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Deformed special relativity (DSR) is obtained by imposing a maximal energy to special relativity and

deforming the Lorentz symmetry (more exactly, the Poincaré symmetry) to accommodate this require-

ment. One can apply the same procedure in the context of Galilean relativity by imposing a maximal speed

(the speed of light). Effectively, one deforms the Galilean group and this leads to a noncommutative space

structure, together with the deformations of composition of speed and conservation of energy momentum.

In doing so, one runs into most of the ambiguities that one stumbles onto in the DSR context. However,

this time, special relativity is there to tell us what is the underlying physics, in such a way we can

understand and interpret these ambiguities. We use these insights to comment on the physics of DSR.
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I. INTRODUCTION

Deformed special relativity (DSR) [1] has been pro-
posed as a generalization of special relativity. Instead of
having only a maximal speed, one also imposes a maximal
energy.1 In order to respect such a maximal energy, one has
to deform the symmetries, therefore obtaining DSR. The
spacetime underlying this theory (constructed as the dual
of the momentum space) can be seen as a noncommutative
geometry or, alternatively, as carrying a metric observer
dependent. The two constructions are a priori physically
inequivalent and it is still unclear which one should be
preferred. The ambiguity essentially lies in the reconstruc-
tion of spacetime from the momentum space structure.
There are also other ambiguities like the right physical
definition of energy and the notion of speed, and issues like
how one should recover the classical framework for macro-
scopic objects with the usual definition of energy momen-
tum. It is definitely important to understand and to cure
these ambiguities as DSR is supposed to describe some
effective limit of quantum gravity as many arguments hint
to [2–4].

As we said, DSR arose when one uses the algebraic tools
of noncommutative geometry in order to introduce a uni-
versal maximal energy in special relativity. This latter
contains already a maximal speed, so a natural question
one may ask is, ‘‘Is it possible to start with a Galilean space
and then introduce a maximal speed by deforming the
Galilean symmetries’’? More strikingly one could wonder
what would have happened if Einstein did not have the
Lorentz symmetries at hand and did not think about uni-

fying space and time to construct special relativity, would
he have constructed some kind of noncommutative defor-
mation of Galilean symmetries in order to deal with the
assumption of a universal conserved speed?
We propose here to describe special relativity as a non-

commutative geometry of space. We then take this as a
guiding principle to deal with the problems arising in DSR.
Namely this alternative description of special relativity can
be constructed in a similar way as DSR and, therefore, runs
into the same ambiguities. However in this case we have
special relativity to guide us to solve those ambiguities and
provide us with a consistent physical interpretation of the
mathematical construction.
This points to a general scheme for building new physi-

cal theories: the first one determines the symmetries that
are inherent to the studied physics, then the later one
discovers that physics has some quantities which should
be bounded by a universal constant (i.e. the same for all
observers) at some scale. This is generically not compat-
ible with the original symmetries. Then one has a choice:
either be ‘‘conservative’’ and (quantum) deform the sym-
metries in such a way to impose maximal values to these
quantities, or be ‘‘innovative’’ and introduce some new
kind of symmetries, in some sense bigger as they must
encompass the previous symmetry.
In the early 20th century, people have followed the latter

path to build Special Relativity. Deformed Special
Relativity was created following the first. Here, we try to
stay ‘‘conservative’’ and consider the (noncommutative)
deformation approach to deal with the physics of special
relativity.
Note that our construction is essentially different than

the one in [5], where the deformation of the Galilean group
is obtained as a limit from the deformation of the Poincaré
group.
In the next section, we first construct the deformed space

of speeds constructed to account for a modified law of
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1More precisely, the DSR theory takes into account a universal

energy scale, which implies a bound of energy or mass or
momentum according to the particular version of the theory.
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speed composition with a invariant maximal speed.
Section II deals with the physics of special relativity as
seen from this noncommutative space point of view. We
describe the noncommutative geometry of space and com-
ment on the deformed associativity of the theory. We
introduce the new definitions of energy and momentum,
which are consistent with the deformed space of speeds.
The ambiguities of the theory lay in its physical interpre-
tation: which are the physical quantities one measures in
experiments? We address these ambiguities using our
knowledge of special relativity. We finally tackle particle
scattering and describe energy-momentum conservation in
our introduced noncommutative space. Section III introdu-
ces the concept of a relative noncommutative geometry,
which provides a conceptual and mathematical framework
to deal with the fact the description of space(time) and
events will depend on the observer and its choice of
coordinates (i.e. the physical quantities he does measure):
the algebraic structure of the noncommutative geometry
will depend on the observer. Section IVapplies the insights
obtained through the previous analysis of special relativity.
We draw some lessons for the DSR case. We comment on
how to fix the ambiguities in the definition of physical
notions in DSR. We comment on the modified associativity
law resulting from our point of view and introduce a
Lorentz precession in DSR as an analog of the Thomas
precession of SR. We comment on the five-dimensional
symmetries of the 4d noncommutative spacetime. We fi-
nally conclude with speculations on the potential link
between DSR and Born-Infeld kinematics [6], which pro-
poses the alternative way to take into account a maximal
energy by enlarging the symmetry group instead of de-
forming it.

II. FROM GALILEAN SPACE TO A NON-
COMMUTATIVE SPACE

In this section, we present special relativity as a defor-
mation of the Galilean framework. While special relativity
introduces the concept of a unified spacetime, Time and
Space are distinct entities in the Galilean or Newtonian
approach. Therefore, we propose to look at special relativ-
ity and reformulate it from a three-dimensional point of
view: speeds are still defined as the derivatives of the space
positions with respect to the absolute time, and momenta
are simply proportional to them. The original symmetry is
given by the Galilean group G together with the trans-
lations. G consists in the rotation group together with the
Galilean boosts. In this context, the speed addition, when
composing reference frames, is given by the usual simple
relation:

~v 1 þ ~v2 ¼ ~vtot: (1)

This law makes clear that there is no maximal speed. We
now want to introduce one, as a matter of fact the speed of
light, noted as usual c. To implement the maximal speed,

we have the choice of proceeding two methods which are
actually equivalent: we can either start by looking for the
most general deformation of the coproduct of the Hopf
algebra behind G, just as done in DSR and then derive the
whole class of deformations consistent with the existence
of a maximal speed, or we can use the geometrical picture
of the homogenous space and stipulate that speeds now live
on the curved 3 hyperboloid and not in flat space anymore.
We chose the latter, which is rather natural from the tradi-
tional presentation of special relativity. We shall check in
the next section that this new structure for the speed space
respects the maximal speed.
In the Galilean framework, the speed space is identified

as the quotient space G=SOð3Þ � R3. In order to have a
maximal speed, we introduce some curvature and deform
R3 into the hyperboloid SOð3; 1Þ=SOð3Þ. As an argument
for this choice, one can advocate the fact that we know
from special relativity that the momentum space is a
hyperboloid (on the mass shell), so the hyperboloid struc-
ture seems a natural choice.2

Our construction follows the one introduced by Snyder
[7] in the DSR context. Let us consider the homogenous
space SOð3; 1Þ=SOð3Þ, which we want to interpret as the
space of speeds. The 3d hyperboloid is defined through its
embedding in the 4d Minkowski space:

1 ¼ �2
0 � �2

1 � �2
2 � �2

3 ¼ ����: (2)

In the following we will use Latin indices i, j ¼ 1, 2, 3 to
describe space coordinates and Greek indices �, � ¼ 0, 1,
2, 3 to encode spacetime coordinates. The group SO(3, 1)
acts naturally on the hyperboloid

½Li; �j� ¼ i�ijk�k; ½Li; �0� ¼ ½Li; �3� ¼ 0;

½Ni; �j� ¼ �ij�0; ½Ni; �0� ¼ i�i; ½Ni; �3� ¼ 0;

(3)

where Li ¼ �ijkLij and Ni ¼ Li0, Lij 2 SOð3; 1Þ, respec-
tively, generates the (space) rotation and the boosts. The
hyperboloid is identified with the space of speeds, which is
isomorphic to the space of (Galilean) momenta (up to a
scale factor). The speed is defined through a choice of a
coordinate system, which we express in terms of the
Minkowski variables �i. The most general (isotropic) ex-
pression is given by

2We do not seek to rediscover the theory of special relativity,
but merely to reformulate it algebraically from the three-
dimensional point of view, showing how its mathematical struc-
ture is close to doubly/deformed special relativity. Then, instead
of SOð3; 1Þ=SOð3Þ, one could also try using the 3-sphere
SOð4Þ=SOð3Þ. However the construction then does not lead to
the right structure: one would derive a discrete space and some
unnatural commutations relations between momenta and posi-
tion. From this perspective, the noncompact group SO(3, 1) has
to be preferred to SO(4).
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vi ¼ c
�i

�0

Fð�0Þ: (4)

The coordinate system is the link which translates the
mathematical object �� with � ¼ 0, 1, 2, 3, into the

physical object defined as the speed ~v (and measurable
experimentally). Then, injecting these coordinate systems
in the algebra (3), F labels the deformation at the algebraic
level. Some coordinates might be preferred in the sense
that the (Hopf) algebra takes a particular form or that the
coordinates acquire an appropriate physical meaning. A
natural choice is F ¼ 1 which gives the Snyder coordi-
nates. This choice is also the traditional definition of the
speed in special relativity: �� is the relativistic speed 4-

vector, �0 defines the relativistic factor � while the space
speed 3-vector is exactly given by vi ¼ cð�i=�0Þ. In this
case, (2) gives the usual relation:

� � �0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

c2

q :

Let us introduce at this point some further useful nota-
tions. To parametrize the hyperboloid, one commonly in-
troduces the boost parameter � defined by �0 ¼ cosh�
and the normalized boost direction bi ¼ �i= sinh�, so that

the (Snyder) 3-speed is expressed as ~v ¼ c tanh� ~b. More
generically, for an arbitrary deformation function F, we

have ~v ¼ cFð�Þ tanh� ~b, and the speed is bounded by
definition as long as F is bounded. From this perspective,
a physically reasonable choice of F� tanh is a bounded
increasing function.

