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Fayet-Iliopoulos term and nonlinear self-duality
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The N = 1 supersymmetric Born-Infeld action is known to describe the vector Goldstone multiplet for
partially broken N = 2 rigid supersymmetry, and this model is believed to be unique. However, it can be
deformed by adding the Fayet-Iliopoulos term without losing the second nonlinearly realized supersym-
metry. Although the first supersymmetry then becomes spontaneously broken, the deformed action still
describes partial N = 2 — N = 1 supersymmetry breaking. The unbroken supercharges in this theory
correspond to a different choice of N = 1 subspace in the N = 2 superspace, as compared with the
undeformed case. Implications of the Fayet-Iliopoulos term for general models for self-dual nonlinear
supersymmetric electrodynamics are discussed. The known ubiquitous appearance of the Volkov-Akulov
action in such models is explained. We also present a two-parameter duality-covariant deformation of the
N = 1 supersymmetric Born-Infeld action as a model for partial breaking of N' = 2 supersymmetry.

DOI: 10.1103/PhysRevD.81.085036

Recently, there have been interesting discussions [1,2] of
the supercurrent [3] (i.e. the multiplet of currents contain-
ing the energy-momentum tensor and the supersymmetry
current) in N = 1 supersymmetric gauge theories with a
Fayet-Iliopoulos (FI) term [4]. These works are primarily
targeted at phenomenological applications of supergravity
theories. In the present paper, we would like to elaborate on
somewhat different and more formal aspects such as im-
plications of the FI term for partial supersymmetry break-
ing, and more generally in the context of models for self-
dual nonlinear supersymmetric electrodynamics. In par-
ticular, we will revisit the conclusion of [5,6] about unique-
ness of the Goldstone-Maxwell multiplet model for
partially broken N = 2 supersymmetry. At the end of
this paper, we will also comment on the claim made in
[2] that “‘no supercurrent supermultiplet exists for globally
supersymmetric gauge theories with nonzero Fayet-
Iliopoulos terms.”

The N = 1 supersymmetric Born-Infeld (BI) action is'

1 1 -
SSBI[W] = Z [d6ZW2 + Z [d6ZW2
W2Ww?

2
+g—[d8z :
4 1+1A+41+A4+1B

(D2*W? + D?W?),

2
A=8
8

g S
B= §(1)2W2 — D*W?). (1)

Here g is the coupling constant, W, the chiral field strength
of an Abelian vector multiplet,
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'We follow the notation and conventions adopted in [7,8]. The
superspace integration measures in (1) are defined as follows:
d°z = d*xd*6, d°z := d*xd’f and d®z := d*xd?6d’é.
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W, = —%DzDav, V=Y, ()
with V the gauge prepotential. The action (1) was intro-
duced for the first time in Refs. [9,10] as a supersymmetric
extension of the BI theory [11], and as such it is not unique.
Bagger and Galperin [5], and later Rocek and Tseytlin [6],
using alternative techniques, discovered that Sgp; is the
action for a Goldstone-Maxwell multiplet associated with
N =2— N =1 partial supersymmetry breaking. This
action was argued to be unique [5,6]. Being manifestly
N = 1 supersymmetric, Sgp; also proves to be invariant
under a second, nonlinearly realized supersymmetry trans-
formation

e

) .
oW, = no+ 5 (30%m, +i0.X7) )

4

with 7, a constant spinor parameter. Here X is a chiral
superfield, D,X = 0, satisfying the nonlinear constraint
(5,61

2
X + ‘f—6XD'2X = W2, 4)

The proof of the invariance is based on the observations
[5,6] that (i) the functional (1) can be rewritten in the form

1 1 _
SSBI[W] = Z ]dGZX + Z [d62X, (5)
and (ii) the chiral scalar X transforms under (3) as
60X =2n*W,. (6)
Consider now the N = 1 supersymmetric FI term [4]
SFI = 2§[d8ZV = g jdbzﬁ“Wa + g fd6ZéaWa
(7

It is easy to see that Sgy is also invariant under the second
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nonlinearly realized supersymmetry (3), as pointed out
recently in [12].7 Therefore, the theory with action

S = Sspi[W] + Sgr ®)

is manifestly /N = 1 supersymmetric, and is invariant
under the second nonlinearly realized supersymmetry (3).
We are going to show that the deformed action also de-
scribes  partial N =2— N =1 supersymmetry
breaking.

