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In the baryogenesis via leptogenesis scenario the self-energy contribution to the CP-violating parameter

plays a very important role. Here, we calculate it in a simple toy model of leptogenesis using the

Schwinger-Keldysh/Kadanoff-Baym formalism as starting point. We show that the formalism is free of

the double-counting problem typical for the canonical Boltzmann approach. Within the toy model,

medium effects increase the CP-violating parameter. In contrast to results obtained earlier in the

framework of thermal field theory, the medium corrections are linear in the particle number densities.

In the resonant regime quantum corrections lead to modified expressions for the CP-violating parameter

and for the decay width. Most notably, in the maximal resonant regime the Boltzmann picture breaks

down and an analysis in the full Kadanoff-Baym formalism is required.
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I. INTRODUCTION

From the theoretical point of view the baryogenesis via
leptogenesis scenario [1] is a very attractive explanation of
the observed baryon asymmetry of the Universe. One of its
key ingredients is heavy Majorana neutrinos, whose
CP-violating decays are responsible for the generation of
a lepton asymmetry, i.e. for leptogenesis. TheCP-violating
parameter receives contributions from the vertex [1,2] and
self-energy [3–6] diagrams. If the masses of the heavy
neutrinos are strongly hierarchical, then the two contribu-
tions are comparable. However, if the mass spectrum is
quasidegenerate then the self-energy contribution is reso-
nantly enhanced and becomes considerably larger than the
one from the vertex diagram. The resonant enhancement of
the CP-violating parameter allows one to bring the scale of
leptogenesis down to �1 TeV [6,7]. This scenario is very
interesting from the experimental point of view since it is
potentially accessible in accelerator experiments [8].

In state-of-the-art calculations the self-energy
CP-violating parameter is evaluated in vacuum and then
used to calculate the asymmetry generated by the decays of
the heavy neutrinos in the hot and dense medium. In this
approximation the possibly important medium effects are
neglected from the very beginning. One can take them into
account systematically by using the Schwinger-Keldysh/
Kadanoff-Baym formalism [9] or approximate self-
consistent equations derived from the Kadanoff-Baym
equations (see [2,10–22] for related work).

The Kadanoff-Baym formalism provides a powerful
framework for studying nonequilibrium processes within

quantum field theory. However, it is technically consider-
ably more involved than the canonical Boltzmann ap-
proach. For this reason, we apply it here to a simple toy
model which we have already used in [2] to investigate the
vertex contribution. The Lagrangian contains one complex
and two real scalar fields:

L ¼ 1

2
@�c i@�c i � 1

2
M2

i c ic i þ @� �b@�b�m2 �bb

� �

2!2!
ð �bbÞ2 � gi

2!
c ibb� g�i

2!
c i

�b �bþLrest;

i ¼ 1; 2; (1)

where �b denotes the complex conjugate of b. Here and in
the following we assume summation over repeating indi-
ces, unless otherwise specified. Despite its simplicity, the
model incorporates all features relevant for leptogenesis.
The real scalar fields imitate the (two lightest) heavy right-
handed neutrinos, whereas the complex scalar field models
the baryons. The Uð1Þ symmetry, which we use to define
‘‘baryon’’ number, is explicitly broken by the presence of
the last two terms, just as the B� L symmetry is explicitly
broken by Majorana mass terms in phenomenological
models. Thus the first Sakharov condition [23] is fulfilled.
The couplings gi model the complex Yukawa couplings of
the right-handed neutrinos to leptons and the Higgs boson.
By rephasing the complex scalar field at least one of the
couplings gi can be made real. If argðg1Þ � argðg2Þ the
other one remains complex and there is CP-violation, as is
required by the second Sakharov condition. In vacuum the
self-energy contribution to the CP-violating parameter is
given by

�i ¼ �jgjj2
16�

Im

�gig�j
g�i gj

� M2
j �M2

i

ðM2
j �M2

i Þ2 þM2
j�

2
j

; (2)

where �j is the decay width of the heavy scalar c j. Note
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that the expression (2) has been obtained using the formal-
ism developed in [6]. The formalism employed in [24]
leads to a slightly different expression for the
CP-violating parameter (see Appendix A for more details).
The required deviation from thermal equilibrium is caused
by the rapid expansion of the Universe. Thus the third
Sakharov condition is fulfilled as well. Finally, the quartic
self-interaction term in (1) plays the role of the Yukawa
and gauge interactions in established models—it brings the
‘‘baryons’’ to equilibrium. The renormalizability of the
theory requires the presence of some additional terms,
which are accounted for by Lrest.

Here, we study the self-energy contribution to the
CP-violating parameter in the hierarchical and quaside-
generate cases using the Schwinger-Keldysh/Kadanoff-
Baym formalism as starting point. To make the discussion
less technical we give the details of the calculation in the
appendixes, whereas in the main body of the paper we
sketch the derivation and present the results.

(i) As we argue in Sec. III, the formalism is free of the
double-counting problem typical for the canonical
Boltzmann approach. In other words the structure of
the equations automatically ensures that the asym-
metry vanishes in thermal equilibrium and no need
for the real intermediate state (RIS) subtraction
arises. This property has already been observed in
the case of the vertex contribution.

(ii) The medium corrections to the CP-violating pa-
rameter are only linear in the particle number den-
sities. That is, our result differs from that obtained
previously in the framework of equilibrium thermal
field theory by replacing the zero temperature propa-
gators with finite temperature propagators in the
matrix elements used in the Boltzmann equation.

(iii) For scalars the medium effects always increase the
CP-violating parameter, which in turn leads to an
enhancement of the generated asymmetry.

(iv) The canonical expression for the CP-violating pa-
rameter is only applicable in the hierarchical case
even though it does not diverge in the limit of equal
masses. For quasidegenerate masses one has to take
into account quantum corrections to the effective
masses and decay widths of the heavy particles in
medium, which leads to a modified expression for
the CP-violating parameter.

(v) In the resonant regime quantum corrections also lead
to an enhancement of the total in-medium decay
widths. This results in a faster decay of the heavy
particles and can increase the importance of the
washout process.

(vi) In the maximal resonant regime the Boltzmann pic-
ture breaks down and we argue that an analysis in the
full Kadanoff-Baym formalism is required.

In Sec. IV we present numerical solutions of the quantum-
corrected Boltzmann equations, and discuss the quantita-
tive impact of medium effects on the final asymmetry

within the toy model. Finally, in Sec. V, we summarize
the results and present our conclusions.

II. KINETIC EQUATION

The canonical approach to the calculation of the asym-
metry generated at the epoch of leptogenesis is based on
the use of Boltzmann equations. In the expanding Universe
the Boltzmann equation for the toy-baryon distribution
function fb can be written in the form [25]

p�D�fb ¼ 1

2
½�<ð1þ fbÞ � fb�>�; (3)

where all functions are evaluated at the same point ðX; pÞ
of the phase-space, D� is the covariant derivative, and the
quantities �+ correspond to the gain and loss terms. For
decays into a pair of toy-baryons they are given by

�<ðX; pÞ � �
Z

d�3
qd�

3
kð2�Þ4�ðk� q� pÞ

� jMj2c i!bbfc i
ðX; kÞ½1þ fbðX; qÞ�; (4a)

�>ðX; pÞ � �
Z

d�3
qd�

3
kð2�Þ4�ðk� q� pÞ

� jMj2bb!c i
fbðX; qÞ½1þ fc i

ðX; kÞ�; (4b)

where d�3
p � d3p=½ð2�Þ32E� is the invariant momentum-

space volume element. The analogous equations for the
toy-antibaryon distribution function f �b and the corre-

sponding quantities ��_ can be obtained from (3) and (4)
by replacing the subscript b with �b.
At tree level [see Fig. 1(a)] the decay is CP-conserving,

that is jMj2c i!bb ¼ jMj2bb!c i
� jM0j2. There are two

distinct contributions to the CP-violating parameter, the
vertex [1,2] and the self-energy [3,5] ones. The leading-
order self-energy contribution is generated by the one-loop
self-energy diagram depicted in Fig. 1(b). Only the dia-
gram where the initial (c i) and intermediate (c j) toy-

Majoranas are different (i � j) contributes to the
CP-violating parameter. Summing the tree-level and the
‘‘off-diagonal’’ one-loop self-energy amplitudes one ob-
tains jMj2c i!bb ¼ jM0j2ð1þ �iÞ and jMj2bb!c i

¼
jM0j2ð1� �iÞ. In the corresponding expressions for the
‘‘antibaryons’’ the signs in front of �i are reversed. If these

amplitudes are now substituted into �_ and ��_ one finds
that a nonzero asymmetry is generated even in thermal

FIG. 1. Tree-level and one-loop self-energy diagrams of the
decay process c i ! bb.
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equilibrium, which is inconsistent with the CPT symmetry.
This is a manifestation of the so-called double-counting
problem typical for the canonical Boltzmann formalism.
Let us briefly explain what that means. An inverse decay
bb ! c i immediately followed by a decay c i ! �b �b is
equivalent to the two-body scattering process bb ! c i !
�b �b where the intermediate toy-Majorana is on the mass
shell. That is, the same contribution is taken into account
twice: once when the decay and inverse decay processes
are considered and once when the two-body scattering
processes are considered. This problem is usually solved
by subtracting the contribution of the on-shell intermediate
state to the scattering amplitude [5,6]. Roughly speaking,
after the subtraction the amplitude of the inverse decay
process bb ! c i also becomes proportional to (1þ �i),
which ensures that in thermal equilibrium no asymmetry is
produced due to detailed balance.

