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It is known, that a keV scale sterile neutrino is a good warm dark matter candidate. We study how this

possibility could be realized in the context of gauge extensions of the standard model. The naı̈ve

expectation leads to large thermal overproduction of sterile neutrinos in this setup. However, we find

that it is possible to use out-of-equilibrium decay of the other right-handed neutrinos of the model to dilute

the present density of the keV sterile neutrinos and achieve the observed dark matter density. We present

the universal requirements that should be satisfied by the gauge extensions of the standard model,

containing right-handed neutrinos, to be viable models of warm dark matter, and provide a simple

example in the context of the left-right symmetric model.
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I. INTRODUCTION

Dark matter (DM) is one of the experimentally observed
indications of physics beyond the standard model (SM). A
wide variety of astrophysical and cosmological observa-
tions confirm that �DM ’ 0:2 part of the total energy
density of the Universe is composed of some form of
nonbaryonic matter which interacts very weakly [1]. The
most common particle physics explanation comes in the
form of weakly interacting massive particles, which are
heavy and weakly interacting thermal relics, leading to
cold dark matter. Another common candidate for the cold
dark matter is the axion, which is light, but due to a specific
generation mechanism it has an extremely small tempera-
ture [2]. Hot dark matter has high velocities and a large free
streaming length and it contradicts the experiment, because
it prevents the formation of the observed small scale struc-
tures in the Universe. The intermediate situation, warm
dark matter (WDM) is, however, less explored. It may even
provide a solution to some of the problems of the DM
simulations, reducing the number of Dwarf satellite gal-
axies, or smoothing the cusps in the DM halos.

A natural candidate commonly considered forWDM is a
light sterile neutrino [3].1 A simple realization is the
�MSM [6,7], where only three singlet fermions, which
have Majorana masses and Dirac mixing with ordinary
(active) neutrinos, are added to the standard model. Then,
the mass of one sterile neutrino can be chosen in the range
of several keV and with very small mixing with the active
neutrinos, it will provide a particle with the lifetime ex-
ceeding the age of the Universe, which can be the WDM

candidate. The virtue and at the same time the problem of
the model is, that the sterile neutrino with such a small
mixing (the only interaction of this particle is via the
Yukawa couplings) never enters into the thermal equilib-
rium, and it can be produced only by some nonthermal
mechanism. If this were not true and the neutrino reached
thermal equilibrium at some moment in the early universe,
then without any additional mechanism, the thermal relics
with mass of over about 90 eV would overclose the
Universe. At the same time, one needs knowledge of the
physics before the beginning of thermal evolution of the
Universe in order to calculate unambiguously the abun-
dance of sterile neutrinos in the �MSM (see Refs. [8–10]).
The possibility analyzed in this article is opposite to the

�MSM. We assume, that there is some additional (gauge)
scale between the electroweak and Planck scales, and that
the sterile neutrinos are charged under these additional
gauge transformations.
It turns out that it is possible to reconcile the thermal

overproduction of the DM with the observations. To do
this, the abundance of the sterile neutrino should be diluted
after it drops out of the thermal equilibrium. This happens
if some long-lived particle decays while being out of
thermal equilibrium after the DM sterile neutrino freeze-
out. This effectively reduces the amount of the DM sterile
neutrino relative to the overall energy balance of the
Universe; see Fig. 1. It is also easy to find a candidate for
this long-lived heavy particle—another (heavier) sterile
neutrino in the model. We formulate the requirements on
the properties of the DM sterile neutrino and the out-of-
equilibrium decaying particle to make the model consistent
with existing observations and bounds. This generic analy-
sis, important for all possible models of this type, is made
in the Sec. II. In the end of this section, all the requirements
are summarized.
There exist other ways to avoid the overproduction of

the DM sterile neutrino in the analyzed class of the models,
which we will only mention here. One possibility is real-
ized if all the new gauge interactions are at the grand

*On leave from Institute for Nuclear Research of the Russian
Academy of Sciences, 60th October Anniversary prospect 7a,
Moscow 117312, Russia.
Fedor.Bezrukov@mpi-hd.mpg.de

†Hans.Hettmansperger@mpi-hd.mpg.de
‡Manfred.Lindner@mpi-hd.mpg.de
1Note that WDM can also be many other particles, like a

gravitino or even heavy particles; see [4,5].

PHYSICAL REVIEW D 81, 085032 (2010)

1550-7998=2010=81(8)=085032(13) 085032-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.81.085032


unified theory (GUT) scale, while the reheating after in-
flation leads to temperatures below the GUT scale. This
situation is similar to the �MSM, because the sterile neu-
trinos do not reach thermal equilibrium. Another possibil-
ity requires large (of the order of thousand) number of
degrees of freedom at the moment of the sterile neutrino
freeze-out, which does not seem natural.

In Secs. III and IV, we analyze the possibility to realize
these constraints in the simplest models. We then use other
sterile neutrinos to dilute the density of the DM sterile
neutrino. In Sec. III, we show that it is impossible for the
same right-handed neutrinos to be involved in the DM
abundance dilution and at the same time to give the masses
to the active neutrinos via a type I seesaw like mechanism.
The reason for this is that the mixing angles (or, equiv-
alently, Yukawa coupling constants) are extremely small
for the sterile neutrinos. This would lead to masses of the
active neutrinos smaller, than the minimal ones, allowed by
the neutrino oscillation observations.

In Sec. IV, we provide a working example, where the
active neutrino masses are generated by a type II seesaw
from the scalar sector of a left-right (LR) symmetric
model, and sterile neutrinos have very small mixing angles
with the active neutrino sector.

The appendices are devoted to the calculation of the total
decay width of the sterile neutrinos in the model
(Appendix A), radiative decay width (Appendix B), and
to the description of the useful parametrization of the
neutrino mass matrix (Appendix C).

II. COSMOLOGICAL REQUIREMENTS AND
CONSTRAINTS FROM EXPERIMENTS

In this section, we introduce the generic framework we
will work with and discuss the various constraints and
bounds resulting from cosmological considerations and

various experimental results. Note that these constraints
are rather general and apply to most variations of the
specified model.

