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We study cosmological consequences of the noncommutative approach to the standard model of

particle physics. Neglecting the nonminimal coupling of the Higgs field to the curvature, noncommutative

corrections to Einstein’s equations are present only for inhomogeneous and anisotropic space-times.

Considering the nonminimal coupling however, corrections are obtained even for background cosmolo-

gies. Links with dilatonic gravity as well as chameleon cosmology are briefly discussed, and potential

experimental consequences are mentioned.
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I. INTRODUCTION

Theoretical early universe cosmology is gaining a con-
stantly increasing interest from the scientific community.
The predictions of the theoretical models can now be
compared with a plethora of astrophysical data, in particu-
lar, the measurements of the cosmic microwave back-
ground temperature anisotropies, all having a surprising
good accuracy. Moreover, present high energy experi-
ments, in particular, the Large Hadron Collider, will test
some of the theoretical pillars of the cosmological models.
Despite this golden era of cosmology, a number of ques-
tions, such as the explanation of space-time dimensionality
[1], the origin of dark energy [2] and dark matter [3], the
search for the natural and well-motivated successful infla-
tionary model, are still awaiting for a definite answer.

The main theoretical approaches upon which the cos-
mological models have been built are either string theory
or quantum gravity. Here we will consider another one,
which up to now has, rather surprisingly, gained only a
limited interest, namely, noncommutative geometry
(NCG) [4,5]. More precisely, we will study cosmological
consequences of the NCG approach to the standard model
(SM) [6], which remains to the best of our knowledge the
particle physics model at present. The NCG approach leads
to all the detailed structure of the SM, as well as several
physical predictions at the unification scale.

In this paper, after a brief review on the noncommutative
spectral action, we discuss some of its early universe
cosmological consequences and their potential link to di-
latonic gravity and chameleon models.

II. NONCOMMUTATIVE GEOMETRYAPPROACH

The NCG approach to the unification of all fundamental
interactions including gravity is based on three Ansätze:

(I) Slightly below Planck energy, space-time becomes
the product of a four-dimensional smooth compact
Riemannian manifold M by a finite noncommutative
space F. The geometry is therefore the tensor product of
an internal geometry for the SM and a continuous geome-
try for space-time. One has to distinguish between the
metric (or spectral) dimension, given by the behavior of
the eigenvalues of the Dirac operator, and the KO dimen-
sion, an algebraic dimension based on K theory. The
relevant Dirac operator for space-time is the ordinary
Dirac operator on curved space-time; thus the metric di-
mension is equal to 4. The internal Dirac operator consists
of the fermionic mass matrix, which has a finite number of
eigenvalues; thus the internal metric dimension is zero. As
a result, the metric dimension of the product geometry is 4,
the same as the ordinary space-time manifold.
To resolve the fermion doubling problem, by projecting

out the unphysical degrees of freedom resting in the inter-
nal space, the real structure of the finite geometry F must
be such that its KO dimension is equal to 6 [7]. Thus, the
KO dimension of the product space M� F is equal to
10� 2modulo 8. Notice that unlike earlier particle physics
models based on NCG, in the approach [6] followed here
the KO dimension (which is equal to 6 modulo 8) of the
internal space is different than its metric dimension (which
is equal to zero).
A noncommutative geometry is given by a representa-

tion of spectral nature. More precisely, F ¼ ðA;H ; DÞ is
a spectral triple, given by an involutive algebra A of
operators in Hilbert space H , playing the role of the
algebra of coordinates, and a linear self-adjoint (D ¼
Dy) operator D in H , playing the role of the inverse of
the line element. The choice of Hilbert space H is irrele-
vant here, since all separable infinite-dimensional Hilbert
spaces are isomorphic. The operator D is such that all
commutators ½D; a� are bounded for a 2 A. Except for
finite dimensional cases, D is in general not a bounded
operator; hence it is only defined on a dense domain.
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The classic geodesic formula of Riemannian geometry:

dðx; yÞ ¼ inf
Z
�
ds; (1)

where the infimum is taken over all paths from x to y,
giving the distance dðx; yÞ between two points x, y, is
replaced in NCG by

dðx; yÞ ¼ supfjfðxÞ � fðyÞj : f 2 A; k½D; f�k � 1g;
(2)

with D the inverse of the line element ds. Another signifi-
cance of D is that its homotopy class represents the
K-homology1 fundamental class of the space under
consideration.

