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Supersymmetric Lorentz Chern-Simons terms coupled to supergravity
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We present supersymmetric Lorentz Chern-Simons terms coupled to anti—de Sitter supergravity in three
dimensions with an arbitrary number (X,) of supersymmetries. As an application to higher dimensions, we
present analogous supersymmetric Lorentz Chern-Simons terms coupled to N = 1 supergravity in 11

dimensions.
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I. INTRODUCTION

There have been many developments recently in three-
dimensional (3D) topological massive gravity with cosmo-
logical constant [1]. They include the black hole exact
solution [2], and the inclusion of a Chern-Simons (CS)
term [3], in order to overcome the old obstruction without
the CS term [4]. Furthermore, interesting features such as
Witten-Nester energy [5] in topological massive N = 1
supergravity have also been presented [6].

These developments indicate that there are many non-
trivial aspects related to massive supergravity in three
dimensions, both with simple (N = 1) and extended (N =
2) local supersymmetries, yet to be discovered in future
studies. Motivated by this viewpoint, we study in this paper
a supersymmetric Lorentz connection CS Lagrangian
coupled to YN (X,) extended massive supergravity in three
dimensions. Despite the arbitrary number of supersymme-
tries, we can show the action invariance, as well as the
closure of supersymmetry.

As a natural application of this result, we also consider
11D supergravity with N = 1 supersymmetry [7], to which
an 11D analog of the supersymmetric Lorentz CS term is
coupled. In this case also, despite the tight system of the
maximal N = 1 supergravity in 11 dimensions, we can
show the invariance of the action of the new system, in
addition to the closure of supersymmetry.

In the context of M-theory [8], there have been formu-
lations of 11D supergravity in terms of M-algebra spanned
by the OSp(32[1) generators (P, Jyn Qs Zun s Zin,--ms)
[9]. Our approach in 11 dimensions is different in the sense
that we do not introduce new generators like Z,,, ...,,,. of M-
algebra, but it is within the conventional 11D supergravity
[7] with N = 1 local super Poincaré algebra (P,,, J,,,, Og)-
Our formulation in 11 dimensions is also different from the
so-called CS supergravity [10], because our formulation is
based on the usual Poincaré supergravity, instead of the
supergroups in [10].

Our formulation in 11 dimensions is similar to a pre-
vious trial in [11]. However, there are two crucial differ-
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ences from the latter: (i) We introduce a new field w ,"" as
an independent field, and separate it from the original
Cremmer-Julia-Scherk (CJS) Lagrangian [7]. (ii) The
modification of the Lorentz connection field equation
was not taken into account in [11], which was not a
consistent treatment, because if higher-derivative curvature
terms are present in the Lagrangian, the original algebraic
field equation for ™" is no longer algebraic. In contrast,
we analyze in our formulation the whole system consis-
tently, relying on the so-called supersymmetric Palatini
identity [12], as a generalization of the analogous identity
in three or four dimensions [13,14].

Even though our result here gives only pure Lorentz CS
theory in 11 dimensions, it has been shown that higher-
dimensional pure CS theories have dynamical degrees of
freedom [15], in contrast to the 3D case, where there is
none. From this viewpoint, the construction of pure
Lorentz CS theory in higher dimensions D = 5 has non-
trivial significance for future applications.

II. Xy SUPERSYMMETRIC LORENTZ CS TERM IN
THREE DIMENSIONS

We start with the result by Achucarro-Townsend [16], in
which OSp(p|2) ® OSp(ql2) symmetry with (p, g)-type
anti—de Sitter (AdS) supergravity is realized. In our present
paper, we concentrate on the ¢ = 0 case. However, the
generalization to ¢ # 0 case is straightforward. Most im-
portantly, the number of supersymmetries N is arbitrary,
i.e., we are dealing with X supergravity.

Therefore, the pure AdS X, massive supergravity
Lagrangian is!

