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We derive model-independent, universal upper bounds on the operator product expansion coefficients in

unitary 4-dimensional conformal field theories. The method uses the conformal block decomposition and

the crossing symmetry constraint of the 4-point function. In particular, the operator product expansion

coefficient of three identical dimension d scalar primaries is found to be bounded by ’ 10ðd� 1Þ for
1< d< 1:7. This puts strong limits on unparticle self-interaction cross sections at the LHC.
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In this paper we will answer, in a particular well-defined
context, the question: Is there an upper bound to the
interaction strength in relativistic quantum field theory
(rQFT)?

Intuitive reasons suggest that such a bound exists. Take
QCD as a representative real-world example. At energies E
above the scale �QCD � 1 GeV, this is a perturbative

theory of interacting quarks and gluons, and the interaction
strength is measured by the dimensionless running cou-
pling gsðEÞ. The coupling starts small at very high energies
E � �QCD and grows at low energies, formally becoming

infinite at E��QCD. However, perturbative expansion

breaks down before this happens. L-loop diagrams are
suppressed by factors �ðg2s=16�2ÞL. As soon as gs � 4�,
all loop orders contribute equally. Thus in perturbation
theory it is impossible to get couplings stronger than about
4�.

To recall what happens beyond perturbation theory, let
us look at the same theory at energies below �QCD. In this

regime the appropriate degrees of freedom are hadrons, and
their interactions can be described by an effective
Lagrangian. For instance, pion-pion scattering at low en-
ergies is described by the chiral Lagrangian

L ¼ f2�
4

Trj@�Uj2 þ � � � ; U ¼ expði�a�a=f�Þ;

where f� ’ 93 MeV is the pion decay constant, and � � �
stands for the chiral symmetry breaking terms. The dimen-
sionless quartic pion coupling defined from the 2 ! 2
scattering amplitude grows with energy as �� ðE=f�Þ2.
If the chiral Lagrangian is valid up to E��QCD and is

stable under radiative corrections, we should have
�ð�QCDÞ=16�2 & 1, or �QCD & 4�f�. Experimentally

this bound is satisfied and near saturated, which forms
the basis of the naive dimensional analysis [1] method of
estimating couplings in strongly coupled theories.

While the above arguments are appealing, at present it is
unknown if they can be turned into a theorem, or even how

to formulate such a general theorem. In order to make
progress, in what follows we will assume that we have a
conformal field theory (CFT), i.e. an rQFT invariant under
the action of the conformal group [2].
CFTs form an important subclass of rQFTs. Presumably,

any unitary, scale invariant rQFT is conformally invariant.
This is proved in D ¼ 2 spacetime dimensions under very
mild technical assumptions [3], and no counterexamples
are known in D � 3. Unitarity is however crucial here:
without unitarity simple physical counterexamples exist.
We are interested in applications to particle physics; thus
we will assume unitarity, and will work in D ¼ 4.
There are many known or conjectured classes of four-

dimensional CFTs. For example, N ¼ 1 supersymmetric
QCD with Nc colors and Nf flavors flows to a CFT in the

infrared as long as 3=2<Nf=Nc < 3 [4]. Large Nc analy-

sis [5] and lattice simulations [6] suggest that a similar
‘‘conformal window’’ exists also without supersymmetry.
Another famous example is the N ¼ 4 super Yang-Mills
(SYM), conformal for any coupling and any Nc. At large
’t Hooft coupling and large Nc it can be described via the
AdS/CFT correspondence [7]. Many deformations pre-
serving conformal symmetry are known on both field
theory and gravity sides of the correspondence [7]. Our
discussion will be general and will in principle apply to all
the above examples.
The D ¼ 4 conformal group is finite dimensional; it is

obtained from the Poincaré group by adding the generators
of dilatation D and of special conformal transformations
K�. The local quantum fields OðxÞ are eigenstates of D,