In the canonical bottom-up approach, which has been
outlined above, one uses elements of the S-matrix (in-out
formalism) to calculate the functions �_. In contrast to
that, in the top-down approach based on the Schwinger-
Keldysh/Kadanoff-Baym [26–39] formalism, the functions
�_ can be identified with self-energies and are derived,
using nonequilibrium field theory techniques (see e.g.
[38,40]), from the two-particle-irreducible (2PI) effective
action1 [42] formulated on the closed real-time path (in-in
formalism). A two-loop contribution to the effective action
and the corresponding contribution to the self-energy of the
‘‘baryons’’ are presented in Figs. 2(a) and 2(c) respectively.
Wigner-transforming the self-energy we obtain [2]

�_ðX; pÞ ¼ �
Z

d�kd�qð2�Þ4�gðk� q� pÞ
� g�i gjG

ij
_ðX; kÞD+ðX; qÞ; (5a)

��_ðX; pÞ ¼ �
Z

d�kd�qð2�Þ4�gðk� q� pÞ
� gig

�
jG

ij
_ðX; kÞ �D+ðX; qÞ; (5b)

where d�p � d4p=ð2�Þ4, �gðpÞ � ffiffiffiffiffiffiffi�g
p

X�ðpÞ is the co-

variant generalization of the Dirac �-function and Gij
_ and

D_ are the Wightman propagators of the real and complex
fields, respectively. In the Boltzmann limit the latter are
related to the distribution function by

D< ¼ fbD�; D> ¼ ð1þ fbÞD�; (6)

where in the quasiparticle approximation (see [2] for more
details) the spectral function reads

D�ðX; pÞ ¼ 2�sgnðp0Þ�ðg��p�p� �m2Þ: (7)

In the same approximation the Wightman propagators of
the toy-antibaryons, �D_, can be obtained from (6) by
replacing fb with f �b.
If the real scalar fields would not mix, i.e. if the off-

diagonal components of the Wightman propagator were
equal to zero, we could also write analogous expressions
for the diagonal components:

Gii
< ¼ fc i

Gii
�; Gii

> ¼ ð1þ fc i
ÞGii

�; (8)

with the spectral function given by

Gii
�ðX; pÞ ¼ 2�sgnðp0Þ�ðg��p�p� �M2

i Þ: (9)

Because of the presence of the Dirac �-function in (7) and
(9) the integrations over k0 and q0 could then be performed
trivially and we would recover (4) in the CP-conserving
limit.
A nonzero toy-baryon asymmetry can be generated only

if �_ � ��_. Comparing (5a) and (5b) we see that if
initially the system is symmetric, i.e. fb ¼ f �b, this

amounts to the requirement that the Hermitian matrix Ĝ_

has complex off-diagonal components. If the off-diagonal
components peak on the mass shell of the quasiparticle
species, i.e. if they can be represented in the form

Gij
_ ¼ "iG

ii
_ þ "�jG

jj
_ ði � jÞ; (10)

then the generation of the asymmetry can be analyzed in
terms of CP-violating parameters. Substituting (10) into
(5) we find

�i ¼ �2 Imðgj=giÞ Im"i: (11)

To calculate the decomposition coefficients "i we use the
nonequilibrium formulation of the Schwinger-Dyson equa-
tion, which is discussed in the following section.

III. CP-VIOLATING PARAMETER

Just like in the canonical analysis [5,6] the starting point
of our analysis is the Schwinger-Dyson equation

½G�1�ijðx; yÞ ¼ ½G�1�ijðx; yÞ ��ijðx; yÞ; (12)

where Gij is the full dressed propagator of the ‘‘heavy
neutrinos,’’Gij is the diagonal propagator of the free fields,
and �ij is the self-energy. In the two-loop approximation,
see Fig. 2, the self-energy is given by

FIG. 2. Two-loop contribution to the 2PI effective action and
the corresponding contributions to the self-energies of the real
and complex fields.

1Note that there exists a straightforward generalization to a
hierarchy of so-called nPI effective actions [41]. In general, for
systems far from equilibrium and for strong couplings the two-
body decay is best described using 3PI. However, for lepto-
genesis, 2PI is sufficient since the CP-violation is dominated by
the leading loop diagrams.
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�ijðx; yÞ ¼ � 1

2
gig

�
jD

2ðx; yÞ � 1

2
g�i gj �D2ðx; yÞ; (13)

where Dðx; yÞ is the full propagator of the complex scalar
field and �Dðx; yÞ � Dðy; xÞ. Note that the arguments of the
two-point functions and self-energy are defined on the
positive and negative branches of the Schwinger-Keldysh
closed real-time contour C [26–31] shown in Fig. 14.

If we multiply (12) by G from the right, decompose the
full propagator and the self-energy into statistical and
spectral components, and integrate over the contour, we
obtain a system of so-called Kadanoff-Baym equations for
the statistical propagator and spectral function (see
Appendix B). Within leptogenesis, the light particle spe-
cies are usually assumed to be very close to kinetic equi-
librium. Translated to the toy model, this means that the
toy-baryons described by the propagators Dðx; yÞ and
�Dðx; yÞ are close to equilibrium. In this case, one can
approximate the full Kadanoff-Baym equations by quan-
tum kinetic equations, and find approximate analytic solu-
tions of these equations. Using these solutions, it is
possible to explicitly obtain the decomposition coefficients
"i, which then yield the corresponding CP-violating pa-
rameters �i as described above. This approach is pursued in
Appendix B. In this section we will use an alternative
approach, which essentially relies on the same assump-
tions, but is somewhat more elegant.

In the following, we use a compact matrix notation for

Eq. (12), where we denote the matrices by a hat, e.g. Ĝ �
ðGijÞ. Let us split the self-energy matrix �̂ into the diago-

nal �̂ and off-diagonal �̂0 components and introduce a

diagonal propagator Ĝ defined by the equation

Ĝ �1ðx; yÞ ¼ Ĝ�1ðx; yÞ � �̂ðx; yÞ: (14)

Subtracting (14) from (12) we find

Ĝ�1ðx; yÞ ¼ Ĝ�1ðx; yÞ � �̂0ðx; yÞ: (15)

Multiplying (15) by Ĝ from the left, by Ĝ from the right
and integrating over the contour C we obtain a formal
solution for the full nonequilibrium propagator2:

Ĝðx; yÞ ¼ Ĝðx; yÞ
þ

Z
C

Z
C
D4uD4vĜðx; uÞ�̂0ðu; vÞĜðv; yÞ:

(16)

The invariant volume element, D4u � ffiffiffiffiffiffiffi�g
p

d4u, where
g � detg��, ensures that (16) can be applied to the analysis

of out-of-equilibrium dynamics not only in Minkowski, but
also in a general curved space-time [19]. Using the decom-

position

Ĝðx; yÞ ¼ ĜFðx; yÞ � i

2
sgnCðx0 � y0ÞĜ�ðx; yÞ; (17)

and an analogous relation for the self-energy we can split
(16) into spectral and statistical components. These are
related to the Wightman propagators by

Ĝ_ðx; yÞ ¼ ĜFðx; yÞ � i

2
Ĝ�ðx; yÞ: (18)

Because of the sgnC function in the decomposition of the
two-point function and self-energy the integrals over the
closed-time-path contour in (16) reduce to integrals over
parts of the uv plane; see Appendix C. Introducing the
retarded and advanced propagators,

ĜRðx; yÞ � 	ðx0 � y0ÞĜ�ðx; yÞ; (19a)

ĜAðx; yÞ � �	ðy0 � x0ÞĜ�ðx; yÞ; (19b)

and also the retarded and advanced self-energies we can
represent the resulting expressions as integrals over the
whole uv plane. Finally, building the linear combinations
(18) we find for the Wightman propagators

Ĝ_ðx; yÞ ¼ Ĝ_ðx; yÞ �
ZZ

D4uD4v	ðu0Þ	ðv0Þ

� ½ĜRðx; uÞ�̂0
_ðu; vÞĜAðv; yÞ

þ Ĝ_ðx; uÞ�̂0
Aðu; vÞĜAðv; yÞ

þ ĜRðx; uÞ�̂0
Rðu; vÞĜ_ðv; yÞ�: (20)

Using (18) and (19) we can also derive formal solutions for
the retarded and advanced propagators from (20). They
read

ĜRðAÞðx; yÞ ¼ ĜRðAÞðx; yÞ �
ZZ

D4uD4v	ðu0Þ	ðv0Þ

� ĜRðAÞðx; uÞ�̂0
RðAÞðu; vÞĜRðAÞðv; yÞ: (21)

In thermal equilibrium the two-point functions and self-
energies in (20) and (21) depend only on the relative
coordinate, s � x� y, and are independent of the center
coordinate, X � 1

2 ðxþ yÞ, i.e. are translationally invariant.
As discussed above, we expect that the deviations from
equilibrium are moderate. In this case, one can perform a
gradient expansion of the two-point functions and the self-
energies in the vicinity of X keeping only the leading
terms. Performing the Wigner transformation, i.e. the
Fourier transformation with respect to the relative coordi-
nate (see Appendix B) we trade the relative coordinate s for
a coordinate p in momentum space. Effectively, the
Wigner transformation replaces the coordinate-space argu-
ments ðx; yÞ of each two-point function in (20) and (21) by
the phase-space coordinates ðX; pÞ and ‘‘removes’’ the
double integration; see Appendix C. Combining the
Wigner transforms of (20) and (21) we find for the full

2Here, we implicitly assume that the correlators are diagonal at
the initial time of the closed-time-path evolution. Since we
consider the kinetic limit later on, for which the initial time is
formally sent to negative infinity, the results are not affected.
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Wightman propagators

Ĝ_ ¼ ½Î � ĜR�̂
0
R�½Ĝ_ � ĜR�̂

0
_ĜA�½Î� �̂0

AĜA�
det½Î � ĜR�̂

0
R� det½Î � �̂0

AĜA�
;

(22)

where all the functions are evaluated at the same point

ðX; pÞ of the phase-space. The term proportional to �̂0
_

describes scattering [37–39,43–48] and is irrelevant for us
at the moment. Contracting the decay term with the prod-
uct of the couplings in (5a) and using that, by construction,
the propagators G are diagonal and �0 off-diagonal, we
find

g�i gjG
ij
_ ¼

P
i
Gii

_jgij2½1þ �i
b�

det½Î � ĜR�̂
0
R� det½Î � �̂0

AĜA�
; (23)

where

jgij2�i
b � jgjj2�ij

A�
ji
RG

jj
RG

jj
A � 2Re½gig�jGjj

R�
ji
R �: (24)

In (24) and all the equations below we implicitly assume
summation over all j � i.

A very important feature of (23) is that the loop correc-
tions �i

b are the same for both the gain and loss terms (i.e.

for the > and < components), respectively. To obtain an
equivalent result in the canonical approach one needs to
apply the real intermediate state subtraction procedure
[5,6]. This means that, here, the structure of the equations
automatically ensures that no asymmetry is generated in
thermal equilibrium. Stated differently, the formalism is
free of the double-counting problem and no need for RIS
subtraction arises. This conclusion is in accordance with
the corresponding result for the vertex contribution to the
CP-violating parameter [2].