We reconstruct the 3d (coordinate) space as the tangent
space to the speed space. More precisely, the (Cartesian)
coordinates will be the (Hermitian) generators of the trans-
lation on the speed space (up to a dimensional scale factor),
which are actually the boost operators:

xi � ‘Ni ¼ i‘

�
�0

@

@�i

þ �i

@

@�0

�
: (5)

‘ is a length scale which we can determine using the
constants at hand:

‘ ¼ @

mc
; (6)

where we have introduced the Planck constant @ and the
(rest) mass m of the considered system/particle. With this
choice ‘ is actually the Compton length lC associated to the
system and is here for the purpose of dimensional analysis.
Note that since we are dealing with position operators, it is
natural to introduce the Planck constant.

The rotation transformations act linearly on these coor-
dinates and are naturally represented as

Lij ¼ i

�
�i

@

@�j

� �j

@

@�i

�
: (7)

The new feature is that, even though the coordinates op-
erators transform covariantly under space rotations, the
space coordinates are now noncommutative and their
bracket is given by

½xi; xj� ¼ i

�
@

mc

�
2
Lij ¼ il2CLij: (8)

Note that the position operators have a continuous spec-
trum. Then it is obvious that when c ! 1 we recover the
usual three-dimensional commutative space. We have con-
structed here the analogue of the Snyder space [7], which
we name the c-Galilean space.
Let us comment on the uncertainty relations resulting

from the noncommutativity of the space coordinates. To
localize a point in this 3-space, we need to build coherent
states which will be considered as semiclassical points [8].
A measure of the uncertainty in the coordinates can be
defined as ð�xÞ2 ¼ hxixii � hxiihxii. Taking into account
that the Hilbert space of the theory is the space of functions
over the hyperboloid, which can be decomposed over the
simple representations of the Lorentz group SO(3, 1). Such
representations are of two types: a discrete series labeled
by an integer n, which can be decomposed into the SO(3)
representations of spin j � n, and a continuous series
labeled by a real positive parameter �, which decomposes
into all spins j � 0. Computing the uncertainty of states of
fixed spin j in a given representation n or �, it is straight-
forward to check that hj; mjxijj; mi ¼ 0 and that ð�xÞ2 is
simply the difference of the Casimir operators of SO(3, 1)
and of SO(3):

ð�xÞ2 ¼ l2C � ðjðjþ 1Þ þ �2 þ 1Þ or

l2C � ðjðjþ 1Þ � n2 þ 1Þ:
It is easy to see that the minimal indeterminacy is reached

for j ¼ n when �x ¼ lC
ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. This way, we have de-

rived that one cannot localize the particle/system with a
better resolution than its Compton length, which is the
expected physical effect when introducing the Planck con-
stant @ in the realm of special relativity.
One way to understand the noncommutativity of the

space coordinates is to realize that we have traded the
loss of absolute simultaneity arising in special relativity
against the loss of exact localization in our framework.
Indeed, in special relativity, the notion of simultaneity
depends on the observer, whose movement defines a spe-
cific foliation of spacetime into (3d) space slices. Changing
the speed of the observer will affect the choice of foliation
and will, therefore, modify the coordinates the observer
assigns to objects. In our framework, we have assumed a
universal time and a specific choice of splitting of space-
time into a unique notion of 3d space and a fixed time
direction. Starting from special relativity, the choice of
observer modifies measurements of coordinates but we
choose to ignore this so that the indeterminacy of which
space slicing we choose gets translated into a fuzziness of
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the space coordinates. Let us make this argument more
precise and consider a (static) object in the 3d space whose
coordinates we want to measure. Determining the coordi-
nates is not a straightforward measurement like measuring
the distance to the object would be. Indeed measuring the
distance simply involves sending a ray of light to the object
and the time of the return flight, where as measuring the
coordinates actually involves a motion on the behalf of the
observer. Starting from the origin, wanting to calculate the
coordinate x of the object, one will move along the x axis,
and constantly measure the distance to the object so that x
will be determined as the point X on the axis with minimal
distance. Then starting from X, one can move along the y
axis in order to determine the coordinate y. As the observer
is in motion, in the context of special relativity, the mea-
surements will involve a change of space slicing, basically
a boost in the x direction followed by a boost in the y
direction. From this point of view, if we had measured y
first and then only x, we would have done a boost in the y
direction first and the a boost in the x direction. As boosts
do not commute, we would not end up with the same space
slicing at the end of the two measurements, so that the
actual measured values of x and y would be different in the
two experiments: x and y do not commute if we decide to
stipulate a universal splitting of spacetime into fixed space
and fixed time and ignore the dependence of the space
slicing on the motion of the observer.

We can compute the brackets of the speed/momentum
with the space coordinates straightforwardly once the de-
formation function F is specified. Explicitly, in the case
that F ¼ 1, we get

½xi; vj� ¼ i
@

m

�
�ij �

�i�j

�2
0

�
¼ i

@

m

�
�ij �

vivj

c2

�
: (9)

When jvj � c, then this reduces to the standard phase
space bracket fxi; pj ¼ mvjg ¼ @�ij. However, when

jvj ! c, then this goes to fxi; pjg ¼ 0. Let us also point

out that we have off-diagonal terms: x1 does not commute
with v2. If we now compute the commutators with the
relativistic 4-speed, we get the somewhat familiar rela-
tions:

½xi; �0mc2� ¼ i@c�i ¼ i@�0vi;

½xi; mc�j� ¼ i@�0�ij:

As we will discuss later, ð�0mc2; �imcÞ defines a new
notion of energy momentum needed to accommodate the
principle of relativity in this deformed Galilean frame-
work, and actually matches the usual relativistic energy-
momentum 4-vector.

III. PHYSICS OF SPECIAL RELATIVITY FROM
THE NON-COMMUTATIVE POINT OF VIEW

In this section we address the physical interpretation of
the noncommutative structure we introduced. Interestingly

we face exactly the same type of ambiguities that arise in
DSR. We have, however, here many years of experiments
and understanding of special relativity which allow us to
give a clear interpretation and resolution of these
ambiguities.
We start by defining the deformed speed composition,

which can be seen arising from a coproduct structure. This
deformed product appears to be both noncommutative and
nonassociative. These features also found in DSR are
sources of many debates in that context. Nevertheless, we
are able to understand it in the present framework of
special relativity as linked to a well-known physical phe-
nomenon, the Thomas precession. The physical meaning
of the choice of the speed coordinates is analyzed. This
also a source of big debates in DSR, and we show how
physics here allows to settle down this mathematical issue.
We continue by defining the new notion of energy and
momentum. Indeed as the speed space is deformed, those
objects take a new shape. We define then the new copro-
duct on the Galilean momenta describing the scattering of
particles/systems. This coproduct is defined accordingly to
the principle of relativity, such that the conservation laws
of energy and momenta are respected in all reference
frames.

A. Speed composition

We have described the geometrical structure of the speed
space. We will now derive the resulting new law of com-
position of speeds and check that there is indeed a maxi-
mum allowed speed. Let us insist that the speed
composition is essentially different than the scattering of
particles, i.e. addition of momenta.
We reconstruct the speed addition from the group struc-

ture we used. Indeed, defining the speed space as the coset
SOð3; 1Þ=SOð3Þ, we have identified speeds with the boost
sector. In order to keep calculations as simple as possible,
we choose the spinorial representation of the Lorentz
group. 4-vectors are represented as 2� 2 Hermitian ma-
trices:

ð�0; ~�Þ ! �0 þ �3 �1 þ i�2

�1 � i�2 �0 � �3

� �
: (10)

Defining the Pauli matrices ~J as

J1 ¼ 1
1

� �
; J2 ¼ �i

i

� �
; J3 ¼ 1

�1

� �
;

Lorentz group elements are the U ¼ expð ~u � ~JÞ for arbi-
trary complex vectors ~u. More precisely, boosts are pa-
rametrized as:

g ¼ eð�=2Þ ~b� ~J ¼ cosh
�

2
Idþ sinh

�

2
~b � ~J;

where � 2 R is the boost parameter (or hyperbolic angle)

and ~b is a normalized 3-vector indicating the boost direc-
tion. The group elements act on 2� 2 matrices by con-
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jugation. Therefore, defining the origin of the hyperboloid
as the 4-vector V0 ¼ ð1; 0; 0; 0Þ or equivalently as the Id
matrix, boosts allow us to translate it to any point on the
hyperboloid:

Vð�Þ � gV0g
y ¼ ðcosh�; sinh� ~bÞ: (11)

We choose to proceed in the Snyder basis using the stan-
dard relativistic speed coordinates, but we bear in mind that
the construction can be performed in any coordinate sys-
tem. We shall come back to this issue in the next subsec-
tion. In the following, the speed is, therefore, given by

~v ¼ c ~�=�0 ¼ c tanh� ~b. Considering two speeds ~v1, ~v2

and the corresponding boosts g1, g2, the composed speed
~v1 	 ~v2 is defined as corresponding to the group element
g ¼ g1g2. This composition represents a change of refer-
ence frame: we are looking at a system moving with the
speed ~v2 in a reference frame moving at a speed ~v1 in our
reference frame. Mathematically, it corresponds to trans-
lating the point on the hyperboloid corresponding to the
system 2 by the boost g1. After some lengthy calculations
that can be found in the Appendix, we get the general
formula for the composition of speeds:

