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The quantum gravity framework motivates us to find new theories in which an observer-independent

finite energy upper bound (preferably Planck energy) exists. We have studied the modifications in the

thermodynamical properties of a photon gas in such a scenario where we have an invariant energy scale.

We show that the density of states and the entropy in such a framework are less than the corresponding

quantities in Einstein’s special relativity theory. This result can be interpreted as a consequence of the

deformed Lorentz symmetry present in the particular model we have considered.
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I. INTRODUCTION

Any description of quantum gravity suggests a smallest
(but finite) length scale l (or a finite upper bound of energy
�), which of course should be observer independent. The
natural candidate for this is the Planck length (or the
Planck energy). But this proposition obviously contradicts
the principles of Einstein’s special relativity (SR) theory, as
in SR, the length or the mass (or energy) of an object varies
for different observers. Thus we need an extension of SR
theory where, along with the velocity of light, another
observer-independent quantity, a fundamental length-
scale, exists. As a consequence, there must be some mod-
ifications of SR theory in the high energy (Planck energy)
regime.

As a possible solution, a new theory (DSR theory) was
first proposed by Amelino-Camelia [1]. Another model,
perhaps simpler, was given by Amelino-Camelia [2] and
byMagueijo and Smolin [3] (for discussion and review, see
[4,5] and references therein). As said earlier, in these
theories, there are two invariant quantities, c, the velocity
of light, and �, an upper limit of energy. But for consistent
inclusion of this second invariant quantity along with the
other principles of SR theory, the well-known dispersion
relation (or mass-shell condition) for a particle

E2 � p2 ¼ m2 (1)

has to be modified as

E2 � p2 ¼ m2

�
1� E

�

�
2
: (2)

Here E and p are, respectively, the energy and the magni-
tude of the three-momentum of the particle, m is the mass
of the particle, and we have taken c ¼ 1. We refer to this
model as the Magueijo-Smolin (MS) model.

In earlier work [6], we considered a particular dispersion
relation as in [3]. Then we derived an expression for the

energy-momentum tensor for a perfect fluid and studied
dynamics of the perfect fluid with this modified expression.
Because of the presence of the invariant energy scale, our
derivation of the energy-momentum tensor was subtle
where nonlinear representation of Lorentz transformations
played an essential role. In this work, we adopt the same
scheme and consider (2) as our fundamental equation.
Then we go on to study the thermodynamic properties of
an ideal photon gas using the methods of conventional
statistical mechanics, but generalized to be applicable in
a theory where an invariant energy scale is present. We
have arranged this paper as follows: In Sec. II, we discuss
the modified dispersion relation. In the next section we
derive the expression for the density of states and the
important expression of the partition function. The deriva-
tion of the expression for partition function is the most
crucial result of our work. In Sec. IV, we go on to study the
thermodynamic properties of photon gas using this parti-
tion function. In particular, we evaluated analytic expres-
sions for the pressure, equation of state, internal energy,
entropy, and specific heat of the photon gas. We also show
the comparisons between the thermodynamic variables in
the MSmodel and in the usual SR scenario. Further, we see
that the density of states as well as the entropy decreases in
the MS model as compared to that in the SR framework.
This happens due to the deformation in Lorentz symmetry
in the theory where an invariant energy scale is present. It
is another major result of our work. Finally, we conclude
summarizing our results and discuss some of the future
prospects in this regard.

II. MODIFIED DISPERSION RELATION

We choose a particular modified dispersion relation as
given in [3,6]

E2 � p2 ¼ m2

�
1� E

�

�
2
:

Thermodynamic properties for photon gas with a different
dispersion relation has been studied in [7]. Also, thermo-
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dynamics of bosons and fermions with another modified
dispersion relation and its cosmological and astrophysical
implications has been observed in [8,9]. But these two
modified dispersion relations appear from a phenomeno-
logical point of view whereas the dispersion relation (2)
has a more theoretical motivation which we discuss below
in some details.