Contracting the decay term with the product of the
couplings in (5b) we obtain an expression similar to (23)
but now with

jgij2�i
�b
� jgjj2�ij

A�
ji
RG

jj
RG

jj
A � 2Re½g�i gjGjj

R�
ji
R �: (25)

From Eq. (5), we see that the rates for the decays c i ! bb
and c i ! �b �b differ from each other only if �i

b � �i
�b
. The

corresponding CP-violating parameter is given by

�i ¼
½1þ �i

b� � ½1þ�i
�b
�

½1þ �i
b� þ ½1þ�i

�b
� : (26)

The first terms in (24) and (25) are equal and cancel out in
the difference of �i

b and �i
�b
. Therefore, in agreement with

(11), the CP-violating parameter can be expressed as

�i ¼
�2 Imðgj=giÞ ImðGjj

R�
ji
R Þ

1þ 1
2 ð�i

b þ �i
�b
Þ : (27)

Equation (23) also provides us with an expression for the
total in-medium decay widths of the heavy particles:

�med
i ¼ �i �

1þ 1
2 ð�i

b þ�i
�b
Þ

det½Î � ĜR�̂
0
R� det½Î � �̂0

AĜA�
; (28)

where �i ¼ jgij2=ð16�MiÞ are the corresponding tree-
level decay widths in vacuum.
The CP-violating parameter (27) is a function of the

space-time coordinate X and four-momentum p. Note that
in general p does not need to be on-shell. The on-shell
condition is determined by the diagonal components of the
full propagator. The CP-violating parameter carries infor-
mation about the off-diagonal components; compare
Eq. (10). Therefore, the conventional, ‘‘on-shell,’’ inter-
pretation of (27) is only applicable if the off-diagonal
components of the full propagator peak at the same values
of the momentum as the diagonal ones. Furthermore, if we

want to use the Boltzmann equations for Ĝ to calculate the

asymmetry, then the mass spectra of the diagonal (Ĝ) and

full (Ĝ) propagators must be sufficiently close.
The value of the CP-violating parameter depends on the

massesMi of the heavy species and the coupling constants
gi or, alternatively, the decay widths �i. It is useful to
discriminate between three cases, namely

M2
1 �M2

2; M2
j 	Mj�j ðstrongly hierarchical caseÞ;

M2
i 	j�M2

ijj	Mj�j ðresonant caseÞ;
M2

i 	j�M2
ijj&Mj�j ðmaximal resonant caseÞ; (29)

where �M2
ij � M2

i �M2
j . As we will argue in the follow-

ing, the generation of the asymmetry can be studied ap-
proximately in the Boltzmann picture using the above
CP-violating parameter in the strongly hierarchical and
resonant cases, but not in the maximal resonant case.

A. Strongly hierarchical case

In this subsection, we derive the CP-violating parameter
in the strongly hierarchical limit, M1 � M2. As we shall
see later, in the hierarchical case the denominator in Eq.
(27) is close to unity. The same is true for the denominator
of (28). Therefore the in-medium decay widths �med

i coin-
cide with the tree-level ones. For the CP-violating parame-
ter we obtain

�i ¼ �2 Imðgj=giÞ ImðGjj
R�

ji
R Þ: (30)

It only remains to calculate the last term in (30). Let us first

analyze the self-energy �̂R. In a ‘‘baryonically’’ symmet-
ric configuration the particles and antiparticles are inter-
changeable, so that �Dðx; yÞ ¼ Dðx; yÞ (see Appendix F for
a proof). In the following, we will use that the baryon
asymmetry is small, i.e. Dðx; yÞ ’ �Dðx; yÞ. In this case the
two terms of (13) combine to a symmetric matrix which is

proportional to (g�i gj þ gig
�
j ). To obtain �̂RðX; pÞ we

decompose this matrix into a statistical and spectral part,
multiply the spectral part with 	ðx0 � y0Þ, and perform the
Wigner transformation. The result reads
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�ij
R ðX;pÞ¼�ðg�i gjþgig

�
j Þ
Z
d�kd�qð2�Þ4�ðp�k�qÞ

�DðsÞ
F ðX;kÞDðsÞ

R ðX;qÞ; (31)

where the superscript s refers to the ‘‘baryonically’’ sym-
metric configuration and DF is the statistical propagator of
the complex field. In the quasiparticle approximation
DF ¼ ð12 þ fbÞD�. The retarded and advanced propagator

of the complex scalar field can be represented in the form
DRðAÞ ¼ Dh 
 i

2D�, where in the quasiparticle approxima-

tion D� is given by (7) and Dh ¼ � P
p2�m2 ; see Eq. (G7).

Consequently, in the symmetric configuration the retarded
self-energy is given by a linear combination of two real-
valued symmetric matrices:

�ij
R ¼ �ij

h þ i

2
�ij

� ¼ �1

16�
ðg�i gj þ gig

�
j Þ
�
Lh þ i

2
L�

�
;

(32)

where, to shorten the notation, we have introduced

Lhð�ÞðX; pÞ � 16�
Z

d�kd�qð2�Þ4�ðp� k� qÞ

�DðsÞ
F ðX; kÞDðsÞ

hð�ÞðX; qÞ: (33)

For a homogeneous and isotropic system the one-particle
distribution functions depend only on the Lorentz-invariant
product ku, where k is the particles’ momentum and u is
the (constant) four-velocity of the medium with respect to
the chosen frame of reference. Using this property, in
Appendix G we evaluate L� on the mass shell of the ith

quasiparticle:

L�ðX; pÞ ¼ r
Z d�

4�
½1þ fbðEpÞ þ f �bðEpÞ�; (34)

where Ep � 1
2 ½Ei þ rjpj cos��. Here, Ei � ðM2

i þ p2Þ1=2
and p are the components of the four-momentum p of the

heavy scalar in the rest-frame of the medium, and r �
ð1� 4m2=M2

i Þ1=2. For massless toy-baryons in vacuum
Lvac
� jm¼0 ¼ 1. Taking a nonzero toy-baryon mass m into

account yields Lvac
� ¼ r. In medium (symmetric case), we

find using Eq. (34)

L�ðX; pÞ
Lvac
�

¼ 1þ 2

rjpj
Z Emax=2

Emin=2
fbðEÞdE; (35)

where Emax ¼ Ei þ rjpj and Emin ¼ Ei � rjpj are the
largest and smallest kinematically allowed energies of
the light scalars produced in the decay c i ! bb.

As we show in Appendix B, analogously to (32) the
Wigner transforms of the retarded and advanced propaga-
tors can be represented as linear combinations of two

Hermitian matrices. Applied to the matrix Ĝ this implies
that it splits into two real-valued diagonal matrices:

G jj
RðAÞ ¼ Gjj

h 
 i

2
Gjj

� : (36)

In the hierarchical case we can neglect the finite decay

widths of the quasiparticle species and approximate Gjj
� by

(9). It diverges on the mass shell of the jth quasiparticle
and is zero everywhere else. Because of the presence ofGii

_

in (23), the CP-violating parameter (30) must be evaluated
on the mass shell of the ith quasiparticle. Since the product

ofGii
_ andGjj

� vanishes in the quasiparticle approximation,

we conclude that only the Gh term contributes. It is given
by [19]

G ii
h ¼ � p2 �M2

i ��ii
h

ðp2 �M2
i ��ii

h Þ2 þ 1
4 ð�ii

�Þ2
: (37)

In vacuum the tree-level decay width of the heavy species
is given by �i ¼ jgij2=ð16�MiÞ. Therefore, we can rewrite
the diagonal components of the spectral self-energy in the
form �ii

� ¼ �2Mi�iL�.

In the hierarchical case jM2
i �M2

j j 	 j�ii
h ��jj

h j.
Substituting (32) and (36) into (30), and evaluating the
momentum on-shell, p2 ¼ M2

i , we then obtain for the
CP-violating parameter3

�i ¼ �Imðgj=giÞGjj
h �

ji
�

¼ � jgjj2
16�

Im

�gig�j
g�i gj

� M2
j �M2

i

ðM2
j �M2

i Þ2 þ ðMj�jÞ2L2
�

� L�:

(38)

For massless toy-baryons in vacuum L� ¼ 1 and we re-

cover the classical result (2). In the strongly hierarchical
limit, one can neglect the decay width �j in the denomi-

nator of (38). In this case,

�i=�
vac
i ¼ L�ðX; pÞ=Lvac

� : (39)

This result is identical to the one for the vertex contri-
bution [2]. The CP-violating parameter is given by a sum
of vacuum and medium contributions. From Eq. (35), we
find that the medium contributions are proportional to the
one-particle distribution function, which is positive.
Hence, for the scalar toy model and the strongly hierarch-
ical limit considered here, the self-energy contribution to
the CP-violating parameter is always enhanced by the
medium effects.
Note that the medium contribution depends only on the

distribution function of the toy-baryons and is independent
of that of the toy-Majoranas. Since we expect the light
scalars to be close to kinetic equilibrium at all times, it is
instructive to estimate the size of the corrections in thermal
equilibrium. In the hierarchical limit the asymmetry is

3Note that, by setting p2 ¼ M2
i , we neglect possible off-shell

effects (see Appendix A). This is a good approximation if jMi �
Mjj 	 �i, �j, which is the case in the strongly hierarchical case.
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predominantly generated by the decay of the lighter toy-
Majorana. Inserting a Bose-Einstein distribution (BE) or a
Maxwell-Boltzmann (MB) distribution function we obtain
for the ratio of the corresponding CP-violating parameter
and its vacuum value:

�1ðjpjÞ
�vac1

¼1þ 2T

rjpj

8<
:
lnð1�expð�Emax�2�

2T Þ
1�expð�Emin�2�

2T ÞÞ BE;

e�ððEmin�2�Þ=ð2TÞÞ�e�ððEmax�2�Þ=2TÞ MB:

The temperature- and momentum dependence of the
medium correction in the range of typical momenta jpj �
T is shown in the shaded areas in Fig. 3 for the BE and MB
cases, respectively. We also show the CP-violating pa-
rameter h�1i obtained by averaging Eq. (38) over the
momentum jpj. As expected, h�1i � �1ðjpj � TÞ.

As we have argued above, the conventional interpreta-
tion of the CP-violating parameter is only possible if the
off-diagonal components of the full propagator peak at the
same values of the momentum as the diagonal ones. In
Fig. 4 we show the qualitative behavior of the components
of the diagonal and full spectral functions as obtained from
Eq. (B50). As one can infer from the plot, the off-diagonal

components Gij
� do peak at the same values of the momen-

tum argument as the diagonal ones. Furthermore, the peaks
of Gii

� and Gii
� are almost indistinguishable. Therefore we

can use the Boltzmann equations for the diagonal propa-

gators Ĝ to calculate the asymmetry.
To conclude this section, let us estimate the range of

applicability of (38). It was obtained by approximating the

denominator of (27) by unity. Since Ĝy
A ¼ ĜR and �̂y

A ¼
�̂R we obtain

jgij2ð�i
b þ �i

�b
Þ ¼ X

j�i

½2jgjj2jGjj
R�

ji
R j2

� 4Reðgig�j ÞReðGjj
R�

ji
R Þ�: (40)

Evaluated on the mass-shell of the ith quasiparticle, the
retarded propagator,

G jj
R ¼ � 1

p2 �M2
j ��jj

R

; (41)

is of the order of the inverse splitting of the squared

masses, 1=�M2. Thus the contribution jGjj
R�

ji
R j2 is of

order of ð�=�M2Þ2, whereas the contribution involving

ReðGjj
R�

ji
R Þ is of order of (�=�M2).