~v 1 	 ~v2 ¼ 1

1þ ~v1: ~v2

c2

�
~v1 þ 1

�1

~v2 þ 1

c2
�1

1þ �1

�ð ~v1: ~v2Þ ~v1

�
: (12)

When ~v1 and ~v2 are collinear, it obviously reduces to the
well-known formula for speed composition in special rela-
tivity:

~v ¼ ~v1 þ ~v2

1þ 1
c2
~v1: ~v2

: (13)

It is easy to check that the maximal speed is indeed c.
Interestingly, when the speeds, ~v1 and ~v2 are not collinear,
the composition is noncommutative and, moreover, non-
associative. This can be easily seen at the level of the group
element products. First, as matrices, two boost g1 and g2
will not commute (generically). Even more important, we
are working on the coset SOð3; 1Þ=SOð3Þ which is a homo-
geneous space but not a Lie group. Indeed the group
product of the two boosts is not a boost but a generic
Lorentz transformation. Using the Cartan decomposition
of a Lorentz transformation, we can write g1g2 ¼ h12g12,
where h12 is a (space) rotation and g12 a pure boost. The
composed speed ~v1 	 ~v2 is extracted from the boost g12
but the rotation h12 does have a mathematical and physical
impact. As shown in the appendices, it is expressed as

h12 ¼ eið	=2Þ ~r: ~J ¼ cos
	

2
Idþ i sin

	

2
~r: ~J with�

tan
	

2

�
~r ¼ 1

1þ c�2 ~v1: ~v2

ð ~v1 ^ ~v2Þ;

which shows that h21 ¼ h�1
12 . This rotation factor h is in-

deed the (mathematical) reason for the nonassociativity.
Let us consider three boosts gi. Doing ðg1g2Þ ¼ h12g12 and
then g12g3 ¼ h123g123, or ðg2g3Þ ¼ h23g23 and then
g1g23 ¼ h0123g0123 will generically give us two different

boosts g123 and g0123 so that associativity will be violated.

More explicitly3:

ðg1g2Þg3 ¼ g1ðg2g3Þ ) h12g12g3 ¼ h23ðh�1
23 g1h23Þg23

) h12h123g123 ¼ h23 ~h123~g123:

This way, we see that although ð ~v1 	 ~v2Þ 	 ~v3 (given by
g123) is different from ~v1 	 ð ~v2 	 ~v3Þ (given by g0123), a
modified associativity law still holds:

ð ~v1 	 ~v2Þ 	 ~v3 ¼ ðh23x ~v1Þ 	 ð ~v2 	 ~v3Þ:
The noncommutativity and nonassociativity have an inter-
esting physical manifestation as the so-called Thomas
precession [9], so that we actually name the rotation h
the Thomas precession (associated to the change of refer-
ence frame). A simple application of the phenomenon
deals with a particle moving around a circular path. The
particle undergoes continuous acceleration, but at each
instant it is at rest with respect to the momentarily comov-
ing inertial frame. If we consider the ‘‘parallel transport’’
of a vector around the continuous cycle of momentary
inertial rest frames of the particle, we find that the vector
does not remain fixed. Instead, it ‘‘precesses’’ as we follow
it around the cycle. This relativistic precession (which has
no counterpart in nonrelativistic physics) actually has ob-
servable consequences in the behavior of atomic particles.
This precession is to be thought of as a holonomy created
because of the relativistic effect.
In the Galilean context, the speed space was a (Abelian)

group, when going to the relativistic case, i.e. implement-
ing the maximal speed, one seems to completely lose this
structure since the product now is nonassociative. In fact, it
is simply that we are working on a group coset G=H. The
resulting abstract structure can be called gyro group or
gyro-vector space (as in [10]), or quasigroup (as in, for
example, [11]). We have modified notions of commutativ-
ity (’’gyrocommutativity’’) and associativity (’’gyroasso-
ciativity’’):
(i) Gyrocommutativity

u � v ¼ AdðhuvÞðv � uÞ (14)

(ii) Gyroassociativity

u � ðv � wÞ ¼ ðu � vÞ � AdðhuvÞw
ðu � vÞ � w ¼ u � ðv � AdðhvuÞwÞ;

(15)

where u, v, w are group elements in the cosetG=H, the h’s

3It is important to keep in mind that if h is a rotation and g a
pure boost, then hgh�1 is still a pure boost.
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element of the subgroup H and Ad the adjoint action of H
on the elements of the coset. It is very intriguing to under-
stand what is the dual algebraic structure which describes
this gyrostructure. One might think of a quantum group
structure with a quasitriangular structure given by a R
matrix, but it seems more complicated. We shall come
back on this noncommutative structure in Sec. III.

Let us then describe the dual structure to the change of
reference frames. Let us note the space of deformed speeds
V . The speed composition due to the change of frame is
given by the map (‘‘r’’ standing for relativistic):

F : V 
V ! V ð ~w; ~vÞ ! ~w 	r ~v: (16)

Dually we can consider two frames, and the associated
state j1; 2i which represents the frame 1 associated to the
observer seen in the frame 2. With respect to the speed
operator, we, therefore, have a coproduct that can be
determined such that

�F
~Vj1; 2i ¼ ð ~v1 	 ~v2Þj1; 2i:

In the Galilean case, we just have ~v1 	g ~v2 ¼ ~v1 þ ~v2, so

that �F
~V ¼ ~V 
 1þ 1 
 ~V. In the special relativity case,

the coproduct is more involved as ~v1 	r ~v2 follows from
the law (12).

Let us insist on the central point that this coproduct must
not be confused with the coproduct describing the addition
of momenta when thinking of scattering of particles: they
are essentially different. Note that this nontriviality of the
coproduct �F is analogous to the nontriviality of the

coproduct � that arises in DSR. Indeed we are here de-
forming and curving the space of speed and, therefore,
getting a nontrivial structure (sum rule) for them; just as
in DSR the space of momenta is deformed with a nontrivial
structure. Going down to more details, one can actually
state than in special relativity we deform/curve the mo-
mentum space on the mass shell (at fixed rest mass m)
while DSR goes further and deforms/curves the full mo-
mentum space off the mass shell.

Let us illustrate the coproduct construction in the toy
model given by the 2d case. Note that here the speeds are
always collinear so that we do not face the nonassociativity
issue in this context. In terms of the boost parameter �
which is simply the hyperbolic angle, the speed addition is
very simply given by

�tot ¼ �1 þ �2: (17)

The associated coproduct is then trivial

�� ¼ � 
 1þ 1 
 �: (18)

Considering the special relativity coordinates, the relevant
speed is v ¼ c tanh�. The speed addition is now not trivial
but can be derived. Indeed, starting from

v1 	 v2 ¼ c tanhð�1 þ �2Þ ¼ c
tanh�1 þ tanh�2

1� tanh�1 tanh�2

¼ v1 þ v2

1þ c�2v1v2

; (19)

one can construct the dual coproduct using the fact that
1

1þX � 1þ Xþ X2 þ X3 þ . . . and �Xn ¼ ð�XÞn, which
combined lead to the formal equality �ð 1

1þXÞ ¼ 1
1
1þ�X :

�Fv ¼ cð�F tanh�Þ ¼ v 
 1þ 1 
 v

1þ c�2v 
 v
: (20)

Once again, this coproduct for the momentum is not asso-
ciated to the scattering of particles but to the behavior of
the speed under the change of reference frame.

B. Which coordinate is physical?

In the previous subsection we have chosen the Snyder
basis and the standard special relativity velocity. However
nothing prevents us a priori to use another coordinate
system and, therefore, another definition of the velocity.
As a matter of fact, we could have, for example, defined the

speed as ~v � tanh�2
~b (let us recall that ~b is a normalized 3-

vector). If we had done so, the speed composition would
have been constructed the same way and derived from the
group multiplication, but we would have gotten a different
final result. Indeed one can see that in this particular case
the result is

~v ¼
ð2� 1

�2
v2

þ 2
c2
~v1: ~v2Þ ~v1 þ 1

�v1

~v2

1þ 2
c2
~v1: ~v2 þ 1

c4
v2
1v

2
2

: (21)

One could also have chosen j ~vj � sinh�, and we shall see
after that this choice actually corresponds to the standard
relativistic speed (� ~v). In fact one can generalize the
construction for any function f defining the speed in terms
of the rapidity cfð�Þ ¼ j ~vj. f encodes the map between
the Galilean space of velocities R3 and the curved space of
velocities defined by the hyperboloid. Such a map can be
understood as a map between (boost) Lie algebra elements

parametrized by ~vg ¼ � ~b and (boost) Lie group elements

(such a map is not unique since it depends on the coor-
dinate system chosen on the Lie group manifold). Making
the common sense assumption that physics is isotropic, so
that the deformation map should only be a function of the
norm of the speed and not of its direction, the map can be

defined as ~v ¼ c’ð� ~bÞ ¼ cfð�Þ ~b. We only require that f:
Rþ ! Rþ be a continuous increasing function, onto Rþ or
a compact interval ½0; K�. For an arbitrary function f, one
can derive the general formula:

~v ¼ ~v1 	 ~v2 ¼ fð�vÞ
sinh�v

ðCv1
~v1 þ Cv2

~v2Þ; (22)

with
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Cv1
¼ sinh�1

fð�1Þ cosh�2

þ
�
sinh�1

fð�1Þ
�
2 sinh�2

fð�2Þ
1

1þ cosh�1

~v1: ~v2

c2
;

Cv2
¼ sinh�2

fð�2Þ : (23)

We have also the quantity (which we shall see is the new
definition of energy)

cosh�v ¼ cosh�1 cosh�2 þ sinh�1

fð�1Þ
sinh�2

fð�2Þ
~v1: ~v2

c2
: (24)

As we see, there is an ambiguity in what is to be called
the velocity. The only way to overcome this issue is physi-
cal experiments. Effectively measuring and experimentally
testing the composition of speeds (and it is enough to study
the composition of collinear velocities) will specify which
deformation function f needs to be chosen. Let us point out
that the original Galilean case corresponds to the trivial
choice f ¼ Id, v ¼ �. Choosing different f’s leads to a
whole family of mathematically consistent relativistic
theories with bounded speeds.