It was shown in [10] that existence of an invariant length
scale in the theory is consistent with a noncommutative
(NC) phase space (�-Minkowski spacetime) such that the
usual canonical Poisson brackets between the phase space
variables are modified. Also, the linear Lorentz transfor-
mations (LT) are replaced by nonlinear �-Lorentz trans-
formations (�-LT) [10,11]. But still Lorentz algebra is
intact in the theory. As a result, we have the �-LT invariant
modified dispersion relation (2) as

�
J��;

p2

ð1� E
�Þ2

�
¼ 0: (3)

The angular momentum J�� is defined as in [10]

J�� ¼ x�p� � x�p�;

where x and p are the phase space variables. Because of the
nontrivial expression for the dispersion relation (2), first it
was supposed that the velocity of photon c ¼ dE

dp have to be

energy dependent. But it was shown in [12] that a modified
dispersion relation does not necessarily imply a varying
(energy dependent) velocity of light. Thus, though the
above two models [7–9] admit a varying speed of light,
in the case of the MS model, for photons (m ¼ 0) the
dispersion relation (2) is the same as in SR theory. Also
the speed of light c is an invariant quantity in theMSmodel
[3,6,10]. Thus the MS model considered in [3,10] has a
more theoretical motivation and it can be developed start-
ing from the NC phase space variables [10] whereas the
models considered in [7–9] are phenomenological in na-
ture and as far as we know, there is no fundamental phase
space structures to describe these models. Another inter-
esting fact is that both models described in [7] and in [8,9]
have no finite upper bound of energy of the photons though
they have a momentum upper bound. But, as stated earlier,
in the MS case, though the dispersion relation for the
photons is unchanged, there is a finite upper bound of
photon energy which is the Planck energy �. One can
readily check that this is an invariant quantity by using
the �-Lorentz transformation law for the energy [10,11].

One more thing must be clarified here. In the case of the
models [7–9], clearly the Lorentz symmetry was broken
and as a result, the number of microstates and hence the
entropy increases as compared to the Lorentz symmetric
SR theory. On the other hand, we are dealing with a differ-
ent scenario where the Lorentz symmetry is not broken as
Lorentz algebra between the phase space variables is in-
tact. In fact, the framework we describe here still satisfies
the basic postulates of Einstein’s SR theory; moreover, it

possesses another observer-independent quantity [4]. Thus
it seems that Lorentz symmetry is further restricted in this
MS model. As a result of this, we expect to have a fewer
number of microstates and less entropy in the MS model.
As we will show later in our explicit calculations, this
expected result is correct.
As we have said earlier, the modified dispersion relation

(2) in the case of the photons (massless particles) does not
change from the usual SR scenario. Thus, for the photons,
the dispersion relation now becomes

p ¼ E: (4)

III. PARTITION FUNCTION FOR PHOTON GAS

To study the thermodynamic behavior of photon gas, we
have to find out an expression for the partition function
first, as it relates to the microscopic properties with the
thermodynamic (macroscopic) behavior of a physical sys-
tem [13,14], which we do in this section.

A. Number of states

We consider a box containing photon gas. Following the
standard procedure as given in [13,14], we consider a
continuous spectrum of momentum instead of quantizing
it. The number of microstates available to the system (

P
)

in the position range from r to rþ dr and in the momen-
tum range from p to pþ dp is given by [13,14]

X ¼ 1

h3

ZZ
d3 ~rd3 ~p; (5)

where h is the phase space volume of a single lattice and

ZZ
d3 ~rd3 ~p

is the total phase space volume available to the system. It
should be mentioned here that in the case of SR theory, the

quantities Ed3x and d3p
E are invariant under the Lorentz

transformations and hence the phase space volume element
d3xd3p is a Lorentz invariant quantity [15]. The nonlinear
�-Lorentz transformations [10,11] are explicitly given by

t0 ¼ ��ðt� vxÞ; x0 ¼ ��ðx� vtÞ; y0 ¼ �y;

z0 ¼ �z E0 ¼ �ðE� vpxÞ
�

; p0
x ¼ �ðpx � vEÞ

�
;

p0
y ¼

py

�
; p0

z ¼ pz

�
: (6)

The prime over a quantity denotes the corresponding quan-
tity in the boosted frame and � ¼ 1þ 1

� ðð�� 1ÞE�
v�pxÞ. We have considered the three-momentum to be of
the usual form: ~p ¼ ðvE; 0; 0Þ and � ¼ 1ffiffiffiffiffiffiffiffiffi

1�v2
p , where v is

the velocity of the boosted frame. In the case of our model,
the phase space volume element d3xd3p is invariant under
the �-Lorentz transformations (6) as
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d3x0d3p0 ¼ �3�d3x
�

�3

�
1� vpx

E

�
d3p ¼ d3xd3p: (7)

It is interesting to note that the factor � arising from the
nonlinear �-Lorentz transformation finally cancels out in
(7). Strictly speaking, to derive (7) we should consider the
effect coming from variation of �. But we have omitted the
term d� in (7) as it is a dynamical effect and may not be
relevant for the free particle case as considered here.