The choice of the finite dimensional involutive algebra
consists of the main input for the model. The hypothesis
that space-time is the product of a continuous manifold M
by a discrete space F is the easiest generalization of a
commutative space. This is a strong assumption that is
expected to break in the Planck era.

(II) The algebra constructed in this product space-time is
then assumed to be in the symplectic-unitary case [8]. This
choice restricts the algebra A to the form A ¼ MaðHÞ �
MkðCÞ, with k ¼ 2a; H is the algebra of quaternions. The
first possible value for the even number k is 2, correspond-
ing to a Hilbert space of four fermions; it is ruled out from
the existence of quarks. The second one, k ¼ 4, leads to the
correct number of k2 ¼ 16 fermions in each of the three
generations. Notice that considering three generations is a
physical input in NCG [8]. The involutive algebra A
corresponds to a given space in the same way as in the
classical duality between space and algebra in algebraic
geometry.

(III) The Dirac operator connects the two pieces of the
product geometry nontrivially. The action S, called the
spectral action functional, depends only on the spectrum
of the Dirac operator; it is of the form TrðfðD=�ÞÞ, with �
giving the energy scale and f being a test function, whose
choice plays only a small role. The spectral action func-
tional TrðfðD=�ÞÞ accounts only for the bosonic term; the
fermionic term can be included by adding ð1=2ÞhJc ; Dc i.
When the spectral action S is expanded in inverse powers
of �, it depends only on three first momenta fk ¼R1
0 fðvÞvk�1dv for k > 0, and on the Taylor expansion

of f at 0. One of the consequences is that some of the
fermions can acquire Majorana masses, realizing the see-
saw mechanism.

The full Lagrangian of the SM, minimally coupled to
gravity, is obtained [6] as the asymptotic expansion of the
spectral action for the product space-time. For our pur-
poses here, namely, extracting early universe cosmological
consequences of the noncommutative spectral action ap-
proach, we are only interested in the gravitational and
Higgs part of the action, namely

SLorentzian
grav ¼

Z �
1

2�2
0

Rþ 1

2
�0C����C

���� þ �0R
?R?

� 	0RjHj2
� ffiffiffiffiffiffiffi�g
p

d4x; (3)

H is a rescaling H ¼ ð ffiffiffiffiffiffiffiffi
af0

p
=
Þ� of the Higgs field � to

normalize the kinetic energy. The momentum f0 ¼ fð0Þ is
physically related to the coupling constants at unification.
The coefficient a, that enters the Higgs field redefinition, is
given by

a ¼ TrðY?
ð"1ÞYð"1Þ þ Y?

ð#1ÞYð#1Þ þ 3ðY?
ð"3ÞYð"3Þ þ Y?

ð#3ÞYð#3ÞÞÞ;
(4)

where the Y’s are used to classify the action of the Dirac
operator and give the fermion and lepton masses, as well as
lepton mixing, in this asymptotic version of the spectral
action. The Y’s matrices are only relevant for the coupling
of the Higgs field with fermions through the dimensionless
matrices 
=

ffiffiffiffiffiffiffiffi
af0

p
Yx with x 2 fð"#; jÞg. Thus, a has the

physical dimension of a ðmassÞ2.
The coupling constants in Eq. (3) are

1

�2
0

¼ 96f2�
2 � f0c

2

12
2
; �0 ¼ � 3f0

5
2
;

�0 ¼ 11f0
60
2

; 	0 ¼ 1

12
;

(5)

where � is an energy scale about which the asymptotic
expansion is performed and c is expressed in terms of YR

which gives the Majorana mass matrix, c ¼ TrðY?
RYRÞ. The

scale � is fixed by the unification scale of the coupling
constants of the standard model. Let us emphasize that the
spectral action, Eq. (3), has to be seen as a boundary
condition at unification scale. Therefore, Eq. (5) above
fixes the coupling constants at unification scale; extrapo-
lations to lower energies are possible using renormaliza-
tion group analysis. It is therefore evident that this
noncommutative spectral action approach is appropriate
for early universe cosmology (i.e., at energies close to
unification).
Several key points should be noted: First, the noncom-

mutative geometry procedure outlined above is entirely
classical; it simply provides an elegant way in which the
standard model of particle physics can be produced from
purely (noncommutative) geometric information. Second,
the action given in Eq. (3) has been Wick rotated from the
Euclidean action which is produced from noncommutative
geometry.2 The formal justification of this has yet to be

1K homology is the homological version of K theory.