Another experiment to extract the right function is the
measure of length contraction. Physics on the hyperboloid
tells us that the length will be contracted by a factor � �
cosh� for an observer with velocity v=c ¼ fð�Þ. Measure
of the contraction factor � in terms of the velocity will then
specify us which is the function realized in nature. As an
example, if the speed was given by v ¼ c tanh�2 , then the

contraction factor � ¼ cosh� as a function of v would be

� ¼ 1þ 1
c2
v2

1� 1
c2
v2

¼ 1þ 2
v2

c2
þ 2

v4

c4
þ . . . : (25)

Whereas we know (through experiments) that we should
get

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

c2
v2

q ¼ 1þ 1

2c2
v2 � 3

8c4
v4 þ . . . ; (26)

which leads to the usual relativistic definition v ¼ c tanh�.
To summarize, it is understood that the ‘‘true physics’’ is

described by a single system of coordinates on the hyper-
boloid leading to a unique choice of deformation: although
there is a whole class of equally consistent deformed speed
additions, physics should select a unique deformation. The
way to find the right one is to use experiments to calibrate
to the right deformation. Once this is done, we can proceed
to actually do predictions. Once the theory calibrated,
agreement with further experiments will really test the
theory and overall consistence between the different ex-
periments will improve the precision of the calibration.

This single system of coordinates defines the physical
meaning of the mathematical entities or equivalently de-
fines what are the measured physical quantities like what

we call the energy or spatial coordinates. Of course, we can
always use arbitrary systems of coordinates to describe the
physics and phenomena, as long as we remember the
definition of the actual physical quantities. In other words,
we can still do passive coordinate change without affecting
the underlying physics.
An immediate prediction that one can do here is the

Thomas precession, and its precise value depends on the
actual definition of the velocity. It is interesting to note that
this experiment is precisely showing the nonassociativity
of the speed composition which is something somehow
unexpected, as associativity is usually taken as granted.
To introduce more complex experiments, we need fur-

ther tools and to define the other physically relevant quan-
tities such as energy and momentum, which we will now
discuss.

C. New definition of energy and momentum

As we have deformed the speed addition, it is expected
that the usual notions of momenta and energy will also be
modified. The Galilean energy and momentum are easily
expressed in terms of the velocity and the mass (of the
system/particle):

e � 1

2
mv2 ¼ 1

2

p2

m
; ~p � m ~v: (27)

Momenta generate translations in space, while the energy,
considered as the Hamiltonian, generates the motion of the
particle/system. In the Galilean context, we indeed have

fpi; xjgðgÞ ¼ �ij; fe; xigðgÞ ¼ pi

m
¼ vi:

Now, in the relativistic framework, assuming the modified
Poisson bracket structure (9), we have

fpi; xjg ¼ �ij �
vivj

c2
¼ �ij �

pipj

m2c2
;

fe; xig ¼ pi

m

�
1� jvj2

c2

�
¼ vi

�
1� v2

c2

�
:

(28)

An important point is that these relations are not linear
anymore, so that they do not provide us with a Lie algebra
structure. If we want to identify the Lie algebra generating
the translations and motion of the system, we need to go
back to the �� variables. Indeed, we recall the definition of

our framework:

½xi; �0� ¼ i
@

mc
�i; ½xi; �j� ¼ i

@

mc
�0�ij:

These relations are linear and define a Lie algebra struc-
ture. It is, therefore, natural to define the new notion of a
relativistic energy-momentum through the �� by giving

them the right units:

E ¼ �0mc2 ¼ �mc2; Pi ¼ �imc ¼ �pi; (29)

where we are using the usual relativistic factor � � �0.
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These new energy and momenta define the following alge-
bra:

½xi; E� ¼ i@
Pi

m
; ½xi; Pj� ¼ i@

E

mc2
�ij; (30)

where we notice that we have fxi; Pjg ¼ �ij only up to an

energy-dependent factor E=mc2 ¼ �. This factor is equal
to 1 when and only when the velocity v is equal to 0, then
increases and diverges to 1 when the velocity reaches the
maximal speed, or speed of light, c.

The reason why linearity is important is when consider-
ing composite systems. Indeed for free systems, energy and
momentum are assumed to be extensive quantities. This
generically requires linearity of the bracket between posi-
tion coordinates and energy momentum. Indeed, using the

relativistic energy momenta EðiÞ, ~PðiÞ, then the total energy
momentum of the composite system is naturally simply:

EðtotÞ ¼ Eð1Þ þ Eð2Þ; ~PðtotÞ ¼ ~Pð1Þ þ ~Pð2Þ:

To check this, we consider the coarse-grained position
operators which are simply the center of frame coordinates:

X � m1x
ð1Þ þm2x

ð2Þ

M
;

where the coarse-grained mass is naturally defined asM �
m1 þm2. Then it is easy to verify that the following
commutators hold:

½Xi; E
ðtotÞ� ¼ i@

PðtotÞ
i

M
; ½Xi; P

ðtotÞ
j � ¼ i

@

c2
EðtotÞ

M
�ij;

(31)

and we indeed recover the same algebra structure (30). At
this point we must point out that there is no constraint on
the definition of the coarse-grained mass. However, we
must require that the total energy momentum be on the
M mass-shell hyperboloid. This leads us to a modified total
mass:

M2 � E2 � ~P2 ¼ m2
1 þm2

2 þ 2m1m2�1�2

�
1� ~v1: ~v2

c2

�
:

(32)

It is straightforward to check that �1�2ð1� ~v1: ~v2=c
2Þ �

1, so that the Galilean total massm1 þm2 is not the coarse-
grained mass anymore but simply a lower bound for it.

Now that we have seen that the relativistic energy mo-
mentum is simply additive for composite systems as ex-
pected in a kinematical theory for free systems, we can
look at the situation from the point of view of the Galilean
energy momentum and interpret the velocity bound as
inducing (or eventually induced by) an interaction poten-
tial between the two systems considered in the Galilean
context. Indeed, the composite system is relativistically
described by the total massM and the velocity of the center
of frame given by

~v ¼ c2
~PðtotÞ

EðtotÞ ¼
�1m1 ~v1 þ �2m2 ~v2

�1m1 þ �2m2

;

so that the composite Galilean energy is

eðtotÞ ¼ 1

2
M ~v2

¼ 1

2

j�1m1 ~v1 þ �2m2 ~v2j2
ð�1m1 þ �2m2Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ 2m1m2�1�2

�
1� ~v1: ~v2

c2

�s
: (33)

It is rather obvious that �e � etot � ðe1 þ e2Þ does not
vanish, and we can interpret this difference as an interac-
tion potential V � �e between the two systems depending
on their velocities. This potential would forbid the veloc-
ities to exceed the bound c.
The most important point about energy momentum is its

conservation. We will see below that this provides us with
another argument why we need new relativistic energy
momenta instead of the old Galilean notions. The key point
is actually the relativity principle: If the energy momentum
is conserved (during a process/scattering) in one reference
frame, it should be seen as conserved in any reference
frame. More precisely, considering the scattering of two
particles/systems of given (rest) masses and of speeds ~v1,
~v2, the relativity principle can be translated to the equiva-
lence relation:

Ev1
þ Ev2

and Pv1
þ Pv2

conserved , 8 ~v;

Ev	v1
þ Ev	v2

and Pv	v1
þ Pv	v2

conserved:
(34)

We will see that the Galilean energy momentum does not
satisfy this criteria anymore when considering the relativ-
istic composition of speeds, but that the newly defined
relativistic quantities will, so that they will become physi-
cally meaningful.

D. Scattering, conservation law, and principle
of relativity

In this section we address the issue of scattering (i.e.
coproduct) and conservations laws (compatibility/consis-
tency between the different coproducts attached to differ-
ent reference frames). Generally, considering a scattering
process between two systems 1 and 2, the total energy
momentum of the composite system 1þ 2 is conserved.
In the Galilean framework, the addition of energy momen-
tum is trivial:

~p tot ¼ ~p1 þ ~p2; etot ¼ e1 þ e2;

which can be expressed in terms of the dual coproduct
structure:

� ~p ¼ ~p 
 1þ 1 
 ~p; �e ¼ e 
 1þ 1 
 e:

As seen above, consistency with the velocity bound re-
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quires us to change to a new notion of relativistic energy
momentum:

E � �0mc2 ¼ mc2 cosh� ¼ �mc2; (35)

~P ¼ �imc ¼ mc sinh� ~b ¼ �mc tanh� ~b ¼ mc
sinh�

fð�Þ ~v;

(36)

where the speed is defined through the deformation func-

tion f as ~v ¼ fð�Þ ~b. An important point is that our defi-
nition of energy momentum is actually independent of the
deformation function f. Now, in the new framework with
bounded speed, it is the new notion of energy-momentum
which has a trivial coproduct:

Etot ¼ E1 þ E2; Ptot ¼ ~P1 þ ~P2:

A useful exercise to realize how much special relativity is
not natural from the Galilean point of view is to compute
the coproduct on the Galilean energy momentum in the
new deformed framework. Choosing the usual f ¼ tanh,
we have

~P ¼ m� ~v ¼ ~P1 þ ~P2 ¼ m1�1 ~v1 þm2�2 ~v2; (37)

E ¼ �m ¼ �1m1 þ �2m2: (38)

For this, we can deduce the values of the speed ~v and the
mass m:

~v ¼ ~P

E
¼ m1�1 ~v1 þm2�2 ~v2

�1m1 þ �2m2

; m ¼ �1m1 þ �2m2

�
;

where � is simply defined as ��2 ¼ 1� v2=c2. Thus we
get

~p ¼ 1

�
~P ¼ 1

�
ð�1 ~p1 þ �2 ~p2Þ; (39)

e ¼ 1

2�

j ~Pj2
E

¼ 1

2�

j�1 ~p1 þ �2 ~p2j2
�1m1 þ �2m2

: (40)

Substituting in these expressionsmi ¼ j ~pij2=ei and ��1
i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4e2i =p
2
i c

2
q

everywhere needed, we get the expression

of etot and ~ptot in terms of e1, e2, ~p1, ~p2. This formula is
much more complicated than in the Galilean theory. And,
moreover, this coproduct now mixes the energy e and the
momentum ~p so that we need to work anyway with the full
Galilean energy-momentum quadri vector. Explicitly de-
riving the full exact coproduct is pretty cumbersome, and
fortunately not really needed here.