Let us study the bosonic sector of the component
Lagrangian. The component fields contained in W, are

Aa(X) = Welo=o, (%a)
i

Foplx) = — Z(Dawﬁ + DgWo)lo=o, (9b)
1

D(x) = — EDaWa|0=o’ %)

with

Fad,B,B = (a-a)ao'z(o-b)BBFab = 28aBFaB + 28(5(,3Faﬁ
(10)

the electromagnetic field strength. Setting the photino to
zero, A, = 0, the bosonic Lagrangian can be shown to be

Luvan = 51 = \/1 @+ i)+ e —ar)+ €D,

8
(1)
where we have defined
NI RS, |
u .= gD w |0a:)la:0 =w—=-D ,
. (12)
0= Lporp, + L pap
. 4 ab 4 ab»

with F,, the Hodge-dual of F,,. From L, we read off
the equation of motion for the auxiliary field:

D

Y1+ &2 +a) + gt — i)

——&  (13)

Its solution is

D = @) + %g“(a) - @)~

—71 +§ zérz\/1 + g¥w +
v 8

(14)

Here the second factor on the right is essentially the BI
Lagrangian [11]:

*This property is directly related to the fact that the N" = 1 FI
term preserves also N° = 2 supersymmetry [13].
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Ly = %{l - \/1 + ¢*(w + @) + %g“(w — (D)z}
{1 = /= det(n,, + gF.)} (15)

Upon elimination of the auxiliary field, the bosonic
Lagrangian (11) becomes

1
Lboson = ?{1 - Jl + gZé‘:Z‘/_ det(nab + gFab)}- (16)

Modulo an irrelevant constant term and an overall normal-
ization factor, this is again the BI Lagrangian.

Looking at the expression for the auxiliary field,
Eq. (14), we see that it acquires a nonvanishing expectation
value

(Dy=-——L (17)

JI+ 2&
Therefore, the manifestly realized supersymmetry of the
theory (8) becomes spontaneously broken. The corre-
sponding supersymmetry transformation of the photino is
now

8, =i(eQ + EQ)W,lg—o
= (D)e, + field-dependent terms (18)

and therefore the photino turns into a Goldstino. As a
result, the situation is now the following. The model under
consideration, Eq. (8), possesses two supersymmetries, of
which one (Q) is linearly realized, and the other (S) is
nonlinearly realized, as described by Eq. (3). On the mass
shell, both Q and S supersymmetries become nonlinearly
realized. Clearly, this does not mean that the N =2
supersymmetry is completely broken, for there is only
one Goldstino in the theory. Therefore, a special combina-
tion of the Q and § supersymmetries must remain unbro-
ken. This can be seen explicitly as follows. The Q- and
S-supersymmetry transformations of the theory (8) form
the ' = 2 super-Poincaré algebra without central charge,

{0 0} = 2(0)pPes {Sa Syt = 2(0)5P., (192)
see [5,6] for more detail. Now, using the transformation

laws (3) and (18), one can readily check that N =1
supersymmetry transformations generated by

e
N

(20)

Q ,=coseQ, + singS,, tang =

remain unbroken. We see that the result of adding the FI
term to the N° = 1 supersymmetric BI action amounts to a
U(1) rotation of the unbroken N = 1 supersymmetry
generators in the N =2 super-Poincaré algebra.
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Therefore, the dynamical system (8) is a (deformed) vector
Goldstone multiplet model for partial supersymmetry
breaking N =2 — N = 1. Similarly to the considera-
tions in [6,12], the action (8) can be obtained by (i) starting
from a nonrenormalized model for an Abelian N = 2
vector multiplet with two types (electric and magnetic)
of N = 2 FI terms [14,15], and then (ii) integrating out
a massive N = 1 scalar multiplet.’

The supersymmetric BI theory (1) is known to be in-
variant under U(1) duality rotations [17,18]. It is in fact a
special member of the family of models for self-dual non-
linear N =1 supersymmetric electrodynamics con-
structed in [18] and described by actions of the form,

1 1 _
S[W] = 1 [ dozw? + 1 [ dozw?

1 _
+7 f dSIWAW2A (u, 1),

1
u = §D2W2, (21)
where A(u, i) is a real analytic function of one complex
variable. In accordance with [18], this theory possesses
U(1) duality invariance provided A obeys the self-duality
equation
d
Im{l — al?} =0, I'(u, i) := a—(uA(u, i). (22)
u
The fermionic sector of such models turns out to possess a
remarkable structure [19].
As demonstrated in [19], under the only additional re-
striction

A,2(0,0) = 3A%(0,0), (23)

the component fermionic action coincides, modulo a non-
linear field redefinition, with the Volkov-Akulov action
[20].* At first sight, this ubiquity of the Goldstino action
in the framework of nonlinear self-duality looks somewhat
miraculous. It can be explained, however, if we let the FI
term enter the game and consider the following model:

S[W]+ Sg. 24)

In the purely bosonic sector, the equation of motion for the
auxiliary field is

D[l —al'wa) — ul'(w,a)] = —& (25)

with u defined as in (12). This equation should be used to
express D in terms of the electromagnetic field strength,
D = f(w, @). Generically, the auxiliary field develops a
nonvanishing expectation value, (D) # 0, which must sat-

3t would be interesting to understand how to integrate out
massive degrees of freedom in the non-Abelian extensions [16]
of the Antoniadis-Partouche-Taylor model [14].