2To use the formalism of spectral triples in noncommutative
geometry, it is convenient to work with Euclidean rather that
Lorentzian signature. One can go to Euclidean signature by
performing a Wick rotation to imaginary time. In the
Euclidean action functional for gravity, the kinetic terms must
have the correct sign so that the functional is bounded below.
Since such positivity is spoiled by the scalar Weyl mode, one
must show that all other terms get a positive sign [5].

WILLIAM NELSON AND MAIRI SAKELLARIADOU PHYSICAL REVIEW D 81, 085038 (2010)

085038-2



shown. Third, at present the entries in the Dirac operator
that produce Eq. (4) are inputs to the theory. The hope is
that by varying with respect to them, the values that cor-
respond to the standard model will be dynamically chosen.
Despite these issues, it remains striking that by removing
the assumption that space-time is commutative in the
simplest possible way (the space-time is a product of a
commutative manifold M and a discrete, internal, non-
commutative manifold F), one recovers general relativity
coupled to the entire standard model with no additional
particles and the correct couplings.

The only nonstandard elements of the asymptotic ex-
pansion of the noncommutative geometry action are the
presence of the additional terms given in Eq. (3). The
purpose of this paper is indeed to investigate some cosmo-
logical consequences of these terms.

III. COSMOLOGICAL CONSEQUENCES

Let us study the gravitational part of the spectral action
Eq. (3). The first two terms give the Riemannian curvature
with a contribution from the Weyl curvature, where the
second term is the action for conformal gravity [9]. Notice
that the presence of the Einstein-Hilbert term (and of the
cosmological constant, which we neglect here) explicitly
breaks conformal invariance. The third term is a topologi-
cal term integrating to the Euler characteristic of the mani-
fold:

R?R? ¼ 1
4�

������
��R
�

��R

��
��;

and hence is nondynamical. Finally, the fourth term is the
scalar mass term.

The equations of motion arising from Eq. (3) read [9]

R�� � 1
2g

��R� �0�
2
0�ð�Þ½2C����

;�;� � C����R���
¼ �2

0�ð�ÞT��
matter; (6)

where

�ð�Þ � ½1� 2�2
0	0jHj2��1:

In what follows, we study the above equations of motion
first neglecting the nonminimal coupling between the ge-
ometry and the Higgs field and then including it.

A. Neglecting the Higgs field term

Neglecting the nonminimal coupling between the ge-
ometry and the Higgs field, i.e., setting � ¼ 0 in Eq. (6),
leads to

R�� � 1
2g

��R� �0�
2
0½2C����

;�;� � C����R��� ¼ �2
0T

��
matter:

(7)

We are interested in the cosmology associated with these
equations of motion. For a Friedmann-Lemaı̂tre-
Roberston-Walker (FLRW) space-time, the Weyl tensor

vanishes. Hence, the noncommutative geometry correc-
tions to the Einstein equation, Eq. (7), vanish.
For scalar perturbations around a FLRW metric, in the

conformal Newtonian (also called longitudinal) gauge, the
metric reads

g�� ¼ diagðfaðtÞg2½�ð1þ�ðxÞÞ; ð1��ðxÞÞ; ð1��ðxÞÞ;
ð1��ðxÞÞ�Þ; (8)

where t is conformal time and ðx; y; zÞ are Cartesian space
coordinates; the scale factor is denoted by a. The�,� are
the gauge invariant Bardeen potentials [10]; the � is the
analog of the Newtonian potential.
The (0, 0) component of Eq. (7) leads, for the metric

specified by Eq. (8), to the modified Friedmann equation:

� 3

�
_a

a

�
2 �r2�ðxÞ þ 3

�
_a

a

�
_�ðxÞðxÞ

� �0�
2
0

3a2
r4½�ðxÞ þ�ðxÞ� þOð�2;�2; . . .Þ ¼ �2

0T00;

(9)

where the overdot denotes derivative with respect to con-
formal time t and ri ¼ ð@x; @y; @xÞ.
As expected, in an exactly homogeneous and isotropic

space-time, i.e., �ðxÞ ¼ �ðxÞ ¼ 0, the modified
Friedmann equation reduces to its standard form.
Naively, one may have expected this result, since in a
spatially homogeneous space-time the spatial points are
equivalent and hence any noncommutative effects might be
expected to vanish. This however is not the case here, since
the noncommutativity of the theory is incorporated in the
internal manifold F and our space-time is a (smooth)
commutative four-dimensional manifold. Despite this,
noncommutative corrections to the standard cosmological
models do not occur at the level of an FLRW background.
Notice that in the case of an FLRW model, one can
explicitly calculate the topological term