Let us point out the new energy momentum naturally
satisfies a new dispersion relation different from the initial
Galilean one:

p2 ¼ 2me ! E2 ¼ P2c2 þm2c4: (41)

Let us recall how to go from the relativistic relation to the
Galilean one. Indeed we have P2c2 ¼ ðE�mc2Þ�
ðEþmc2Þ. Noticing that we always have E � mc2, we
can define ~E ¼ E�mc2. And when the renormalized
energy ~E is close to 0 i.e. E � mc2, we can approximate
the dispersion relation by P2c2 ¼ 2 ~Emc2.
Let us now explain why the addition of relativistic speed

is the trivial one. One of the basic postulates of physics is
the principle of relativity stating that different observers
should still experiment the same laws of physics. More
precisely, we are required to have the same laws of con-
servation in any reference frames. More technically this
means that we want a compatibility relation between the
coproduct describing the scattering process (i.e. going
from two systems to one coarse-grained composite system)
and the coproduct describing the change of (reference)
frame. Noting	w the change of reference framewith speed
~w, we need to check that for all ~w we indeed have ð	w 

	wÞ �� ¼ � � 	w. More explicitly, we consider two sys-
tems m1, ~v1 and m2, ~v2, and another reference frame
defined by its (arbitrary) speed ~w with respect to the initial
frame. We require that the conservation of the total energy
momentum of the composite system 1þ 2 in the initial
frame be exactly equivalent to its conservation in the
moving frame: we impose that the total energy momentum
of ðm1; ~v1Þ þ ðm2; ~v2Þ is conserved if and only if the total
energy momentum of ðm1; ~w 	 ~v1Þ þ ðm2; ~w 	 ~v2Þ is
conserved.
It is interesting to note that the order in which one

composes the speeds is very important here. Indeed the
composition of velocities is not Abelian anymore in gen-
eral. We want to consider the systems, 1 and 2, and trans-
late them in the momentum space, and not take a single
system, defined by the speed w, and translate it in two
arbitrary directions 1 and 2. This means we are truly
considering the addition ~w 	 ~vi, and not ~vi 	 ~w. In fact
the latter choice gives completely unrealistic results with
respect to the energy-momentum conservation law.4

Finally, the trivial coproduct on the modified energy-
momenta is a solution of a such compatibility relation, as
we are checking below. A priori it should be the only one
but we have not proven this.
First let us have a look at the energy,

E � �mc2 ¼ E1 þ E2 ¼ �1m1c
2 þ �2m2c

2 ! E0

� �0
1m1c

2 þ �0
2m2c

2; (42)

with �i ¼ cosh�vi
and �0

i ¼ cosh�viþw. Computing �0
i

from Eq. (24), we get the formula:

4It tells us that the rest mass of the two particles should be
conserved during any process, so that this restricts too much the
possible interactions consistent with the kinematical framework.
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E0 ¼ ðm1c
2 cosh�1 þm2c

2 cosh�2Þ cosh�w

þ
�
m1

sinh�1

fð�1Þ ~v1 þm2

sinh�2

fð�2Þ ~v2

�
� sinh�w

fð�wÞ ~w

¼ ðE1 þ E2Þ cosh�w þ sinh�w

fð�wÞ ~w � ð ~P1 þ ~P2Þ

¼ E cosh�w þ sinh�w

fð�wÞ ~w � ~P (43)

In the same way, the total relativistic momentum reads

~P ¼ ~P1 þ ~P2 ! ~P0 ¼ ~P0
1 þ ~P0

2: (44)

Once again we apply the rule of speed composition, as

given in (22). Now defining ~w ¼ cfð�wÞ ~b, a trick to
compute the change in momenta due to the change of

reference frame is to remember that ~Pi ¼ mc sinh�i
~bi,

so that a fast way to get the momentum in the moving
frame is to apply the speed composition (22) with the new

deformation function ~f � sinh. This way, we get

~P0
i

mic
¼

�
cosh�1 þ 1

1þ cosh�w

sinh�1
~b1 � sinh�w

~b

�

� sinh�w
~bþ sinh�1

~b1: (45)

We can then easily deduce that

~P 0 ¼ ~Pþ sinh�w

fð�wÞ ~w

�
E

c
þ sinh�w

fð�wÞð1þ cosh�wÞ ~w � ~P

�
:

(46)

Having fixed the change of frame ~w, the equations (43)
and (46), giving the energy momentum in the moving
frame in terms of the original energy momentum, show
that the conservation of the modified energy momentum

ðE; ~PÞ in one frame is equivalent to its conservation in any
reference frame (moving at a constant speed with respect to
the initial one). Let us insist on the fact that we need the full
relativistic energy momentum and we cannot work only
with the energy or only with the momentum. At the end of
the day, considering these new notions of energy and
momentum, the deformed Galilean theory still respects
the principle of relativity. Moreover, this result holds what-
ever the chosen deformation f, so that the principle of
relativity does not select a particular deformation, and all
these theories are both mathematically consistent and
physically realistic. Only experiments allows us to select
the specific deformation function fð�Þ ¼ tanh�. In that
particular case, let us rewrite the transformation of the
energy momentum under a change of frame:

E0 ¼ �wðEþ ~P � ~wÞ
~P0 ¼ ~Pþ ~w

�
�w

E

c
þ �2

w

1þ �w

~w � ~P

�
:

(47)

Let us underline that writing the relativistic laws of con-

servation of energy momentum in terms of the initial
Galilean notions ðe; ~pÞ would take a very ugly aspect.
To conclude, in this section we have shown that there are

many possible deformations of the Galilean framework in
order to accommodate a maximal speed. Then although all
these deformed theories are mathematically consistent and
can be related to each other simply through a change of
coordinate systems on the hyperboloid, physics is really
described by a unique deformation, which has to be cali-
brated through experiments. The important thing in the end
is that deforming the speed space and the Galilean sym-
metry forces us to define new notions of energy and
momenta in order to respect the principle of relativity.
A last point we would insist upon is that the deformation

comes together with a nonassociativity, which might be
unexpected but has a true physical meaning. This is linked
with the fact that the noncommutative structure is some-
how observer dependent, therefore in some sense ‘‘rela-
tive.’’ We develop this point in the following section.

III. NONCOMMUTATIVE SPACE

A. Different types of deformations: Quasigroup or
quantum group

The noncommutative and nonassociative structure of
special relativity comes from using a curved space, the
hyperboloid SOð3; 1Þ=SOð3Þ, as configuration space. More
precisely, the noncommutativity comes from using a non-
Abelian group SO(3, 1), and the nonassociativity comes
from using a quotient space which is a homogeneous space
but not a group manifold. Nevertheless, as we have seen,
we have an exact control on both the noncommutativity
and the nonassociativity, which is quantified through the
Thomas precession. This has lead to the deformed notions
of gyrocommutativity and gyroassociativity. Then a natu-
ral question is whether such gyro groups can be considered
as quantum groups. On the other hand, gyro groups are
understood to be transversal loops which are a special case
of loops which are themselves a particular case of qua-
sigroups (for a short review of these notions, see [12]).
The simplest case of gyro groups is a quotient G=H

where elements of H are just phases. Then the group
product gives g1g2 ¼ expði	12Þg12 while we define the
product on the coset as g1:g2 ¼ g12, and one can check
that the new product is still associative. A straightforward
example is provided by the Heisenberg-Weyl group.
Indeed because ½x; p� / Id commutes with x and p, multi-
plying group elements of the type expð�xþ 
pÞ simply
induces a phase. More generally, when H is a subgroup
included in the center ofG, G=H still has a group structure
and the product on the coset stays associative. This is
similar to the first example of noncommutative geometry,
given by the Moyal deformation. In this case, one deforms
the product of the algebra of functions on the space by
introducing a phase factor:
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x ? y ¼ ei	ðx;yÞy ? x:

The phase 	ðx; yÞ is generally a scalar function of ðx; yÞ.
And by construction, the Moyal product ? is associative.

Quasigroups can be more involved. Already in the case
of phases, one can introduce a nonassociative extension of
U(1). Noting g1g2 the usual group product, we define very
generally a new product g1  g2 ¼ expði�ðg1; g2ÞÞg1g2
without using any coset structure. Then it is straightfor-
ward to check that

g1  ðg2  g3Þ ¼ ei�ðg1;g2;g3Þðg1  g2Þ  g3;
where �ðg1; g2; g3Þ ¼ �ðg2; g3Þ � �ðg1g2; g3Þ þ
�ðg1; g2g3Þ � �ðg1; g2Þ defines a 3-cocycle. This can be
actually used to describe the physics of Dirac’s monopole
[11].