In the hierarchical limit these ratios are much smaller
than unity and the denominator of (27) can well be ap-
proximated by 1. On the contrary, in the quasidegenerate
case the corrections can become large and (38) is no longer
applicable.

B. Resonant case

If the spectrum of heavy (toy-)neutrinos is quasidegen-
erate, jM1 �M2j=M1 � 1, theCP-violation parameter (2)
predicts a resonant enhancement of the generated asym-
metry, known as resonant leptogenesis [6]. Because of the

FIG. 3 (color online). Effective self-energy CP-violating pa-
rameter �1 in medium obtained from the Kadanoff-Baym for-
malism. The shaded areas correspond to the range
0:25 � jpj=T � 4 of momenta jpj of the decaying particle c 1

with respect to the rest-frame of the medium. Here we assumed a
thermal Bose-Einstein (BE) or Maxwell-Boltzmann (MB) dis-
tribution for b= �b with vanishing chemical potential. In the low-
temperature limit (NR), the vacuum value is approached. In the
high-temperature limit (UR), the CP-violating parameter is
enhanced within the toy model. We also show the thermally
averaged CP-violating parameter h�1i for the BE (red long-
dashed line) and MB (blue dashed line) cases.

FIG. 4 (color online). Qualitative behavior of the components
of the full and diagonal spectral functions Gij

� and Gii
� for �j �

Mj andMj�j � j�M2
ijj. For illustration we chooseM2=M1 ¼ 2,

jg1j=M1 ¼ 0:5 and jg2j=M2 ¼ 0:8. The diagonal components
are down-scaled by a factor of 50.
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enhancement, this scenario allows one to circumvent the
lower bound on the lightest right-handed neutrino mass
M1 * 109 GeV typical for thermal leptogenesis [49].
Therefore, resonant leptogenesis is discussed as a possi-
bility to evade constraints from the production of graviti-
nos due to their impact on big bang nucleosynthesis,
associated with the necessity of reheating temperatures
well above M1 in the hierarchical case [50]. Furthermore,
it has even been argued that the resonant enhancement
could lower the scale of right-handed neutrinos to the
TeV range, with possible implications for collider experi-
ments [8,51–53]. Therefore, it is important to check
whether the conventional Boltzmann treatment which
uses the canonical CP-violation parameter (2) agrees
with the nonequilibrium field theory description in the
quasidegenerate limit.

Let us start by noting that the result (38) for the
CP-violating parameter in the strongly hierarchical limit
formally agrees with the canonical result (2) even in the
quasidegenerate case. However, its derivation did involve
approximations that break down in the resonant case. We
will now revisit this derivation, starting from Eq. (27),
without the above approximations. As explained, the de-
nominator of (27) can significantly deviate from unity in
the resonant case, which we take into account here. Using
Eq. (40) we find

�i ¼
�2 Imðgj=giÞ ImðGjj

R�
ji
R Þ

1þ jgjj2
jgij2 jG

jj
R�

ji
R j2 � 2Reðgj=giÞReðGjj

R�
ji
R Þ

: (42)

Note again that we implicitly assume summation over j �
i in the enumerator and the denominator, respectively.

From Eqs. (40) and (32) we see that the denominator of

(42) involves the self-energy�ij
h , which is logarithmically

UV-divergent. It can be renormalized by including a mass
counterterm. As shown in Appendix D, this amounts to the

replacements Ĝ ! Ĝren
, and

�̂ RðAÞðX; pÞ ! �̂ren
RðAÞðX; pÞ

� �̂RðAÞðX; pÞ � �Ẑp2 þ �M̂2: (43)

For our purposes, it is convenient to use an on-shell renor-
malization scheme, for which

�ren;ii
h;vacðp2 ¼ M2

i Þ ¼ 0 ði ¼ 1; 2Þ;
�ren;ij

h;vacðp2 ¼ M2
i Þ ¼ �ren;ij

h;vacðp2 ¼ M2
j Þ ¼ 0 ði � jÞ;

d

dp2
�ren;ii

h;vacðp2 ¼ M2
i Þ ¼ 0 ði ¼ 1; 2Þ;

(44)

where �ren
h;vac ¼ Re�ren

R;vac ¼ Re�ren
A;vac denotes the disper-

sive part of the renormalized self-energy in vacuum.
Note that, in vacuum, the self-energy is time-

independent and depends only on p2 due to Lorentz in-

variance (there is no medium which singles out a preferred
frame). Note also that the six independent counterterms

described by the symmetric two-by-two matrices �Ẑ and

�M̂2 are fully determined by the above renormalization
conditions. For the renormalized self-energy in medium,
we find (see Appendixes A and G)

�ren;ii
h ðX; pÞ ¼ �med;ii

h ðX; pÞ þ jgij2
16�2

�
ln
jp2j
M2

i

� p2 �M2
i

M2
i

�
;

�ren;ij
h ðX; pÞ ¼ �med;ij

h ðX; pÞ þ Reðgig�j Þ
16�2

�p2 �M2
j

M2
i �M2

j

ln
jp2j
M2

i

þ p2 �M2
i

M2
j �M2

i

ln
jp2j
M2

j

�
ði � jÞ; (45)

where, in the medium rest-frame (for i, j ¼ 1; 2),

�med;ij
h ðX; pÞ ¼ �Reðgig�j Þ

16�2jpj
Z 1

0
dE½fbðEÞ þ f �bðEÞ�

� ln

��������
ð2Eþ jpjÞ2 � p2

0

ð2E� jpjÞ2 � p2
0

��������
� �Reðgig�j Þ

8�
Lmed
h ðX; pÞ: (46)

It is also straightforward to generalize the decomposition
(32) to the renormalized case. While the imaginary part
L�ðX; pÞ is not affected, we define (for i, j ¼ 1; 2)

�ren;ij
h ðX; pÞ � �1

16�
ðgig�j þ g�i gjÞLren;ij

h ðX; pÞ: (47)

Since we will only use the renormalized quantities from
now on, we omit the superscript ren for brevity. Then,
using also (36), we find

�i ¼ � jgjj2
16�

Im

�gig�j
g�i gj

�

� Gjj
h L� þ Gjj

� L
ij
h

1þ 4Mj�j
½Reðgig�j Þ�2
jgij2jgjj2 ½Mj�jjGjj

R L
ji
R j2 þ ReðGjj

R L
ji
R Þ�

;

(48)

where Mj�j � jgjj2=ð16�Þ and Lij
R � Lij

h þ i
2L�. Note

that Gjj
R , which is given by (41), as well as its real and

imaginary components, Gjj
h and Gjj

� , also contain the re-

normalized self-energy.
The propagators and the components of the self-energy

in (48) are functions of the center coordinate X and the
four-momentum p. In general, the components of p are not
related by the on-shell condition, so that (48) describes
CP-violating effects in the decays of on- and off-shell toy-
Majoranas. However, if jM2

i �M2
j j * Mi�i,Mj�j then the

largest contribution to �i comes from on-shell momenta.
The in-medium dispersion relation Emed

i is determined by
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the equation4

p2 �M2
i � Re�ii

RðX; pÞjp0¼Emed
i

¼ 0: (49)

An effective, momentum-dependent mass can be defined

by the relation Emed
i � ½ðMmed

i Þ2 þ jpj2�1=2, which implies

Mmed
i ¼ ðM2

i þ Re�ii
RðX; pÞjp0¼Emed

i
Þ1=2: (50)

By means of Eq. (50) we take the mass-shift of the in-
medium masses, �Mi � Mmed

i �Mi, into account. In a
thermal medium, they correspond to thermal masses.
Even though the mass shifts �Mi are small compared to
Mi, they can be important for the mass difference in the
quasidegenerate case.

Finally, we evaluate Eq. (48) for p0 ¼ Emed
i , using Eqs.

(41) and (36). We obtain the following result for the
CP-violating parameter:

�i ¼
jgjj2
16�

Im

�gig�j
g�i gj

�

� �ij � �ij

c2CP½�ij � �ij�2 þ s2CP½�2
ij þ ðMj�jÞ2L2

��
� L�;

(51)

where L� � L�ðX; pÞjp0¼Emed
i

encodes the medium correc-

tion discussed already in the hierarchical case, obtained by

replacingMi ! Mmed
i in (35). The denominator consists of

two contributions, weighted by the parameters

c2CP � ½Reðgig�j Þ=ðjgijjgjjÞ�2 ¼ cos2ð�CPÞ;
s2CP � ½Imðgig�j Þ=ðjgijjgjjÞ�2 ¼ sin2ð�CPÞ;

(52)

related to the CP-violating phase �CP � argðg�1g2Þ.
Furthermore, the degeneracy parameter,

�ij � ðMmed
i Þ2 � ðMmed

j Þ2 þ �0
ij; (53)

is given by the difference of the in-medium (‘‘thermal’’)
masses of the heavy toy-neutrinos, plus logarithmic cor-
rections (here we display the superscript ren again for
clarity):

�ij � 2Mj�jL
ren;ij
h ðX; pÞjp0¼Emed

i
;

�0
ij � 2Mj�jðLren;jj

h ðX; pÞjp0¼Emed
i

� Lren;jj
h ðX; pÞjp0¼Emed

j
Þ:

(54)

As we have already mentioned, the resonance effects
modify not only the CP-violating parameters, but also the
total decay widths of the heavy particles; see Eq. (28).
Using the functions and definitions introduced above we
can write the in-medium decay widths in the form

�med
i ¼ �i

c2CP½�ij � �ij�2 þ s2CP½�2
ij þ ðMj�jÞ2L2

��
½�ij � 2c2CP�ij�2 þ ½s2CPðMj�jL�Þ þ c2CP�

2
ij=ðMj�jL�Þ�2

: (55)

In the limit jM2
i �M2

j j 	 Mj�j, the CP-violating pa-

rameter (51) converges toward the result (38) for the
hierarchical case. Our result for the resonant case,
Eq. (51), describes the leading corrections when the above
ratio becomes sizable. However, one should keep in mind
that, in the ‘‘maximal resonant’’ case, where the decay
width is comparable to the mass difference, the
Boltzmann picture breaks down. The following simple
argument supports this statement: To a good approxima-
tion the spectral functions Gii