*The results in [19] extended the earlier component analysis
[21] of the supersymmetric BI theory (1).
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isfy an algebraic nonlinear equation that follows from (25)
by setting @ = 0.° As a result, the supersymmetry be-
comes spontaneously broken, and thus the photino action
should be related to the Goldstino action, due to the unique
of the latter.

It is worth briefly recalling the structure of the bosonic
sector in the model (21). The corresponding equation of
motion for D is obtained from (25) by setting £ = 0, and
hence it always has the solution D = 0. With this solution
chosen, the dynamics of the electromagnetic field is de-
scribed by the Lagrangian

L= —%(a) + o) + woA o, d), (26)

with the interaction A obeying the self-duality equa-
tion (22). This is a model for self-dual nonlinear electro-
dynamics in the sense of [22-24], of which the BI theory
(15) is a special case. Such theories and their generaliza-
tions possess very interesting properties; see, e.g., the
second reference in [18] and [25] for reviews. It is natural
to ask the following question: Is self-duality preserved in
some form in the case of deformed theory (24) with a
nonzero D obeying the Eq. (25)? We now turn to answer-
ing this question.

The model (21) can be generalized to include couplings
to supermultiplets containing the dilaton and axion, the
Neveu-Schwarz and Ramond-Ramond two-forms, B, and
C,, and the Ramond-Ramond four-form, C,, as presented
in [18] building on the bosonic constructions of [26-28].
The extended action has the form

S[W, @, B, y, Q] = S[W, @]
+ {[d%(ﬂ + %y"‘wa) + C.C.},
(27)
where
S[W, d] = % fd6z<I>W2 —i fdﬁzé e
- f d82(D — BPWAA
i _ i o
w (L — o2 L — 2172
(16@ BIDW, (@ — B)DW )
(28)

describes SL(2, R) duality invariant coupling of the vector
multiplet to the dilaton-axion chiral multiplet @, and

W, =W, +iB, (29)
is the supersymmetrization of F + B. Here 8,, v, and

are unconstrained chiral superfields which include, among

>In some cases, the algebraic nonlinear equation on (D) has no
solution, and then (24) is inconsistent.
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their components, the fields B,, C, and Cjy, respectively.
The resulting action is invariant under the following gauge
transformations:

5B, = i8W, = iD*D K|, (30a)

_ 1 _
8y, = iD*D K>, 50 = EB“DZDQKZ, (30b)

80 = iD%K;, (30c)
with K; real unconstrained superfields. The action (27)
reduces to (21) by setting @ = —i and switching off the
other chiral superfields B,, v, and ().

As demonstrated in [18], the theory (27) is invariant
under SL(2, R) duality transformations

() ) vt
W& c d)\wW,/) cd+d

b (D
a
(c d) € SL2, R),
provided the superfields B,, v, and () transform as
! b
[ 7 (32a)
B’ c dJ\B

Q=0- %bdﬁz - %bcﬂy - %acyz. (32b)

Here M, denotes a variational derivative of the action with
respect to the field strength,

) 0

lMa = Zws[W, (I), B, v, Q] (33)
A detailed discussion can be found in [18].

Using the second form of the FI term, Eq. (7), the
action (24) is seen to be of the type (27) with the following
“frozen” values for background fields: y, = £6,, ® =
—i and B, = Q0 = 0. As a natural generalization, an an-
satz compatible with duality transformations is y, « 6,
Ba * 0, and Q x . A consistent with duality choice is

Yo = gew :80( = gea: Q=0 f, e R.
(34)

As follows from (32b), applying a duality transformation
generates a purely imaginary nonzero value for ) which,
however, does not contribute to the action.

Let us now return to the model (24) and consider its
duality-covariant extension

S[W1+ Sg,

Here the deformed field strength "W, obeys the modified
Bianchi identity

W, =W, +il6,. (35)

D W —DW, = 4i(. (36)

This action is invariant under inhomogeneous supersym-
metry transformations
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SW, = —ile, +i(eQ + EQ)W,,. (37)

If S{W] coincides with the supersymmetric BI action (1),
then the resulting model

Sspil W1+ Sy (38)

is also invariant under a second nonlinearly realized super-
symmetry, which is a natural generalization of (3),

g (1l -, = ,

+ —(ZDZX% + iaadXﬁ"‘), (39)

OWo = Mo +7

where X is a chiral superfield, D, X = 0, satisfying the
nonlinear constraint

2 _
X + %xmx = W2, (40)

compare with (4). Our action (38) is a two-parameter
deformation of the supersymmetric BI theory (1). This
action appears to be the most general Goldstone-Maxwell
multiplet model for partial N" = 2 — N = 1 supersym-
metry breaking. Requiring the first supersymmetry to be
manifest eliminates one of the deformations, { = 0. The
supersymmetric BI action (1) is indeed unique if the first
supersymmetry is required to be unbroken.

