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We present supersymmetric Lorentz Chern-Simons terms coupled to anti–de Sitter supergravity in three

dimensions with an arbitrary number (@0) of supersymmetries. As an application to higher dimensions, we

present analogous supersymmetric Lorentz Chern-Simons terms coupled to N ¼ 1 supergravity in 11

dimensions.
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I. INTRODUCTION

There have been many developments recently in three-
dimensional (3D) topological massive gravity with cosmo-
logical constant [1]. They include the black hole exact
solution [2], and the inclusion of a Chern-Simons (CS)
term [3], in order to overcome the old obstruction without
the CS term [4]. Furthermore, interesting features such as
Witten-Nester energy [5] in topological massive N ¼ 1
supergravity have also been presented [6].

These developments indicate that there are many non-
trivial aspects related to massive supergravity in three
dimensions, both with simple (N ¼ 1) and extended (N �
2) local supersymmetries, yet to be discovered in future
studies. Motivated by this viewpoint, we study in this paper
a supersymmetric Lorentz connection CS Lagrangian
coupled to 8N (@0) extended massive supergravity in three
dimensions. Despite the arbitrary number of supersymme-
tries, we can show the action invariance, as well as the
closure of supersymmetry.

As a natural application of this result, we also consider
11D supergravity withN ¼ 1 supersymmetry [7], to which
an 11D analog of the supersymmetric Lorentz CS term is
coupled. In this case also, despite the tight system of the
maximal N ¼ 1 supergravity in 11 dimensions, we can
show the invariance of the action of the new system, in
addition to the closure of supersymmetry.

In the context of M-theory [8], there have been formu-
lations of 11D supergravity in terms of M-algebra spanned
by the OSpð32j1Þ generators ðPm; Jmn;Q�; Zm;n; Zm1���m5

Þ
[9]. Our approach in 11 dimensions is different in the sense
that we do not introduce new generators like Zm1���m5

of M-

algebra, but it is within the conventional 11D supergravity
[7] withN ¼ 1 local super Poincaré algebra ðPm; Jmn;Q�Þ.
Our formulation in 11 dimensions is also different from the
so-called CS supergravity [10], because our formulation is
based on the usual Poincaré supergravity, instead of the
supergroups in [10].

Our formulation in 11 dimensions is similar to a pre-
vious trial in [11]. However, there are two crucial differ-

ences from the latter: (i) We introduce a new field !�
mn as

an independent field, and separate it from the original
Cremmer-Julia-Scherk (CJS) Lagrangian [7]. (ii) The
modification of the Lorentz connection field equation
was not taken into account in [11], which was not a
consistent treatment, because if higher-derivative curvature
terms are present in the Lagrangian, the original algebraic
field equation for !�

mn is no longer algebraic. In contrast,

we analyze in our formulation the whole system consis-
tently, relying on the so-called supersymmetric Palatini
identity [12], as a generalization of the analogous identity
in three or four dimensions [13,14].
Even though our result here gives only pure Lorentz CS

theory in 11 dimensions, it has been shown that higher-
dimensional pure CS theories have dynamical degrees of
freedom [15], in contrast to the 3D case, where there is
none. From this viewpoint, the construction of pure
Lorentz CS theory in higher dimensions D � 5 has non-
trivial significance for future applications.

II. @0 SUPERSYMMETRIC LORENTZ CS TERM IN
THREE DIMENSIONS

We start with the result by Achucarro-Townsend [16], in
which OSpðpj2Þ �OSpðqj2Þ symmetry with ðp; qÞ-type
anti–de Sitter (AdS) supergravity is realized. In our present
paper, we concentrate on the q ¼ 0 case. However, the
generalization to q � 0 case is straightforward. Most im-
portantly, the number of supersymmetries N is arbitrary,
i.e., we are dealing with @0 supergravity.
Therefore, the pure AdS @0 massive supergravity