� of the heavy fields have a

Breit-Wigner shape. To evaluate the gain and loss terms (5)
we have to integrate over the frequency k0 of the heavy
particles’ propagator. If the distance between the peaks of
the spectral function is considerably larger than the decay
widths, the integration reduces to two independent integra-
tions in the vicinities of the corresponding mass shells.
Thus, we can identify two independent quasiparticle ex-

citations with the corresponding distribution functions fc 1

and fc 2
and the CP-violating parameters �1 and �2 which

contribute to the generation of the asymmetry. On the other
hand, if the decay width is comparable to the difference of
the masses, then the peaks of the spectral functions overlap
and neither the distribution functions, nor the CP-violating
parameters, are well-defined. In Fig. 5 we present the
qualitative behavior of the diagonal and off-diagonal com-

ponents of the full and diagonal spectral functions Gij
� and

Gii
�. As one can infer from the plot, the off-diagonal

components of the full spectral function no longer have
two pronounced peaks. Thus, it is not possible to define
two CP-violating parameters. The shape of the diagonal
components deviates from the Breit-Wigner one, and the
positions of the peaks of Gii

� are shifted as compared to

those for the diagonal spectral functionGii
�. In other words,

using the Boltzmann equation for the diagonal propagators

Ĝ to calculate the generated asymmetry is no longer a good
approximation because of the off-shell effects. Moreover,
since the microscopic time scales (tmic � �M�1) and the
macroscopic time scales (tmac � ��1) can be of the same
order of magnitude in the ‘‘maximal resonant’’ regime, the
memory effects can play an important role. Thus we con-
clude that in this case, one should use the quantum kinetic

4The contributions of off-shell momenta can be partially taken
into account by evaluating the CP-violating parameter at a
complex value of p determined by p2 �M2

i ��ii
RðX; pÞ ¼ 0

[24]. However, note that this approach [just as the original result
(48), which is valid also off-shell] requires the use of an off-shell
generalization of the Boltzmann equations.
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equations discussed in Appendix B, which take off-shell
effects into account, or even the full nonlocal quantum
evolution equations discussed in Appendix E, which also
capture memory and correlation effects.

With these considerations in mind, let us now analyze
the Kadanoff-Baym/Schwinger-Keldysh result (51) for the
CP-violating parameter in the resonant (but not maximal
resonant) regime, for some particular cases of interest. For
definiteness we concentrate here on �1, i.e. i ¼ 1, j ¼ 2
assuming that M1 <M2. In terms of the ratio

R � M2
j �M2

i

Mj�j

; (56)

the condition of validity for the Boltzmann treatment can
be expressed as R 	 1. The hierarchical limit corresponds
to R ! 1. In the following we study the leading correc-
tions in 1=R.

In order to separate medium and resonance corrections,
we first consider the vacuum limit fbð �bÞ ! 0. The renor-

malization prescription Eqs. (44) ensures that Mmed
i !

Mvac
i ¼ Mi, i.e. M1 and M2 are the on-shell masses in

vacuum. Furthermore, adopting the scheme (44) also im-
plies that �ij ! �vac

ij ¼ 0 and

�0
ij ! ð�0

ijÞvac ¼ � jgjj2
16�2

�
ln

�
M2

i

M2
j

�
�M2

i �M2
j

M2
j

�
: (57)

Therefore, in the vacuum limit the degeneracy parameter
is given by

�ij ! �vac
ij ¼ M2

i �M2
j þ ð�0

ijÞvac: (58)

For jgjj=Mj � 1, the loop correction can be safely

neglected. Thus, in the vacuum limit the CP-violating
parameter is approximately given by

�vaci 
 � jgjj2
16�

Im

�gig�j
g�i gj

� M2
j �M2

i

ðM2
j �M2

i Þ2 þ s2CPM
2
j�

2
j

¼ sinð2�CPÞ R

R2 þ sin2ð�CPÞ
: (59)

Compared to the conventional result (2) the width in the
denominator is effectively changed according to �j !
jsCPj�j. Since jsCPj � 1, this means that for fixed values

of R and �CP the result above is always larger compared to
the conventional one. This property may be attributed to
the fact that the Kadanoff-Baym formalism takes a resum-
mation of resonant contributions into account. Note that, if
taken at face value, the expression (59) for �vaci formally
has a peak at R� � jsCPj, with maximum j��i j ¼ jcCPj and
width �jsCPj�j. The width reduces to zero in the limit of

vanishing CP-violation, �CP ! 0, although the peak value
remains finite. On the contrary, for the conventional result
(2) one has R� � 1, j��i j ¼ jsCPcCPj, and a width ��j.

However, we stress that the result should only be trusted
in the regime where R 	 1, and can be modified signifi-
cantly by medium effects.
There are two sources of medium corrections in the

resonant case. The first is the contribution from the spectral
(imaginary) part of the self-energy loop, given by L� in

Eq. (51). This contribution is known already from the
hierarchical case; see Eq. (38) as well as Fig. 3. The second
contribution stemming from the real part of the self-energy
loop, given by Lmed

h , enters via the thermal masses and also

via the ‘‘logarithmic’’ corrections.
For illustration, we insert a Bose-Einstein distribution

for fb and f �b (with � ¼ 0) in the expression for �med
h in

Eq. (46). In the limit T & Mi, we obtain

ðMmed
i Þ2 
 M2

i þ
1

6

jgij2
M2

i

T2; (60)

�ij 
 � jgjj2
16�2

ln

�ðMmed
i Þ2
M2

i

�
� 1

6

jgjj2
M2

i

T2;

�0
ij 
 � jgjj2

16�2

�
ln

�ðMmed
i Þ2

ðMmed
j Þ2

�
� ðMmed

i Þ2 � ðMmed
j Þ2

M2
j

�

� 1

6
jgjj2ððMmed

i Þ�2 � ðMmed
j Þ�2ÞT2: (61)

The term in square brackets is of second order in the mass-
squared difference and can be neglected. Assuming in
addition jgjj2 � M2

j , the degeneracy parameter is approxi-

mately given by

�ij 
 M2
i �M2

j þ
T2

6

�jgij2
M2

i

� jgjj2
M2

j

�
: (62)

FIG. 5 (color online). Qualitative behavior of the diagonal and
off-diagonal components of full and diagonal spectral functions
Gij

� and Gii
� in the maximal resonant limit M2

j 	 j�M2
ijj &

Mj�j. For illustration we choose M2=M1 ¼ 1:02, jg1j=M1 ¼
0:5 and jg2j=M2 ¼ 0:8. The diagonal components are not scaled.
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In the quasidegenerate limit it is plausible to assume that
also the couplings are quasidegenerate, jg1j2 ’ jg2j2. In
this case, the thermal corrections stemming from the dis-
persive part of the self-energy cancel approximately. In
general, the thermal corrections could also be larger than
the mass-splitting of the vacuum masses. If the vacuum
masses are quasidegenerate, this would destroy the reso-
nance condition. However, also the opposite case is pos-
sible, namely �ij could become tiny due to a cancellation

of the vacuum masses and the thermal corrections for a
certain temperature. Then the resonant enhancement
would occur only close to this particular temperature. We
do not pursue these possibilities further here. Assuming,
for simplicity, that the thermal contributions in Eqs. (61)
and (62) are subdominant, we can summarize the results
for the medium- and resonance corrections to the
CP-violating parameter as follows:

�i 
 sinð2�CPÞ

8>>><
>>>:

R
R2þ1

conventional
R�L�

R2þL2
�

med:corr:
R�L�

R2þs2
CP

L2
�

med:þ res:corr:

(63)

The first two expressions follow directly from Eq. (2) and
(38), respectively. The third one approximates the resonant
result, Eq. (51), for R * 5.

In Fig. 6 we show the ratio of the expressions for the
CP-violating parameter, Eq. (51), which includes medium
and resonance corrections, and Eq. (38), which includes
only medium corrections, for several values of the degen-
eracy parameter R. Large values of R correspond to the
hierarchical case and there is no difference between the
two approximations. On the other hand, for small values of
R the corrections are substantial. For instance for R ¼ 10

the expression without resonance corrections underesti-
mates the CP-violating parameter by a factor of 2 at high
temperatures.
Since typically most of the asymmetry is generated at

T �M1, it is instructive to look at the CP-violating pa-
rameter as a function of the degeneracy parameter R at T ¼
M1.
In Fig. 7 we present the R-dependence of the conven-

tional vacuum approximation for theCP-violating parame-
ter, Eq. (2), the hierarchical approximation in medium,
Eq. (38), and the resonant expression, Eq. (51), respec-
tively. Very large values of R correspond to M2 	 M1. In
this case the resonance effects are suppressed and all three
expressions go to zero / R�1. For smaller values of R we
observe a significant deviation of theCP-violating parame-
ter from its vacuum value, which is due to medium effects.
Finally for even smaller values of R the resonant effects
become important and we observe a deviation of the
CP-violating parameter from its value calculated in the
hierarchical approximation.
The effective decay widths �med

i are also enhanced by
the medium and resonance effects. The enhancement in-
creases with the temperature; see Fig. 8. Furthermore, it
strongly depends on the values of the degeneracy parame-
terR, as can be seen in Fig. 9. Even for reasonable values of
the degeneracy parameter the effective decay width can be
twice as large as in vacuum. This leads to a faster decay of
the toy-Majoranas. Also the inverse decay processes are
more efficient in washing out the asymmetry. In other

FIG. 6 (color online). Corrections to the effective self-energy
CP-violating parameter �1 in the resonant case obtained from
the Kadanoff-Baym formalism (for jg1j ¼ jg2j ¼ 0:01M1,
�CP ¼ �=8, and jpj ¼ T; the mass M2 is determined by the
value of R).

FIG. 7 (color online). Dependence of the vacuum (dotted line),
hierarchical (dashed line), and resonant (solid line) approxima-
tions for the CP-violating parameter on the degeneracy parame-
ter R calculated at T ¼ M1 (for the same parameter values as in
Fig. 6). The dot-dashed line shows the approximate expression
for the resonant case from the last line of Eq. (63). The
Boltzmann approximation requires R 	 1 and therefore the
results for the CP-violating parameter are not applicable in the
gray shaded region. We show them only for comparison with the
conventional result.
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words, the increase in the generated asymmetry due to the
enhancement of the CP-violating parameter can be par-
tially compensated by the increase of the in-medium decay
widths. Let us also note that the observed enhancement of
the total in-medium decay widths could be very important
in the scenarios with very small values of the degeneracy
parameter [54,55].

