

equals the Debye mass squared at the time �iso (which we
shall often choose smaller than �0 so that mD is not
physically realized by just a convenient mass parameter).

These equations are closed by the non-Abelian Maxwell
equations which in comoving coordinates read

1

�
D�ð�F��Þ � 1

�
D�½�g��ð�Þg�
ð�ÞF�
� ¼ j�; (2.20)

where F�� ¼ @�A� � @�A� � ig½A�; A��. To solve them,

we adopt the comoving temporal gauge A� ¼ 0 and intro-
duce canonical conjugate field momenta for the remaining
gauge fields according to2

�i ¼ �@�Ai ¼ ��@�A
i ¼ ��i; (2.21)

and

�� ¼ 1

�
@�A�: (2.22)

In terms of fields and conjugate momenta, the Yang-
Mills field equations then read

�@��
� ¼ j� �DiF

i
�; (2.23)

��1@��i ¼ ji �DjF
ji �D�F

�i: (2.24)

In a comoving frame, the longitudinal (chromo)electric
and magnetic fields are given by

E� ¼ ��; B� ¼ F12; (2.25)

but transverse components involve a factor of �,

Ei ¼ ��1�i; Bi ¼ ��1F�j
ji: (2.26)

In terms of these, the contribution to the energy density is
simply

E ¼ ET þ EL ¼ EBT
þ EET

þ EBL
þ EEL

¼ tr½ðBiÞ2 þ ðEiÞ2 þ ðB�Þ2 þ ðE�Þ2�: (2.27)

However, due to the expansion, the total energy density E is
not conserved, even when the induced current (2.17) is
identically zero,

d

d�
Ejj�0 ¼ � 2

�
ETjj�0: (2.28)

In the presence of a plasma of hard particles and thus
nonvanishing induced current j, we define the net energy
gain rate by

Rgain � dE
d�

þ 2

�
ET; (2.29)

which gives the rate of energy transfer from the free-
streaming hard particles into the collective chromofields
and which is positive when plasma instabilities are at work.
For stable modes Rgain oscillates about zero.

III. TIME EVOLUTIONOFGAUGE FIELDS IN THE
WEAK-FIELD REGIME

In the regime where self-interactions of gauge fields
cannot be neglected, the Yang-Mills field equations and
the equations of motion for the W�ðx;�; yÞ fields are non-
linear and require numerical, real-time lattice evaluation.
In the limit of small field amplitudes, these equations are
linear and can be reduced to ordinary integrodifferential
equations in proper time for individual modes.

A. Solving the W field equations

In the weak-field regime, theW field equations reduce to

ðV�@� þ Vi@i þ V�@�ÞW�ð�; xi; �;�; yÞ
¼ V�F�� ¼ V�ð@�A� � @�A�Þ: (3.1)

Because our background distribution function is isotropic
in the transverse plane, we can without loss of generality
restrict to modes which are independent of xi¼2, keeping
only xi¼1 � x (recall that the symbol y is already used for
momentum rapidity). In temporal axial gauge we thus have

ðV�@� þ V�@� þ cos�@xÞW�ð�; x; �;�; yÞ
¼ �V�@�A� þ V�ð@�A� � @�A�Þ

þ cos�ð@�A1 � @xA�Þ þ sin�@�A2: (3.2)

These first-order partial differential equations can be
solved by the method of characteristics as follows. We
introduce a parameter s such that the left-hand side of
Eq. (3.2) is replaced by

2In the following field equations we keep the index position of
conjugate field momenta opposite to that of the associated fields.
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dW�

ds
¼ @W�

@�

d�

ds
þ @W�

@�

d�

ds
þ @W�

@x

dx

ds
(3.3)

with

d�

ds
¼ V� ¼ coshðy� �ðsÞÞ; (3.4)

d�

ds
¼ V� ¼ 1

�ðsÞ sinhðy� �ðsÞÞ; (3.5)

dx

ds
¼ V1 ¼ cos�: (3.6)

Since d�=ds > 0we can use � in place of s for the purpose
of integrating Eq. (3.2). Writing ds ¼ d�0=V�ð�ð�0ÞÞ we
obtain

W�ð�; x; �;�; yÞ �W�ð�0; x0; �0;�; yÞ

¼
Z �

�0

d�0
V�F��j�0;xð�0Þ;�ð�0Þ
coshðy� �ð�0ÞÞ (3.7)

with x0 � xð�0 ¼ �0Þ and �0 � �ð�0 ¼ �0Þ. The functions
�ð�0Þ and xð�0Þ are solutions of

d�ð�0Þ
d�0

¼ 1

�0
tanhðy� �ð�0ÞÞ (3.8)

dxð�0Þ
d�0

¼ cos�

coshðy� �ð�0ÞÞ (3.9)

with initial conditions �ð�0 ¼ �Þ ¼ � and xð�0 ¼ �Þ ¼ x.
Equation (3.8) is solved by [39]

�0 sinhðy� �ð�0ÞÞ ¼ � sinhðy� �Þ (3.10)

or, more explicitly,

�0 � �ð�0Þ ¼ y� asinh

�
�

�0
sinhðy� �Þ

�
: (3.11)

With this solution, Eq. (3.9) can be integrated, yielding

x0 � xð�0Þ
¼ xþ ½�0 coshðy� �0Þ � � coshðy� �Þ� cos�:

(3.12)

TheW fields, from which the induced current is obtained
upon integration over � and y according to Eq. (2.18), are
now given explicitly by the following ‘‘memory integrals’’:

W1 �W0
1 ¼

Z �

�0

d�0
�
@�0A

1 � tanhð�0 � yÞ
�0

� ð@x0A� þ @�0A1Þ � sin�

coshð�0 � yÞ@x0A
2

�
;

W2 �W0
2 ¼

Z �

�0

d�0
�
@�0 � tanhð�0 � yÞ

�0
@�0

þ cos�

coshð�0 � yÞ @x0
�
A2;

W� �W0
� ¼ �

Z �

�0

d�0
�
@�0A� þ Vi@�0Ai þ @x0A�

coshð�0 � yÞ
�
;(3.13)

where inside the integrals A� ¼ A�ð�0; x0; �0Þ. Note that x0
and �0 as well as x0 and �0 appearing as arguments in
W0

� � W�ð�0; x0; �0;�; yÞ all are functions of the space-
time variables �, �, and x.