The next simplest cases of gyro groups are already
naturally nonassociative. As an example, consider the
sphere S2 ¼ SUð2Þ=Uð1Þ with U(1) being the (Abelian)
(sub-)group of rotations along the z axis. The coset is

parametrized as gðnÞ ¼ expðin̂ � ĴÞ ¼ expði	ðsin�Jx �
cos�JyÞ with n ¼ ðsin	 cos�; sin	 sin�; cos	Þ 2 S2.

gðnÞ actually maps the point n0 ¼ ð0; 0; 1Þ to the point n.
Then

gðn1Þgðn2Þ ¼ gðn12ÞeiAðn1;n2ÞJz ;

whereAðn1; n2Þ is the area of the geodesic triangle on the
sphere with vertices n0, n1, n2. Already because Jz does not
commute with Jx, Jy, the product on the sphere gðn1Þ �
gðn2Þ ¼ gðn12Þ is not associative.

The general case states that, noting the group product
g1g2 ¼ h12g12 and the coset product g1 � g2 ¼ g12, the
gyro-associativity reads

ðg1 � g2Þ � g3 ¼ ðAdðh23Þxg1Þ � ðg2 � g3Þ:
With the opposite convention g1g2 ¼ g12h12, we would get

g1 � ðg2 � g3Þ ¼ ðg1 � g2Þ � ðAdðh12Þxg3Þ:
At this point, we would like to stress that the h factor
depends on the choice of section we use to describe the
cosetG=H i.e. the mapG=H ! G, or equivalently the map
g ! G=H used to parametrize the homogeneous space.
The first choice we made is associated with the Cartan
decomposition of the Lorentz group. One can also consider
the Iwasawa decomposition SOð3; 1Þ � SOð3Þ �H and in
this case, the resulting coset SOð3; 1Þ=SOð3Þ �H is just a
group, with Lie algebra generated by

~x1 � x1 ¼ lCN1; ~x2 � x2 þ lCL3 ¼ lCðN2 þ L3Þ;
~x3 � x3 þ lCL2 ¼ lCðN3 þ L2Þ; (48)

together with the brackets

½~x1; ~xa� ¼ ilC~xa; ½~x2; ~x3� ¼ 0; a ¼ 2; 3: (49)

We have here a deformation of the Euclidean space, a c

deformation, analogue to the � deformation met in the
Minkowski case. The map (48) indicates how to pass
from the Cartan decomposition to the Iwasawa decompo-
sition of the Lorentz Lie algebra. A similar map can be
defined for the 5d Lorentz group SO(4,1) and it describes
in this case how to go from the Snyder coordinates to the
�-Minkowski coordinates.
This choice of coset corresponds to the following choice

of section:

gð ~wÞ ¼ gðw; ŵÞ ¼ eið1=ð2lCÞÞw~x1eið1=ð2lCÞÞŵa~xa : (50)

Such group elements map (by the adjoint action) the origin
(1, 0, 0, 0) to the points on (half of) the hyperboloid:

�0 ¼ coshwþ 1
2ðw2

2 þ w3
3Þe�w; �1 ¼ �w3;

�2 ¼ �w2; �3 ¼ � sinhwþ 1
2ðw2

2 þ w3
3Þe�w:

(51)

Let us underline that the speed ~v � c ~�=�0 is not collinear
to the vector ~w ¼ ðw; ŵÞ and also that w is not the boost
rapidity � so that the true (physical) speed j ~vj is not given
by tanhj ~wj. Then using the identity

eiwðx1=lCÞeiwað~xa=lCÞe�iwðx1=lCÞ ¼ eie
�wwað~xa=lCÞ;

it is straightforward to check that

gð ~w1Þgð ~w2Þ ¼ gðw1 þ w2; eðw2=2Þŵ1
a þ ŵ2

aÞ: (52)

One can recognize the analogue of the momenta addition
in the context of � Minkowski. Here however the defor-
mation encodes the deformation of the boosts. This derived
law of composition of the ~w’s is much simpler than the
laws of speed composition described earlier, and it is easy
to check it is also associative. Nevertheless, they are
equivalent as long as we express the velocity ~v in terms
of the 4-vector��. Therefore, such coordinates can be very

useful to do calculations although the physical meaning of
the coordinate ~w is not straightforward. Now, however,
having a associative composition law contrasts with the
earlier claim that nonassociativity is physical and that the
Thomas precession is an experimental fact in the context of
special relativity. This apparent paradox originates in the
fact that the new coordinates ~xi include a rotational part
and do not have a straightforward physical meaning: the
~x’s are not the physical measured coordinates and the ~w’s
are not the physical velocities. In order to go further, it
should be interesting to analyze/describe the Thomas pre-
cession in these coordinates. More precisely, a rotational
motion is nonisotropic and the axis of the rotation is a
preferred direction which we can choose as x1. Then we
would need to understand what ~x2;3 represent. This should
also help us to understand the precise link between the
Snyder basis and the �-Minkowski basis in DSR theories.
One last remark, although w behaves additively, it is not

to be considered as a new notion of energy. Indeed, we are
still dealing at the level of the composition of velocities,
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i.e. the law describing the change of reference frames, and
not describing composite objects and scattering processes.

B. Relative noncommutative geometry and the notion
of observer

The noncommutative structure of special relativity leads
us towards the notion of relative noncommutative geome-
try. First, it is rather expected to consider special relativity
as a theory of a noncommutative space. More precisely, the
key point to go from Galilean to Lorentzian is the notion of
simultaneity. From global it becomes local and relative to
the observer. In our framework, the noncommutativity
encodes this change and thus encodes the observer
dependence.

The main issue is then to define exactly what is meant by
an ‘‘observer.’’ A priori, its definition at least requires its
position and its speed. However, in our noncommutative
framework, we face the same issue as that in a quantum
context and we also need to know the set of measurements
that the observer can do. More exactly, we need to specify
what the observer calls coordinates, which operators cor-
respond to what the observer labels as energy or momen-
tum. The choice of coordinates is about choosing a basis of
the algebra and thus choosing a particular deformation.
From that point of view, we might say that we decided to
work out the theory as seen from the typical inertial
observer. The theory as seen by an observer in an accel-
erated motion will certainly need to be described in differ-
ent terms. Indeed, we know that the 3d frame attached to
such an observer will get rotated along its trajectory due to
the Thomas precession h factors, so that the notion of
coordinates will be defined differently.

A more direct proof of the observer dependence of the
noncommutative structure is to see that the h factor asso-
ciated to a particular experiment actually depends on the
observer. More precisely, let us consider two (pure) boosts
g1 and g2. Then the Thomas precession factor is defined
through g1g2 ¼ hg12 where g12 specifies the composed
velocity. Considering another observer, which will mea-
sure the speed ~g1 instead of g1. Then the composition of

velocity will read ~g1g2 ¼ ~h~g12 with ~h � h. Another point,
maybe more intuitive from the physical point of view, is a
consequence of the noncommutativity of the space coor-
dinates. Indeed as ½xi; xj� � 0, we cannot localize space

points exactly, and we have to write coherent states de-
scribing a semiclassical notion of space points. Then we
expect two effects. The first is that the uncertainty and the
shape of these states will change with the velocity of the
observer, or in other words, coherent states for one ob-
server will not be coherent states for another one [8]. This
can be seen as related to the nontrivial action of the boosts
in special relativity, for example, inducing length contrac-
tion. A second effect is that it is likely that the spread of the
coherent states will depend of the distance of the space

point to the origin, so that the location of the observer is
relevant [8].
These considerations lead to a slight change of perspec-

tive with respect to the usual approach to noncommutative
geometry. Indeed usually one is working at the algebra
level and deforming it. In this sense, one is working
globally, with the full space at once. Here for the sake of
interpretation one has to introduce the concept of observer
and so a relative notion of localization. On the other hand
one can have a change of observer and physics should not
be dependent on the choice of observer. This relativity
principle is what we implemented when requiring that
the conservation laws be identical in every reference frame.
This notion of relative noncommutativity which appears

already at the special relativity level, is more generally
useful when dealing with quantum gravity. Already, a first
step towards a more complex theory is given by deformed
special relativity and, as it is shown in [13], in this extended
context the definition of the observer, or equivalently of a
reference frame, requires us to specify its mass. More
generally, when considering quantum gravity from a prac-
tical point of view, one needs to deal with partial observ-
ables and their evolution, which are obtained through
partial gauge fixing of the full theory [14]. Indeed full/
true (invariant) observables given directly as a solution of
all the constraints (among which is the Hamiltonian con-
straint) are mostly unphysical due to their global nature.
We need to localize them. This is achieved by introducing
boundaries, and then through partial gauge fixing which
specifies the physical meaning that the observer gives to
the mathematical entities (like what he calls time and what
he calls space coordinates). From this perspective, one
needs, therefore, to introduce a notion of noncommutative
geometry which depends on the observer. This reformula-
tion of special relativity provides a simple example.