IV. NUMERICAL RESULTS

For the moment we consider numerical solutions only
for the strongly hierarchical case, as the resonant case is
more involved and one cannot obtain consistent Boltzmann

equations for the maximal resonant case. To obtain the
Boltzmann equations for fb and f �b we integrate Eqs. (3)
and the corresponding equation for �b, together with Eq. (5),
over p0. The Boltzmann equations for fc i

are obtained

from Eq. (B52). As one can infer from Fig. 4, in the
hierarchical case the off-diagonal components of the full

propagators Ĝ are subdominant and the diagonal compo-

nents of Ĝ are almost identical to those of Ĝ. Therefore, we
can neglect the off-diagonal components in the kinetic

equations (B52) for the full propagators Ĝ_ and approxi-
mate them by the kinetic equations (B53) for the corre-

sponding diagonal propagators Ĝ_. The Boltzmann
equations are then obtained after using the Kadanoff-
Baym ansatz (8) and the quasiparticle approximation (9).
We solve the coupled system of Boltzmann equations in

the spatially homogeneous and isotropic case in (spatially
flat and radiation dominated) Friedmann-Robertson-
Walker space-time. They take the form

L½f�ðjpjÞ � p�D�fðjpjÞ ¼ p0

�
@

@t
� jpjH @

@jpj
�
fðjpjÞ;

(64)

where H � _a=a is the Hubble parameter. As usual, the
integrations over the time components of each of the
invariant four-volume elements in the collision terms can
be performed trivially after the quasiparticle approxima-
tions for the spectral functions have been inserted.
The resulting system of Boltzmann equations takes the

same form as the one presented in [2] for the vertex
contributions. As in the vertex case the structure differs
from the usual one obtained in the conventional bottom-up
approach. In particular, we do not need to include the RIS
part of the collision terms for the processes bb $ �b �b
because our collision terms for the processes bb $ c 1

and �b �b $ c 1 do not suffer from the generation of an
asymmetry in equilibrium. The form of these equations is
also necessary to guarantee cancellation of the gain- and
loss-term contributions in equilibrium when the quantum
statistical terms are present. This structure can be trans-
lated directly from the toy-model to established scenarios
of leptogenesis and baryogenesis by analogy. Therefore,
we consider it as important, also for phenomenological
studies, and repeat it here:

L½fb�ðjpjÞ ¼ Cbb$bb½fb�ðjpjÞ þ Cb �b$b �b½fb; f �b�ðjpjÞ
þ Cbb$c 1

½fb; fc 1
�ðjpjÞ; (65a)

L½f �b�ðjpjÞ ¼ C �b �b$ �b �b½f �b�ðjpjÞ þ C �bb$ �bb½f �b; fb�ðjpjÞ
þ C �b �b$c 1

½f �b; fc 1
�ðjpjÞ; (65b)

L½fc 1
�ðjpjÞ ¼ Cc 1$bb½fc 1

; fb�ðjpjÞ
þ Cc 1$ �b �b½fc 1

; f �b�ðjpjÞ: (65c)

Here, Ci$f denotes the collision term for a process i ! f.

The collision terms for the 2 $ 2 scattering processes in
(65a) are given by

FIG. 8 (color online). Ratio of the in-medium decay width of
the lightest toy-Majorana to its tree-level value as a function of
the dimensionless inverse temperature calculated for various
values of the degeneracy parameter R.

FIG. 9 (color online). Ratio of the in-medium decay width of
the lightest toy-Majorana to its tree-level value as a function of
the degeneracy parameter R calculated at T ¼ M1.
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Cbb$bb½fb�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
d�3

p4
ð2�Þ4�ðpþ p2 � p3 � p4Þ 12�

2f½1þ fbðjpjÞ�½1þ fbðjp2jÞ�fbðjp3jÞfbðjp4jÞ
� fbðjpjÞfbðjp2jÞ½1þ fbðjp3jÞ�½1þ fbðjp4jÞ�g; (66a)

Cb �b$b �b½fb; f �b�ðjpjÞ ¼
1

2

Z
d�3

p2
d�3

p3
d�3

p4
ð2�Þ4�ðpþ p2 � p3 � p4Þ�2f½1þ fbðjpjÞ�½1þ f �bðjp2jÞ�f �bðjp3jÞfbðjp4jÞ

� fbðjpjÞf �bðjp2jÞ½1þ f �bðjp3jÞ�½1þ fbðjp4jÞ�g: (66b)

Replacing fb with f �b in Eqs. (66) one obtains the analogous terms in the equation for �b. The collision terms in Eq. (65c) are
obtained by inserting the diagonal components of the self-energy Eq. (F5) into Eq. (B53):

Cc 1$bb½fc 1
;fb�ðjpjÞþCc 1$ �b �b½fc 1

;f �b�ðjpjÞ ’
1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ðp�p2�p3Þ12 jg1j

2½f½1þfc 1
ðjpjÞ�fbðjp2jÞfbðjp3jÞ

�fc 1
ðjpjÞ½1þfbðjp2jÞ�½1þfbðjp3jÞ�gþf½1þfc 1

ðjpjÞ�f �bðjp2jÞf �bðjp3jÞ
�fc 1

ðjpjÞ½1þf �bðjp2jÞ�½1þf �bðjp3jÞ�g�: (67)

In the framework of the toy model theCP-violating parameter for the self-energy loop contributions �i given in Eq. (38), in
the strongly hierarchical limit M2 	 M1, differs by just a (symmetrization) factor 1=2 from the vertex contributions. It
appears explicitly in the collision terms for the (inverse) decay of c 1 into bb or �b �b :

Cbb$c 1
½fb; fc 1

�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ðp2 � p� p3Þjg1j2½1þ �1ðjp3jÞ�f½1þ fbðjpjÞ�½1þ fbðjp2jÞ�

� fc 1
ðjp3jÞ � fbðjpjÞfbðjp2jÞ½1þ fc 1

ðjp3jÞ�g; (68a)

C �b �b$c 1
½f �b; fc 1

�ðjpjÞ ¼ 1

2

Z
d�3

p2
d�3

p3
ð2�Þ4�ðp2 � p� p3Þjg1j2½1� �1ðjp3jÞ�f½1þ f �bðjpjÞ�½1þ f �bðjp2jÞ�

� fc 1
ðjp3jÞ � f �bðjpjÞf �bðjp2jÞ½1þ fc 1

ðjp3jÞ�g: (68b)

The network of Boltzmann equations (65) should be under-
stood in a generalized sense. The ‘‘amplitudes’’ which
appear here differ from the usual perturbative matrix ele-
ments and do not share their symmetry properties.

In order to study the effect of the quantum corrections,
we can again compare the results obtained by integrating
the network of Boltzmann equations with quantum-
corrected �1ðjpjÞ with the corresponding ones in the vac-
uum limit �vac1 . The computation is started at sufficiently

high temperatures so that all species, including c 1 with
mass M1 ¼ 1010 GeV, have relativistic initial distribu-
tions. In addition, we assume that the interactions are in
chemical equilibrium in the beginning, i.e. �c 1

¼ 2�b ¼
2� �b. We start with sufficiently negative chemical poten-
tials �b as to avoid Bose-Einstein condensation of the
different species.5

We choose the coupling � (and gi via �1 and 
) such that
the 2 $ 2 scattering rates are much larger than those of the
decays and inverse decays. This assures that the light

species are kept in kinetic equilibrium, as in the standard
leptogenesis scenario. As shown in [2] there is no need to
compute the collision integrals for 2 $ 2 scattering explic-
itly in this case. This means that they can be described in
terms of four parameters�b, Tb and� �b, T �b which obey the
relation T �b ¼ Tb. Hence, we studied the evolution of fb

FIG. 10 (color online). The distribution function for the mas-
sive species fc 1

can deviate significantly from equilibrium for

smaller washout factors (here 
 ’ 0:01).

5As was explained in [2] this necessity arises here because we
consider the system (65)–(68) as closed so that there are no
interactions which can remove the produced over-densities of bs
and �bs from the system. Therefore b and �b can in principle
undergo Bose-Einstein condensation, which we avoid by choos-
ing �b and � �b appropriately. Such interactions will be present in
a phenomenological scenario. Whether the possibility of Bose-
Einstein condensation exists in such scenarios will have to be
answered by solving appropriate kinetic equations.
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and f �b in terms of only three parameters. In contrast, the
full equation for c 1 was discretized on a grid with 400
momentum modes and solved simultaneously. For this
purpose, homogeneity and isotropy was assumed, so that
the angular integration can be performed as in [56] in a
rather general case or in the appendix of [2] for the present
special case. As shown in Fig. 10, for small washout
parameters,


 � �1=HðM1Þ ¼ jg1j2mpl=ð4:5 � 16� ffiffiffiffiffi
g�

p
M3

1Þ; (69)

the distribution function can deviate significantly from the
equilibrium form (for which the curves would be straight
lines). An equilibrium form would be a necessary assump-
tion to obtain rate equations. The generated ‘‘baryon’’
asymmetry is defined as

�ðM1=TÞ ¼ nbðM1=TÞ � n �bðM1=TÞ
sðM1=TÞ ; (70)

where nb and n �b are the number densities of species b and
�b and s is the standard cosmological entropy density [25].
We denote the analogous quantity, corresponding to the
solution for �vac1 , by �vacðM1=TÞ. Figure 11 shows the

result for the ratio h�1i=�vac1 for various values of the
washout parameter. Comparing it to the thermal equilib-
rium result in Fig. 3 one sees a flattening for small M1=T
which is caused by the finite chemical potential of b and �b
in the initial conditions. One would obtain larger correc-
tions if additional interactions for b and �b would be intro-
duced in order to start with smaller chemical potentials.

The generated ‘‘baryon’’ asymmetry does not depend
monotonously on the washout parameter 
 when the me-
dium corrections are taken into account. This can be in-
ferred from Fig. 12 where the dependence of the final
asymmetries � ¼ �ðM1=T ! 1Þ and �vac ¼

�vacðM1=T ! 1Þ are presented. In the present case, where
b and �b are bosons, the quantum corrections always lead to
an enhancement of the asymmetry compared to the results
without the corrections and the asymmetry � has a maxi-
mum for moderate washout factors 
 ’ 0:059. The maxi-
mum of the relative enhancement of about 26% is reached
at 
 ’ 0:34. The enhancement of �1 due to the quantum
corrections is suppressed at large washout factors, since the
same processes which create and diminish the asymmetry
are effective at late times, where the CP-violating parame-
ter takes smaller values (compare Fig. 11). In the opposite
case of small 
, the particles decay late so that the washout
is ineffective. However, the interval of integration in
Eq. (35) is located at relatively large momenta since the
mass increasingly dominates the relativistic energies as the
momenta are redshifted to smaller values. This means that
the integration is over an interval in which the distribution
f �b becomes smaller and smaller. Therefore, the relative
quantum corrections go to zero for small 
.
This interpretation of the results was already given in [2]

as they are the same for the vertex and self-energy con-
tributions in the hierarchical limit. We can here draw the
additional conclusion that the combined effect from both
contributions is the same in this limit. This is important
since they could in principle have opposite effects. This is
not the case as the self-energy and vertex CP-violating
parameters differ only by a positive prefactor, just as in the
vacuum case. However, differences between the two can
appear in the resonant regime. In this case the expressions
for the vertex and self-energy contributions to �i have a
different momentum dependence. Additionally, in general
one has to take into account a further Boltzmann equation
for the second heavy species c 2, which is currently being
studied. We would like to stress again that the size and sign
of the corrections depend on the quantum statistics of the

FIG. 11 (color online). The ratio h�1i=�vac1 . The curves flatten
for small M1=T because the initial conditions involve a finite
chemical potential.