B. Fourier components

Because of the linearity of the Maxwell (linearized
Yang-Mills) equations and the W equations in the weak-
field (Abelian) regime and their translational invariance in
� and y, we can study the time evolution of individual
modes obtained by a Fourier decomposition

A�ð�; x; �Þ ¼
Z dk

2�
eikx

Z d�

2�
ei�� ~A�ð�; k; �Þ: (3.14)

With similarly Fourier transformed currents, the equations

of motion for ~A1 and ~A� read

ð��1@��@�þ��2�2Þ ~A1ð�;k;�Þ¼ ~j1ð�;k;�Þ
�k���2 ~A�ð�;k;�Þ

ð�@���1@�þk2Þ ~A�ð�;k;�Þ¼ ~j�ð�;k;�Þ�k� ~A1ð�;k;�Þ
(3.15)

with ~j1ð�; k; �Þ and ~j�ð�; k; �Þ both depending on
~A1ð�0; k; �Þ and ~A�ð�0; k; �Þ, �0 	 �, but not on
~A2ð�0; k; �Þ, as we shall see shortly. The equation of motion

for the transverse mode ~A2ð�; k; �Þ is decoupled from ~A1

and ~A� and reads

ð��1@��@� þ k2 þ ��2�2Þ ~A2ð�; k; �Þ ¼ ~j2ð�; k; �Þ (3.16)

with ~j2ð�; k; �Þ depending on the history of ~A2ð�0; k; �Þ.
In order to express the current as functional of the gauge

fields, we first note that in Eqs. (3.13), the partial deriva-
tives @x0 and @�0 are simply replaced by factors ik and i�,

respectively, while the proper-time integrals over the par-
tial time derivative of the gauge fields A�ð�0; x0; �0Þ can be
integrated by parts, yielding
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Z �

�0

d�0@�0A�ð�0; x0; �0Þ ¼
Z �

�0

d�0
Z dk

2�
eikx

0ð�0Þ Z d�

2�
ei��

0ð�0Þ@�0 ~A�ð�; k; �Þ

¼
Z dk

2�

Z d�

2�

�
eikxei�� ~A�ð�; k; �Þ � eikx0ð�Þei��0ð�Þ ~A�ð�0; k; �Þ

� i
Z �

�0

d�0eikx0ei��0
�
k

cos�

coshðy� �0Þ þ �
tanhðy� �0Þ

�0

�
~A�ð�0; k; �Þ

�
: (3.17)

Inserting Eqs. (3.13) with (3.17) into the expression for the current, Eq. (2.18) and introducing the abbreviations3

�y � y� �; ��0 � ��ð�0Þ � �ð�0Þ � � ¼ �y� asinh

�
�

�0
sinh �y

�
; ��0 � ��ð�0Þ;

��0 � ��ð�0Þ � ðxð�0Þ � xÞ= cos� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ �2sinh2 �y

q
� � cosh �y; ��0 � ��ð�0Þ;

(3.18)

we find the following results for the Fourier components ~j�ð�; k; �Þ after performing the integration over the (momentum-
space) angle � in terms of Bessel functions Jn,

~j1 ¼ �m2
D

2

Z d �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
1

2
~A1ð�Þ þ ei� ��0

�
i� sinh �y

�2iso
J1ðk ��0Þ ~A�ð�0Þ � 1

2
½J0 � J2�ðk ��0Þ ~A1ð�0Þ

�

þ
Z �

�0

d�0
ei� ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2sinh2 �y
�02

q ��
k

4
½3J1 � J3�ðk ��0Þ � i�� sinh �y

2�2iso
½J0 � J2�ðk ��0Þ

�
~A1ð�0Þ

þ � sinh �y

�02

�
ik

2
½J0 � J2�ðk ��0Þ � �� sinh �y

�2iso
J1ðk ��0Þ

�
~A�ð�0Þ

��
þ ~j10ð�Þ; (3.19)

and

~j� ¼ �m2
D

2�

Z d �y sinh �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
�� sinh �y

�2iso

~A�ð�Þ þ ei� ��0

�
� sinh �y

�2iso
J0ðk ��0Þ ~A�ð�0Þ � iJ1ðk ��0Þ ~A1ð�0Þ

�
þ

Z �

�0

d�0
ei� ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2sinh2 �y
�02

q
�

��
ik

2
½J2 � J0�ðk ��0Þ þ �� sinh �y

�2iso
J1ðk ��0Þ

�
~A1ð�0Þ þ � sinh �y

�02

�
i�� sinh �y

�2iso
J0ðk ��0Þ � kJ1ðk ��0Þ

�
~A�ð�0Þ

��
þ ~j

�
0 ð�Þ: (3.20)

As mentioned above, these components of the current only
depend on (the history of) ~A1 and ~A�. If either k ¼ 0 or
� ¼ 0, the 1 and � components decouple from each other.
[For k ¼ 0 only the terms involving J0ð0Þ ¼ 1 survive,
while for � ¼ 0 all terms involving odd powers of sinh �y
integrate to zero.] On the other hand, ~j2 is found to be a
functional of only ~A2,

~j2 ¼ �m2
D

4

Z d �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
~A2ð�Þ � ei� ��0½J0 þ J2�ðk ��0Þ

� ~A2ð�0Þ þ
Z �

�0

d�0
ei� ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2sinh2 �y
�02

q �
k

2
½J1 þ J3�ðk ��0Þ

� i�� sinh �y

�2iso
½J0 þ J2�ðk ��0Þ

�
~A2ð�0Þ

�
þ ~j20ð�Þ: (3.21)

Equations (3.19), (3.20), and (3.21) generalize the ex-
pressions given in [39] for the effectively 1þ
1-dimensional case k ¼ 0, where the wave vector of the
collective modes points in the direction of momentum-
space anisotropy. (As they should, the functional depen-

dences in ~j1½ ~A1� and ~j2½ ~A2� become the same for k ¼ 0.)

The � component of the current, which is needed only
for a check of the Gauss law constraint, is again indepen-

dent of ~A2 and given by the following functional of ~A1 and
~A�:

~j� ¼ �m2
D

2

Z d �y cosh �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
ei� ��0

�
� sinh �y

�2iso
J0ðk ��0Þ ~A�ð�0Þ

� iJ1ðk ��0Þ ~A1ð�0Þ
�
þ

Z �

�0

d�0
ei� ��0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2sinh2 �y
�02

q
�

��
ik

2
½J2 � J0�ðk ��0Þ þ �� sinh �y

�2iso
J1ðk ��0Þ

�
~A1ð�0Þ

þ � sinh �y

�02

�
i�� sinh �y

�2iso
J0ðk ��0Þ � kJ1ðk ��0Þ

�
~A�ð�0Þ

��
þ ~j�0ð�Þ: (3.22)

3The notation is chosen such that a bar indicates a dependence
on �y and a prime a dependence on �0 [ �y and �0 are the two
remaining integration variables in Eqs. (3.19), (3.20), (3.21), and
(3.22)].
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In all these expressions, ~j�0 ð�; k; �Þ corresponds to non-
trivial initial data forW�, if any. Up to a factor e

ikxei��, the
Fourier component ~j�0 ð�; k; �Þ is obtained by evaluating the
expression for the induced current, Eq. (2.18), with W’s of
the form

W�ð�0; x0ð�Þ; �0ð�Þ;�; yÞ ¼ eikx0ð�Þei��0ð�Þ

� ~W0
�ðk; �;�; y� �0ð�ÞÞ;

(3.23)

where the functions x0 and �0 are given by Eqs. (3.12) and
(3.11), respectively, with �0 ¼ �0. Nontrivial initial values
~W0
� are required whenever the right-hand side of the Gauss

law constraint at � ¼ �0,

~j �ð�0Þ ¼ i

�0
ð� ~��ð�0Þ þ k ~�1ð�0ÞÞ; (3.24)

is nonvanishing. This is naturally the case for modes where
the polarization of the gauge fields and their momenta (in
temporal gauge) is longitudinal with respect to the spatial
wave vector.