½D; Oð0Þ� ¼ i�Oð0Þ, where � is the scaling dimension.
TheK� acts as a lowering operator for the scaling dimen-

sion, and the corresponding ‘‘lowest-weight states’’, i.e.
fields satisfying ½K�;Oð0Þ� ¼ 0, play a special role. They

are called primaries. All other fields can be obtained from
primaries by taking derivatives and are called descendants.
Conformal symmetry constrains the 2- and 3-point func-

tions of primary fields to have particularly simple form. For
scalar primaries, we have
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hOiðx1ÞOjðx2Þi ¼ �ijðx212Þ��;

hOiðx1ÞOjðx2ÞOkðx3Þi ¼ cijkðx212Þ�kijðx213Þ�jikðx223Þ�ijk ;

x2ij � ðxi � xjÞ2;
�ijk � ð�i � �j ��kÞ=2: (1)

The first equation says that a diagonal basis can be chosen
in the space of primary fields, and sets the normalization.
The second equation then defines coefficients cijk. These

same coefficients appear in the operator product expansion
(OPE)

OiðxÞOjð0Þ � ðx2Þ�ð�iþ�jÞ=2f1þ cijkðx2Þ�k=2Okð0Þ þ � � �g;
where � � � stands for the contributions of higher spin
primaries and of descendants.

In CFT, any n-point function can be, in principle, re-
duced to a sum of products of 2-point functions by repeated
application of the OPE, with coefficients given by products
of cijk ’s. In this sense, cijk’s play in CFT a role similar to

that of the coupling constants in perturbation theory, mea-
suring interaction strength. We thus have the following
CFT version of our initial question: Is there an upper bound
to the OPE coefficients, valid in an arbitrary unitary CFT in
D ¼ 4? We will now proceed to show that such a universal
bound indeed exists.

Let us pick a Hermitian scalar primary � of scaling
dimension d and consider its OPE with itself:

�ðxÞ�ð0Þ � ðx2Þ�d

�
1þ X

l¼0;2;4���

X
���minðlÞ

c�;l
x�1 � � � x�l

ðx2Þðl��Þ=2

�O�1����l
ð0Þ þ � � �

�
:

This time we show explicitly contributions of both scalars
(l ¼ 0) and of higher spin primaries O�1����l

which are

symmetric traceless tensors. Spin l has to be even by the
Bose symmetry. Unitarity implies lower bounds on the
dimension � of a spin l primary [8]:

�minðl ¼ 0Þ ¼ 1; �minðl � 1Þ ¼ lþ 2:

Only special fields may saturate these bounds: a free scalar
(l ¼ 0), conserved currents (l ¼ 1), and the stress tensor
(l ¼ 2). Higher l conserved currents, present in free theo-
ries, also saturate the bounds.

An interesting object to study is the 4-point function of
�, constrained by conformal symmetry to have the form

h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi ¼ gðu; vÞ=ðx2d12x2d34Þ; (2)

where u ¼ x212x
2
34=ðx213x224Þ, v ¼ x214x

2
23=ðx213x224Þ are the

conformal cross ratios. The same 4-point function can be
reduced to a sum of 2-point functions by applying the OPE
in the 12 and 34 channels. Cross terms of different primary
families drop out because of Eq. (1) and its higher spin
analog. Resumming the terms involving the same primary
and its descendants, we get the conformal block decom-

position

gðu; vÞ ¼ 1þX
p�;lg�;lðu; vÞ; p�;l � c2�;l; (3)

where the functions g�;l are known explicitly [9]

g�;lðu; vÞ ¼ ð�Þl
2l

z�z

z� �z
½k�þlðzÞk��l�2ð�zÞ � ðz $ �zÞ�;

k�ðxÞ � x�=22F1ð�=2; �=2; �; xÞ;
u ¼ z�z;

v ¼ ð1� zÞð1� �zÞ:
This decomposition is expected to converge at least in the
circle jzj< 1, j�zj< 1 [10].
The 4-point function (2) must be crossing symmetric

under the x1 $ x2 and x1 $ x3 exchanges. The first cross-
ing is manifest since only even spins contribute to the OPE.
The second one gives a nontrivial constraint

vdgðu; vÞ ¼ udgðv; uÞ: (4)

Decomposition (3) must be consistent with this constraint.
Separating the contribution of the unit operator, we obtain
the sum rule

1 ¼ X
p�;lFd;�;lðu; vÞ;

Fd;�;lðu; vÞ � ½vdg�;lðu; vÞ � udg�;lðv; uÞ�=ðud � vdÞ:
(5)

This equation can be used to get an upper bound on c�;l.
Crucially, coefficients c�;l are real, and thus p�;l � 0.