FIG. 12 (color online). Dependence of the final asymmetries
and the relative quantum correction ð�� �vacÞ=�vac on the
washout factor 
. The cases a, b, c, d, e, f correspond to
washout factors 0.01, 0.1, 0.366, 1, 10, 100.
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particles in the vertex- and self-energy loops and will be
different in a phenomenological scenario.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied leptogenesis in a simple
toy model consisting of one complex and two real scalar
fields in a top-down approach, using the Schwinger-
Keldysh/Kadanoff-Baym formalism as starting point.
This treatment, based on nonequilibrium quantum field
theory techniques, is motivated by the fact that it allows
a unified description of two key ingredients of leptogene-
sis, namely, deviation from thermal equilibrium and loop-
induced CP-violation.

We find that the structure of the kinetic equations auto-
matically ensures that no asymmetry is produced in ther-
mal equilibrium. In other words there is no need for the real
intermediate state subtraction, i.e. the formalism is free of
the double-counting problem typical for the canonical
approach.

One of the key quantities in leptogenesis is the
CP-violating parameter. Earlier studies have shown that
there are two sources of CP-violation, the vertex and the
self-energy contribution. In this work, we have concen-
trated on the latter. We have found that for scalar fields
medium effects increase the self-energy contribution to the
CP-violating parameter.

Contrary to the results obtained earlier in the framework
of thermal field theory by replacing the zero temperature
propagators with finite temperature propagators in the
matrix elements of the Boltzmann equation, the medium
corrections depend only linearly on the particle number
densities.

Although the formal description of the self-energy and
vertex contributions to the CP-violating parameter is tech-
nically quite different, the results for both are very similar
qualitatively and, in the hierarchical case, even quantita-
tively. In this work, we additionally studied the quaside-
generate case, for which the self-energy contribution is
essential.

We have shown that the canonical expression for the
self-energy CP-violating parameter is only applicable in
the hierarchical case, even though it does not diverge in the
limit of equal masses. In the resonant regime the interac-
tions modify the mass spectrum of the quasiparticle ex-
citations. Furthermore, using the Kadanoff-Baym
formalism, it is possible to take a resummation of resonant
contributions into account. Both effects lead to changes in
the expression for the CP-violating parameter. For moder-
ate values of the degeneracy parameter R the resonance
corrections can enhance the CP-violating parameter by a
factor of 2. Therefore, it is important to take these correc-
tions into account in numerical simulations.

Another important effect is the resonant and medium
enhancement of the total decay widths. It leads to a faster
decay of the heavy particles and more efficient washout of

the generated asymmetry. Therefore, the increase in the
generated asymmetry due to the enhancement of the
CP-violating parameter can be partially compensated by
the increase of the in-medium decay widths.
In the ‘‘maximal resonant’’ regime the Boltzmann pic-

ture is no longer applicable. This can be attributed to the
fact, that in this regime the peaks of the spectral functions
of the heavy (toy-)neutrino fields overlap and it is no longer
possible to unambiguously define quasiparticles and one-
particle distribution functions. Furthermore, the off-
diagonal components of the correlation functions no longer
have two pronounced peaks and therefore it is not possible
to describe the mixing effects in terms of the corresponding
on-shell CP-violating parameters. Consequently, in this
regime the calculation of the generated asymmetry requires
us to use at least two-by-two matrix equations for the
diagonal and off-diagonal components of the propagators
of the heavy fields with (in general) off-shell momenta.
These can be obtained from the quantum kinetic equations
by dropping the Poisson brackets on the right-hand side.
Furthermore, since the microscopic time scales (tmic �
�M�1) and the macroscopic time scales (tmac � ��1) can
be of the same order of magnitude in the maximal resonant
regime, memory effects can play an important role. Taking
both off-shell and memory effects into account consis-
tently requires the use of the full system of Kadanoff-
Baym equations.
The formalism developed in this paper also provides a

powerful tool for analyzing quantum nonequilibrium ef-
fects induced by the expansion of the early Universe. In
particular, there is a small additional ‘‘spontaneous’’ con-
tribution to the CP-violation in the system similar to that
encountered in electroweak baryogenesis [57–60] This
effect will be investigated in a forthcoming paper [61].
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APPENDIX A: CP-VIOLATING PARAMETER

In this appendix, we review the calculation of the self-
energy contribution to the CP-violating parameter in vac-
uum, �vaci � ð�c i!bb � �c i! �b �bÞ=ð�c i!bb þ �c i! �b �bÞ, in

the conventional in-out formalism.
Since the toy-Majoranas are unstable, they cannot ap-

pear as in- or out-states of S-matrix elements. Instead, their
properties are defined by S-matrix elements for scatterings
of stable particles mediated by the unstable neutrino [62].
Resumming the propagator of the intermediate heavy state,
we can separate two-body scattering processes in reso-
nance contributions and the rest. The CP-violating part
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of the resonance contribution can then be interpreted as a
characteristic of the on-shell intermediate toy-Majorana
[5,63]. The amplitude of the s-channel two-body scattering
process bb ! �b �b (see Fig. 13) can conveniently be ex-
pressed as

M bb! �b �b ¼
X
i;j

�A
i G

ijðsÞ�B
j ; (A1)

where �A
i and �B

j represent the vertices c ibb and c j
�b �b

that include the wave functions of the initial and final
states, and Gij are the full propagators obtained by resum-
ming an infinite series of toy-Majorana self-energy graphs
[5].

The resummation can be performed using the
Schwinger-Dyson equation in vacuum:

½G�1�ijðp2Þ ¼ ½p2 �M2
i ��ij ��ijðp2Þ: (A2)

At one-loop level the self-energy �ij reads

�ijðp2Þ ¼ �gig
�
j þ g�i gj
32�2

Bðp2Þ; (A3)

where

Bðp2Þ ¼ �þ 2� ln
jp2j
�2

þ i�	ðp2Þ; (A4)

and � � ��1 � �þ 4� contains the divergent contribu-
tion. To renormalize the mass and the self-energy we
introduce the wave function and mass counterterms to
the Lagrangian:

�L ¼ 1

2
�Zij@

�c i@�c j � 1

2
�M2

ijc ic j; (A5)

where �Zij and �M2
ij are symmetric two-by-two matrices.

This implies that the renormalized self-energy is given by

�ij
renðp2Þ ¼ �ijðp2Þ � p2�Zij þ �M2

ij: (A6)

In the on-shell renormalization scheme the dispersive parts
of the components of the renormalized self-energy must
satisfy the conditions

�ii
renðp2 ¼M2

i Þ ¼
d

dp2
�ii

renðp2 ¼M2
i Þ ¼ 0; (A7a)

�ij
renðp2 ¼M2

i Þ ¼�ij
renðp2 ¼M2

j Þ ¼ 0 ði� jÞ: (A7b)

Using (A6) and (A7) and the explicit form of the bare self-

energy we calculate �Zij and �M2
ij. Substituting them into

(A6) we find

�ii
ren ¼ jgij2

16�2

�
ln
jp2j
M2

i

� p2 �M2
i

M2
i

� i�	ðp2Þ
�
; (A8a)

�ij
ren ¼

Reðgig�j Þ
16�2

�
p2 �M2

i

M2
j �M2

i

ln
jp2j
M2

j

þ p2 �M2
j

M2
i �M2

j

ln
jp2j
M2

i

� i�	ðp2Þ
�
: (A8b)

Inverting (A2) we obtain for the components of the renor-
malized resummed propagator:

Giiðp2Þ ¼ þ½G�1�jjðp2Þ= det½G�1ðp2Þ�; (A9a)

Gijðp2Þ ¼ �½G�1�ijðp2Þ= det½G�1ðp2Þ�: (A9b)

Because of the presence of absorptive terms in (A8) the
determinant of the inverse propagator in (A9) has two poles
in the complex plane at

si ’ M2
i � iMi�i; (A10)

where �i ¼ jgij2=16�Mi is the tree-level decay width of
c i. Expanding (A9) around the poles and substituting the
leading expansion terms to (A1) we find [6]

M bb! �b �b ’ X
i

VA
i ðsÞ

1

s� si
VB
i ðsÞ; (A11)

where

VAðBÞ
i ðsÞ � �AðBÞ

i � ½G�1�ijðsÞ
½G�1�jjðsÞ

¼ �AðBÞ
i þ �ijðsÞ

s�M2
j ��jjðsÞ�

AðBÞ
j : (A12)

The modulo squared of the bb ! �b �b scattering amplitude
is then given by

jMbb! �b �bj2 ’
X
i

jVA
i ðsÞj2jVB

i ðsÞj2
Mi�i

Mi�i

ðs�MiÞ2 þ ðMi�iÞ2
þ cross terms: (A13)

The Breit-Wigner propagators in the diagonal terms of
(A13) strongly peak on the mass shell of the quasiparticles,
i.e. at s ¼ M2

i and rapidly decrease off the mass shell. In
the limit of vanishing decay widths

Mi�i

ðs�MiÞ2 þ ðMi�iÞ2
! ��ðs�M2

i Þ: (A14)

Furthermore, if jM2
i �M2

j j 	 Mi�i, Mj�j then the two

Breit-Wigner propagators do not overlap and we can ne-
glect the cross terms in (A13). In other words, in this
approximation the resonant (real intermediate state) part
of the amplitude is given by

FIG. 13. Resummed diagrams contributing to the resonant part
of the 2 ! 2 scattering amplitude of the process bb ! �b �b .
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jMbb! �b �bj2 ’
X
i

jVA
i ðsÞj2jVB

i ðsÞj2
Mi�i

��ðs�M2
i Þ: (A15)

Equation (A15) suggests, that VAðBÞ
i should also be eval-

uated at s ¼ M2
i . As follows from (A12) to leading order in

the couplings its modulo squared can be represented in the
form

jVAðBÞ
i j2 ’ �2

i ð1� �iÞ: (A16)

Using the explicit form of the renormalized self-energy
(A8) we obtain for the CP-violating parameters �i in
vacuum

�i ¼ �jgjj2
16�

Im

�gig�j
g�i gj

� M2
j �M2

i

ðM2
j �M2

i Þ2 þM2
j�

2
j

: (A17)

Because of the presence of the Mj�j term in the denomi-

nator of (A17), it does not diverge if Mi ! Mj. However,

the condition jM2
i �M2

j j 	 Mi�i, Mj�j is not satisfied in

this case and therefore the approximations we have made
to derive (A17) are not valid in this limit. Let us also note
that due to approximation (A14) the CP-violating parame-
ter (A17) characterizes on-shell heavy particles.