R
R?R? ffiffiffi

g
p

d4x,
appearing in Eq. (3), and show that it is indeed
nondynamical.
Considering the scalar perturbations, the noncommuta-

tive geometry corrections are in second and fourth order in
spatial derivatives, which can be neglected in most cosmo-
logical situations.
Of the remaining equations of motion, given in Eq. (6),

the most interesting ones are those coming from the off-
diagonal terms, namely

� @i

�
_�ðxÞ þ _a

a
�ðxÞ

�
� �0�

2
0

6a2
r2½@ið _�ðxÞ þ _�ðxÞÞ�

¼ �2
0T0i; (10)

and
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1

2
@i@j½�ðxÞ ��ðxÞ�

þ �0�
2
0

12a2

�
3
€a

a
� 6

�
_a

a

�
2 � 3@2t þr2

�

� ½@i@jð�ðxÞ þ�ðxÞÞ� ¼ �2
0Tij with i � j: (11)

Equation (11) is particularly interesting: it shows that
matter with zero anisotropic stresses no longer implies
equality of the Bardeen potentials (i.e., the condition � ¼
� does not hold). Let us emphasize that in the absence of
noncommutative effects (i.e., for standard scalar perturba-
tions in a FLRW background), the Bardeen potentials turn
out to be equal, if shear-free matter fields are considered.

The above calculation can be also performed in the
synchronous gauge,3 for which the total (i.e.,
backgroundþ perturbed) metric can be written as

g�� ¼ diagðfaðtÞg2½�1; ð�ij þ hijðxÞÞ�Þ; (12)

leading to the modified Friedmann equation:

� 3

�
_a

a

�
2 þ 1

2

�
4

�
_a

a

�
_hþ 2 €h�r2hþrirjh

ij

�

� �0�
2
0

6a2
½@2t ðr2h� 3rirjh

ijÞ þ r2ðrirjh
ijÞ � r4h�

þOðh2Þ ¼ �2
0T00; (13)

where h � hii is the trace of hij.

The remaining gauge is removed by choosingrih
ij ¼ 0,

for which Eq. (13) reduces to

� 3

�
_a

a

�
2 þ 2

�
_a

a

�
_hþ €h� 1

2
r2h� �0�0

6a2
r2½@2t �r2�h

þOðh2Þ ¼ �2
0T00: (14)

Thus, the traceless part of the perturbed metric hij, i.e.,

gravitational waves (which are in addition transverse), do
not enter into the Friedmann equation, even in the presence
of noncommutative geometry corrections.

The remaining equations obtained from Eq. (7) are
rather involved, however for perturbations around a
Minkowski background [i.e., aðtÞ ¼ 1, _a ¼ 0], there is a
significant simplification due to the fact that

C����R�� �Oðfhijg2Þ; (15)

where fhijg indicates all terms that are first order in the

perturbation. For this situation, the transverse, traceless

part of hij obeys the following equations (where without

loss of generality we have taken hij to be transverse to the z

direction, and we have again used the gauge condition
rih

ij ¼ 0):

½1þ �0�
2
0ð�@2t þ @2zÞ�ð�@2t þ @2zÞhþ ¼ 0; (16)

½1þ �0�
2
0ð�@2t þ @2zÞ�ð�@2t þ @2zÞh� ¼ 0; (17)

where hþ and h� are the two independent polarizations of
the gravitational waves, i.e.,

hij ¼
hþ h� 0
h� �hþ 0
0 0 0

0
@

1
A: (18)

The right-hand side of Eqs. (16) and (17) vanish because
we are considering gravitational waves propagating against
a Minkowski background, for which T�� ¼ 0.

It is clear from Eqs. (16) and (17) that the solutions to the
general relativistic equation for the components of the
perturbations (produced here by setting �0 ¼ 0) remain
solutions, i.e., one finds that perturbations satisfying,