Lagrangian is1

L @0
¼ þ 1

4
eRð!̂Þ � 1

4
����½ �c �

iR��
ið!̂; AÞ�

þ 1

2
g����

�
F��

ijA�
ij � 2

3
A�

ijA�
jkA�

ki

�

þ 1

32
g2e� 1

16
geð �c �

i���c �
iÞ; (2.1)

where i; j; . . . ¼ 1; 2; . . . ; N is for 8N supersymmetries
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with SOðNÞ local gauge symmetry [16]. The A�
ij is the

gauge field for SOðNÞ with the antisymmetric indices ij.
The action I@0

� R
d3L@0

is invariant under 8N local

supersymmetry [16]

�e�
m ¼ þð ��i�mc �

iÞ; (2.2a)

�c �
i ¼ þ@��

i þ 1

4
!̂�

rsð�rs�
iÞ þ gA�

ij�j � 1

8
gð���

iÞ

¼ þD�ð!̂Þ�i þ gA�
ij�j � 1

8
gð���

iÞ

¼ þD�ð!̂; AÞ�i � 1

8
gð���

iÞ; (2.2b)

�QA�
ij ¼ � 1

2
ð ��½ic �

j�Þ: (2.2c)

The gravitino field strength R��
i is defined by

R ��
ið!̂; AÞ � þD�ð!̂; AÞc �

i �D�ð!̂; AÞc �
i: (2.3)

The supercovariant !̂�
rs is defined as usual by

!̂ mrs � þ 1

2
ðĈmrs � Ĉmsr � ĈrsmÞ;

C��
m � þ2@½�e��

m � ð �c �
i�mc �

iÞ:
(2.4)

We are so far adopting the so-called second-order formal-
ism [14] in which the Lorentz connection !̂�

mn is not an

independent variable, but is expressed in terms of e�
m and

c �
i. Our next step is to rewrite the Lagrangian (2.1) in

terms of the Lorentz connection !�
mn as a new indepen-

dent field variable. This is because we are going to intro-
duce a new multiplet ð!�

rs; 	rsÞ of Lorentz connection.

This is also slightly different from going from the second-
order formalism [17] to first-order formalism [18], be-
cause, as we will see in the final result, the supersymmetry
transformation rule for !�

mn is different from that in the

usual first-order formalism [18].
One way of doing this is to rely on the so-called super-

symmetric Palatini identity, originally developed in four
dimensions [13], but it is also valid in three dimensions. Its
explicit form in three dimensions is

þ 1

4
eRð!þ 
Þ � 1

4
½ �c �

i����R��
ið!þ 
Þ�

� þ 1

4
eRð!Þ � 1

4
½ �c �

i����R��
ið!Þ�

� 1

4
e
���


��� � 1

4
eð
�Þ2 þ @�ðeW�Þ; (2.5)

where the last term is a total divergence, and 
mrs is
arbitrary, as long as 
mrs ¼ �
msr.

Equation (2.5) is actually a rewriting of the original
Palatini identity in three dimensions with !̂�

mn analogous

to the 4D case [13], into an alternative form with an
independent field !�

mn. This is possible, due to another

identity relating a Lagrangian with !̂�
mnðe; c Þ to an alter-

native Lagrangian with an independent !�
mn. The non-

supersymmetric case of such an identity is given by Eq. (7)
in [19]. In any case, Eq. (2.5) can be directly confirmed.
We can therefore choose


mrs ¼ !̂mrs �!mrs; (2.6)

to get the identity

þ 1

4
eRð!̂Þ � 1

4
����½ �c �

iR��
ið!̂; AÞ�

� þ 1

4
eRð!Þ � 1

4
����½ �c �

iR��
ið!;AÞ� þ 1

16
eðT̂��

mÞ2

� 1

8
eT̂��
T̂

�
� � 1

4
eðT̂�Þ2 þ @�ðeW�Þ: (2.7)

The T̂��
m is the supercovariant torsion tensor defined by

T̂ ��
m � 2ð@½�e��m þ!½�

mte��tÞ � ð �c �
i�mc �

iÞ; (2.8)

where!�
rs is an independent field. The T̂mrs is also related

to 
, !, and !̂ by


mrs ¼ �K̂mrs � þ 1

2
ðT̂mrs � T̂msr � T̂rsmÞ;