A. Assumptions and definitions

In the following, we will assume the existence of right-
handed (sterile) neutrinos NIR. These sterile neutrinos are
not charged under the SM gauge group, but they could be
charged under the gauge transformations of an extended
model (ultimately, emerging in the breaking chain of some
GUT model). Though for most of the statements in this
article the precise details of this gauge interaction are not
important, we will use a specific LR symmetric extension
of the SM and stick to it to obtain definite numbers. This
specific model (see e.g. Ref. [11] for a detailed review)
with the gauge group SUð3Þ � SUð2ÞL � SUð2ÞR �
Uð1ÞB�L appears as a subgroup of many GUT theories.
In this model, we have the interaction with the gauge

bosons of the form

�L CC ¼ gffiffiffi
2

p X
a

ðW�
L
�laL���aL þW

�
R
�laL��NaRÞ þ H:c:;

(1)

where WL is the SM W boson, WR is the corresponding
right-handed boson from SUð2ÞR, and la are the charged
SM leptons. The neutrino mass matrix appears from the
vacuum expectation values of various Higgs bosons in the
model. Up to the Sec. IV, we will not be interested in the
details of this, and will just write the general mass matrix
as

L mass ¼ � 1

2
ð~�c

aL; ~NaRÞ ML mD

mT
D MR

� �
~�aL
~Nc
aR

� �
þ H:c: (2)

Note that a tilde over the neutrinos indicates that they are
written in the flavor basis. In the following, we will also
assume that the mass matrices obey in some sense the
relations MR >mD >ML such that we can use seesaw-
type formulas. Thus, the rotation to the mass basis has the
form

~�aL
~Nc
aR

� �
’ 1 ðM�1

R mT
DÞy

�M�1
R mT

D 1

� �
U 0
0 VR

� �
�iL

Nc
IR

� �
;

(3)

where U is the standard Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix and where VR describes the mixing
in the right-handed sector

ML �mDM
�1
R mT

D ¼ U? � diagðm1; m2; m3Þ �Uy; (4)

MR ¼ V?
R � diagðM1;M2;M3Þ � Vy

R; (5)

withmi being the active neutrino masses andMI the sterile
neutrino masses. Note, that if ML ¼ 0, then Eq. (4) is the
usual seesaw formula.
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FIG. 1 (color online). Schematic evolution of the light relic
abundance in the Universe. The dashed line is a thermal relic
decoupled while being relativistic (hot thermal relic), leading to
the overclosure of the Universe. The blue decreasing line is the
same hot thermal relic, but with the abundance diluted by rapid
expansion of the Universe (entropy production), leading to
correct DM abundance. The lowest (magenta) line depicts the
evolution of the nonthermally produced particle with zero pri-
mordial abundance.
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For the analysis of the sterile neutrino decay, when the
oscillations of the active neutrinos are not important, while
the masses of the charged leptons are, it is helpful to make
the described rotation only partially—without the PMNS
rotation by the matrix U. Then, we get the mixing angles
between the mass states of the sterile neutrinos and SM
flavors

�aI � ðmDVRÞaI
MI

; (6)

and also

�2I �
X

a¼e;�;�

j�aIj2: (7)

These squared mixing angles describe the overall strength
of interaction (decay) of sterile neutrinos with the SM
particles.

Before moving on to the analysis of the cosmological
properties of sterile neutrinos, let us note an additional
possible complication. Specifically, theWL andWR bosons
in Eq. (1) may not coincide with the mass eigenstates, W1

and W2 with masses MW and M, respectively, but be
slightly mixed

WL ¼ cos�W1 þ sin�W2;

WR ¼ � sin�W1 þ cos�W2:
(8)

Normally this can be neglected, but it may give significant
contribution to the radiative decay of the DM sterile neu-
trinos, analyzed in Sec. II F.

B. Temperature of freeze-out

Let us now calculate the moment of decoupling of the
neutrinos N1 in the early universe. We will denote values
corresponding to this moment by the subscript ‘‘f.’’ As far
as the DM sterile neutrino is relatively light and the freeze-
out happens while it is still relativistic, the calculation is
analogous to those for the usual active neutrinos [12]. The
only difference is that the annihilation cross section is
suppressed by the larger massM of the right-handed gauge
boson WR, compared to the SM W boson mass MW ,

�N1N1
� �� ��

�
MW

M

�
4 �G2

FE
2

�
MW

M

�
4
: (9)

Here, �� �� is the SM neutrino annihilation cross section,
GF ¼ 1:166� 10�5 GeV�2 is the Fermi constant and E is
the energy of the colliding neutrinos. Requiring the equal-
ity of the mean free path and the Hubble scale, we get for
the freeze-out temperature

Tf � g1=6�f
�
M

MW

�
4=3ð1� 2Þ MeV; (10)

where g�f is the effective number of degrees of freedom
immediately after freeze-out (at least 10.75 for SM content
if freeze-out happened below 100 MeV).

We see that for the not very large scale M, the sterile
neutrino N1 decouples at a rather low temperature. Thus, it
normally is in thermal equilibrium at the early stages of the
Universe evolution, making it a thermal relic. This will be
the possibility which we peruse in the current study. In
this case, calculation of the present day density of the
sterile neutrinos is insensitive to the history of the
Universe before Tf .
Note, however, that if the reheating temperature after

inflation is lower than Eq. (10), the neutrinos never enter
the thermal equilibrium. In this case, additional assump-
tions about the initial abundance of the sterile neutrinos are
necessary to predict their current density, and the genera-
tion mechanism is very different form the analyzed here
(see, e.g. Refs. [13–16]). Such a situation can be realized
for a very low reheating temperature (see e.g. [17]), or
naturally if the right-handed scale is the GUT scale, M�
MGUT, leading to Tf �MGUT, and the reheating after in-
flation reached slightly lower temperatures. Another way
to implement this situation is perused in the �MSM [6,7],
where no new physics is present up to Planck scale, leading
to N1 never entering the thermal equilibrium.

C. Abundance of N1 at present time

The number to entropy density ratio of the sterile neu-
trino (two fermionic degrees of freedom) after freeze-out is
given by

nN1

s

��������f
¼ 1

g�f
135�ð3Þ
4�4

: (11)

While the Universe expands slowly with all the processes
approaching thermal equilibrium, both the number density
and entropy density scale are inversely proportional to the
volume of the Universe, and this ratio remains constant. If
nonequilibrium processes happen during expansion (for
example an intermediate matter dominated stage caused
by out-of-equilibrium decay of a heavy species), additional
entropy release is possible, which we will take into account
by the factor S:

nN1
ðt0Þ

nN1
ðtfÞ ¼

�
aðtfÞ
aðt0Þ

�
3 ¼ sðt0Þ

sðtfÞ
1

S
: (12)

Let us calculate the contribution of N1 to the present
energy density. Rescaling the number to entropy density
ratio at present moment by this factor, as compared to the
freeze-out moment, we get for the sterile neutrino contri-
bution to the energy density of the Universe �N

�N

�DM

¼
�
nN1

s

��������f

�
1

S
M1

s0
�DM	c

’ 1

S

�
10:75

g�f

��
M1

1 keV

�
� 100; (13)

where �DM ¼ 0:105h�2 is the DM density, s0 ¼
2889:2 cm�3 is the present day entropy density, and 	c ¼
1:05368� 10�5h2 GeV cm�3 is the critical density of the
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Universe. The observational requirement is �N=�DM 	 1
with equality being the nicest choice (all DM is made out
of N1) and inequality opting for multispecies DM.