IV. LESSONS FOR DOUBLY SPECIAL
RELATIVITY

Deformed special relativity arises when one considers
special relativity and tries to implement an extra universal
bound which arises from some quantum gravity effect. As
we mentioned in the Introduction, when introducing a new
universal maximal quantity which was initially not reach-
able, we can either change the symmetries or deform the
current symmetry. DSR does the latter. Interestingly, we
can trace its first apparition back to Snyder’s seminal work
in 1947 and it was rediscovered in the late 1990s. DSR can
be seen as making the momentum space curved, which is
analogous to the construction we introduced for the speed
space. There are, however, a couple of problems that have
arisen and met controversy in the community. Following
the SR case we propose some solutions for them. We,
however, do not go in the complete details, which are
developed in [13].
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A. DSR in short

Let us recall quickly the DSR setting. One considers the
Poincaré group, P ¼ SOð3; 1Þ2R4. By construction we
have that P=SOð3; 1Þ � R4 is the translational part, and
is identified with the momentum space. There are two main
ways to implement the maximal quantity (which can be a
mass, or an energy, or a trivector momentum): geometric or
algebraic. Ultimately the two approaches coincide, as
shown by Kowalski-Glikman [15].

The algebraic approach consists in keeping the Lorentz
part untouched

½Mi;Mj� ¼ i�ijkMk; ½Ni; Nj� ¼ �i�ijkMk;

½Mi;Nj� ¼ i�ijkNk; ½Mi; pj� ¼ i�ijkpk;

½Mi; p0� ¼ 0;

(53)

while deforming the action of the boosts on the momentum

½Ni; pj� ¼ A�ij þ Bpipj þ C�ijkpk; ½Ni; p0� ¼ Dpi;

(54)

where A, B, C, D are functions of p0, p
2
i , �. We would like

that the deformed Poincaré group becomes the usual
Poincaré group in the continuum limit where � ! 1.
This gives, therefore, some conditions on these functions
(A, D ! 1, B, C ! 0). We can, moreover, show that the
function C has to be zero from the Jacobi identity. Also
from this latter we have the differential equation

@A

@p0

Dþ 2
@A

@ ~p2
ðAþ ~p2BÞ � AB ¼ 1: (55)

Different solutions of this equation, with the limit condi-
tions for � ! 1 give us different deformations.

These latter give rise to different physical situations. It is
not clear which one is the ‘‘true physical’’ one or if they are
all equivalent under some new physical principle. We come
back to this ambiguity in the following subsection. In any
case, what is important is that one can incorporate a new
universal bound while keeping the Lorentz symmetry fine.

The geometrical approach consists in replacing the flat
momentum space by a curved space (an anti–de Sitter
space), as did Snyder so that R4 ! SOð4; 1Þ=SOð3; 1Þ [re-
spectively, SOð3; 2Þ=SOð3; 1Þ]. This de Sitter space is the
new space of momenta. The four generators left (called the
de Sitter boosts) in the coset are identified with the mo-
menta. We can embed this de Sitter space in the 5d
Minkowski, using the equation �2 ¼ �2

0 þ 2
1 þ 2

2 þ
2

3 þ 2
4, where the A are the 5d Minkowski coordinates,

and � is a constant with dimension of mass. The Lorentz
part of SO(4,1) is acting as usual on A,

½Mi;j� ¼ i�ijkk; ½Mi;0� ¼ ½Mi;4� ¼ 0;

½Ni; j� ¼ �ij0; ½Ni; 0� ¼ ii; ½Ni; 4� ¼ 0:

(56)

This is essentially the Snyder’s approach and later
Kowalski-Glikman found out that it was equivalent to the
algebraic approach [15].
Indeed, when restricting the ’s to the homogenous

space SOð4; 1Þ=SOð3; 1Þ, in a particular coordinates sys-
tem, e.g. 0 ¼ 0ðp0; ~pÞ, i ¼ pið�0ðp0; ~pÞÞ, 4¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��P

3
i¼0

2
i

q
, one recovers the commutation relations

(53) and (54), with the functions A, B, D expressed in
terms of 0, . In this sense the two approaches are
equivalent.
This is DSR in a seed shell and now we sketch the

problems associated to its physical interpretation and also
their solutions, in the light of the presentation of SR we just
made.

B. One or many deformations are physical?

There are many possible deformations as we can see
from (54), and their physical significance is not clear.
From the algebraic point of view it seems that each

deformation is physically distinguished. From the geomet-
rical point of view it seems that the choice of coordinates
(and so deformation) on the manifold is not physically
relevant. The two approaches seem, therefore, to be
contradictory.
The SR construction went into the same trouble but as

we know pretty well how SR is working we were able
to solve the problem. One needs first to define the relevant
physical quantities and then, from there, the coordinates
systems are all equivalent as expected. Basically, it
means that once the map f: R3 ! H, where H is the
hyperboloid for SR or g: R4 ! dS� in DSR has been
defined so that the physics is independent of the choice
of coordinates. This map g should be determined, cali-
brated, with the help of different experiments. They can
consist in checking new dispersion relations as mostly
advocated, or can be of some new type, like measuring
some new precession, a Lorentz precession, alter-ego of
the Thomas precession.
It is interesting to note that the interpretation of the

choice of the deformation can be refined. Indeed this
choice corresponds to the choice of an observer. In our
case we consider an inertial observer, which corresponds
to the choice of the Snyder coordinates. A different ob-
server, e.g. accelerated, would likely single out another
deformation. This then prompts to the mind a generaliza-
tion of the equivalence principle: in the context of quantum
gravity, one should expect that all the deformations carry
equivalent physics, but as seen by different observers.
From this perspective, it is worth pushing further the study
of the noncommutative formulation of SR and see how GR
can arise in this algebraic deformation context. This would
help us to understand this new potential generalization of
the equivalence principle. We leave this point for further
investigations.
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C. Nonassociativity is physical or not?

From the SR case, we draw two important lessons con-
cerning nonassociativity. The first is that even if people
take associativity for granted, SR is an example where
there is physical evidence of nonassociativity. So it can
be physical. This nonassociativity can be derived mathe-
matically from the coset structure of the hyperboloid, and
is seen physically as the Thomas precession. One can do
the same for the DSR case, as there is once again a coset
structure. The Thomas precession came up as the product
of two boosts and is a rotation times a boost. In DSR, we
have that the product of two de Sitter boosts TðpiÞ is a
Lorentz transformation L times a de Sitter boost:

Tðp1Þ � Tðp2Þ ¼ Lðp1; p2ÞTðp1 	 p2Þ: (57)

One should find some experimental setting to measure it,
and hopefully it could be measurable at a scale much
smaller than the chosen maximum scale, just as the
Thomas precession is seen at speeds which are not rela-
tivist (e.g. electron around a nucleus). In this sense, the
lesson is that nonassociativity is physical and even the
physical evidence of a new regime.

The second lesson that one should draw is that this
nonassociativity in SR is essentially linked to changes of
the reference frame. Indeed it is the notion of composition
of velocities under a change of reference frame that we
initially modify, and not the notion of scattering. But then,
of course, the notions of energy and momenta and their law
of conservation under scattering do get modified in order to
accommodate the principle of relativity in the deformed
theory. By analogy we propose the same interpretation for
DSR: the deformed coproduct should describe changes of
reference frames. Then the bound introduced by DSR
should be interpreted as a universal mass/energy scale
and its compatibility with the coproduct means that ‘‘if
the mass/energy of one process is bounded by the (renor-
malized) Planck mass for one observer (in one reference
frame) then it should be bounded in for any observers (in
any reference frames).’’ It appears that one should deal in
this context with the mass (and momentum) of the refer-
ence frame as well as its speed. We argue in a forthcoming
paper [13] why one should generically take into account
the momentum of a reference (or its mass) and not only its
speed. We are, therefore, introducing an extra refinement
of the relativity principle. DSR introduces a new object to
describe the scattering, the momentum pentavector, which
helps us understand the soccer ball problem as we shall see
below. The law of scattering defined in terms of this
pentamomentum will have then to be compatible with the
relativity principle: the laws of conservation should stay
the same under a change of reference frames, and the
reference frame should be described by their momentum.

The physical interpretation of the Lorentz precession is
very close to the one associated to the Thomas precession
(e.g. when the electron is turning around the nucleus).

When the changing of a reference frame occurs, there
will be, in general, a natural acceleration associated to
this change and this acceleration will generate a Lorentz
transformation on the initial reference frame that will
depend on the mass of the new reference frame.
It exists however some deformations which are associa-

tive (that is the Lorentz precession must be hidden) and
where the compositions of momenta is simpler: they cor-
respond to the quantum group like deformations of the
Poincaré group. It is not clear to which physical situation
they are associated to, i.e. to which observer. It is, however,
clear that the bicrossproduct basis or the �-Minkowski
basis are very close to the situation described in
Sec. III A, and a better understanding of this case will
help a lot in understanding the physical meaning of the
�-Minkowski space.
Finally as a last comment, note that in this associative

basis there was a problem concerning the interpretation of
the coproduct as a scattering: it seemed that the whole
Universe was contributing to the scattering, due to the
noncocommutativity of the coproduct. It is the so-called
spectator problem [15]. However, we have seen that this
coproduct should be interpreted as describing the compo-
sition of momenta under changes of reference frames.
Then we should first determine the scattering coproduct,
describing how to determine the total momentum of a
composite object in terms of the momenta of its compo-
nents, and reconsider the issue of the spectator problem
with respect to this new coproduct [13].
This interpretation of the addition of momenta as a

composition instead of a scattering is, moreover, corrobo-
rated by the solution of the soccer ball problem, which we
recall now.