If the volume of the box is considered to be V, the
number of microstates can be written in the following
form using the spherical polar coordinates [13,14]:

X ¼ 4�V

h3

Z 1

0
E2dE: (8)

We used the dispersion relation p ¼ E to change the
integration variable to E. Then considering the fact that
we have a finite upper limit of energy (�), we obtain the
number of microstates:

~X ¼ 4�V

h3

Z �

0
E2dE; (9)

where � on a quantity represents the corresponding quan-
tity in the model we have considered. It is obvious from the
expressions (8) and (9) that the available number of micro-
states to the system is less than that in the SR theory, as the
energy spectrum of a particle in SR theory can go all the
way up until infinity. This result agrees with our expecta-
tion stated earlier.

B. Partition function

It is very crucial to get an expression for the partition
function as all the thermodynamic properties can be thor-
oughly studied using the knowledge about the partition
function. The single particle partition function Z1ðT; VÞ
is defined as [14]

Z1ðT; VÞ ¼ 4�V

h3

Z 1

0
p2e��Edp; (10)

where � ¼ 1
kBT

, kB is the Boltzmann constant, and T is the

temperature of the particle. For the MS model, the single
particle partition function ~Z1ðT; VÞ is defined as

~Z 1ðT; VÞ ¼ 4�V

h3

Z �

0
p2e��Edp: (11)

In the limit � ! 1, we should get back normal SR theory
results. It should be noted that in the MS model which we
have considered, the photon dispersion relation is not
modified at all. But still there is modification in the parti-
tion function (11) due to the presence of an energy upper
bound of particles (�) in the theory. So the upper limit of
integration is � in (11) whereas in the normal SR theory
expression (10), the upper limit of integration is 1 since
there is no upper bound of energy in the SR theory. In all
the models [7–9], though the upper limit of energy is

infinity as in SR theory, these models differ due to the
different dispersion relations.
Using the dispersion relation for photons (E ¼ p) and

using the standard table and formulas for integrals [16], we
finally have an analytical expression of the single particle
partition function:

~Z 1ðT; VÞ ¼ 4�V

h3

Z �

0
E2e��EdE

¼ 4�V

h3

�
2

�3
� e���

�3
ð2þ ��ð2þ ��ÞÞ

�
: (12)

Thus the partition function for a N-particle system
~ZNðT; VÞ is given by

~ZNðT; VÞ ¼ 1

N!
½~Z1ðT; VÞ�N; (13)

where we have considered classical (Maxwell-Boltzmann)
statistics along with the Gibb’s factor. As we get the
expression for the partition function, now we go on to
study various thermodynamic properties of the photon
gas in our model. It should be noted that as � ! 1, this
partition function coincides with the partition function in
SR theory and thus all of our results coincide with the usual
SR case in this limit.

IV. THERMODYNAMIC PROPERTIES OF
PHOTON GAS

With the expression for the partition function in our
hand, now we go on to study various thermodynamic
properties of photon gas in a theory where an observer-
independent fundamental energy scale is present.

A. Free energy

We use Stirling’s formula for ln½N!� [14],
ln½N!� � N ln½N� � N;

in the expression for partition function (13) to obtain the
free energy ~F of the system

~F ¼ �kBT ln½~ZNðT; VÞ�
¼ �NkBT

�
1þ ln

�
4�V

N

�
kBT

h

�
3

�
�
2� e�ð�=kBTÞ

�
2þ �

kBT

�
2þ �

kBT

�����
: (14)

In the limit � ! 1, the terms containing � vanish and we
get back the normal SR theory result:

F ¼ NkBT:

B. Pressure

From the expression for free energy (14), we can readily
obtain the pressure ~P of photon gas in our considered
model as [14]
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~P ¼ �
�
@F

@V

�
T;N

¼ NkBT

V
: (15)

Thus, we have the same equation of state

PV ¼ NkBT

as in SR theory.

C. Entropy

As we have the expression for free energy (14), also we

can evaluate the entropy ~S of the system from the following
relation [14]:

~S ¼ �
�
@F

@T

�
V;N

:

The expression for entropy takes the following form:

~S ¼ Nk

�
4þ ln

�
4�V

N

�
kBT

h

�
3

�
�
2� e�ð�=ðkBTÞÞ

�
2þ �

kBT

�
2þ �

kBT

����

� �3

2k3BT
3eð�=ðkBTÞÞ � ð2k3BT3 þ 2k2BT

2�þ kBT�
2Þ
�
:

(16)

The terms containing � are the modifications from the SR
theory expression of entropy [14]. As in the earlier ex-
pressions, in the limit � ! 1 the terms containing �
vanish and we get back the SR theory result:

S ¼ NkB

�
4þ ln

�
8�V

N

�
kBT

h

�
3
��

: (17)

We plot the entropy S against T both for the model we
considered and for SR theory to study the deviation of
entropy in the two models.