Let us analyze Eq. (13) further. Without entropy release
(S ¼ 1), the Universe is overclosed, unless the neutrino is
very light, which corresponds to the hot dark matter case,
excluded by the structure formation in the Universe.
Models with the number of degrees of freedom at freeze-
out g�f of order 1000 seem rather unnatural and will not be
considered. The only opportunity is thus the entropy re-
lease after freeze-out of N1,

S ’ 100

�
10:75

g�f

��
M1

1 keV

�
: (14)

Having this entropy release afterN1 decoupling will lead to
the observed DM abundance today. In the following, we
will analyze possibilities of generation of this large amount
in the model.2

C. Mass bounds

The mass of the DM particle can not be too light, or the
observed structure in the Universe would have been erased
by a too hot DM. The simplest and most robust bound can
be obtained from the phase space density arguments. The
phase space density of a collisionless DM can only become
smaller during the evolution of the Universe, as an effect of
coarse-graining. Comparison of the primordial phase space
density, which is calculated using the initial DM particle
distribution function and the maximal modern one, derived
from the observation of the Dwarf spheroidal galaxies
[4,18] gives the lower bound

M1 > 1–2 keV: (15)

Another important bound is the Lyman-
 (Ly-
) bound
[19,20]. This bound constrains the velocity distribution of
the DM particles from the effect of their free streaming on
the formation of the structure on the scales, probed by the
Ly-
 forest. It should be noted that to convert this con-
straint into a bound for the mass of the DM particle, one
needs to take into account the initial velocity distribution of
the particles. In our case it takes the form of a usual thermal
distribution, but with the temperature lowered by the dilu-

tion factor S�1=3. This corresponds to the thermal relic case
in Ref. [19], and not to the case of the nonresonantly
produced sterile neutrinos, denoted mNRP in Ref. [19].
Thus, the result of Ref. [19] should be rescaled as

M1 >
T

T�

mNRP ’ 1:6 keV; (16)

where T is the present temperature of the DM neutrino

diluted with the entropy factor (14), T� is the temperature
of the usual relic neutrinos, mNRP ¼ 8 keV [19], and the
ratio of the temperatures ðT=T�Þ3 ¼ �DMh

2ð94 eV=M1Þ is
obtained from the requirement of the observed �DM.

E. Generation of entropy

The entropy (14) can be generated by some heavy long-
lived particle which goes out of the thermal equilibrium at
some moment after DM neutrino freeze-out tf , and it
decays after becoming nonrelativistic and dominating the
Universe expansion. The obvious candidates for such par-
ticles are the two remaining heavier neutrinos (though
other candidates are possible and can be analyzed in a
similar way). Let us assume for simplicity that only one
of these two neutrinos is responsible for entropy genera-
tion, and we denote it by N2. Then, according to
Refs. [12,21], the entropy release is

S ’
�
1þ 2:95

�
2�2 �g�
45

�
1=3 ðrM2Þ4=3

ðMPl�Þ2=3
�
3=4

; (17)

where M2 is the mass of N2, r ¼ nN2
=s is the initial

abundance of the N2 particles after decoupling (or, proba-
bly more precise, before they start to drive the matter
dominated intermediate stage of the Universe expansion),
and �g� is the properly averaged effective number of de-
grees of freedom during the N2 decay. The ratio r is
maximal when the particle decouples when it is still rela-
tivistic, and is equal to

r � nN2

s
¼ gN

2

135�ð3Þ
4�4g�

; (18)

where gN ¼ 2 is the number of degrees of freedom for N2,
and g� is taken at the N2 freeze-out.
If the entropy generation is large, we can neglect the 1 in

Eq. (17) and get

S ’ 0:76
gN
2

�g1=4� M2

g�
ffiffiffiffiffiffiffiffiffiffiffi
�MPl

p : (19)

By combining Eqs. (14) and (19), we obtain

� ’ 0:50� 10�6 g
2
N

4

g2�f
g2�

�g1=2�
M2

2

MPl

�
1 keV

M1

�
2
: (20)

Note that for our case, the freeze-out temperatures of the
DM sterile neutrino and of the entropy generating one
coincide, so g� ¼ g�f . If Eq. (20) is satisfied, then we
have proper DM abundance in the present Universe.
However, Eq. (20) is not the only requirement for the

lifetime of the heavier sterile neutrino for the realistic
model. Entropy generation should finish before the big
bang nucleosynthesis (BBN), i.e. N2 should decay before
it. According to Refs. [22–24], the temperature after the
decay of the sterile neutrino N2 should be greater than
0:7� 4 MeV in order not to spoil BBN predictions. This
temperature is approximately equal to (see Ref. [21])

2The exact value of the required entropy release S may be
slightly different if, for example, some amount of DM sterile
neutrino was generated nonthermally after the freeze-out. In the
examples analyzed in the paper, this effect is negligible.
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Tr ’ 1

2

�
2�2 �g�
45

��1=4 ffiffiffiffiffiffiffiffiffiffiffi
�MPl

p
; (21)

leading to the bound on the N2 lifetime which should be
shorter than approximately 0:1� 2s. The neutrino with
such a lifetime can produce enough entropy, satisfying
Eq. (20) only if it is sufficiently heavy,

M2 >

�
M1

1 keV

�
ð1:7� 10Þ GeV: (22)

Finally, as far as we were assuming that the sterile neutrino
N2 decoupled while still relativistic (otherwise the entropy
generation is much less efficient), we should require Tf >
M2. This, using Eq. (10), is translated into a bound for the
scale of the right-handed bosons,

M>
1

g1=8�f

�
M2

GeV

�
3=4ð10� 16Þ TeV: (23)

Thus, on the one hand the sufficient entropy generation
requires a long-lived neutrino, but on the other hand, the
requirement of the successful BBN limits its lifetime from
above, leading to the lower bounds on its mass and on the
mass scale of the additional gauge interactions.

F. X-ray observations

A sterile neutrino in the considered class of the models is
unstable, so it provides a decaying DM. Through its mix-
ing, it decays via the neutral current into three active
neutrinos. To lead to a successful DM scenario, the lifetime
of the unstable neutrino N1 should be greater than the age
of the Universe �u � 1017 sec , which constrains its total
decay width. However, one obtains significantly stronger
restrictions resulting from a subdominant decay channel—
the radiative decay N1 ! ��, induced at the one loop level
(Fig. 2). This process produces a narrow line in the x-ray
spectrum of astrophysical objects [3,25]. In the context of
�MSM, the only source of this decay is via the active-
sterile neutrino mixing �21, and the recent x-ray observa-
tions bound it from above. A very rough bound, which will
be enough for our purposes, is given in Ref. [13]3

�21 & 1:8� 10�5

�
1 keV

M1

�
5
: (24)

This bound corresponds to the following upper bound on
the radiative decay width

�N1!�� & 9:9� 10�27 sec�1: (25)