This is related to the absence of parity violation in the
conformal 3-point function of two scalars and a symmetric
tensor [11]. Equation (5) then allows a geometric interpre-
tation: when p�;l � 0 are allowed to vary, the right-hand

side fills a convex cone Cd in the vector space V whose
elements are two-variable functions. We say that this cone
is generated by functions Fd;�;lðu; vÞ. Equation (5) ex-

presses the fact that the function fðu; vÞ � 1 belongs to
this cone. It will follow from Eq. (7) below that there is no
vanishing linear combination of the F’s with positive co-
efficients, so that Cd is really a cone and, in particular, does
not fill the whole space.
Let us pick a particular field O ��;�l and rewrite (5) as

1� p ��;�lFd; ��;�lðu; vÞ ¼
X

p�;lFd;�;lðu; vÞ: (6)

As p ��;�l is increased, the vector corresponding to the left-

hand side of this equation moves in the vector space.
Suppose that for all p ��;�l above some critical value pcr

this vector stays out of the cone Cd. Then pcr provides a
bound on the squared OPE coefficient jc ��;�lj2. This bound
will depend on d, ��, �l, but will be valid in any unitary CFT.
To find pcr, we employ the method of linear functionals

developed in [11]. Recall that a linear functional is a linear
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map � from V to real numbers, �: V ! R, �½	iFi� ¼
	i�½Fi�. Suppose that we found a functional which is
positive on all functions generating the cone Cd:

�½Fd;�;l� � 0; �½1� ¼ 1: (7)

The second condition is imposed for normalization. Since
for such � Eq. (5) implies �½1� p ��;�lFd; ��;�l� � 0, we

would get an upper bound:

p ��;�l 	 pcrð�Þ � 1=�½Fd; ��;�l�: (8)

To make this bound as strong as possible, we will impose,
in addition to (7), an extremality condition

�½Fd; ��;�l� ! max: (9)

We will use linear functionals given by a finite linear
combination of derivatives evaluated at a given point:

�½F� � X
n;m�0;nþm	N

�n;mF
ð2n;2mÞ; N ¼ 3;

Fð2n;2mÞ � @2na @2mb Fja¼b¼0; z ¼ 1=2þ aþ b;

�z ¼ 1=2þ a� b: (10)

Here �n;m are fixed real numbers defining the functional.

The symmetric point a ¼ b ¼ 0 is chosen as in [11] since
the sum rule is expected to converge fastest here, and
because the functions Fd;�;l are even in both variables

with respect to this point. This is why only even-order
derivatives are included in (10).

Equations (7) and (9), define a linear programming
optimization problem for the coefficients �n;m. (The con-

straints are given by linear equations and inequalities, and
the cost function is also linear.) Although the number of
constraints in (7) is formally infinite, they can be reduced
to a finite number by discretizing � and truncating at large
� and l, where the constraints approach a calculable
asymptotic form. The reduced problem can be efficiently
solved by well-known numerical methods, such as the
simplex method. A found solution can be then checked
to see if it also solves the full problem. This procedure was
developed and successfully used for a related but different
problem in [11].

Using this procedure, we computed bounds on the OPE
coefficients c��O when O is a scalar field (�l ¼ 0). We will

now present our numerical results [12]. Figure 1 concerns
the case when the dimension of � is close to that of a free
field, 1< d 	 1:1. Notice the bell-shaped form of the

bound, peaked at �� ’ 2. This shape makes it tempting to
draw an analogy with the Breit-Wigner formula, especially
since the dilatation operator D plays the role of energy in
radial quantization. For d ! 1 the bound evidently tends to

zero everywhere except near �� ¼ 2. This means that the
free field theory limit is approached continuously: for d ¼
1 the only scalar operator in the ��� OPE is the :�2: of
dimension 2. In Fig. 2 we present a similar plot for 1:2 	
d 	 1:7. Notice that the bounds in Figs. 1 and 2 go to zero

as �� ! 1. This is expected in view of the general theorem
that a dimension 1 scalar must be free, hence decoupled
from everything else in the CFT.
Starting from d ’ 1:75, we found that there is no func-

tional of the form (10) satisfying the constraints (7); that is
why we only give bounds for d 	 1:7. We expect that a
bound exists also for larger d, but to find it one needs
to use more general functionals, e.g. with higher N in
Eq. (10). This will also give improved bounds in the range
of d that we considered.