!̂�
rs ¼ !�

rs � K̂�
rs; (2.9)

where K̂mrs is supercovariant contorsion tensor. Because of
the independent !�

rs, the old on-shell equality, such as

T̂��
m ¼ 0 is no longer valid. Equation (2.8) is manifestly

covariant under local Lorentz symmetry in terms of
Riemann-Cartan geometry.
It is not a hard task to show that the right-hand side

(RHS) of (2.7) does not have the field !�
mn effectively,

i.e., �½ðRHSÞ of ð2:7Þ�=�!�
mn � 0. One way to see this is

that the left-hand side (LHS) of (2.7) is explicitly only in
terms of e�

m and c �
i, and there is no involvement of

!�
mn. This can be directly confirmed by taking the direct

variation of the RHS by !�
rs.

Once this feature is understood, we can rewrite the
Lagrangian (2.1) in terms of Rð!Þ, R��

ið!;AÞ, and

T̂��
m, using (2.7) as

~L@0
¼ þ 1

4
eRð!Þ � 1

4
����½ �c �

iR��
ið!;AÞ�

þ 1

16
eðT̂��

mÞ2 � 1

8
eT̂��
T̂

�
� � 1

4
eðT̂�Þ2

þ 1

2
g����

�
F��

ijA�
ij � 2

3
A�

ijA�
jkA�

ki

�

þ 1

32
g2e� 1

16
geð �c �

i���c �
iÞ; (2.10)

up to a total divergence. We repeat the fact that the Lorentz

connection !�
mn is effectively not involved in ~L@0

. We

use the tilde on ~L@0
in (2.10), distinguished fromL@0

, due

to a significant difference between them, even though they
agree up to a total divergence,
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We can now introduce an independent Lorentz connec-
tion multiplet ð!�

rs; 	rsÞ, and add a supersymmetric CS

Lagrangian LR! to ~L@0
:

LR! ¼ þ 1

8
��1����

�
R��

mn!�mn � 2

3
!�r

s!�s
t!�t

r

�

� 1

2
��1eð �	mni	mn

iÞ: (2.11)

Our total action I3D � ~I@0
þ IR! with ~I@0

� R
d3x ~L@0

and IR! � R
d3xLR! is invariant under @0 local supersym-

metry

�e�
m ¼ þð ��i�mc �Þ; (2.12a)

�c �
i ¼ þ@��

i þ 1

4
!�

rsð�rs�
iÞ � 1

4
K̂�

rsð�rs�
iÞ

þ gA�
ij�j � 1

8
gð���

iÞ

� þD�ð!� K̂Þ�i þ gA�
ij�j � 1

8
gð���

iÞ

� þD�ð!� K̂; AÞ�i � 1

8
gð���

iÞ; (2.12b)

�Q!�
mn ¼ þð ��i��	

mniÞ; (2.12c)

�Q	
mni ¼ � 1

4
ð����iÞR̂��

mn � 	mn½ijð ��j��c �
jj�Þ

þ 1

2
ð��	mnjÞð ��½ic �

j�Þ; (2.12d)

where we have used the feature that !̂�
mn ¼ !�

mn �
K̂�

mn. This rearrangement is needed to make the expres-

sion in (2.12b) manifestly covariant in terms of the inde-
pendent !�

rs field.

The confirmation of the superinvariance �QI3D ¼ 0 is

straightforward, because the !�
mn field is not effectively

involved in ~L@0
, namely, � ~LCJS=�!�

mn � 0 thanks to the

supersymmetric Palatini identity (2.5). Therefore, the only
contribution of �Q!�

mn to �QI3D is from LCS. Also, the

dreibein is not involved in the CS term in LR!, except for
the 	2 term. We also see that the peculiar c	 terms in
(2.12d) are needed to cancel the like terms arising from
�Qe�

m in the 	2 term in LR!.

As we have briefly mentioned before, the transformation
of !�

mn in (2.12c) is different from that in the so-called

first-order formalism [14,18]. The reason is that in our
formulation, !�

mn is not involved explicitly in the

Lagrangian ~L@0
, which is a rewriting of the second-order

formalism Lagrangian [17]. This rewriting in turn has been
done by the Palatini identity, based on the relationship

!̂�
mn ¼ !�

mn � K̂�
mn.