In Fig. 1, we have plotted entropy against temperature
for both the case of our invariant energy scale scenario and
normal SR theory. It is clearly observable from the plot that
the entropy grows at a much slower rate in the case of our
result than in the SR theory and as temperature increases,
the entropy in our considered model deviates more from
the entropy in the SR theory. This result matches with our
earlier expectation considering the underlying symmetry

of the theory that the entropy in the MS model should be
less than the entropy in SR theory.
It is well known that the total number of microstates

available to a system is a direct measure of the entropy for
that system. Therefore our result merely reflects the fact
that due to the existence of an energy upper bound �, the
number of microstates gradually saturates to some finite
value near Planck scale.

D. Internal energy

We expect modification in the expression of the internal
energyU for photon gas in the MS model as the expression
of entropy is modified and internal energy is related to the
entropy as follows:

U ¼ Fþ TS:

In the usual SR scenario, the explicit expression for inter-
nal energy is given by

U ¼ 3NkBT: (18)

But in the MS scenario we considered, the expression for
internal energy ( ~U) of photon gas takes the following form:

~U ¼ NkBT

�
3� �3e�ð�=ðkBTÞÞ

2k3BT
3 � e�ð�=ðkBTÞÞð2k3BT3 þ 2�k2BT

2 þ �2kBTÞ
�
: (19)

It is easy to see from the expression of internal energy (19)
that we get back the usual SR theory expression in the limit
� ! 1. As in the case of entropy, here we also plot internal
energy against temperature for both the SR and the MS
case.

In Fig. 2, we plotted internal energy of photon gas
against its temperature for both the case of MS model
and of SR theory. The expression in SR theory (18) tells
us that internal energy depends linearly on the temperature
and this is supported from the plot. But from the expression

0 2000 4000 6000 8000 10 000

100 000

120 000

140 000

160 000

180 000

200 000

T

S

FIG. 1 (color online). Plot of entropy of photon S against
temperature T for both in the SR theory and in our case; the
dashed line corresponds to the SR theory result and the thick line
represents the corresponding quantity in our result. We have used
the Planck units and the corresponding parameters take the
following values � ¼ 10 000, kB ¼ 1, N ¼ 10 000, V ¼ 0:01,
h ¼ 1 in this plot as well as in all other plots in the paper. In this
scale, T ¼ 10 000 is the Planck temperature.
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of internal energy in the MS model (19) it is clearly
observed that the relation of internal energy with tempera-
ture is not linear at all. Also, one can easily check that the
value of internal energy (for a particular temperature) in
the MS model (19) is always less than its value (for the
same temperature) in the SR theory (18). This is very clear
from the plot as the curve for the MS model always lies
below the straight line which corresponds to the SR theory
result.

Since the internal energy U of photon gas becomes
saturated after a certain temperature in the case of the

MS model, it is tempting to point out that probably our
results are moving towards the right direction related to the
‘‘soccer ball problem’’ that plagues the multiparticle de-
scription in the framework of DSR. The problem lies in the
fact that if we apply linear addition rule for momenta/
energies of many sub-Planck energy particles we may
end up with a multiparticle state, such as a soccer ball,
whose total energy is greater than the Planck energy which
is forbidden in the DSR theory. For further discussion
about the ‘‘soccer ball problem see [17].

E. Pressure-energy density relation

Though internal energy U of a physical system is not
directly measurable, still we can detect the effect of it
through other thermodynamic quantities, such as the rela-
tion between pressure P and energy density � of that
system. Energy density of a system � is defined as

� ¼ U=V;

where U is the internal energy of the system and V is the
volume occupied by the system. As the expression for
internal energy U is modified in the MS model, we also
expect modifications in the expression for the energy den-
sity �. The modified relation between pressure ~P and
energy density ~� is given by

~P ¼ 1

3
~�þ 1

3

NkBT�
3e�ð�=ðkBTÞÞ

2Vk3BT
3 � Ve�ð�=ðkBTÞÞð2k3BT3 þ 2�k2BT

2 þ �2kBTÞ
: (20)

For � ! 1, we get back the usual pressure-energy density
relation in SR theory:

P ¼ 1
3�:

It should be pointed out that, in our earlier work [6], it was
shown that in the ultrarelativistic regime (for photons), the
relation P ¼ 1

3� remains unaffected. But here we have a
modification in this pressure-energy density relation (20).
In [6], we obtained the result considering some simplified
assumptions. But in this work, we start with the partition
function and apply the methods of statistical mechanics
(which naturally deals with multiparticle systems). So we
do not really have to consider any strong assumptions here.