Note that already for a single mode there is considerable
freedom in the choice of initial conditions which is pa-
rametrized by the functions ~W0

�ðk; �;�; y� �0Þ and which
will be explored in detail below.

C. Stable and unstable modes

Before studying the time evolution of the individual
Fourier modes through numerical evaluation of the inte-
grodifferential equations provided by the above expres-
sions, it is useful to recall the case of a stationary
anisotropic plasma, where a rather complete analysis of
stable and unstable modes in the regime of weak fields has
been carried out in Refs. [8,28,29]. This is still relevant for
the expanding case, which is however complicated by the
time dependence of the density of the plasma and its
anisotropy parameter so that some unstable modes may
shut off as the plasma evolves towards a higher degree of
oblateness, while new ones come into being. Since the
growth rate of unstable modes also depends on the orien-
tation of the wave vector, a further complication comes
from the fact that this orientation is time dependent unless
the wave vector is strictly parallel or orthogonal to the
anisotropy direction. When both k � 0 and � � 0, in
comoving Cartesian coordinates the wave vector rotates
into the transverse plane according to

k ¼ ke1 þ �

�
e3 (3.25)

with the angle between k and e3 given by

# ¼ arctan
�k

�
: (3.26)

When the anisotropy is characterized by only one spatial
direction, as is the case for the distribution (2.10), there are

in general three different branches4 of modes. Following
Ref. [28], the modes with a polarization of the electric field
transverse to both wave vector and the direction of anisot-
ropy are denoted by the label �. In our case these corre-

spond to the Fourier components ~A2ð�; k; �Þ and ~j2ð�; k; �Þ,
described by Eqs. (3.16) and (3.21). Such modes are stable
in the case of a prolate momentum anisotropy, and unstable
for all orientations of the wave vector in the case of oblate
anisotropy, but the growth rate of the latter approaches zero
as # ! �

2 . In the terminology of Ref. [8], these instabilities

are magnetic ones and have been first described by Weibel
[45]. The instabilities studied so far for expanding plasmas
[39,40] correspond to such modes in the special case # ¼
0.
When the polarization of the electric field (and of the

gauge field in temporal gauge) lies in the plane spanned by
the wave vector and the direction of anisotropy, there are
two modes, labeled ‘‘þ’’ and ‘‘�’’ in Ref. [28], according
to which one has the larger (þ ) or smaller (� ) zero-
frequency mass squared in the stationary anisotropic case.
In the isotropic case, the ‘‘þ’’ mode corresponds to electric
Debye screening at zero frequency and longitudinal plas-
mons above the plasma frequency, whereas the ‘‘�’’ mode
coincides with the � mode (which in this case has zero
screening mass to leading order). In the anisotropic case,
this degeneracy is lifted as soon as # � 0. Now the ‘‘�’’
mode is unstable for both oblate and prolate anisotropies,
but in each case for only a limited range of angles #, see
Table I.
For generic orientation of the wave vector, the ‘‘�’’

mode involves also longitudinal electric fields and thus
can correspond to an electric instability according to the
classification of Ref. [8]. However, when either k ¼ 0

(# ¼ 0) or � ¼ 0 (# ¼ �
2 ), the equations for ~A1 and ~A�,

(3.15), (3.19), and (3.20), decouple. The mode which is
longitudinal with respect to k is then electrically screened,
whereas the other one is transverse and corresponds to
either magnetostatic screening (when # ¼ �

2 in the oblate

case, or # ¼ 0 in the prolate case), or a magnetic insta-
bility (when # ¼ 0 in the oblate case, or # ¼ �

2 in the

prolate case).5

In the following we shall study the time evolution of
some representative cases of stable and unstable modes in
the expanding case, for initially oblate as well as prolate
anisotropies, with a particular view on the dependence on
initial conditions.

4For a given wave vector, one branch may have more than one
mode, e.g., a propagating wave and a growing unstable mode.

5For large anisotropies, the magnetostatic screening mass may
even become larger than the electrostatic (Debye) mass, e.g. with
prolate anisotropy � & �0:88, as is the case in Fig. 2b of
Ref. [28], whereupon electrostatic Debye screening at # ¼ 0
becomes part of the ‘‘�’’ branch and thus continuously con-
nected with the magnetic instability at # ¼ �

2 .
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IV. NUMERICAL EVALUATION

The integrodifferential equations for the time evolution
of individual Fourier modes that we have obtained in
Sec. III B for the linear-response regime can be solved
straightforwardly by discretizing the proper time variables
� and employing a leap frog algorithm for gauge fields and
conjugate momenta, Eqs. (2.21), (2.22), (2.23), and (2.24).
The memory integrals in the expressions for the induced
currents also involve integrations over the momentum
rapidity variable �y that have to be performed for each
time step between �0 and �.

Since we are interested in the earliest stage of the
evolution of plasma instabilities from small initial fluctua-
tions, we choose our dimensionful quantities such that
�0 �Qs, with Qs the so-called saturation scale of the
color-glass-condensate (CGC) framework [41,46], and a
normalization of the hard particle distribution function
(2.10) such that at � ¼ �0 the hard-gluon density of CGC
estimates is matched. This involves the so-called gluon
liberation factor c [47], which we choose as c ¼ 2 ln2 

1:386 as obtained in approximate analytical calculations by
Kovchegov in Ref. [48]. While this value is significantly
larger than the first numerical estimates [49,50], it is fairly
close to the most recent numerical result c ’ 1:1 by Lappi
[51]. Our choice of c corresponds to a value of the squared
mass parameter m2

D in the expression for the induced
current of m2

D 
 1:285ð�0�isoÞ�1. (See Appendix C of
Ref. [40] for details.) Unless stated otherwise, this value
will be used in the following numerical calculations. The
only remaining free parameter is then �iso, parametrizing
the amount of anisotropy at the initial time �0, and we shall
consider both initially prolate and oblate distributions.

For later reference we note that if we assume ��1
0 �

Qs � 1 and 3 GeV for RHIC and LHC experiments, re-
spectively, 1 fm=c corresponds to �5�0 for RHIC and
�15�0 for LHC.