In the usual formulation of supergravity, the presence of
the bare c -dependent such as those in �Q	

mn of (2.12d) is

problematic, because they create the derivative terms D��

in the closure of supersymmetry on 	mn. In our system,
however, this does not pose any problem, because the

	-field equation is simply 	mni¼: 0,2 and any term with
c �

i always contains 	mni which is vanishing on-shell.

III. SUPERSYMMETRIC LORENTZ CS TERM
COUPLED TO 11D SUPERGRAVITY

Encouraged by the 3D result, we can consider the cou-
pling of supersymmetric CS term to N ¼ 1 supergravity in
11 dimensions by Cremmer-Julia-Scherk [7].
The original CJS Lagrangian [7] is equivalent to3

L CJS ¼ � 1

4
eRð ~!Þ � i

2
e

�
�c ��

���D�

�
~!þ !̂

2

�
c �

�

� 1

48
eðF����Þ2 þ 1

192
ð �c ��

½�j���
	�j��c �Þ
� ðF��
	 þ F̂��
	Þ

þ 2

ð144Þ2 �
����
	�c!vF����F
	�Ac!v;

(3.1)

where

~!�
mn ¼ !̂�

mn � i

4
ð �c ���

mn��c �Þ � !̂�
mn þ K�

mnð5Þ;
(3.2a)

!̂mrs � þ 1

2
ðĈmrs � Ĉmsr � ĈrsmÞ;

Ĉ��
m � 2�½�e��

m þ ið �c ��
mc nÞ: (3.2b)

Especially, ~!�rs is the Lorentz connection obtained by the

first-order formalism field equation from the CJS
Lagrangian [7]. The c 2 term Kð5Þ with five �’s arises in
general space-time dimensions D � 5.
As in three dimensions, when introducing a Lorentz

connection multiplet, we need to rewrite LCJS in terms of
Riemann-Cartan geometry tensors, with !�

mn as an inde-

pendent field. This is not too difficult, if we use the 11D
analog of supersymmetric Palatini identity [12,14]4

� 1

4
eRð!þ 
Þ � i

2
e

�
�c ��

���D�

�
!þ 
� 1

2
Kð5Þ

�
c �

�

� � 1

4
eRð!Þ � i

2
e½ �c ��

���D�ð!Þc �� þ 1

4
e
mnr


nrm

þ 1

4
eð
mÞ2 þ 1

4
e½Kmrsð5Þ�2 þ 1

4
eKmrsð1ÞKmrsð5Þ

þ @�ðeW�Þ: (3.3)

2We use the symbol ¼: for a field equation, distinguished from
algebraic equality.

3In this section, we are using the same signature ð�mnÞ ¼
diagðþ;�;�Þ as [7], due to the popularity of the Lagrangian in
[7]. This causes the presence of imaginary units compared with
the previous section.

4The 11D version of supersymmetric Palatini identity had
been already mentioned in [14], but it is not as explicit as the
following.
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Here Kð1Þ is a combination of c bilinears:

Kmrsð1Þ � � i

2
½ð �c m�rc sÞ � ð �c m�sc rÞ þ ð �c r�mc sÞ�:

(3.4)

Similarly to the 3D case, we can choose 
mrs ¼ ~!mrs �
!mrs. By this choice of 
, the Hilbert action becomes
�ð1=4ÞeRð ~!Þ, while the gravitino-kinetic term will con-
tain ð ~!þ !̂Þ=2 as its Lorentz connection term, as in the
corresponding terms in LCJS in (3.1).