ð�@2t þ @2zÞhþ ¼ 0 and ð�@2t þ @2zÞh� ¼ 0; (19)

are solutions to the equations of motion [Eq. (7)].
Thus, the propagation of standard gravitational waves is

unaffected by the presence of noncommutative geometry
effects (at least for gravitational waves propagating in
Minkowski space-time). However, there are additional so-
lutions to Eqs. (16) and (17), which correspond to gravi-
tational radiation, that are not present in standard general
relativity. A detailed investigation of this phenomenon is
performed in Ref. [11].
In order for the corrections to Einstein’s equations to be

apparent at leading order (i.e., at the level of the back-
ground), we need to consider anisotropic models. As an
example, we calculate the modified Friedmann equation
for the Bianchi type-V model, for which the space-time
metric, in Cartesian coordinates, reads

g�� ¼ diag½�1; fa1ðtÞg2e�2nz; fa2ðtÞg2e�2nz; fa3ðtÞg2�;
(20)

where aðtÞ, bðtÞ, and cðtÞ are, in general, arbitrary functions
and n is an integer.
Defining AiðtÞ ¼ lnaiðtÞ with i ¼ 1, 2, 3, the modified

Friedmann equation reads

3It corresponds to having only two nonzero perturbation
variables; the other two being zero imply that the threading of
space-time into lines (corresponding to fixed space coordinates)
consists of geodesics and the slicing into hypersurfaces (corre-
sponding to fixed time) is orthogonal to them. There is a whole
class of gauges with this property.
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�2
0T00 ¼ � _A3ð _A1 þ _A2Þ � n2e�2A3ð _A1

_A2 � 3Þ þ 8�0�
2
0n

2

3
e�2A3½5ð _A1Þ2 þ 5ð _A2Þ2 � ð _A3Þ2 � _A1

_A2 � _A2
_A3 � _A3

_A1 � €A1

� €A2 � €A3 þ 3� � 4�0�
2
0

3

X
i

�
_A1

_A2
_A3

_Ai þ _Ai
_Aiþ1ðð _Ai � _Aiþ1Þ2 � _Ai

_Aiþ1Þ

þ ð €Ai þ ð _AiÞ2Þ
�
� €Ai � ð _AiÞ2 þ 1

2
ð €Aiþ1 þ €Aiþ2Þ þ 1

2
ðð _Aiþ1Þ2 þ ð _Aiþ2Þ2Þ

�

þ ½A:::i þ 3 _Ai
€Ai � ð €Ai þ ð _AiÞ2Þð _Ai � _Aiþ1 � _Aiþ2Þ�½2 _Ai � _Aiþ1 � _Aiþ2�

�
; (21)

where all indices are understood to be taken modulo 3 and
the t dependence of the terms has been suppressed. Clearly,
all terms containing �0, in Eq. (21) above, are the mod-
ifications to the standard result. By studying the case of the
Bianchi type V model, we can immediately identify the
noncommutative geometry effects in other cases of the
cosmological model. More precisely, Eq. (21) reduces to

(i) Bianchi type I for n ¼ 0;
(ii) FLRW for aðtÞ ¼ bðtÞ ¼ cðtÞ and n ¼ 0;

(iii) Kasner metric4 for aðtÞ ¼ tA, bðtÞ ¼ tB, cðtÞ ¼ tC,
and n ¼ 0, where A, B, and C are constants.

For the Bianchi type-V metric, with

aðtÞ ¼ t~a1 ; bðtÞ ¼ t~a2 ; cðtÞ ¼ t~a3 ;

where ~ai are constants as in the Kasner metric but n � 0,
the modified Friedmann equation becomes:

�2
0T00 ¼ �~a3ð~a1 þ ~a2Þt�2 � n2t�2ð~a3þ1Þð~a1~a2 � 3Þ þ 8�0�

2
0n

2

3
t�2ð~a3þ1Þ½5ð~a1Þ2 þ 5ð~a2Þ2 � ð~a3Þ2 � ~a1~a2 � ~a2~a3

� ~a3~a1 þ ~a1 þ ~a2 þ ~a3 þ 3� � 4�0�
2
0

3
t�4

X
i

~ai

�
~a1~a2~a3 þ ~aiþ1ðð~ai � ~aiþ1Þ2 � ~ai~aiþ1Þ

þ ð~ai � 1Þ
�
1

2
~aiþ1ð~aiþ1 � 1Þ þ 1

2
~aiþ2ð~aiþ2 � 1Þ � ~aið~ai � 1Þ

�

þ ½ðð~aiÞ2 þ 2Þ � 3~ai þ ð1� ~aiÞð~ai � ~aiþ1 � ~aiþ2Þ�½2~ai � ~aiþ1 � ~aiþ2�
�
: (22)