A. Wave vector parallel to anisotropy direction

Fourier modes with k ¼ 0 and � � 0 have a wave vector
parallel to the spatial direction of momentum anisotropy
and thus are constant in the plane transverse to the axis of
expansion. Such modes are stable for prolate anisotropy,
while with oblate anisotropy there are magnetic (Weibel)
instabilities below a certain (�- or �-dependent) value of �.
The case k ¼ 0, which has been studied semianalytically

before in Ref. [39], is particularly interesting since it
covers the most unstable mode of a plasma with oblate
anisotropy.
Before studying the unstable modes in more detail

(eventually also with k � 0), we begin with the stable
longitudinal modes, which are complicated by the need
for nonvanishing initial induced currents. The analysis of
Ref. [39] of the unstable modes at k ¼ 0 will then be
generalized by allowing also for nonvanishing initial
currents.

1. Stable (longitudinal plasmon) modes

Longitudinal modes with k ¼ 0 and nonvanishing A�,

�� are purely electrical and correspond to charge density
waves (longitudinal plasmons). Initial conditions only in
A�, with zero initial �� and W fields, would only yield a

trivial, constant solution. For nontrivial solutions, we need
nonvanishing initial W fields and nonzero initial currents.
In order to have nonzero ~j�ð�0;�Þ we need initial values of
theW fields that are odd in �y � y� �. A possible choice is

~W 0
�ðk ¼ 0; �;�; y� �0Þ ¼ C1 tanhðy� �0Þ; (4.1)

where C1 is a constant. We recall that �0 is given by (3.11)
as

�0 � �ð�0 ¼ �0Þ ¼ y� asinh

�
�

�0
sinhðy� �Þ

�
(4.2)

so that �0 ¼ � at � ¼ �0. The Gauss law constraint (3.24)
relates the constant C1 to the initial value of the longitudi-
nal electric field according to

~j �ð�0;�Þ ¼ � 2�C1m
2
D�0

2�2iso

Z d �ysinh2 �y

ð1þ �2
0
sinh2 �y

�2
iso

Þ2

¼ i� ~��ð�0;�Þ
�0

: (4.3)

The nonzero W0
� field (4.1) thus gives rise to the following

contributions ~j�0 ð�Þ in the integral equations (3.20) and
(3.22):

~j �
0ð�;�Þ¼

i��2 ~��ð�0;�Þ
�30

N�1
Z d �yei� ��0 cosh �ysinh2 �y

ð1þ �2sinh2 �y
�2
iso

Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2sinh2 �y

�2
0

r ;

(4.4)

TABLE I. Classification of modes according to Ref. [28], the corresponding polarization of the
electric and magnetic field, and the range of instabilities in terms of the angle # between the
wave vector k and the direction of anisotropy (e3).

Mode E field B field Instabilities, prolate case Instabilities, oblate case

� k ? E k e2 k ? B ? e2 Stable 0 	 # < �
2þ E ? e2 k ? B k e2 Stable Stable

� E ? e2 k ? B k e2
�
4 & # 	 �

2 0 	 # & �
4
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~j �
0 ð�;�Þ ¼

i�� ~��ð�0;�Þ
�30

N�1
Z d �yei� ��0sinh3 �y

ð1þ �2sinh2 �y
�2
iso

Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2sinh2 �y

�2
0

r ;

(4.5)

where6

Nð�iso=�0Þ ¼
Z d �ysinh2 �y

ð1þ �2
0
sinh2 �y

�2
iso

Þ2
: (4.6)

Recall that ��0 � �0 � �, which vanishes at � ¼ �0, so
that ~j�0 ð�0;�Þ ¼ 0.

With k ¼ 0, the complete expression for the induced
current (3.20) reads

~j �ð�;�Þ ¼ m2
D

2�2iso

Z d �ysinh2 �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
~A�ð�;�Þ

� ei� ��0 ~A�ð�0;�Þ

�
Z �

�0

d�0
i��ei� ��0

sinh �y

�02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2sinh2 �y

�iso

q ~A�ð�0;�Þ
�

þ ~j�0ð�;�Þ; (4.7)

which has to be solved together with

@�
1

�
@�A�ð�;�Þ ¼ ��~j�ð�;�Þ: (4.8)

In Appendix A 2 the late-time behavior of the solutions
is derived in terms of Bessel functions J2 and Y2, see
Eq. (A18). In Fig. 1 this is compared with results of a
full numerical solution of the above integrodifferential

equation for ~A� using �iso=�0 ¼ 10 so that the time evo-

lution starts in the prolate phase, and � ¼ 0 and 1. The late-
time (large oblate anisotropy) behavior is reproduced very
well, with noticeable deviations at earlier times.

2. Unstable (transverse) modes

With k ¼ 0, there are two degenerate transverse modes
described by the then coinciding equations (3.19) and
(3.21) for the induced currents ~j1 and ~j2, which reduce to

~j ið�;�Þ ¼ �m2
D

4

Z d �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
~Aið�;�Þ

� ei� ��0 ~Aið�0;�Þ

�
Z �

�0

d�0
i��ei� ��0

sinh �y

�2iso

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2sinh2 �y

�02

q ~Aið�0;�Þ
�

þ ~ji0ð�;�Þ: (4.9)

This has to be solved together with

~�ið�;�Þ ¼ �@�A
i;

1

�
@� ~�ið�;�Þ ¼ ~jið�;�Þ � �2

�2
~Aið�;�Þ: (4.10)

In the notation of Table I, the solutions of these equa-
tions correspond to the modes ‘‘�’’ and ‘‘�,’’ which
become the same at # ¼ 0. This case, which contains
magnetic Weibel instabilities for oblate anisotropies, was
studied already in Ref. [39], but with vanishing initial W
fields and, correspondingly, vanishing initial currents,
which now is perfectly consistent with the Gauss law

constraint ~j� / ~�� ¼ 0.
In the following numerical evaluations we shall be more

general and consider separately the initial conditions of (i)

a seed electric field with only ~�ið�0Þ � 0, which is the
case studied semianalytically in Ref. [39], (ii) a seed

magnetic field with only ~Aið�0Þ � 0, which was covered
before in the real-time lattice calculations of Ref. [40], and
(iii) only ~jið�0Þ � 0. (In the present linear-response analy-
sis, the most general case is given by a linear superposition
of these possibilities.)
A nonvanishing initial current ~ji0ð�0Þ is provided by any

nonzero function ~W0
i ðk ¼ 0; �;�; y� �0Þ that is even in

its last two arguments. In the following we simply take a
constant

~W 0
i ðk ¼ 0; �;�; y� �0Þ ¼ C2; (4.11)

which we found to be also representative of some more
complicated possibilities that we have studied. Proceeding
as above, this determines the function ~ji0ð�Þ in Eqs. (3.19)
and (3.21) with C2 proportional to the initial values ~jið�0Þ.

0 100 200 300 400
3

2

1

0

1

2

3

0
A

,

0 1

FIG. 1 (color online). Longitudinal modes with � ¼ 0 and 1
for �iso=�0 ¼ 10. The dotted and dash-dotted lines represent the
analytic results for the late-time behavior, Eq. (A18), which are
in good agreement with the numerical data (thick full lines) at
sufficiently large times.