1 1 < '
[xo =+ ZeR(aA)) - ZGMVP['%L!RVP!(@’ Al

+1 wep F ijA ij_ZA ijA jkA ki
58¢€ py Ap 34n AT Ap
(2.1)

g — Lgeld iy,
32 16577 H v

where i, j,...=1,2,...,N is for VN supersymmetries

'Our metric in this section is (7,,,) = diag(—, +, +).
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with SO(N) local gauge symmetry [16]. The A," is the
gauge field for SO(N) with the antisymmetric indices ij.
The action I = f &3 on is invariant under YN local

supersymmetry [16]
de,m = +(&ymi Y,

i,

(2.2a)

1 . | )
+0,€ + Z(Z)ﬂ”(y”e’) + gA, el — gg(yﬂe’)
. o .
= +D,(0)e + gA, e — gg(yﬂe’)
o .
=+D, (o, A)e — gg('y#e’), (2.2b)
) 1.
8pA, 1 = —E(e['lpﬂﬂ). (2.2¢)
The gravitino field strength R ,," is defined by
R /(@A) = +D, (&, A, — D, (6, A, (2.3)
The supercovariant @ ," is defined as usual by

A

CVSm)’
C m

wr = +26[,U,€V]m - (lz_b,u,i’ym(pyi)‘

1 . N
@ mrs — + 7(Cmrs - Cmsr -
2 (2.4)

We are so far adopting the so-called second-order formal-
ism [14] in which the Lorentz connection @ ,™" is not an
independent variable, but is expressed in terms of e,” and
Y Mi. Our next step is to rewrite the Lagrangian (2.1) in
terms of the Lorentz connection w,™" as a new indepen-
dent field variable. This is because we are going to intro-
duce a new multiplet (w,", A™) of Lorentz connection.
This is also slightly different from going from the second-
order formalism [17] to first-order formalism [18], be-
cause, as we will see in the final result, the supersymmetry
transformation rule for w, ™" is different from that in the
usual first-order formalism [18].

One way of doing this is to rely on the so-called super-
symmetric Palatini identity, originally developed in four
dimensions [13], but it is also valid in three dimensions. Its
explicit form in three dimensions is

+ %eR(a) +7) - Zl‘[zzﬂiy"””R,,pi(w +17)]
1 1 .- . .
=+ ZeR(w) — Z[gbﬂ"y’””'R,,p’(w)]

1 1
— —eT,, TPF — Ze(T“)z + 0, (eWHr),

1 (2.5)

where the last term is a total divergence, and 7, is
arbitrary, as long as 7,,,, = — T

Equation (2.5) is actually a rewriting of the original
Palatini identity in three dimensions with @ ,"" analogous
to the 4D case [13], into an alternative form with an
independent field w,™". This is possible, due to another
identity relating a Lagrangian with @ ,"" (e, ) to an alter-
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native Lagrangian with an independent w,™". The non-

supersymmetric case of such an identity is given by Eq. (7)

in [19]. In any case, Eq. (2.5) can be directly confirmed.
We can therefore choose

(2.6)

Tmrs = é\)mrs - wmrs’
to get the identity
1 R 1 - .
+ ZeR(w) — Ze”””[wﬂ’RVp’(w, A)]

= L eR(w) L LR, 0, A + el

4 4
| P |
- geTWT‘”P - Ze(T,_L)2 + 0, (eWH). 2.7)
The T uv" 1s the supercovariant torsion tensor defined by

T,u,vm = Z(a[p,ey]m + a)[Mmtev]t) - (‘_ﬂﬂiymlﬁyi), (28)
where w,,"* is an independent field. The fm”. is also related
to 7, , and @ by

1

A A

Tomrs = _Kmrs =+ E(Tmrs - Tmsr - Trsm)r
A — _ s
0, =w,” —K,"”, 2.9)

where K, is supercovariant contorsion tensor. Because of
the independent w,", the old on-shell equality, such as
TMVm = 0 is no longer valid. Equation (2.8) is manifestly
covariant under local Lorentz symmetry in terms of
Riemann-Cartan geometry.

It is not a hard task to show that the right-hand side
(RHS) of (2.7) does not have the field w,™" effectively,
i.e., S[(RHS)of (2.7)]/8w,™" = 0. One way to see this is
that the left-hand side (LHS) of (2.7) is explicitly only in
terms of e,” and ¢ #i, and there is no involvement of
w ™. This can be directly confirmed by taking the direct
variation of the RHS by w,".