Since the term in braces occurs at a higher order than the
terms coming from the Einstein-Hilbert action (at least for
~a3 < 1), it becomes negligible at late times.
For the Kasner metric we know that n ¼ 0 and hence the

only correction to the standard Friedmann equation is the
term in braces. However, for the inhomogeneous case (n �
0) there is an additional term that occurs at the same order
as the inhomogeneous part of the standard Friedmann

equation, i.e., at order t�2ð~a3þ1Þ.
More generally, from Eq. (21) the correction terms come

in two types. The first one contains the terms in braces in
Eq. (21), which are fourth order in time derivatives. Hence
for the slowly varying functions, usually used in cosmol-
ogy, they can be taken to be small corrections. The second
type, which is the third term in Eq. (21), occurs at the same
order as the standard Einstein-Hilbert terms. However, it is
proportional to n2 and hence vanishes for homogeneous
versions of Bianchi type V. Thus, although anisotropic
cosmologies do contain corrections due to the additional
NCG terms in the action, they are typically of higher order.
Inhomogeneous models do contain correction terms that

appear on the same footing as the original (commutative)
terms.

B. Nonminimal coupling of the Higgs field to curvature

Up to now, we have neglected the nonminimal coupling
of the Higgs field to the curvature. This is likely to be a
good approximation for late time cosmology, since we
expect the Higgs field to be very small. However, at en-
ergies approaching the Higgs scale this additional term
needs to be included. From Eq. (6) it is immediately
apparent that for jHj � 0, the effects of the NCG correc-
tions to Einstein’s equations are enhanced. In particular, for

jHj ! ffiffiffi
6

p
=�0 the correction term entirely dominates, pro-

vided the Weyl curvature term is nonzero, and the equa-
tions of motion tend to

2C����
;�;;� � C����R�� ¼ � 1

�0

T��
matter; (23)

which is precisely the equations of motion for conformal
gravity [9], albeit with a modified gravitational constant.
As we have previously shown, the corrections to

Einstein’s equations are present only in inhomogeneous4A subclass of the Bianchi type-I metrics.
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and anisotropic space-times. For jHj � 0 however, there
are corrections even for background cosmologies. To
understand the effects of these corrections it is sufficient
to neglect the conformal term in Eq. (6), i.e., setting �0 ¼
0. In this case, the equations of motion become

R�� � 1

2
g��R ¼ �2

0

�
1

1� �2
0jHj2=6

�
T
��
matter: (24)

Hence, the effect of a nonzero jHj field is to create an
effective gravitational constant.

An alternative viewpoint is to consider the effect of this
term on the equations of motion for the Higgs field in some,
constant, gravitational field. The action for the pure Higgs
fields reads [6]

LjHj ¼ � R

12
jHj2 þ 1

2
jD�HjjD
Hjg�
 ��0jHj2

þ �0jHj4; (25)

D� is the covariant derivative. Thus, for constant curvature,
the self-interaction of the Higgs field is increased, namely

��0jHj2 ! �
�
�0 þ R

12

�
jHj2: (26)

Hence, for static geometries, the nonminimal coupling of
the Higgs field to the curvature increases the Higgs mass.
This has potential consequences both for terrestrial experi-
ments and for late time cosmology, since the curvature of
an asymptotically de Sitter universe would increase the
effective mass of the Higgs field, although in both cases the
effect is likely to be minimal.

IV. DISCUSSION

After having discussed some cosmological consequen-
ces of the noncommutative geometry spectral action, let us
briefly mention some links to dilatonic gravity and chame-
leon cosmology, in the presence of the nonminimal cou-
pling of the Higgs field to the background geometry.

Redefine the Higgs field H by

~� ¼ � lnðjHj=ð2 ffiffiffi
3

p ÞÞ;

and thus rewrite Eq. (25) in the form of four-dimensional
dilatonic gravity as

L ~� ¼ e�2 ~�½�Rþ 6D� ~�D
 ~�g�


� 12ð�0 � 12�0e
�2 ~�Þ�; (27)

providing a link to compactified string models.
In chameleon models [12], a scalar field is taken to have

a nonminimal coupling to the standard matter content (thus
evading solar system tests of general relativity). In the
NCG spectral action studied here, we have a scalar field
(the Higgs) that has a nonzero coupling to the background
geometry. If we are in a regime where the equations of
motion are well approximated by Einstein’s equations, then
the background geometry will be given (approximately) by
the standard matter, making the mass and dynamics of the
Higgs field explicitly dependent of the local matter content.
A more detailed study of this link to chameleon models is
left as a future work [13].
The noncommutative geometry spectral action gives an

elegant mathematical formulation of the standard model of
elementary particle physics, compatible with all known
phenomenology of the standard model. In addition, it
provides a natural setup to study early universe
cosmology.5
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