We also note that there are bounds resulting from super-
nova cooling. They are also much weaker than the diffuse

x-ray background limits (24) for all possible neutrino
masses M1 [3].
In the LR symmetric model, the x-ray bound (25) leads

not only to the bound on the mixing angle (24), but also
bounds the properties of the bosonic sector of the theory.
The reason is the possible mixing of the right WR gauge
bosons with the SM WL ones. Without mixing, the con-
tribution of the WR bosons to the process N ! �� is
additionally suppressed by the ratio of the left and right
gauge boson masses ðMW=MÞ4, and can be safely ne-
glected. With the mixing, however, the chiral structure of
the diagram changes, and the contribution can be enhanced
by the factor ðml=M1Þ2, where ml is the mass of the
charged lepton running in the loop.
We calculate the total decay width for N1 ! ��,

summed over the active neutrino flavors, following
Refs. [33,34] (for details, see Appendix B). Supposing
from the very beginning that the right-handed scale is
much larger than the left one, M 
 MW , neglecting the
active neutrino masses and assuming small gauge boson
mixing, we get

�N1!�� ’ G2
F
M

3
1

64�4

X
a¼e;�;�

��������4mlaðVRÞa1 � � � 3

2
�a1M1

��������
2

:

(26)

Here,
 is the fine-structure constant, andmla is the mass of

the charged lepton propagating in the loop. The second
term in the amplitude is proportional to the mass of the
sterile neutrino M1, while the first term to the mass of the
charged intermediate lepton mla . This can be understood

from the following consideration. Because the photon has
spin one, there must be a chirality flip on the fermionic line.
If, in flavor basis, there is a WR-WL mixing, we have the
chirality flip (mass insertion) on the internal line of the
charged fermion, which produces a term proportional to
mla . Otherwise, the chirality flip happens on one of the

outer lines of the diagram, with a term proportional to the
Majorana mass of the incoming sterile neutrino.
If the gauge boson mixing is absent, � ¼ 0, only the

second term contributes and we obtain the usual result

�N1!��j�¼0 ’ 9G2
F
M

5
1

256�4
� �21: (27)

FIG. 2. Unitary-gauge diagrams contributing to the radiative
neutrino decay with charged leptons propagating in the loop.

3We must note that careful analysis gives a stronger (in some
regions of masses by an order of magnitude) bound. See the
detailed discussion in Sec. 5.1.2 of [13,26–32]. For our purposes,
this approximate (weak) bound is sufficient.
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If the mixing � is present, then, barring the unlikely
cancellation between the two terms in Eq. (26), we can
constrain � using the x-ray bound (25)

�2 & 9� 10�19
m2

l�P
a¼e;�;�

jmlaðVRÞa1j2
�
keV

M1

�
3
: (28)

Thus, the mixing angle of the W bosons must be vanish-
ingly small.

We would like to note that in a LR symmetric model
with the Higgs sector as described in Sec. IV, the WL-WR

mixing angle � is given by (see Ref. [11], and references
therein)

tanð2�Þ ’ � 2�1�2

v2
R

; (29)

where �1 and �2 are bidoublet vacuum expectation values
(VEVs) and vR is the VEV of the right Higgs triplet.
Therefore Eq. (28) restricts the ratio �1�2=v

2
R.

G. Summary of constraints

Let us summarize this section. A theory where the DM
sterile neutrino was in thermal equilibrium at some mo-
ment during the evolution of the Universe should satisfy
the following set of constraints:

(i) From X=�-ray observations, we have the model
independent upper limit on the radiative decay width
of the DM neutrino N1 [see Eq. (25)]:

�N!�� & 9:9� 10�27 sec�1: (30)

Note that this is a conservative value; c.f. footnote 3.
This limit translates to the limit on the sterile-active
neutrino mixing angle Eq. (24) and to the bound on
the mixing between the left and right gauge bosons
Eq. (28).

(ii) From the structure formation requirements (Ly-

bound), the mass of the sterile neutrino is con-
strained in the same way as the mass of a thermal
relic, i.e.

M1 * 1:6 keV: (31)

(iii) The right abundance of the sterile neutrino can be
then achieved by an out-of-equilibrium decay of a
long-lived heavy particle. We will use another ster-
ile neutrino of the model, N2, for this purpose, but
most considerations here can be also applied to
another long-lived particle present in the theory.
To provide proper the entropy dilution, Eq. (14),N2

should decouple while relativistic and has decay
width

� ’ 0:50� 10�6 g
2
N

4

g2�f
g2�

�g1=2�
M2

2

MPl

�
1 keV

M1

�
2
: (32)

(iv) At the same time, the heavy neutrino N2 should
decay before BBN, which bounds its lifetime to be
shorter than approximately 0:1� 2 s. Then, the
proper entropy can be generated only if its mass
is larger than

M2 >

�
M1

1 keV

�
ð1:7� 10Þ GeV: (33)

(v) The entropy is effectively generated by out-of-
equilibrium decay (see Sec. II E), if the particle
decoupled while still relativistic. If this particle is
one of the sterile neutrinos, then its decoupling
happens at temperature (10), and it leads to the
bound on the right-handed gauge boson mass

M>
1

g1=8�f

�
M2

1 GeV

�
3=4ð10� 16Þ TeV: (34)

Note that this is the only requirement which changes
in the case of entropy generated by some other
particle instead of the heavy sterile neutrino.

III. MODELS WITH LOW SCALE TYPE I SEE-SAW

Let us start from the analysis of the models where the
active neutrino masses are generated by a ‘‘type I’’ seesaw
formula. This means that ML ¼ 0 in the neutrino mass
matrix (2). The mixing angles (7) are bounded from above
by the requirements on the decay width of the sterile
neutrinos—by the x-ray observations for the DM neutrino
angle �1 [see Eq. (24)], and by the long enough lifetime of
the entropy generating neutrino angle �2 (additional gen-
eration of the entropy by the third neutrino does not change
conclusions). A convenient way to parametrize the Dirac
mass matrix mD, separating parameters in the active and
sterile neutrino sectors, is provided by the Casas and Ibarra
parametrization [35] reviewed in Appendix C. Using
Eq. (C9) for the Dirac masses,4 we get

�2I ¼
½ ffiffiffiffiffiffiffiffi

MR

p
RTm

diag
� R?

ffiffiffiffiffiffiffiffi
MR

p �II
M2

I

; (35)

with

m
diag
� ¼ diagðm1; m2; m3Þ: (36)

Here, R is a complex orthogonal matrix, describing the
details of the mixing between the sterile and active sectors,
and it can be parametrized by three complex angles !12,
!13, and !23 as in Eq. (C8). Let us check whether we can

4As far as we are using in this section the basis with diagonal
MR, the right-handed mixing matrix is trivial, VR ¼ I.
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satisfy the bounds on the mixing angles if the active masses
mi are consistent with the observed neutrino oscillation
mass differences, summarized below. The current best-fit
and 3� ranges are (see Ref. [36])

�m2
sol ¼ ð7:65þ0:69

�0:6 Þ � 10�5 eV2; (37a)

�m2
atm ¼ ð2:4þ0:35

�0:33Þ � 10�3 eV2: (37b)

In the following discussion, we will for convenience
order the active neutrino masses as m1 <m2 <m3. From
Eq. (35), we get for the first two sterile neutrinos