6See Eq. (A13) for an analytic expression for N.
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In the upper part of Fig. 2 we consider the case (i) of an
initial seed electric field for �iso=�0 ¼ 0:1 and compare
with the analytic result for the late-time asymptotics (A11)
for various values of �. This is the analog to Fig. 1 of
Ref. [39] but with our larger mass parameter7 and less
extreme initial anisotropy. Like Ref. [39] we observe a
substantial delay in the onset of plasma instabilities which
is preceded by a decay of collective fields until �10�0,
suggesting an uncomfortable suppression of Weibel insta-
bilities by the initial strong expansion of the plasma.

In the lower part of Fig. 2, the dependence of this
behavior on initial conditions is displayed for mode � ¼
30. Case (ii) corresponds to using seed magnetic fields
instead of seed electric fields, but this only increases the
delay of plasma instabilities, which is in line with the
results of [40] where mixed initial conditions for the fields
were considered. Surprisingly enough, with case (iii)
which corresponds to initial fluctuations in the currents,
we find that this delay is very strongly reduced.
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10 1
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,
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j
i 0

0
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A
i 0

0

B
i

, 30

FIG. 2 (color online). Magnetic (Weibel) instabilities with k ¼
0 for an oblate momentum distribution from the beginning with
�iso=�0 ¼ 0:1. In the upper panel transverse magnetic fields are
compared for different wave numbers � but equal initial con-
ditions ~�ið�0Þ ¼ 1 and ~Aið�0Þ ¼ ~jið�0Þ ¼ 0. The expected ana-
lytical late-time behavior, Eq. (A11), is indicated by the thin
light lines. In the lower plot the influence of different initial
values is studied for modes with � ¼ 30.
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1010
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30

FIG. 3 (color online). Total energy density of Weibel instabil-
ities for different wave numbers � and k ¼ 0, for �iso=�0 ¼ 0:1.
The full lines correspond to ~jið�0;�Þ � 0, while the dashed lines
are the results for ~�ið�0;�Þ � 0.
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FIG. 4 (color online). The total energy density Etot for the
mode with � ¼ 10 and ~jið�0;�Þ � 0 of Fig. 3 and its contribu-
tions from electric (EE) and magnetic fields (EB). Additionally
the gain rate (times �0) is shown.

7As mentioned above, the recent CGC results [51] now favor
this larger mass parameter, which was also considered in
Ref. [39] but without corresponding plots.
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In Fig. 3 the comparison between cases (i) and (iii) is
repeated for various values of �, showing now the total
energy in the collective fields, which confirms the finding
of a drastic acceleration of the onset of plasma instabilities
when there are initial current fluctuations. In Fig. 4 the
energy density of one of those quickly growing modes
(� ¼ 10) is decomposed into magnetic and electric con-
tributions together with the gain rate defined in Eq. (2.29).

From Fig. 3 one can also easily see the effect of having
initial fluctuations in both induced currents and (chromo)
electromagnetic fields. Because everything is linear, the
resulting solutions are just linear combinations, and be-
cause the onset of exponential growth is so much quicker
for the part corresponding to initial current fluctuations,
such superpositions are dominated overwhelmingly by the
latter as long as the two components have comparable
initial energy densities. Since in the physical context of
heavy-ion collisions we expect to find fluctuations in all
quantities, induced currents (W fields) as well as gauge
fields, we thus consider case (iii) as being actually repre-
sentative of generic situations.

The strong reduction of the delay of the onset of Weibel
instabilities makes it appear much more likely that plasma
instabilities could play an important role in the very early
dynamics of a quark-gluon plasma, at least with LHC
energies, where Qs � 3 GeV. Choosing �0 �Q�1

s �
1
15 fm=c and judging from the time it takes that the initial

depletion of energy in the fastest mode is reversed in Fig. 3,
one may set the scale where plasma instabilities kick in to
�0:5 fm=c, whereas the less generic initial conditions with
only seed fields and no currents considered previously in
Refs. [39,40] would have given �3 fm=c. (RHIC energies
would give values 2–3 times higher.)

B. Wave vector perpendicular to anisotropy direction

Another comparatively simple case is provided by a
wave vector which is strictly perpendicular to the anisot-
ropy direction, i.e. � ¼ 0 and k � 0. In this case the

integrodifferential equations for ~A1, ~A2, and ~A� again

decouple, but the equations for ~A1 and ~A2 are no longer
identical, so that we have three different modes. Now there
are two stable modes: the purely electrical mode with

polarization along the wave vector, described by ~A1, and

the (‘‘�’’) mode ~A2, where the electric field is transverse to
both the wave vector and the anisotropy direction and the
magnetic field pointing in the anisotropy direction. The

third mode, ~A�, where the electric field points in the

anisotropy direction while the magnetic field is transverse
to both the wave vector and the anisotropy direction, is
stable for oblate anisotropies, but contains a magnetic
Weibel instability for the prolate case. We shall therefore
now consider �iso > �0 so that we have an initial period of
prolate anisotropy before the expansion changes that into
an oblate one, where none of the � ¼ 0 modes is unstable.

1. Stable modes

The purely electrical mode ~A1 with polarization along
the wave vector again requires initial W fields in order to
satisfy the Gauss law constraint. One of the simplest
choices is

~W 0
1ðk; � ¼ 0;�; y� �0Þ ¼ C3 cos� (4.12)

with a constant C3 that is proportional to the initial value
~�1ð�0; kÞ appearing in the initial Gauss law constraint

�0~j
�ð�0; kÞ ¼ �ik ~�1ð�0; kÞ: (4.13)

Mode ~A2, which is transverse to both wave vector and
anisotropy direction, does not need initial W fields to
satisfy the Gauss law constraint. Because we are more
interested in the influence of different initial conditions
on the evolution of plasma instabilities, we shall only

consider the simplest case of ~�2ð�0Þ � 0.
In Fig. 5 we compare the numerical results for the

electric fields corresponding to the two stable modes ~A1

and ~A2 for k ¼ 0:1��1
0 and �iso=�0 ¼ 100, with a time

range so that both prolate and oblate anisotropies are
appearing. As expected, only stable oscillatory behavior
is found. We observe that the purely electrical (plasmon)
mode has a smaller frequency than the transverse stable
mode, which is qualitatively similar to the familiar behav-
ior in the isotropic case [52]. Perhaps more surprising is the
rather strong attenuation during the first oscillations which
is even stronger in the longitudinal plasmon mode.
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FIG. 5 (color online). Stable modes for wave vectors perpen-
dicular to the anisotropy direction with k ¼ 0:1��1

0 , initial

condition ~�ið�0; kÞ ¼ 1, and �iso=�0 ¼ 100. The full line corre-
sponds to the longitudinal plasmon mode ~E1, the dashed lines to
electric and magnetic fields of transverse plasmons.
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2. Weibel instability during prolate phase

In the time evolution of ~A�ð�; k; � ¼ 0Þ, we expect to

find magnetic Weibel instabilities for prolate anisotropies,
thus only as long as � < �iso. In contrast to Weibel insta-
bilities for oblate anisotropies there is now only one un-
stable mode, namely, with electric field transverse to the
wave vector and pointing along the direction of anisotropy,
and the magnetic field transverse to both.