F. Specific heat

There is another thermodynamic parameter, specific
heat (CV), through which we can observe the modifications
in the expression for internal energy. Specific heat CV is
defined as

CV ¼
�
@U

@T

�
V
:

For the MS model we considered here, explicit calculation
yields the following result:

~CV ¼ 3NkB � 2NkB�
3ðk2BT2�ð1þ eð�=ðkBTÞÞÞ þ 2k3BT

3ð1� eð�=ðkBTÞÞÞÞ
ð2k3BT3ðeð�=ðkBTÞÞ � 1Þ � 2k2BT

2�� kBT�
2Þ2 : (21)

After doing a bit of algebra, one can check from the above
expression (21) that specific heat calculated from the MS
model is always less than the value calculated from usual
SR theory. Also, when � ! 1, we obtain

CV ¼ 3NkB

which is the usual specific heat for the photon as calculated
in SR theory.

0 2000 4000 6000 8000 10 000
0

5. 107

1. 108

1.5 108

2. 108

2.5 108

3. 108
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U

FIG. 2 (color online). Plot of internal energy of photon U
against temperature T for both in the SR theory and MS scenario;
the dashed line corresponds to the SR theory result and the thick
line represents the quantity in the MS model we considered here.
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In Fig. 3, we have plotted the specific heat CV against
temperature T. It is clear from the plot that in the case of
the MS model, the specific heat CV asymptotically de-
creases to zero suggesting that photon gas has reached its
temperature ceiling which is the Planck temperature.

V. CONCLUSION AND FUTURE PROSPECTS

We consider the modified dispersion relation as given in
the MS model [3]. We explicitly show that for photons, the
number of microstates available to a macrostate is less in
the MS model than in the usual SR scenario. We stress that
it happens since Lorentz symmetry is not broken in this
model. But due to the presence of an invariant energy upper
bound in this theory, microstates can avail energies only up
to a finite cutoff, whereas in SR theory, microstates can
attain energies up to infinity. Thus, quite naturally, the
number of microstates in this MS model is less than that
in SR theory.

The most significant result of our work is the derivation
of N-particle partition function in the MS model. Because
of the presence of the deformed dispersion relation, this
task becomes highly nontrivial. However, for photons, we
find out an analytic expression for the partition function.
Once we have the partition function in our hand, we
evaluate other various thermodynamic parameters of pho-
ton gas such as the free energy, pressure, entropy, internal
energy, and specific heat for the MS model, and compare
them with the known results of SR theory.

As a consequence of deformed Lorentz symmetry, the
entropy in the MS model is also less than that in the SR
scenario. We show this behavior analytically and graphi-
cally. Also the internal energy is modified in the case of the
MS model and as a consequence the expression for the
specific heat is also modified.
Though highly nontrivial, one can similarly study the

behavior of an ideal gas using this modified dispersion
relation. Also one can study behavior of fermion gas in
this MS model. There might be some modifications in the
Fermi energy level which can modify the Chandrasekhar
mass limit for the white dwarf stars [9]. Thus astrophysical
phenomena in an MS framework is another issue remain-
ing to be addressed.
Further, as we have the expression for energy-

momentum tensor [6], one can study the cosmological
aspects of the MS model using the Friedmann equations.
But this requires an idea about the geometry sector (pre-
cisely the metric g�� and hence Einstein tensor G��)

which is still unknown in the context of the MS model.
This still remains another open issue to be further studied.
It is noteworthy to mention here that ‘‘bouncing’’ loop

quantum cosmology theories (for example, see [18] and
references therein) entails some modifications to the ge-
ometry of spacetime which in turn effectively puts a bound
on the curvature avoiding the big bang singularity.
However, for these bouncing models, the perturbation
technique cannot be done, as at the point of curvature
saturation the energy density of the cosmic fluid diverges.
So it is unclear how to construct the matter part of the
Einstein equation. One alternative to avoid the big bang
singularity is the inflation theory where the perturbation
method can also be applied. On the other hand, in our
model, the energy density of the cosmic fluid saturates to
the Planck energy which is a finite real quantity. Possibly a
combination of the model considered in this paper along
with the bouncing loop quantum cosmology can success-
fully describe a situation where big bang singularity can be
avoided.
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