On the other hand, the restriction to �� 	 3 in Figs. 1 and
2 is not essential: our method would also give bounds
beyond this range. In fact, any of the functionals derived

for �� 	 3 could be used to compute a suboptimal but valid

bound for larger �� (as well as for �l > 0) via Eq. (8).
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FIG. 1 (color online). Theoretical upper bound for c��O as a
function of the dimension �� of the scalar field O. The curves
correspond to the �’s dimension fixed at d ¼ 1:005, 1.02, 1.05,
1.1 (from the bottom up). The bound was computed for each of
the shown points, with interpolation in between.
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FIG. 2 (color online). Same as Fig. 1 for the �’s dimension
fixed at d ¼ 1:2, 1.3, 1.4, 1.5, 1.6, 1.7 (from the bottom up).
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It is interesting to study the asymptotic behavior of the

bound at large ��. A simple upper estimate can be obtained
from the known asymptotics of Fd; ��;�l and its derivatives

[11], assuming that the functional � in (8) is
�� independent. So one concludes that the bound cannot

grow faster than jc��Oj ¼ Oðq ��Þ, q ¼ ð ffiffiffi
2

p þ 1Þ=2.
It would be also interesting to derive analogous bounds

in two spacetime dimensions, where explicit expressions
for conformal blocks are also known [9].

As a phenomenoligical application of our results, con-
sider the unparticle physics scenario [13]. Unparticle self-
interactions were considered in [14,15] a prominent feature
of such scenarios, giving rise to processes like gg ! � !
�� ! 4
. The cross section is proportional to the square
of the self-coupling OPE coefficient c���, where � is a

scalar from a hidden-sector CFT (unparticle) with non-
renormalizible couplings to gluons and photons. In [14],
the values of these coefficients were assumed uncon-
strained by prime principles, and only experimental con-
straints from the Tevatron were imposed, which led to a
possibility of spectacularly large cross sections at the LHC.
In Fig. 3 we plot our theoretical upper bound on c���

(extracted from Figs. 1 and 2 by setting �� ¼ d). The values
of c��� used in [14] exceed our bound by 2–4 orders of

magnitude.1 A revision of the studies in [14,16], taking into
account our bounds, is necessary.
As a purely field-theoretical application, consider the

N ¼ 4 SYM theory, conformal for any value of the
’t Hooft coupling � ¼ g2YMNc. The region of small � is
accessible via perturbation theory, while large � (and large
Nc) are accessible via the AdS/CFT correspondence.
Moreover, the large Nc theory is integrable, which allows
one to interpolate between the two regimes and perform
various nontrivial checks [17]. As � is increased from 0 to
1, the spectrum of the theory changes, with some anoma-
lous dimensions becoming large. For example, at large Nc

the fields which do not map onto supergravity modes on
AdS5 � S5 have anomalous dimensions growing for large

� as �1=4 [18]. Can the OPE coefficients have similar
growth? From our results, assuming that they can be ex-
tended to d > 1:7 as discussed above, it follows that no
matter how large � is, the OPE coefficients of fields with
low dimensions will stay bounded. It should be noted that
this conclusion is nontrivial only for small Nc, since other-
wise the OPE O1 �O2 is known to factorize, with the
composite ‘‘multitrace’’ fields :O1O2: appearing with the
coefficient 1þOð1=N2

cÞ while all other fields 1=Nc sup-
pressed [19].
In summary, we have presented theoretical upper bounds

on the OPE coefficients of two identical scalars and a third
scalar, valid in an arbitrary unitary CFT. Our results are
based on imposing crossing symmetry on the conformal
block decomposition of a scalar 4-point function. They
imply that interaction strength remains limited even in
theories like N ¼ 4 SYM where a coupling � can be
taken to infinity. They also lead to strong bounds on the
cross sections of unparticle self-interaction–type processes
at future colliders.
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