M1�
2
1 ¼ m3j sin!13j2 þm2j cos!13j2j sin!12j2

þm1j cos!13j2j cos!12j2; (38a)

M2�
2
2 ¼ m3j cos!13j2j sin!23j2 þm2j cos!23 cos!12

� sin!23 sin!13 sin!12j2 þm1j cos!23 sin!12

þ sin!23 sin!13 cos!12j2: (38b)

Note that as far as we ordered the active neutrino masses, if
we changem1 to zero, and replacem3 bym2, the right-hand
sides of Eqs. in (38) can only become smaller. We can also
confine ourselves to the real values of the mixing angles, as
far as the sine and cosine absolute values only become
larger for complex angles, and the inequality jz� wj �
jjzj � jwjj is used to transform the square of the difference
of the angles in Eq. (38b). Thus, the following inequalities
should be satisfied:

M1�
2
1 � m2fsin2!13 þ cos2!13sin

2!12g; (39a)

M2�
2
2 � m2fcos2!13sin

2!23 þ ðj cos!23jj cos!12j
� j sin!23jj sin!13jj sin!12jÞ2g: (39b)

The minimum of the sum of the right-hand sides ism2, and
therefore the following very simple inequality always
holds:

M1�
2
1 þM2�

2
2 � m2 � �msol: (40)

The second inequality is trivially fulfilled, since in all
possible mass hierarchies the mass of the second (in
mass) active neutrino is larger than �msol. The meaning
of the inequality (40) is very simple—one cannot generate
active neutrino masses with type I seesaw formula without
sufficient mixings between the active and sterile neutrino
sectors. Note in passing that the cancellation is possible in
another direction—one can have very small active neutrino
masses and large active-sterile mixings.

Now, we are ready to compare the requirement from the
observed active neutrino masses, Eq. (40), and the DM
bounds on the mixings. The angle �2 can be bound from
the width required to generate sufficient entropy, Eq. (20).
Estimating the width of the heavy neutrino as (see
Appendix A)

�N2
� G2

FM
5
2

192�3
� �22; (41)

we have

M2�
2
2 & 1:8� 10�3 �g1=2�

�
GeV

M2

�
2
�
keV

M1

�
2
: (42)

It can be clearly seen that for all possible masses M1 and
M2, this is much smaller than �msol.
The contribution of the DM sterile neutrino itself can be

larger. From Eq. (24), we have

M1�
2
1 & 1:8� 10�2

�
1 keV

M1

�
4
: (43)

Together with the Ly-
 bound on the WDM mass,
Eq. (16), this contribution again violates Eq. (40). Thus,
we conclude that the small mixing angles, required by the
proper DM abundance and good DM properties in the
model, prevent generation of the observed active neutrino
masses by the type I seesaw formula.5

IV. TYPE II SEESAW—WORKING EXAMPLE

In the previous section, we have seen that if one of the
not DM-like sterile neutrinos is responsible for entropy
production, it is impossible to get the observed active
neutrino masses with the type I like seesaw. Here, we
will present a working example of the sterile neutrino
DM in the framework of a LR symmetric model, where
the active neutrino masses are generated by the contribu-
tion of the type II seesaw.
We will continue to work in the framework of the

SUð3Þ � SUð2ÞL � SUð2ÞR �Uð1ÞB�L model, sketched
in Sec. II A. Here, we will concentrate on a properly LR
symmetric model, where the left- and right-handed leptons
are treated symmetrically. One has the usual SM doublets
c i

L; i ¼ 1, 2, 3, and in addition 3 right-handed neutrinos
which form together with the 3 charged right-handed lep-
tons the SUð2ÞR doublets c i

R. The Higgs sector consists of
one SUð2ÞL triplet, one SUð2ÞR triplet, and one bidoublet.
In such a model, the mass matrix for the neutrinos has the
pattern

M ¼ fLvL yv
yTv fRvR

� �
¼ ML mD

mT
D MR

� �
; (44)

where the Majorana blocks on the diagonal come from the

coupling of c i
L
TCc j

L and c i
R
TCc j

R with the triplets �L;R,

respectively, and the Dirac-type ones from the coupling of
�c i
Lc

j
R with the bidoublet � and its complex conjugate

~� ¼ �2�
?�2. The VEVs of the neutral components in�L;R

are called vL;R; whereas, the SM scale v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ �2

2

q
¼

174 GeV is a combination of the bidoublet VEVs �1 and
�2. These VEVs are related by the expression

5Note, however, that without the Ly-
 bound it would have
been possible for very light WDM, with M1 < 1:2 keV.
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x � vLvR

v2
; (45)

where x is a function of the parameters in the Higgs
potential, which is naturally of order one (for more details,
see e.g. Ref. [11]).

In the following, we postulate exact discrete LR sym-
metry. In general, it can be realized in two different ways:
as a C conjugation or as a parity symmetry. In the former
case, it is required that fL ¼ fR, y ¼ yT , and this is what
we use.

With such a model, it is now possible to satisfy all the
requirements from Sec. II. Let us consider the type II see-
saw formula following from block diagonalization of
Eq. (44) and the assumptionOðMRÞ 
 OðmDÞ 
 OðMLÞ:

m� ¼ vLfL � v2

vR

yf�1
R yT: (46)

After applying the conditions of discrete left-right symme-
try, y ¼ yT and f � fL ¼ fR, one arrives at

m� ¼ vLf� v2

vR

yf�1y: (47)

To simplify the calculations, we further assume for illus-
tration that the Dirac-Yukawa y is proportional to the triplet
Yukawa f, i.e. y ¼ pf, where p is a number. Equation (47)
then goes into

m� ¼
�
vL � v2p2

vR

�
f: (48)

In this case, all Yukawas are diagonalized by the same
transformation—the transformation which brings m� into
diagonal form, i.e. the PMNS matrix. The ratios of the
eigenvalues of the matrices on both sides of the equality are
then the same

m1

m2
¼ f1

f2
¼ M1

M2

: (49)

Thus, the mass spectrum of the sterile neutrinos [or, spe-
cifically, the BBN requirement (22)] leads to the same
hierarchical active neutrino spectrum

m1

m2
& 5:9� 10�7: (50)

This implies that the lightest active neutrino should be very
light, and we can have either normal or inverse hierarchy.
For definiteness, we will use the normal hierarchy for our
example, though the inverse one works equally well (one
should only take into account that in the latter case the
M2 ’ M3, �2 ’ �3 and both N1 and N2 generate the same
amount of entropy). As far as the active neutrino mass
hierarchy is fixed, we have m2 ’ �msol and m3 ’ �matm.
We can then get the mass for the third sterile neutrino from

M3 ¼ m3

m2

M2: (51)

The active-sterile mixing angles in the case of proportional
Yukawa constants are all the same and equal to

�21 ¼ �22 ¼ �23 ¼
v2p2

v2
R

; (52)

while the mixing angles for individual flavors are propor-
tional to the PMNS matrix

�aI ¼ ðU?ÞaI vpvR

: (53)

Thus the decay width �2 is proportional to �22 (see
Appendix A). The value of �22 is then defined from the
requirement of the sufficient entropy production, Eq. (20),
and depends only on M1 and M2.
At this moment the only free parameter left is the VEV

ratio x, and everything can be expressed via x,M1,M2, and
m2 ’ �msol, m3 ’ �matm. From Eqs. (48) and (45), we get

vR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x

m2

M2
þ �22

vuut : (54)

The VEVof the left-handed triplet �L is then given by

vL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x

�
m2

M2

þ �22

�s
: (55)

Together with Eq. (54), Eq. (52) determines the propor-
tionality constant p:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�22v

2
R=v

2
q

: (56)

The full mass matrix (44) is then given by

M ¼ U? 0
0 U?