Once this feature is understood, we can rewrite the
Lagrangian (2.1) in terms of R(w), R, (»,A), and

A

T, , using (2.7) as

v oo

N 1 1 T iR
Ly =+ geRl0) =21, Ry (w0, A)]

1 . 1 . A 1 .
+ Ee(T,uVm)z - §€TPO.TT0-TP - Ze(’TM)2

1 L2 )
v, i _ i k ki
+§g6“ p(FM,, TA,Y gA# 1ARA, )

1 1 - 4
+ —g%e— — TyHvas ! 2.1

358°¢ T 1e8eW LY ), (2.10)
up to a total divergence. We repeat the fact that the Lorentz

connection w,"" is effectively not involved in L, . We

use the tilde on ixo in (2.10), distinguished from Ly , due
to a significant difference between them, even though they
agree up to a total divergence,
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We can now introduce an independent Lorentz connec-
tion multiplet (w,", A”*), and add a supersymmetric CS

Lagrangian Lz, to Ly :
1 —1 _uvp mn 2 s t r
LRw = +glu € R,uv Wpmn — gw,u,r Wys Wy
1 =1 ,( ymni i
- 51“ e(A An ).

Our total action Iz, = Iy, + Ig, with Iy, = fd%cfxo
and I, = [ d’x Ly, is invariant under X, local supersym-
metry

de,m = +(Ey™i,),

S,

@2.11)

(2.12a)

| . 1, :
to,€ + Zwurs(')’rsel) - ZK/LrS(%SGI)
N | .
+gAL e = 2y

— D (w—R)e + gA, el — 1 i
=+D,(w —K)e' +gA,"e gg(mé)

=+D, (0 — K A€ — ég('y#ei), (2.12b)

Sow, ™ = +(&y, A, (2.12¢)
5Q)lmm' = —%(y””e")ﬁwm" — ,\nitl[il(gjyu wﬂlj])

+ %(w Al (e, 7), (2.12d)

A

where we have used the feature that @ U=, =

K u". This rearrangement is needed to make the expres-
sion in (2.12b) manifestly covariant in terms of the inde-
pendent w " field.

The confirmation of the superinvariance dyls3p = 0 is
straightforward, because the w,™" field is not effectively
involved in ZNO, namely, § L/ 8w x"" = 0 thanks to the
supersymmetric Palatini identity (2.5). Therefore, the only
contribution of §pw,"" to §yl;p is from L. Also, the
dreibein is not involved in the CS term in L, except for
the A% term. We also see that the peculiar A terms in
(2.12d) are needed to cancel the like terms arising from
8pe,™ in the A? term in Lg,.

As we have briefly mentioned before, the transformation
of w,™ in (2.12¢) is different from that in the so-called
first-order formalism [14,18]. The reason is that in our

formulation, ®,™" is not involved explicitly in the

Lagrangian fxo, which is a rewriting of the second-order
formalism Lagrangian [17]. This rewriting in turn has been
done by the Palatini identity, based on the relationship
é\)’umn — w’umn — Kﬂmn.

In the usual formulation of supergravity, the presence of
the bare /-dependent such as those in §,A™" of (2.12d) is
problematic, because they create the derivative terms D, €
in the closure of supersymmetry on A”™". In our system,
however, this does not pose any problem, because the
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A-field equation is simply A”"=0,” and any term with
] Mi always contains A" which is vanishing on-shell.

III. SUPERSYMMETRIC LORENTZ CS TERM
COUPLED TO 11D SUPERGRAVITY

Encouraged by the 3D result, we can consider the cou-
pling of supersymmetric CS term to N = 1 supergravity in
11 dimensions by Cremmer-Julia-Scherk [7].

The original CJS Lagrangian [7] is equivalent to®

1 - iT- . O+ d

L = —ZeR(a)) - Ee[l/f;n’“ pDu(T)i//p]

! 24 L (g fulyporay v
_@e(F,quo-) +@(¢,u,7 Y Y l%)
X (Fpo'r)\ + FpUTA)

2

/LVp{TT)Ld)Xl/IwUF
(144 €

+

/,LVpo'FT/\qS,\/Aa,ba)w
3.1

o, = (I)an — %(,’zp,y#mnpalpo) = d),umn + Kﬂmn(s)’

N
(3.2a)
1 4 A N
é\)mr\“ =+ E(Cmr.v - Cmsr - Crsm))
é,ul/m = 28[;Ley]m + l(lz_b,u,’ymlzbn) (Szb)

Especially, @ ,,,, is the Lorentz connection obtained by the
first-order formalism field equation from the CIJS
Lagrangian [7]. The ? term K(5) with five y’s arises in
general space-time dimensions D = 5.