We again consider initial conditions with and without
initial currents. Nonzero initial induced currents ~j� can be
set up most simply by choosing a constant ~W0

�ðk; � ¼
0;�; y� �0Þ ¼ C4, which we compare with vanishing

W0
� and nonzero initial electric field, ~��ð�0Þ � 0.

As before we choose �iso � �0 to have an extended
phase where the free-streaming plasma has prolate anisot-
ropy, and we again stop the numerics only after the mo-
mentum distribution has become oblate.

Unfortunately, the numerical solutions show rather little
activity with the mass parameter mD extracted from CGC
calculations. We therefore choose the much higher value
m2

D ¼ 1000=ð�0�isoÞ at first and consider the situation for
our standard value only thereafter. Numerical results for
the higher mass parameter and �iso ¼ 10�0 are displayed in
Fig. 6(a), which exhibits a pronounced instability that shuts
off when the degree of prolate anisotropy becomes too
small for a given value of k. After that point in time, the
mode decays for about as long as it was growing initially,
ending in stable oscillations. Dashed lines correspond to

nonzero initial values of ~��ð�0Þ and full lines to nonzero
initial currents ~j�ð�0Þ � 0, normalized such that the two
different initial conditions have equal amplitude in the final
oscillations. Since the solutions with nonzero initial cur-
rents reach larger maximal values we again find, although
to a lesser degree, that such initial conditions are more
efficient seeds for unstable modes.

In Fig. 6(b) the energy content in magnetic and electric
fields is shown for one of the unstable modes, demonstrat-
ing that the energy is predominantly in magnetic fields, as
expected for a Weibel instability. Near the point where the
instability stops the electric field changes sign.

In Fig. 7 we finally consider our much smaller standard
choice m2

D�0�iso ¼ 1:285 and again the two initial condi-
tions of nonzero initial electric field [upper plot, where
~��ð�0Þ ¼ 1] and nonzero initial current (lower plot), nor-
malized so that the final oscillations have equal amplitude
to first case. Also shown is the gain rate, defined in
Eq. (2.29), times �0. Notice that the plot is now linear
instead of logarithmic. In order to observe some instability,
we need to consider much stronger initial anisotropy and
k � ��1

0 . Figure 7 shows the various energy components

for �iso ¼ 100�0 and k ¼ 0:1��1
0 .

Since the instability is now a magnetic one, its presence
is best judged from the magnetic energy content. With
initial electric seed field, the dominant effect is the transfer
of the electric field energy to the hard particle background.

The magnetic field energy does increase, albeit nonmono-
tonically, without reaching the initial energy density sup-
plied by the seed field. In the case of nonzero initial
currents, there is a sharp initial increase in the energy
density, which is however predominantly electric. The
magnetic energy density eventually increases, too, again
nonmonotonically, and only slightly higher than in the case
with seed electric field.
We thus find that for our CGC-inspired mass parameter,

the Weibel instabilities in the prolate phase (where the
amount of prolate anisotropy decreases rapidly) are rather

5 10 15 20

10 1

100

101

102

103

104

0

k 20 k 10 k 5

B
2

,

2 4 6 8 10 12

10 2

100

102

104

106

108

0

totB

E

FIG. 6 (color online). Magnetic Weibel instabilities for ini-
tially prolate momentum distributions with �iso=�0 ¼ 10 for
different wave numbers k (in units of ��1

0 ) and two different

initial conditions (upper panel). The dashed lines correspond to
~��ð�0; kÞ � 0 and the full lines to ~j�ð�0; kÞ � 0. In the lower
panel the total energy density and its contributions from electric
and magnetic fields are shown for the mode with k ¼ 10��1

0 and
~j�ð�0; kÞ � 0. The mass parameter in both plots has been in-
creased to m2

D ¼ 1000=ð�iso�0Þ.

ANTON REBHAN AND DOMINIK STEINEDER PHYSICAL REVIEW D 81, 085044 (2010)

085044-12



weak when compared with the required energy densities in
the initial seed configuration.

C. General wave vectors and electric instabilities

Up to now we have only considered the special situ-

ations where the integrodifferential equations for ~A1 and
~A� were decoupled. We now turn to the more general case
where this is no longer the case because both k and � are
nonzero. Such Fourier components correspond to a physi-
cal wave vector whose angle with the � (or z) axis in-
creases with time according to # ¼ arctanð�k=�Þ.

In the oblate anisotropic case, the growth rate of unstable
modes decreases with increasing #. For the � mode the
rate tends to zero as # ! �=2 and for the ‘‘�’’ mode
already at 	 �=4. It is therefore of some interest to future

3þ 1-dimensional simulations of non-Abelian plasma in-
stabilities to determine the range of wave numbers k for
which the corresponding modes play an important part in
the evolution.
Another interesting aspect of the generic case is that it

allows us to study electric instabilities which appear in the
‘‘�’’ mode.

1. Electric instabilities for oblate anisotropy

When solving the coupled integrodifferential equations

for ~A1 and ~A� for nonzero k and � we have again to take
care of the nontrivial Gauss law constraint (3.24) at �0. To
do so, we adopt the initial data for the W field of Eq. (4.1)
also for nonzero k,

~W 0
�ðk; �;�; y� �0Þ ¼ C5 tanhðy� �0Þ; (4.14)

where the constant C5 is proportional to the initial electric
field component parallel to the wave vector,

Ek ¼ k ~�1 þ � ~��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�2 þ �2

p : (4.15)

The electric field, lying in the 1-� plane, has in general also
a component transverse to the wave vector, which we shall
denote E? in this subsection. (The magnetic field is of
course purely transverse and points in the 2-direction.)
An initial W field given by (4.14) gives rise to an initial

charge density ~j�0ð�0Þ as required by the Gauss law con-
straint, but zero initial spatial currents. In order to also have
nonzero initial current components ~j� and ~j1, we addition-
ally add the components

~W 0
�;1ðk; �;�; y� �0Þ ¼ C6;7: (4.16)

As discussed in Sec. III C, we can expect to find an
electric instability for wave vectors with nonvanishing # <
�=4. Since # increases with time, we choose small initial
values of #, which over some time satisfy the criterion of
being within a 45� cone about the � axis.
In Fig. 8 the time evolution of the energy density for a

mode with nonzero initial ~j1 and k�0 ¼ 1, � ¼ 10 is
shown, for which we can expect an electric instability
only for times smaller than 10�0. Again we consider a
larger mass parameter m2

D ¼ 10=ð�iso�0Þ to find more sig-
nificant results and indeed we notice that the total energy
density rises initially with a significant electric component
that is almost entirely longitudinal. After the maximum at
about 4�0 we observe a strong decay and only small plasma
oscillations after 10�0.