� �
M

diag
L m

diag
D

mdiag
D Mdiag

R

 !
Uy 0
0 Uy

� �
; (57)

where

mdiag
D ¼ p

v

vL

Mdiag
L ¼ p

v

vR

Mdiag
R ; (58a)

M
diag
L ¼ vL

vR

M
diag
R ; (58b)

and

M
diag
R ¼ diagðM1;M2;M3Þ: (59)

Let us fix now the input values. It was mentioned before
that x�Oð1Þ is natural in the LR symmetric model, there-
fore we simply choose x ¼ 1. For the masses of the DM
and the entropy producing sterile neutrinos, we take the
smallest possible ones (see Sec. II):

M1 ¼ 1:6 keV; (60a)

M2 ¼ 2:7 GeV: (60b)

With this input, we obtain
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m1 ¼ 5:2� 10�9 eV;

m2 ’
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

q
¼ 8:7� 10�3 eV;

m3 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

q
¼ 4:9� 10�2 eV;

M3 ¼ 15:1 GeV;

�21 ¼ �22 ¼ �23 ¼ 2:3� 10�15;

vR ¼ 9:67� 104 TeV;

vL ¼ 313 keV;

p ¼ 0:027:

(61)

We also plot the values of �21 and vR for several M1 and
M2 * 2:4 GeV in the Figs. 3 and 4. Because of the small-
ness of �22 compared tom2=M2 and its suppression withM

2
1

or M3
2 ([see Eq. (42)], vR given by Eq. (54) is effectively

independent of �22. Therefore, the curve of vR has only a
very weak M1 dependence. However, for bigger M1 one
has to account for the BBN bound (22) on M2.

One can check that none of the bounds, summarized in
Sec. II G is violated. Also the mixing angle �21 correspond-
ing to our DM neutrino is much lower than its upper bound,
Eq. (24). However, we should also choose the Higgs po-
tential to have very small mixing between the left and right
gauge bosons [see Eqs. (28) and (29)].

The right-handed scale vR is large, and the additional
gauge and Higgs bosons are not observable (they all have
masses / vR). The famous 	 parameter

	 � M2
W

M2
Zcos

2�W
¼ 1; (62)

which is equal to 1 at tree level in SM also gets a negligible
correction which is equal to

	 ¼ v2 þ 2jvLj2
v2 þ 4jvLj2

(63)

in the LR symmetric model [37]. For the small vL of the
order of MeV, the deviations are well below the current
experimentally allowed deviation of the order Oð10�4Þ
[38].

V. CONCLUSIONS

In this paper, we analyzed the possibility to have a keV
scale sterile neutrino warm dark matter in gauge extensions
of the standard model. We found that it is possible to
circumvent the naı̈ve expectation of significant overpro-
duction of dark matter in case of a light particle (sterile
neutrino) decoupling from the thermal equilibrium while
still relativistic. The possible ways out include a low
reheating temperature (so that the thermal equilibrium is
never reached by the would be DM sterile neutrino), (very)
large number of degrees of freedom in the early universe at
the DM neutrino freeze-out, or subsequent dilution of its
density by the out-of-equilibrium decay of a massive par-
ticle (another sterile neutrino). We further analyze this last
possibility as being the most natural6 and formulate a set of
requirements for this scenario. In short, these requirements
bound the mass of the DM sterile neutrino from below
from structure formation considerations, limit its mixing
angle with active neutrinos and constrain mixing between
the SM (left) and additional (right) gauge bosons from the
radiative decay of the DM sterile neutrino, fix the lifetime
of the heavier sterile neutrino from the requirement of
the dilution of the DM abundance down to the observed
value, and finally constrain the mass of these heavier
sterile neutrinos from the big bang nucleosynthesis
considerations.

0 20 40 60 80
10−27

10−24

10−21

10−18

10−15

M2, GeV

12 ,
22 ,

32

FIG. 3 (color online). �22 as a function of M2. M1 ¼ 1:6 keV
(continuous); M1 ¼ 5 keV (dotted); M1 ¼ 20 keV (dashed) and
M1 ¼ 40 keV (dashed-dotted). It is accounted for the lower
bound, Eq. (22). The long-dashed (red) line shows the ratio
ðMW=MÞ4 and illustrates that processes mediated by WR bosons
can be neglected in the decay rate of N2.
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FIG. 4 (color online). vR as a function of M2. The dependence
on M1 is very weak.

6Another natural possibility is achieved in the �MSM model
[6,7], where the sterile neutrinos are the only extension of the
SM, and then the keV sterile neutrino does not enter thermal
equilibrium up to Planck scale temperatures.
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We demonstrated in this scenario that the type I low
scale seesaw mechanism of generating masses for the
active neutrino can not lead to sufficient dilution of the
DM abundance. At the same time, we provide a working
example, where the active neutrinos are generated by a
type II style seesaw in the context of an exactly LR
symmetric theory. The provided general constraints and
observations can serve as a basis for the search of a grand
unified theory with WDM sterile neutrinos.
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APPENDIX A: DECAY WIDTHS OF A STERILE
NEUTRINO

In the mass range 2:7 GeV 	 M2 <MW , a sterile neu-
trino N2 dominantly decays into leptons and spectator
quarks. The corresponding partial widths can be calculated
in the �MSM, because additional boson interactions,
which usually appear in more complicated models, are of
high scale—of order OðMÞ—compared to that of the elec-

troweak scale. To make use of the �MSM results, we have
to compare, to be on the safe side, the suppression factors
in the �MSM�Oðj�ij2Þwith that of additional interactions
�OðMW=MÞ4 which appear in the models we are inter-
ested in. Furthermore, the mixing of the new bosons should
be small compared to Oðj�ijÞ; otherwise, there could be
significant contributions from processes where new bosons
mix with the SM ones (see, for example, Appendix B).
These effects are neglected in the following calculations.
One can see that for most practical purposes it is the case,
as far as the bound on the gauge boson mixings (28) is
much stronger then those for the active-sterile neutrino
mixings.
Moreover, these additional contributions do not affect

the conclusions in the main part of the article. Really, in
Sec. III additional interactions can only result in a stronger
bound, and therefore the conclusion remains the same. In
the type II seesaw model discussed in Sec. IV, we need the
exact value of the width. However, if we assume no mixing
of theW bosons (� ¼ 0), the contributions of theWR boson
mediated processes are in the considered mass range neg-
ligible small (cf. Figure 3).
In the following, we give all relevant formulas for the

decay rates (at tree level) of a sterile neutrino N2 with a
mass M2 above the BBN bound 2.7 GeV [cf. (22)] and
below the SM W-boson mass MW ’ 80 GeV [39]:

�1

�
N2 !