As in three dimensions, when introducing a Lorentz
connection multiplet, we need to rewrite Lqyg in terms of
Riemann-Cartan geometry tensors, with @, ™" as an inde-
pendent field. This is not too difficult, if we use the 11D
analog of supersymmetric Palatini identity [12,14]*

- %eR(w +7)— %e[&MYMVpDv(w +r _%K(S))‘/’p]

1 - 1
- —eR(a)) - %e[wu’yﬂvav(w)L//p] + ZeTmannrm

4
4 elm, P+ elK (P + Ky (DK™ ()
+ 9, (eWH). (3.3)

*We use the symbol = for a field equation, distinguished from
algebraic equality.

In this section, we are using the same signature (7,,,) =
diag(+, —, —) as [7], due to the popularity of the Lagrangian in
[7]. This causes the presence of imaginary units compared with
the previous section.

“The 11D version of supersymmetric Palatini identity had
been already mentioned in [14], but it is not as explicit as the
following.
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Here K(1) is a combination of ¢ bilinears:

(Gnysv) + (& v )]
(3.4)

Kmrs(l) = _%[(szm’)/rws) -

Similarly to the 3D case, we can choose 7, = @,,,.s —
,,s- By this choice of 7, the Hilbert action becomes
—(1/4)eR(®), while the gravitino-kinetic term will con-
tain (@ + @)/2 as its Lorentz connection term, as in the
corresponding terms in Lyg in (3.1).

We can now give the total action I} = Icys + Ips, =
Jd"x(Leys + Lgs,,), where

Lo = —%eR(a)) -

1
48
1

Z E(fﬂ)z

Seld 7D (@),

1 . 1 . .
e(F o) — Ee(TW”‘)2 + geTM,,pT””“
1
0% ({pﬂfy[,ulypfrw\ |”]{p )

ey,l/p0'7'¢)(¢va

X (FpO'T)\ + FpO'T)\) + nrpo

(144)?
1 mrs
X FT)\d)XAl,[Ia)U + ZeTmrsK ; (5)

+ K, (2K (S) + K7 ()] (3.5)

up to a total divergence with TM,,'”
i(,y",). The L

= +2D[Mev]m +
» 18 the Lorentz CS term

Lpsy = éf”“‘ PR sy -+ Ry @y 7
TRy Ry @y @y T
+ @@y, w0y "t %E(X’”"Amn) (3.62)
- _% 0 dy&f--in (R 1 R"‘Hfm)mrh
N %e( XAy, (3.6b)

where we use the tilde for ZCSJ for the same reason as in
the 3D case. Also similarly to the 3D case, our w M’"” is an
independent field, so that equations such as TW,'” =
—2K,,"(5) in the original system [7] are no longer valid.

The constants «y, ..., a4 in (3.6a) are the coefficients
for the nonleading terms covariantizing the whole Lorentz
CS form. There are in total six terms of the forms R’w
R0, ;RPw’, aR*0’, aRw’, and ayo
These terms are completed in (3.6b) in terms of the so-
called ““Vainberg variable” [20,21]° to be explained
below. The product of R’s in (3.6) is understood,

11

>This integration formula is equivalent to the so-called “trans-
gression form” in some references [22].
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n o= r n
c.g. as (RMMZRMM - R#l#zm R,U«3M4r or
(R R

n = r s n
M2 M3M4 MSM()) RMlem RM3M4" RMzP«M :
All the

“checked” quantities and indices, such as
R, i M refer to the enlarged twelve dimensions with the
coordinates (¥#) = (x#,y) in the Vainberg construction
[21]. The totally antisymmetric constant €*1 412 in twelve
dimensions is defined by é*1-#11Y = eti-#i1 The
Vainberg construction [21] enables us to construct a
Lagrangian out of a given field equation F[¢]=
8 L[¢]/6¢=0 of an arbitrary field ¢, by introducing a
new coordinate y in the integration [21]

Llg]= fo L ayE[ )9, . (3.7)

where the checked field ¢(X) = ¢(x, y) is defined by [21]

¢(x, 1) = o(x), ¢(x,0) = 0. (3.8)

The validity of (3.7) is easily confirmed, by the fact that its
RHS is rewritten as [ dyd,L[@]. Applying this to the
w-field equation

4 "0(R, . ... Ry, )™ =0, (3.9)

we get the Lagrangian for the Lorentz CS [20,23] with the
manifest SO(1, 10) invariance

1 « v
Vi Vig b v m
/;) dye Ry Ry 0y @ )

Ul . V
——zfodyew#n(Rﬂlﬁz...R L (3.10)