2. General magnetic instabilities for oblate anisotropy

For general wave vector and oblate anisotropy, the

purely magnetic instabilities reside in the ~A2 modes for
all # <�=2, but with vanishing growth rates as # ! �=2.
Nonvanishing initial currents can be simply taken into
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FIG. 7 (color online). Total energy densities and the contribu-
tions from electric and magnetic fields of prolate-phase Weibel
instabilities with k ¼ 0:1��1

0 , �iso=�0 ¼ 100, and the CGC mo-

tivated Debye mass m2
D ¼ 1:285=ð�iso�0Þ. The upper plot corre-

sponds to the initial condition ~��ð�0Þ ¼ 1, the lower one to
~j�ð�0Þ � 0. The gain rate (times �0, dotted line) is increased by a
factor 5 to make it better visible.
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account by choosing a constant ~W0
2ðk; �;�; y� �0Þ ¼ C8,

with C8 proportional to ~j2ð�0Þ.
Using the same parameters as in Fig. 8, but now with

nonzero initial ~j2, we find an instability that is operative up
to the somewhat larger time of about 6:5�0 (see Fig. 9) and
which is almost completely in magnetic fields. For this set
of parameters it was in fact crucial to have nonzero initial
currents—with vanishing initial currents and only initial
gauge fields we only found decreasing solutions.

Returning to our standard choice of mass parameter,
Fig. 10 displays the time evolution of the unstable modes
with different values of k, the full lines corresponding to

the ~A2 modes, and the dashed ones to mixed ~A1;� ones. This
shows that the most efficient plasma instabilities in the
phase of oblate anisotropies are concentrated in the range
k & 0:2��1

0 .

V. SUMMARYAND CONCLUSIONS

In this paper we have generalized the semianalytical
analysis of plasma instabilities in an anisotropically ex-
panding plasma of Ref. [39] to general orientations of wave
vectors and all possible polarizations of the individual
Fourier modes. Moreover, we have generalized to arbitrary
initial data in both the collective gauge fields and the W
fields of the hard-loop formalism, which correspond to
colored fluctuations in the hard particle distribution and
thus directly to the induced currents.
Besides the well-studied magnetic (Weibel) instabilities

of a plasma with oblate anisotropy, we have also consid-
ered plasma instabilities involving growing electric fields
parallel to the wave vector. For the latter, the wave vector
needs to have a nonzero angle with respect to the axis of
expansion, which then increases with time, eventually
shutting off such instabilities in the expanding case. We
have also considered a plasma that starts with prolate
anisotropy which after some time turns into an oblate
one. Such instabilities have occasionally been conjectured
to be the most interesting for isotropization in heavy-ion
collisions [12]. However, we found that this type of Weibel
instabilities requires plasma densities much larger than
those suggested by CGC calculations.
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FIG. 9 (color online). Total energy density and its electric and
magnetic contributions for the purely transverse ~A2 mode with
parameters as in Fig. 8 and initial condition ~j2ð�0; k; �Þ � 0.
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FIG. 10 (color online). Time evolution of unstable modes with
� ¼ 10 and various values of k (in units of ��1

0 ) and �iso=�0 ¼
0:1. Full lines correspond to the purely transverse ~A2 modes,
dashed lines to the mixed ~A1;� modes, both with initial con-
ditions of nonzero initial currents.
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FIG. 8 (color online). Total energy density and the contribu-
tions from electric and magnetic fields for a mixed ~A1;� mode
with k�0 ¼ 1 and � ¼ 10 exhibiting an electric instability. The
electric energy density is separated into a (dominant) longitudi-
nal and a (small) transverse part with respect to the wave vector.
The remaining parameters are m2

D ¼ 10=ð�iso�0Þ and �iso=�0 ¼
0:1; the initial condition is ~j1ð�0; k; �Þ � 0.
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For Weibel instabilities in the oblate phase, Ref. [39] has
previously observed an uncomfortably long delay before
they overcome the depletion of the energy in initial fields
due to the (free-streaming) expansion of the plasma. With
parameters taken over from CGC calculations, there
seemed to be very little room for plasma instabilities for
the available energies and plasma lifetimes at RHIC, while
energies and plasma lifetimes expected for heavy-ion col-
lisions at the LHC would make an important role conceiv-
able, if the quark-gluon matter to be produced there turns
out to be sufficiently weakly coupled to behave as a
plasma.

However, Ref. [39] has considered only initial fluctua-
tions in collective fields as seeds for plasma instabilities,
while physically one should expect fluctuations in both
collective fields and in the initial hard particle distribution.
With our more general initial conditions that allow also for
fluctuations in the initial hard particle distribution and the
corresponding induced currents, we find much more favor-
able conditions for plasma instabilities. When the initial
fluctuations in (only) induced currents are such that they
give rise to the same energy content in collective modes as
considered in the case of only initial field fluctuations, a
surprisingly stark reduction of the delays of plasma insta-
bilities by almost an order of magnitude was obtained.
Because of linearity in the weak-field regime, this implies
that the generic case of fluctuations of comparable strength
in both induced currents and collective fields is over-
whelmingly dominated by the modes corresponding to
only initial current fluctuations.

In Sec. IVA2 we have concluded that for LHC energies
the time scales for plasma instabilities to set in are of the
order of �0:5 fm=c when initial current fluctuations are
considered, while for RHIC energies these values would be
about 2–3 times larger. Although for a significant back-
reaction of the plasma instabilities on the anisotropic hard
particle distribution one would presumably have to con-
sider times that are somewhat larger, this still seems to
keep this mechanism very interesting at least for LHC
energies.

Finally, we should emphasize that the present analysis
was carried out in the weak-field (linear-response) regime.
The nonlinear regime of quark-gluon plasma instabilities
in the case of boost-invariant expansion was considered for
an effectively 1þ 1-dimensional evolution in Ref. [40].
These results remain valid as far as the specific non-
Abelian dynamics is concerned, but the uncomfortably
long delay of the onset of the instabilities largely disap-
pears by considering also initial fluctuations in the induced
currents (equivalently, in theW fields). However, ultrarela-
tivistic plasma instabilities have been found to behave very
differently in the regime of a nonperturbatively large non-
Abelian gauge field when a full 3þ 1-dimensional situ-
ation is considered. Work in this direction is in progress,
for which the present semianalytical results will provide

important cross-checks for the initial stages of the evolu-
tion of non-Abelian plasma instabilities.
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APPENDIX A: ANALYTICAL LATE-TIME
BEHAVIOR

For modes with wave vector parallel to the anisotropy
direction, i.e. k ¼ 0 and � � 0, which is the case studied
before in Ref. [39], the expressions for the induced currents
simplify, and it is possible to study the late-time behavior
of single modes analytically by expanding the contribu-
tions to the memory integrals around �0 ¼ �. Late-time
behavior in our free-streaming approximation means ex-
treme anisotropy, characterized by �iso=� � 	 � 1. In this
Appendix we recapitulate the analytical results of
Ref. [39], filling in some details and also show that the
late-time behavior is not modified by the necessity of
including initial values for the longitudinal current in the
case of longitudinal modes.