D. The soccer ball problem

We are, by construction, imposing a constraint on the
momenta. The quadri-vector or some part of it cannot be
bigger than some universal scale. The addition of momenta
is deformed so that it respects this bound. It happens
however that in the everyday experience, this bound is
violated. For example if one chooses to bound the energy
and considers a soccer ball, it is pretty obvious that this is
violated. There seems to be something wrong right at the
root of the philosophy. The way out is to see that the
deformed addition of momenta corresponds not to a scat-
tering but a composition of momenta associated to differ-
ent reference frames.
The scattering will be described by some new objects

associated to the new symmetry (the de Sitter group), just
as the scattering in the SR case is described not by the 3d
Galilean momenta, but the 4d relativistic ones. In this
sense, in the DSR case one should consider the ‘‘DSR
momentum,’’ which is now a pentavector, i.e. a 5d vector.
In the Galilean setting, one considers the momentum

trivector, and an extra component the energy, so in this

FLORIAN GIRELLI AND ETERA R. LIVINE PHYSICAL REVIEW D 81, 085041 (2010)

085041-14



sense Galilean kinematics is described by a ð3þ 1Þd vec-
tor. In the relativistic case, we still have a 4d vector, but
now space and time are really on equal footing. One then
might be inclined to say that we are adding an extra
coordinate in the DSR case by considering the pentavector.
This is not the case. Indeed this fifth coordinate indicates
the scale at which we are working. Galilean physics is
conformally invariant, just as special relativity. By imple-
menting a universal length, one is breaking this invariance
and then one has to specify the scale at which one is
working. This is also a reason why the physics of the
DSR deformation is different than the SR one, as in the
latter case, one is implementing an universal ratio, a speed,
which is then not breaking the conformal invariance.

Once defined, it is not difficult to see that the pentavector
takes into account the maximum mass and that the trivial
scattering allows us to define a new maximum mass, solv-
ing naturally the soccer ball problem.

As we are defining a new momentum, we can expect to
have some new physical features. Indeed, just as from the
Galilean perspective we had a new notion of energy and
momentum which is emerging, in the DSR case we shall be
able to define a new notion of energy and momentum. All
those new objects are described in the companion paper
[13].

Magueijo and Smolin [16] had already a proposal for
solving this soccer ball problem, but it was implying a
nonassociative coproduct for the momenta and was, more-
over, constructed by hand and so was falling out of the safe
field of quantum group deformations. Considering this
effective momentum also allows us to give a more mathe-
matical understanding of their trick.

VI. CONCLUSION

In the first sections, we have shown how special relativ-
ity can be constructed as a noncommutative geometry from
the Galilean symmetries, instead of a commutative geome-
try arising from the Lorentz symmetries. We have explored
the different consequences of this construction in the light
of the already existing special relativity. This allowed us to
settle some ambiguities. From the construction we made, it
is clear that the DSR construction is completely equivalent
to the one we made for SR, in particular, one gets the same
kind of ambiguities. It is then natural to proceed by analogy
and propose the same solutions as SR to settle down the
DSR ambiguities. It allows us in particular to say that only
one deformation is relevant to physics, and corresponds to
the inertial observer, whereas the others are not physical
and concern different types of observers (accelerated. . .). It
allows us also to see that the non (co)associativity is not a
problem but a physical prediction of quantum gravity. It
gave also some hints on the interpretation of the modified
addition of momenta. It should not be interpreted as a
scattering but more as composition of momenta under
changes of reference frames. Indeed reference frames

should be now described by their speed and also by their
mass. The scattering should be then described by a new
momentum associated to the new introduced symmetry
(de Sitter group), just as scattering in relativistic physics
is not given by the scattering of Galilean momenta but the
relativistic ones. We shall discuss, in a companion paper
[13], how this addresses both the soccer ball problem and
the spectator problem.
We left also some open points for further investigations.

The analogy between the DSR and SR cases can be carried
further out. For example to understand the nonisotropic
coordinates (48) and the Thomas precession should help to
understand the �-Minkowski case. In fact, if one thinks of
an accelerated observer there is a natural preferred direc-
tion, and one can then conjecture that the bicrossproduct
basis represents the case of an accelerated observer. This
statement is however under study.
Even at a further level, one can think about general

relativity viewed from the deformation point of view.
Actually a first step in this direction, i.e. considering a
non flat space has been made in [17]. The same construc-
tion applied for the DSR case should be especially inter-
esting, as it should represent an effective theory of
quantum gravity. At this stage one can argue that the
correct mathematical tools to do this generalization would
be the spectral triples [18], where one deals with the
algebraic point of view. The deformation point of view is
then easier to handle than the geometrical one. The Dirac
operator encodes the metric of the manifold and it would
be interesting to study the interplay of the deformation and
this Dirac operator. This is especially appealing to us as it
would renew the statement that noncommutative geometry
can be used to describe quantum gravity effects.
At a more mathematical level, we found that quasigroup

theory seems to be related to the study of quantum groups.
This is new to our knowledge. In general quasigroups have
drawn less attention compared to the quantum groups. It is
then interesting to see that many of the features of the latter
can be exported to the former for a better understanding
(e.g. representation theory). We leave all these for further
investigations.
As a final conclusion let us make a general comment on

the introduction of different maximal quantities. We have
seen that we can deform the Galilean symmetries to mimic
the special relativity effects. On the other side, equiva-
lently, to go from Galilean to Lorentzian one is doing
some complexification of the symmetries. Special relativ-
ity in turn can also be deformed by introducing a minimal
energy. One can, therefore, also introduce this maximal
scale in the context of the deformed Galilean relativity and
deform once again. One would obtain then a doubly re-
formed Galilean relativity. We explored here the link be-
tween deformed Galilean relativity and SR, but the link
between doubly reformed Galilean relativity and DSR
would be also interesting. Finally, one could ask if, instead
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of deforming, one could have constructed some symme-
tries such that they naturally encode the maximal energy
and speed, while having a commutative underlying space-
time. There exists in fact one such candidate: one has to

pseudocomplexify the Lorentz group [6]. This structure
encodes then, for example, the kinematics of the Born-
Infeld action. We can then summarize this general picture
through the following diagram:

Galilean Relativity !c Deformed Galilean Relativity !Ep Doubly Deformed Galilean Relativity

& C # # ?
Special Relativity !Ep Deformed Special Relativity

& P # ?
Born Infeld kinematics
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APPENDIX: SPEEDCOMPOSITIONAND THOMAS
PRECESSION IN SPECIAL RELATIVITY

In this section, we describe how one gets the speed
composition from the product of boosts. Let there be given
two boosts g1 and g2. In the spinorial representation, their
product reads

g1g2 ¼
�
cosh

�1

2
Idþ sinh

�1

2
~b1 � ~J

�

�
�
cosh

�2

2
Idþ sinh

�2

2
~b2 � ~J

�

¼
�
cosh

�1

2
cosh

�2

2
þ sinh

�1

2
sinh

�2

2
~b1 � ~b2

�
Id

þ
�
cosh

�2

2
sinh

�1

2
~b1 þ cosh

�1

2
sinh

�2

2
~b2

þ i sinh
�1

2
sinh

�2

2
ð ~b1 ^ ~b2Þ

�
� ~J: (A1)

This product is then an element of SO(3, 1), which can be
factorized as the product of a rotation times a boost (Cartan

decomposition). Noting the rotation h ¼ cos	þ i sin	~r �
~J and g the total boost, we have

hg ¼ ðcos	Idþ i sin	~r � ~JÞ
�
cosh

�

2
Idþ sinh

�

2
~b � ~J

�

¼
�
cos

	

2
cosh

�

2
þ i sin

	

2
sinh

�

2
~r � ~b

�
Id

þ
�
cos

	

2
sinh

�

2
~bþ i sin

	

2
cosh

�

2
~r

� sin
	

2
sinh

�

2
ð~r ^ ~bÞ

�
� ~J: (A2)

Identifying the two previous expressions gives us a set of
equations from which we deduce the composition of the
speeds and the Thomas precession:

i sin
	

2
sinh

�

2
~r � ~b ¼ 0; (A3)

cos
	

2
cosh

�

2
¼ cosh

�1

2
cosh

�2

2
þ sinh

�1

2
sinh

�2

2
~b1 � ~b2;

(A4)

cos
	

2
sinh

�

2
~b� sin

	

2
sinh

�

2
ð ~r ^ ~bÞ

¼ cosh
�2

2
sinh

�1

2
~b1 þ cosh

�1

2
sinh

�2

2
~b2; (A5)

sin
	

2
cosh

�

2
~r ¼ sinh

�1

2
sinh

�2

2
ð ~b1 ^ ~b2Þ: (A6)

First, we have ~r orthogonal to ~b. And dividing the last
equation by the second one, we get the value of the
rotation:

tan
	

2
~r ¼ tanh�1

2 tanh�2

2

1þ tanh�1

2 tanh�2

2
~b1 � ~b2

ð ~b1 ^ ~b2Þ: (A7)

Then dividing the third equation by the second, we get

�
1� tan

	

2
~r^

�
tanh

�

2
~b ¼ tanh�1

2
~b1 þ tanh�2

2
~b2

1þ tanh�1

2 tanh�2

2
~b1 � ~b2

:

Taking into account that ~r is orthogonal to all ~b1, ~b2, ~b, we
can invert the operator 1� tan	2 ~r^ and obtain that

tanh
�

2
~b ¼ cos2

	

2

�
1þ tan

	

2
~r^

�

� tanh�1

2
~b1 þ tanh�2

2
~b2

1þ tanh�1

2 tanh�2

2
~b1 � ~b2

: (A8)

A faster way to the value of � is to directly apply the boost

g2 to the point ðcosh�1; sinh�1
~b1Þ on the hyperboloid. This

way, we get

cosh� � 1
2 Trðgy2gy1g1g2Þ ¼ 1

2 Trðg21g22Þ
¼ cosh�1 cosh�2 þ sinh�1 sinh�2

~b1 � ~b2: (A9)

Finally, we translate all these formulas to velocities using

the definition that ~v ¼ cfð�Þ ~b.
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