In conclusion, we would like to comment on the state-
ment made in [2] that “no supercurrent supermultiplet
exists for globally supersymmetric gauge theories with
nonzero Fayet-Iliopoulos terms.” A general scheme to
compute supercurrents [3] in rigid supersymmetric theo-
ries is by evaluating a variational derivative of the action
functional with respect to the gravitational superfield H%¢,

AS
J ad A Had ’ (4 1)
with the idea due to Ogievetsky and Sokatchev [29]. More
specifically, the procedure is as follows: (i) one should lift
the theory to a curved superspace corresponding to one of
the known off-shell supergravity formulations (realized in
terms of the gravitational superfield H** and an appropri-
ate compensator); (ii) compute the (covariantized) varia-
tional derivative AS/AH®%; (iii) return to the flat
superspace by switching off the supergravity prepotentials.
The scheme is worked out in detail in two textbooks [8,30],
including numerous examples. The explicit form of the
supercurrent conservation equation depends on the off-
shell supergravity realization chosen. In the case of the
old minimal (n = —1/3) formulation for N" = 1 super-
gravity [31] (see also [32]), the conservation equation is
D4J,, = D,T, D,T =0, (42)
with T called the supertrace. In the case of the new minimal
(n = 0) formulation for N° = 1 supergravity [33], the
conservation equation is
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D_ dJ]ad, - —I]—Ol’ D_d—l]—a = 0’

The difference between (42) and (43) is due to the different
types of compensators used in these supergravity formula-
tions. One can construct more general supercurrent con-
servation equations; see, e.g., [34,35].

We wish to analyze the two versions of the supercurrent
for the theory (24). Within the old minimal formulation for
N =1 supergravity, the supercurrent for the model (21)
was computed in [36] and shown to be duality invariant.
The supercurrent obtained is rather complicated to deal
with. So for simplicity, we restrict our consideration to the
Maxwell case, by setting A = 0 in (21), similarly to [1].
The consideration below can naturally be generalized to
the case A # 0.

Using the old minimal formulation for 2N" = 1 super-
gravity, the supermultiplets J,, and T are computed to be

(1]

- 2 _ I -
Jog =2W W, + §§[Da, D]V, T= §§D2V.

(44)

Using the equation of motion, D*W, = 2£, one can check
that the conservation equation (42) holds. As pointed out
by Komargodski and Seiberg [1], both J,4 and T are not
gauge invariant. The reason for this is very simple: mini-
mal coupling of the FI term to supergravity, which makes
use of the first expression in (7), is not gauge invariant. Old
minimal supergravity is not well suited to describe FI
terms.

Using the new minimal formulation for N" = 1 super-
gravity, the supermultiplets J,, and T, can be computed
to be

Jae = 2W, Wy, T, =4¢&wW,,. (45)
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Both objects are gauge invariant. The reason for this is very
simple: minimal coupling of the FI term to supergravity,
which makes use of the second expression in (7) and is
obtained by replacing (the vacuum expectation value) ¢
with the chiral spinor compensator, is gauge invariant. New
minimal supergravity is ideal for describing FI terms.

The theory (24) is R invariant, and the corresponding R
current JS()X must be conserved. If one identifies ]S()X with
the lowest component of the supercurrent in (44), it fails to
be conserved, for one finds

. i _ 2
gaiy = %g[DZ, DXV =2 £0°4(D, DIV # 0. (46)

This result was interpreted in [2] as nonexistence of super-
current for rigid supersymmetric gauge theories with non-
zero FI terms. However, if one defines the R current by

. 2 _
Jfl = (Jaoz - gf[Da, Da]V)|9:0, (47)

then it is clearly conserved.
In the case of the supercurrent (45), the standard defini-
tion of the R current applies

72 = Jaalo—o (48)

Our consideration shows that the supercurrent does exist
for globally supersymmetric gauge theories in the presence
of FI terms.

The author is grateful to Ian McArthur and Arkady
Tseytlin for useful comments. This work is supported in
part by the Australian Research Council.

Note added.—The published version of [2], Ref. [37],
significantly differs from the original preprint, Ref. [2],
discussed above. The conclusions of [37] are similar to
those given in the present paper.
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