We can now give the total action I11D � ~ICJS þ IR5! �R
d11xð ~LCJS þLR5!Þ, where

~LCJS ¼ � 1

4
eRð!Þ � i

2
e½ �c ��

���D�ð!Þc ��

� 1

48
eðF����Þ2 � 1

16
eðT̂��

mÞ2 þ 1

8
eT̂���T̂

���

þ 1

4
eðT̂�Þ2 þ 1

192
eð �c ��

½�j���
	�j��c �Þ

� ðF��
	 þ F̂��
	Þ þ 2

ð144Þ2 �
����
�c!vF����

� F
	�Ac!v þ 1

4
eT̂mrsK

mrsð5Þ

þ 1

4
eKmrsð5Þ½2Kmrsð5Þ þ Kmrsð1Þ�; (3.5)

up to a total divergence with T̂��
m � þ2D½�e��

m þ
ið �c ��

mc �Þ. The LR5! is the Lorentz CS term

LR5! ¼ 1

6
��1����11½R�1�2

. . .R�9�10
!�11

þ � � �
þ �rR�1�2

. . .R�2r�1�2r
!�2rþ1

. . .!�11
þ � � �

þ �0!�1
. . .!�11

�mm þ 1

2
eð �	mn	mnÞ (3.6a)

¼ � 1

12

Z 1

0
dy �� ��1... ��12ð �R ��1 ��2

. . . �R �m11 ��12
Þ �m �m

þ 1

2
eð �	mn	mnÞ; (3.6b)

where we use the tilde for ~LCSJ for the same reason as in
the 3D case. Also similarly to the 3D case, our !�

mn is an

independent field, so that equations such as T̂��
m ¼

�2K��
mð5Þ in the original system [7] are no longer valid.

The constants �0; . . . ; �4 in (3.6a) are the coefficients
for the nonleading terms covariantizing the whole Lorentz
CS form. There are in total six terms of the forms R5!,
�4R

4!3, �3R
3!5, �2R

2!7, �1R!
9, and �0!

11.
These terms are completed in (3.6b) in terms of the so-
called ‘‘Vainberg variable’’ [20,21]5 to be explained
below. The product of R’s in (3.6) is understood,

e.g., as ðR�1�2
R�3�4

Þmn � R�1�2m
rR�3�4r

n or

ðR�1�2
R�3�4

R�5�6
Þmn � R�1�2m

rR�3�4r
sR�3�4s

n.

All the ‘‘checked’’ quantities and indices, such as
�R �� ��

�m �n refer to the enlarged twelve dimensions with the

coordinates ð �x ��Þ � ðx�; yÞ in the Vainberg construction
[21]. The totally antisymmetric constant �� ��1��� ��12 in twelve
dimensions is defined by ���1...�11y � ��1...�11 . The
Vainberg construction [21] enables us to construct a
Lagrangian out of a given field equation F½’� �
�L½’�=�’¼: 0 of an arbitrary field ’, by introducing a
new coordinate y in the integration [21]

L ½’� ¼
Z 1

0
dy �F½ �’�@y �’; (3.7)

where the checked field �’ð �xÞ � �’ðx; yÞ is defined by [21]

�’ðx; 1Þ ¼ ’ðxÞ; �’ðx; 0Þ ¼ 0: (3.8)

The validity of (3.7) is easily confirmed, by the fact that its

RHS is rewritten as
R
1
0 dy@y

�L½ �’�. Applying this to the

!-field equation

���1...�10ðR�1�2
. . .R�9�10

Þmn ¼: 0; (3.9)

we get the Lagrangian for the Lorentz CS [20,23] with the
manifest SOð1; 10Þ invariance

Z 1

0
dy��1...�10�ð �R�1�2

. . . �R�9�10
@y �!�Þmm

¼ � 1

12

Z 1

0
dy �� ��1... ��12ð �R ��1 ��2

. . . �R ��11 ��12
Þ �m �m; (3.10)

where we have introduced the generalized curvature tensor
in the ‘‘extended’’ twelve-dimensional space-time with the
coordinates ð �x ��Þ � ðx�; yÞ. In particular,

�Ry�
mn � �@u �!�

mn � �@� �!y
mn þ �!y

mr �!�r
n � �!�

mr �!yr
n

¼ @y �!�
mn; (3.11)

where we required �!y
mn ¼ 0. Relevantly, we require

�!�
ym ¼ 0, so that the trace over the local Lorentz indices

�m
�m in (3.10) is equivalent to m

m within 11 dimensions with

SOð1; 10Þ symmetry. We thus get the twelve-dimensional
covariant expression for the CS term (3.6b), and the do-
main of the twelve-dimensional integration should coin-
cide with