1. Transverse modes

With k ¼ 0, the induced currents ~jið�;�Þ are given by

Eq. (4.9), where for simplicity we set ~Aið�0;�Þ ¼ 0 and
~ji0ð�;�Þ ¼ 0. Expanding the integrand of the memory in-
tegral around �0 ¼ � yields

i��ei� ��0
sinh �y

�2iso

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2sinh2 �y

�02

q ¼ i��

�2iso

�
tanh �yþ i�tanh2 �y

�
1� �

�0

�

þ tanh3 �y

�
1� �

�0

�
þO

��
1� �

�0

�
2
��

:

(A1)

Terms odd in �y give no contribution and neglecting the
higher orders we obtain

~j ið�;�Þ ’ �m2
D

4

Z d �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
~Aið�;�Þ

þ
Z �

�0

d�0
�2� tanh2 �y

�2iso

�
1� �

�0

�
~Aið�0;�Þ

�
: (A2)
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Using

Z d �y

ð1þ 	�2sinh2 �yÞ2 ¼
ð	�2 � 2Þ arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�2 � 1

p
Þ

ð	�2 � 1Þ3=2

þ 1

	�2 � 1

¼ �	

2
� �	3

4
þOð	4Þ (A3)

and

Z d �ytanh2 �y

ð1þ 	�2sinh2 �yÞ2 ¼
ð2þ 	�2Þ arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�2 � 1

p
Þ

ð	�2 � 1Þ5=2

� 3

ð	�2 � 1Þ2

¼ �	3

2
þOð	4Þ (A4)

for 	 � �iso=� � 1, the transverse current reduces to

~j ið�;�Þ ’ ��

�
~Aið�;�Þ ���2

�2

Z �

�0

d�0 ~Aið�0;�Þ
�
1� �

�0

�
;

(A5)

where� ¼ m2
D��iso=8 and only terms up to linear order in

�iso=� have been kept. The equation of motion for the
transverse gauge fields is�

1

�
@��@� þ �2

�2

�
~Aið�;�Þ ¼ ~jið�;�Þ (A6)

and acting with @2��
2 on it we eventually obtain an ordinary

differential equation for each mode ��
@2��@��@� þ �2@2� þ�@2�����2

�

�
~Aið�;�Þ ’ 0: (A7)

Simple results for the gauge fields are only obtained for
very infrared modes � � 1, where all terms proportional
to �2 can be neglected, or for high momentum modes � �
1, where only those terms proportional to �2 contribute. We
find

~A ið�;� � 1Þ ’ c1J0ð2 ffiffiffiffiffiffiffi
��

p Þ þ c2Y0ð2 ffiffiffiffiffiffiffi
��

p Þ; (A8)

which is a stable oscillatory solution [JnðxÞ and YnðxÞ are
Bessel functions of the first and second kind, respectively],
and

~A ið�;� � 1Þ ’ c1
ffiffiffi
�

p
I1ð2 ffiffiffiffiffiffiffi

��
p Þ þ c2

ffiffiffi
�

p
K1ð2 ffiffiffiffiffiffiffi

��
p Þ;

(A9)

with c1;2 being constants. The modified Bessel functions

Kn and In have the asymptotic behavior KnðxÞ ’
expð�xÞ= ffiffiffiffiffiffiffiffiffi

2�x
p

and InðxÞ ’ expðxÞ= ffiffiffiffiffiffiffiffiffi
2�x

p
, where the lat-

ter describes a rapidly growing mode. Therefore we expect
that large � modes will be dominant at sufficiently late
times with a behavior of

~A ið�Þ � �1=4 expð2 ffiffiffiffiffiffiffi
��

p Þ: (A10)

For �� 1 the solutions can be written in terms of gener-
alized hypergeometric functions 2F3 and a Meijer G func-

tion [39]. The dominant contribution is

~Aið�;�Þ=�� 2F3

�
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p

2
;
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

p

2
;

2; 2� i�; 2þ i�;���

�
; (A11)

which is compared with the full semianalytical result in
Fig. 2.

2. Longitudinal modes

For longitudinally polarized gauge fields we proceed
analogously. In this case it is not a priori admissible to
drop the term ~j

�
0 ð�;�Þ in Eq. (3.20) because of the Gauss

law constraint. However, numerically, we notice that at late
times this contribution is negligible compared to the rest of
the current, as can be seen in Fig. 11.
Omitting both ~j�0 ð�;�Þ and the term proportional to

~A�ð�0;�Þ, we can approximate Eq. (4.7) by

~j �ð�;�Þ ’ m2
D

2�2iso

Z d �ysinh2 �y

ð1þ �2sinh2 �y
�2
iso

Þ2
�
~A�ð�;�Þ

þ i�tanh2 �y
Z �

�0

d�0 ~A�ð�0;�Þ 1

�02

�
1� �

�0

��
;

(A12)

where we have used again (A1), but with the factor 1=�2iso
replaced by 1=�02. Using
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FIG. 11 (color online). The contribution from the current
proportional to the initial conjugate momentum ~j

�
0 is negligible

compared to the rest at late times. This data is for � ¼ 10 and
�iso=�0 ¼ 0:01.
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Z d �ysinh2 �y

ð1þ 	�2sinh2 �yÞ2 ¼
arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�2 � 1

p
Þ

ð	�2 � 1Þ3=2 þ 1

	�2 � 	�4

¼ �	3

2
þOð	4Þ (A13)

and

Z d �ysinh2 �ytanh2 �y

ð1þ 	�2sinh2 �yÞ2 ¼ 2	4 þOð	5Þ (A14)

for 	 � �iso=� � 1, we obtain

~j�ð�;�Þ ’ 2�

�3
~A�ð�;�Þ þ 8��2�iso

��3

�
Z �

�0

d�0 ~A�ð�0;�Þ 1

�02

�
1� �

�0

�
: (A15)

By acting with @2��
2 on this expression we find

@2�ð�2~j�ð�;�ÞÞ ’ 2�@2�

� ~A�ð�;�Þ
�

�
� 8��2�iso

��4
~A�ð�;�Þ;

(A16)

where we can neglect the second part for very large �. The
equation of motion for the longitudinal gauge fields there-
fore becomes

�
@�

1

�
@� þ 2�

�2

�
~A�ð�;�Þ ’ 0 (A17)

and the late-time behavior is given by

~A�ð�;�Þ
�

’ c1J2ð2
ffiffiffiffiffiffiffiffiffiffi
2��

p Þ þ c2Y2ð2
ffiffiffiffiffiffiffiffiffiffi
2��

p Þ: (A18)

This corresponds to stable and oscillatory solutions.
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[9] S. Mrówczyński, Phys. Lett. B 214, 587 (1988).
[10] Y. E. Pokrovsky and A.V. Selikhov, JETP Lett. 47, 12

(1988).
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