ﬁ«l]ﬂlz)rh ’
where we have introduced the generalized curvature tensor
in the “extended” twelve-dimensional space-time with the
coordinates (X#) = (x*, y). In particular,

Y Y O m hd YOoon oy mr

d,w —d, "+ o,"0,, 0,"a,"
0, @ m”, (3.11)

R}’M

v

where we required @,"" = 0. Relevantly, we require

v

,*" = 0, so that the trace over the local Lorentz indices
m’;‘ in (3.10) is equivalent to ™ within 11 dimensions with
SO(1, 10) symmetry. We thus get the twelve-dimensional
covariant expression for the CS term (3.6b), and the do-
main of the twelve-dimensional integration should coin-
cide with [d''x fldy. The w'' term is sometimes
important, when we use the solution RM,,'””'ZO, which
has pure gauge w,™ field. In 11 dimensions, however,
the set of solutions to (3.9) is much wider than that of
R,,,"" =0, so other solutions than a pure gauge solution are
allowed. For example, the solution R ,,," =cep, ey] " with a
constant ¢ is allowed, even though this is not a super-
symmetric solution.

The supersymmetry transformation rule leaving the total
action I p invariant is
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Sge," = —i(&y" ), (3.12a)
Sotp, = +D, (0w — K)e + ﬁ(yﬂ”p‘”ﬁwm
— 8yP7F )€, (3.12b)
SoAuuy =+ %(EY[WIII,,]), (3.12¢)
Spw,"™ = +i(Ey, A™), (3.12d)
A" = -l-ie_le"“’l'"”lo('yMe)(R,,],,2 Ry
+ %(éw“zﬂM)A’””. (3.12e)

The confirmation of the superinvariance dyl;;p = 0 is
straightforward, because of the important features
6Lcys/dw,™ =0 and Ls, do not contain e,” except
the A term. The closure of supersymmetry on the fields
does not pose any problem, for a reason similar to the case
of X, supergravity in three dimensions.

We can further generalize the field equation (3.9). For
example, we can think of

e’V (R

'Rvsvﬁ)mn(RngRVqV”,)rrﬁo- (313)

iy e
The LHS is not identically zero. More generally, we can
have the generalized Rw term

1 v « o v Lo
gen o — SR, L iy Lo mypnip
LRSw '/;) dye Cm1-~-mlz(RM1Mz "‘RM11/1«12 )

1 -
+ Ee()\m")tm,,), (3.14)

replacing  (3.6b). The C, ,, is a generalized
SO(1, 11)-invariant constant tensor, €.g., the combination

of Kronecker’s deltas corresponding to (3.13).
Accordingly, 0y A in (3.12e) is replaced by

PHYSICAL REVIEW D 81, 085029 (2010)
gen

mn . 8£R5w . mn
5Q/\ = +l('y#6)<m)+§(6’)”u’lﬂﬂ)ﬂ , (3.15)

while (3.12a) through (3.12d) stay the same.

IV. CONCLUDING REMARKS

In this paper, we have presented a supersymmetric CS
term in three dimensions coupled to X, supergravity.
Because of the feature of the gaugino field equation, there
arises no problem with the on-shell closure of supersym-
metry. The fundamental technique is the supersymmetric
Palatini identity (2.5) with an independent w,™ as a
rewriting of the original form [13,14], leading us to the
manifestly Lorentz-invariant Lagrangian.

Based on this encouraging result, we have applied the
same technique to 11D supergravity with N =1 [7].
Despite the technical complication with the contorsion
K(5) with five vy’s, the basic structure of supersymmetric
CS terms (3.6) and (3.14) is valid also in 11 dimensions.
This is because the Palatini identity in lower dimensions
[13,14] can be generalized to 11 dimensions [12], leading
us to the manifestly Lorentz-invariant Lagrangians with the
independent w,"".

According to common wisdom, 11D supergravity theory
is so tight that we cannot modify the original Lagrangian
[7], unless it is related to M-theory [8] corrections or
something related. In our present paper, we have a counter-
example against this notion, i.e., supersymmetric Lorentz
CS term (3.6) can be added to the original CJS Lagrangian
[7] with N = 1 local supersymmetry. The first example of
CS term (3.6) is further generalized by the SO(1,11)
constant tensor érhl...lhlz in (3.14).

Needless to say, our methodology given in this paper is
universally applicable to supergravity theory in odd dimen-
sions in 3 = D = 11, where Hilbert actions are nontrivial.
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