X

;


�
 ��
�


�
¼ G2

FM
5
2

192�3
�X




j�2
j2; (A1a)

�2ðN2 ! l�
�
l
þ

�
Þ ¼ G2

FM
5
2

192�3
� j�2
j2ð1� 8x2l þ 8x6l � x8l � 12x4l logx

2
l Þ; xl ¼

max½Ml
;Ml
�
M2

; (A1b)

�3ðN2 ! �
l
þ

 l

�

 Þ ¼

G2
FM

5
2

192�3
� j�2
j2 � ½ðC1 � ð1� �

Þ þ C3 � �

Þðð1� 14x2l � 2x4l � 12x6l Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2l

q

þ 12x4l ðx4l � 1ÞLÞ þ 4ðC2 � ð1� �

Þ þ C4 � �

Þðx2l ð2þ 10x2l � 12x4l Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2l

q
þ 6x4l ð1� 2x2l þ 2x4l ÞLÞ�; (A1c)

with

L ¼ log

�1� 3x2l � ð1� x2l Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2l

q
x2l ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x2l

q
Þ

�
; xl � Ml

M2

;

and

C1 ¼ 1
4ð1� 4sin2�w þ 8sin4�wÞ;

C2 ¼ 1
2sin

2�wð2sin2�w � 1Þ;
C3 ¼ 1

4ð1þ 4sin2�w þ 8sin4�wÞ;
C4 ¼ 1

2sin
2�wð2sin2�w þ 1Þ:

The formulas for the decay modes into quarks are pre-
sented below. In the range 2:7 GeV 	 M2 <MW , it is

sufficient to use the free quark approximation for the decay
products. We give these formulas in the approximation
where M2 is much heavier than the decay product masses
(unlike above [Eqs. (A1)] for the lepton decays). The
corrections are important at the threshold, when new decay
channels open. However, at high massM2, this introduces a
rather small relative error, because the number of open
channels into light particles is significant and provides the
main part of the decay width. The exact analysis would
smooth the discontinuities of the decay width at the mass
thresholds (Fig. 5):

�4ðN2 ! l�
U �DÞ ¼ G2
FM

5
2

192�3
� 3 � jVUDj2 � j�2
j2; (A2a)

�5ðN2 ! �
q �qÞ ¼ G2
FM

5
2

192�3
� 3 ��q � j�2
j2; (A2b)
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with

� q ¼ ðg�LÞ2 � ððgqLÞ2 þ ðgqRÞ2Þ:
The factor 3 is the color factor and VUD are the Cabibbo-
Kobayashi-Maskawa–matrix elements. The coupling con-
stants gL and gR correspond to the coupling of the Z boson
to left- or right-handed particles, respectively. For a fer-

mion f with weak isospin component If3 and charge qf, one

has

gfL ¼ If3 � qfsin
2�W; (A3a)

gfR ¼ �qfsin
2�W: (A3b)

Table I gives the required values of the charges. In the mass
range of M2 mentioned above, the Majorana neutrino total
decay rate �N2

is a sum of all rates presented above multi-

plied by a factor of 2, which accounts for charge-
conjugated decay modes.

WhenM2 exceeds the SM Z-boson massMZ ¼ 91 GeV
and if contributions of new interactions are negligible, the
sterile neutrino predominantly decays into a SM gauge
boson and a lepton. Then its total decay width is given by

�N2
¼ 2

GFM
3
2

8
ffiffiffi
2

p
�

��
1þ 2M2

W

M2
2

��
1�M2

W

M2
2

�
2

þ 1

2

�
1þ 2M2

Z

M2
2

��
1�M2

Z

M2
2

�
2
�
�X




j�2
j2: (A4)

In between, where MW 	 M2 <MZ, one can approximate
the width by the first term in Eq. (A4).
Below M2 � 2 GeV, it is important to consider mesons

instead of quarks as final states for the sterile neutrino
decay. Therefore, instead of the three-body decay modes
into spectator quarks (A2), one has to use the correspond-
ing two-body ones into mesons; see [39] for the decay
width formulas. In our case, this mass range of M2 is
forbidden by the BBN bound (22) and therefore we do
not list them here. Nevertheless, to get a feeling of the
behavior of the total width �N2

, we show in Fig. 5 the ratio

�N2
=2�1 calculated in the specific model described in

Sec. IV, using both the free quark and chiral meson ap-
proximations. It is clearly seen that the transition between
two approximations happens around 1 GeV. Because of
Eq. (53), the total decay width is proportional to �22 and
therefore the plotted ratio is independent of this quantity. In
more general models, Eq. (53) will no longer be valid.
However, as one recognizes by considering the formulas
together with the definition of �2 [cf. Equation (7)], there
will be no significant difference, especially for heavy
masses M2, so that Fig. 5 can be used as a good estimate
in such models. Note that in the region M2 �Oð1Þ GeV
(dotted in Fig. 5), decays into spectator quarks more and
more replace decays into mesons and therefore one has to
carefully reanalyze the given formulas, if one is interested
in this mass range.

APPENDIX B: RADIATIVE DECAY WIDTH

Here, we give some details of calculation of the width
for the radiative decay N1 ! ��i shown in Fig. 2. We will
follow Ref. [33], where general formulas for this type of
process are given. In our case, N1 denotes a heavy sterile
neutrino with mass M1, �i one of the active neutrinos with
mass mi, and � a photon. The neutrinos are considered as
Majorana particles.
The amplitude for such a decay is e�?�ðqÞM�, where e

is the electric charge of the positron and �?�ðqÞ the polar-

ization vector of the outgoing photon. The Ward identity
for the electromagnetic current implies that q�M� must

be zero; therefore M� must have the form

M � ¼ �ui½i���q�ð�LLþ �RRÞ�u1; (B1)

where ��� ¼ ði=2Þ½��; ���, L ¼ ð1� �5Þ=2, and R ¼
ð1þ �5Þ=2 are the projectors of chirality. �L and �R are
numerical coefficients with dimension of inverse mass.
The partial decay width for N1 ! �i� is then given by

�N1!��i
¼ ðM2

1 �m2
i Þ3

16�M3
1

ðj�Lj2 þ j�Rj2Þ: (B2)

By comparing the Lagrange term for the charged current
(1) combined with Eq. (8) and the transformation rule
which diagonalizes the neutrino mass matrix in Eq. (2)

10−4 0.001 0.01 0.1 1 10
0

5

10

15

M2, GeV

N
2
/(

2
1Γ
)

Γ

FIG. 5 (color online). The ratio �N2
=2�1 calculated in the

specific LR model of Sec. IV. We used Eq. (A1) together with
the formulas for the two-body decays into mesons [39] for the
left (red) curve and Eq. (A1) together with Eq. (A2) for the right
(blue) curve. The dotted curves correspond to the region, where
both approximations are not entirely reliable.