R
d11x

R
1
0 dy. The !11 term is sometimes

important, when we use the solution R��
mn¼: 0, which

has pure gauge !�
mn field. In 11 dimensions, however,

the set of solutions to (3.9) is much wider than that of
R��

mn¼: 0, so other solutions than a pure gauge solution are
allowed. For example, the solution R��

rs¼: ce½�re��
s with a

constant c is allowed, even though this is not a super-
symmetric solution.
The supersymmetry transformation rule leaving the total

action I11D invariant is

5This integration formula is equivalent to the so-called ‘‘trans-
gression form’’ in some references [22].
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�Qe�
m ¼ �ið ���mc �Þ; (3.12a)

�Qc � ¼ þD�ð!� K̂Þ�þ i

144
ð��

���
F̂���


� 8���
F̂���
Þ�; (3.12b)

�QA��� ¼ þ 3

2
ð ���½��c ��Þ; (3.12c)

�Q!�
mn ¼ þið ����	

mnÞ; (3.12d)

�Q	
mn ¼ þie�1���1...�10ð���ÞðR�1�2

. . .R�9�10
Þmn

þ i

2
ð ����c �Þ	mn: (3.12e)

The confirmation of the superinvariance �QI11D ¼ 0 is

straightforward, because of the important features

� ~LCJS=�!�
mn ¼ 0 and LR5! do not contain e�

m except

the 	2 term. The closure of supersymmetry on the fields
does not pose any problem, for a reason similar to the case
of @0 supergravity in three dimensions.

We can further generalize the field equation (3.9). For
example, we can think of

��1...�10�ðR�1�2
. . .R�5�6

ÞmnðR�7�8
R�9�10

Þrr ¼: 0: (3.13)

The LHS is not identically zero. More generally, we can
have the generalized R! term

Lgen

R5!
�

Z 1

0
dy �� ��1... ��12 �C �m1... �m12

ð �R ��1 ��2

�m1 �m2 . . . �R ��11 ��12

�m11 �m12Þ

þ 1

2
eð �	mn	mnÞ; (3.14)

replacing (3.6b). The �C �m1... �m11
is a generalized

SOð1; 11Þ-invariant constant tensor, e.g., the combination
of Kronecker’s deltas corresponding to (3.13).
Accordingly, �Q	 in (3.12e) is replaced by

�Q	
mn ¼ þið���Þ

��Lgen

R5!

�!�mn

�
þ i

2
ð ����c �Þ	mn; (3.15)

while (3.12a) through (3.12d) stay the same.

IV. CONCLUDING REMARKS

In this paper, we have presented a supersymmetric CS
term in three dimensions coupled to @0 supergravity.
Because of the feature of the gaugino field equation, there
arises no problem with the on-shell closure of supersym-
metry. The fundamental technique is the supersymmetric
Palatini identity (2.5) with an independent !�

mn as a

rewriting of the original form [13,14], leading us to the
manifestly Lorentz-invariant Lagrangian.
Based on this encouraging result, we have applied the

same technique to 11D supergravity with N ¼ 1 [7].
Despite the technical complication with the contorsion
Kð5Þ with five �’s, the basic structure of supersymmetric
CS terms (3.6) and (3.14) is valid also in 11 dimensions.
This is because the Palatini identity in lower dimensions
[13,14] can be generalized to 11 dimensions [12], leading
us to the manifestly Lorentz-invariant Lagrangians with the
independent !�

mn.

According to common wisdom, 11D supergravity theory
is so tight that we cannot modify the original Lagrangian
[7], unless it is related to M-theory [8] corrections or
something related. In our present paper, we have a counter-
example against this notion, i.e., supersymmetric Lorentz
CS term (3.6) can be added to the original CJS Lagrangian
[7] with N ¼ 1 local supersymmetry. The first example of
CS term (3.6) is further generalized by the SOð1; 11Þ
constant tensor �C �m1... �m12

in (3.14).

Needless to say, our methodology given in this paper is
universally applicable to supergravity theory in odd dimen-
sions in 3 � D � 11, where Hilbert actions are nontrivial.
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