TABLE I. Coupling constants.

fermions gqL gqR

�e, ��, �� g�L ¼ 1
2 g�R ¼ 0

U ¼ u, c, t gUL ¼ 1
2 � 2

3 s
2
W gUR ¼ � 2

3 s
2
W

D ¼ d, s, b gDL ¼ � 1
2 þ 1

3 s
2
W gDR ¼ 1

3 s
2
W

keV STERILE NEUTRINO DARK MATTER IN GAUGE . . . PHYSICAL REVIEW D 81, 085032 (2010)

085032-11



~�aL
~Nc
aR

� �
¼ A B

C D

� �
�iL

Nc
IR

� �
; (B3)

with that given in Chapter 5 of [33], we can easily calculate
the coefficients �L and �R. Supposing from the very
beginning, that the right-handed scale is much larger than
the left one, M 
 MW ’ 80:4 GeV, and neglecting the
active neutrino masses, we get7

i�R ¼ g2e

32M2
W�

2
� X

a¼e;�;�

fcos� sin�A?
aiD

?
a1mlaF ðraÞ

þ cos2�A?
aiBa1M1FðraÞg; (B4a)

i�L ¼ g2e

32M2
W�

2
� X

a¼e;�;�

fcos� sin�CaiBa1mlaF ðraÞg;

(B4b)

where FðraÞ and F ðraÞ are functions of ra � m2
la
=M2

W . In

our case, we have in good approximation FðraÞ ’ �3=2
and F ðraÞ ’ 4. The exact expressions for these functions
were calculated by us and do agree with that given in
Ref. [40].

Because of the Majorana nature of our ingoing and
outgoing neutrinos, we also have to add the contribution
of the complex conjugated process to our amplitude. This
is easily obtained out of Eq. (B4) by putting in the sub-
stitutions

A; B ! A?; B? and C;D ! C?;D?;

�5 ! ��5 ) L; R ! R; L;
(B5)

and an overall negative sign coming from the photon
vertex. After adding the derived �L and �R, it is easy to
see that j�Lj2 ¼ j�Rj2, where

j�Lj2 ¼
�

g2e

32M2
W�

2

�
2

�
��������4 cos� sin�

X
a¼e;�;�

ðAaiDa1 � CaiBa1Þmla

� 3

2
cos2�

� X
a¼e;�;�

AaiB
?
a1

�
M1

��������
2

: (B6)

By putting this into Eq. (B2), we obtain

�N1!��i
’ G2

F
M
3
1

64�4

�
��������4 cos� sin�

X
a¼e;�;�

ðAaiDa1 � CaiBa1Þmla

� 3

2
cos2�

� X
a¼e;�;�

AaiB
?
a1

�
M1

��������
2

: (B7)

Here, GF is the Fermi constant, 
 is the fine-structure
constant, and mla is the mass of the charged lepton prop-

agating in the loop.
The total width of the radiative decay is given by

�N1!�� ¼ X3
i¼1

�N1!��i
: (B8)

In a model where a seesawmechanism of type I or type II is
responsible for the small active neutrino masses, the trans-
formation (B3) is given by Eq. (3). Putting this into our
formulas, we get out of Eq. (B7) the expression (26).

APPENDIX C: CASAS-IBARRA
PARAMETRIZATION

In this part of the Appendix, we describe the approach of
parametrizing the Dirac-Yukawa matrix, which was pro-
posed by Casas and Ibarra [35]. Here, we want to give a
short review of the generalised version which also applies
to the type II seesaw mechanism [41].
Let us consider a Majorana mass matrix with the pattern

ML mD

mT
D MR

� �
¼ fLvL yv

yTv fRvR

� �
: (C1)

The type II seesaw formula can be written in the form

m� �ML ¼ �mDM
�1
R mT

D; (C2)

where m� is the active neutrino mass matrix. Let us define
the symmetric and in general complex 3� 3 matrix

X� � m� �ML: (C3)

This matrix and MR can be diagonalized by unitary trans-
formations:

X� ¼ V?
�X

diag
� Vy

� ¼ ½V?
� ðXdiag

� Þ1=2�½V?
� ðXdiag

� Þ1=2�T; (C4a)

MR ¼ V?
RM

diag
R Vy

R: (C4b)

Multiplying Eq. (C2) by ½V?
� ðXdiag

� Þ1=2��1 from the left and

by f½V?
� ðXdiag

� Þ1=2�Tg�1 from the right and using Eq. (C4),
we find

I ¼ RRT; (C5)

with

R ¼ 
iðXdiag
� Þ�1=2VT

�mDVRðMdiag
R Þ�1=2: (C6)

Equations (C5) and (C6) mean that the type II seesaw
relation requires R to be a complex orthogonal matrix,

7Note, that our results do not coincide with the formulas in
[40]. This is because of a mistake in the second term of the third
line of Eq. (10) in [40]. The correct labeling of the transforma-
tion matrices should be PaBQaA instead of PaAQaB. In our
notations, where a sterile neutrino (with mass eigenstate index
1) decays through the radiative process into an active neutrino
(with mass eigenstate index i), the expression PaBQaA translates
into Ba1Cai which is contained in Eq. (B4b).
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but otherwise does not constrain it. In this way we obtain
for the Dirac-type Yukawa coupling in the basis whereMR

is diagonal

mD ¼ vy ¼ 
iV?
�

ffiffiffiffiffiffiffiffiffiffi
X
diag
�

q
R

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
R

q
Vy
R; (C7)

where R is an arbitrary complex orthogonal matrix. It can
be parametrized as

R ¼ 
R12R13R23; (C8)

where Rij is the matrix of rotation by a complex angle !ij

in the ij plane. This is the so-called Casas-Ibarra parame-
trization of the Dirac-Yukawa [35]. Note that this parame-
trization has its origin in the difference of the number of

high energy and low energy parameters. There are less low
energy parameters, because the high energy ones are inte-
grated out. The latter cannot influence the low energy
theory, and therefore can be parametrized arbitrarily.
The formula for the type I seesaw can easily derived out

of (C7). Because ofML ¼ 0, X� corresponds in this case to
the active neutrino mass matrix m�. Thus the basis trans-
formation matrix V� in Eq. (C4a) is the PMNS matrix U,
and we arrive at

mD ¼ vy ¼ 
iU?

ffiffiffiffiffiffiffiffiffiffiffi
m

diag
�

q
R

ffiffiffiffiffiffiffiffiffiffiffi
M

diag
R

q
Vy
R: (C9)

In chapter III, we make use of this parametrization.
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