Integrals of the left- and right-hand sides of (A14) over s
are equal only if we integrate in the range from�1 toþ1.
But in the s-channel the momentum transfer squared is

always positive. Moreover, the functions VAðBÞ
i also depend

on s. Thus, in the transition from (A13) to (A15), i.e. in
replacing the Breit-Wigner propagator by a Dirac

�-function and evaluating VAðBÞ
i at s ¼ M2

i we have made
an approximation which, strictly speaking, is only valid in
the limit �i ! 0. We could perform the integration more
carefully and take the finite widths �i into account using

Cauchy’s integral theorem and evaluating VAðBÞ
i at the poles

si ¼ M2
i � iMi�i. This leads to a slightly different expres-

sion for the CP-violating parameter [24]:

�i ¼ �jgjj2
16�

Im

�gig�j
g�i gj

� M2
j �M2

i

ðM2
j �M2

i Þ2 þ ðMj�j �Mi�iÞ2
:

(A18)

Equation (A18) can be considered as a better estimate of
the CP-violating effects in the system. However, since the
on-shell approximation (A14) no longer applies, one can-
not interpret (A18) as an expression for the CP-violating
parameter of an on-shell state. In other words, strictly
speaking, (A18) would require us to use an off-shell gen-
eralization of the Boltzmann equation.

Let us also note that in the case jM2
i �M2

j j 	 Mi�i,

Mj�j, which we have considered here, the difference be-

tween the two expressions for the CP-violating parameter
can be neglected.

APPENDIX B: MIXING REAL SCALAR FIELDS

In this appendix, we derive the Kadanoff-Baym, quan-
tum kinetic, and Boltzmann equations for a system of two
(or, in general, n) mixing real scalar fields.

1. Schwinger-Dyson equation

The generating functional of such a system reads

Z ¼
Z

Dc 1Dc 2 exp

�
i

�
Sþ Jic i þ 1

2
c iKijc j

��
:

(B1)

The bilinear external source is an n-by-n matrix with the
property Kijðx; yÞ ¼ Kjiðy; xÞ, where n ¼ 2 in the toy

model. Note that the field and the external sources are
defined on the positive and negative branches of a closed
real-time contour; see Fig. 14. Throughout this work, we
use the compact notation of Ref. [29], which avoids the
doubling of the degrees of freedom. In particular, note that
the indices i; j 2 f1; . . . ; ng refer to the two real scalar
fields c i in the toy model.
The functional derivatives of the generating functional

for connected Green’s functions, W ¼ �i lnZ, with re-
spect to the external sources read

@W
@JiðxÞ ¼ �iðxÞ; (B2a)

@W
@Kijðx; yÞ ¼

1

2
½Gjiðy; xÞ þ�iðxÞ�jðyÞ�; (B2b)

where�iðxÞ � hĉ iðxÞi is the expectation value of the field
operator. The propagator Gji is an n-by-n matrix; its off-

diagonal components describe the mixing of the two fields.
We emphasize again that the indices refer to the field
content, and have nothing to do with the branches of the
time-contour.
Performing a Legendre transform of the generating

functional for connected Green’s functions, we obtain the
effective action

� � W � Ji�i � 1

2
tr½KijGji� � 1

2
�iKij�j: (B3)

Its functional derivatives with respect to the expectation
value and the propagator reproduce the external sources:

FIG. 14. Closed real-time path C.
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��

��iðxÞ ¼ �JiðxÞ �
Z

D4zKijðx; zÞ�jðzÞ; (B4a)

��

�Gijðx; yÞ ¼ � 1

2
Kjiðy; xÞ; (B4b)

where D4z � ffiffiffiffiffiffiffi�g
p

d4z and g is the determinant of the

space-time metric.
Shifting the fields by their expectation values c i !

c i þ�i, we can rewrite the effective action in the form

� ¼ �i ln
Z

Dc 1Dc 2 exp

�
i

�
Sþ Jic i þ 1

2
c iKijc j

��

þ Scl½�� � 1

2
tr½KijGji�: (B5)

Next, we tentatively write the effective action in the form

� � Scl½�� þ i

2
lndet½G�1� þ 1

2
tr½G�1

ij Gji� þ �2; (B6)

which defines the functional �2.
Differentiation of the third term on the right-hand side

with respect to the field propagators yields the inverse free
propagators. Note that the latter one is diagonal—in the
absence of interactions the two fields do not mix:

G �1
ij ðx; yÞ ¼ iðhx þM2

i Þ�gðx; yÞ�ij; (B7)

where �gðx; yÞ ¼ ð�gxÞ�1=4�ðx; yÞð�gyÞ�1=4 is a general-

ized Dirac �-function.
The second term on the right-hand side is defined by the

path integral

det

�
G�1

2�

�
�

Z
Dc 1Dc 2 expðc iG

�1
ij c jÞ:

To calculate the functional derivative of lndet½G�1�, we
take into account that

Z
D4zG�1

mkðu; zÞGknðz; vÞ ¼ �gðu; vÞ�mn: (B8)

After some algebra and use of (B8), we obtain

�

�Gijðx; yÞ lndet½G
�1� ¼ �G�1

ji ðy; xÞ: (B9)

The functional derivative of (B6) with respect to G then
reads

��

�Gijðx; yÞ ¼ � i

2
G�1

ji ðy; xÞ þ
i

2
G�1

ji ðy; xÞ þ
��2

�Gijðx; yÞ
¼ � 1

2
Kjiðy; xÞ: (B10)

The considered physical situation corresponds to vanishing
sources. Introducing the self-energy,

�ijðx; yÞ � 2i
��2

�Gjiðy; xÞ ; (B11)

we can then rewrite (B10) in the form

G�1
ij ðx; yÞ ¼ G�1

ij ðx; yÞ ��ijðx; yÞ: (B12)

As can be inferred from (B12), off-diagonal components of
Gij are induced by off-diagonal components of �ij. In the

considered model they arise because both real scalars
couple to the ‘‘baryons’’.

2. Kadanoff-Baym equations

Convolving the Schwinger-Dyson equations (B12) with
G from the right and using (B8), we obtain

i½hx þM2
i �Gijðx; yÞ ¼ �gðx; yÞ�ij

þ
Z

D4z�ikðx; zÞGkjðz; yÞ:
(B13)

The statistical propagators and spectral functions are
defined by

Gij
F ðx; yÞ ¼

1

2
h½c iðxÞ; c jðyÞ�þi; (B14a)

Gij
� ðx; yÞ ¼ ih½c iðxÞ; c jðyÞ��i: (B14b)

From the definitions (B14) it follows that

Gij
F ðx; yÞ ¼ Gij

F ðy; xÞ; Gij
� ðx; yÞ ¼ �Gij

� ðy; xÞ: (B15)

The time-ordered Schwinger-Keldysh propagator (which is
the analogue of the Feynman propagator on the closed time
path) is a linear combination of these functions:

Gijðx; yÞ ¼ Gij
F ðx; yÞ �

i

2
sgnCðx0 � y0ÞGij

� ðx; yÞ: (B16)

Upon use of the signum- and �-function differentiation
rules, the action of the hx operator on the second term in
(B16) yields a product of g00�ðx0; y0Þ and rx

0G�ij
ðx; yÞ.

Using the definition (B14) and the canonical commutation
relations [64]

lim
y0!x0

½c iðx0;xÞ; �jðx0; yÞ�� ¼ i�ðx; yÞ�ij; (B17)

where �j ¼ g00
ffiffiffiffiffiffiffi�g

p r0c j, we find for the derivative of

the spectral function

rx
0G

ij
� ðx; yÞ ¼ �ðx; yÞ�ij

g00
ffiffiffiffiffiffiffi�g

p : (B18)

Multiplication of (B18) by g00�ðx0; y0Þ then gives the
generalized Dirac �-function �gðx; yÞ�ij, which cancels
the �-function on the right-hand side of (B13).
Furthermore, we decompose the self-energy according to

�ijðx; yÞ ¼ �ij
F ðx; yÞ �

i

2
sgnCðx0 � y0Þ�ij

� ðx; yÞ: (B19)

The resulting system of Kadanoff-Baym equations reads
(see [40,65] for more details):
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½hx þM2
i �Gij

F ðx; yÞ ¼
Z y0

0
D4z�ik

F ðx; zÞGkj
� ðz; yÞ

�
Z x0

0
D4z�ik

� ðx; zÞGkj
F ðz; yÞ;

(B20a)

½hx þM2
i �Gij

� ðx; yÞ ¼
Z y0

x0
D4z�ik

� ðx; zÞGkj
� ðz; yÞ: (B20b)

In the limit of just one scalar field it reverts to the system
derived in [19]. Numerical solutions of full Kadanoff-
Baym equations, for systems involving effectively a single
degree of freedom in the scalar sector, have been studied
e.g. in [13,14,66–72].

3. Quantum kinetics

The system of Kadanoff-Baym equations can be rewrit-

ten in terms of the advanced and retarded propagators, Gij
R

and Gij
A :

½hx þM2
i �Gij

Fð�Þðx; yÞ ¼ �
Z

D4z	ðz0Þ

� ½�ik
Fð�Þðx; zÞGkj

A ðz; yÞ
þ�ik

R ðx; zÞGkj
Fð�Þðz; yÞ�: (B21)

In order to close the system, Eqs. (B21) must be supple-
mented with the analogous equations for the retarded and
advanced propagators:

½hx þM2
i �Gij

RðAÞðx; yÞ ¼ �gðx; yÞ�ij

�
Z

D4z�ik
RðAÞðx; zÞGkj

RðAÞðz; yÞ:
(B22)

From the definitions of the retarded and advanced propa-
gators and relations (B15) one can infer that

Gij
R ðx; yÞ � 	ðx0 � y0ÞGij

� ðx; yÞ ¼ �	ðx0 � y0ÞGji
� ðy; xÞ

¼ Gji
A ðy; xÞ: (B23)

Therefore, after interchanging x and y and then i and j in
(B21), we obtain

½hy þM2
j �Gij

Fð�Þðx; yÞ ¼ �
Z

D4z	ðz0Þ

� ½Gik
R ðx; zÞ�kj

Fð�Þðz; yÞ
þGik

Fð�Þðx; zÞ�kj
A ðz; yÞ�: (B24)

The same operation applied to (B22) yields

½hy þM2
j �GAðRÞijðx; yÞ ¼ �gðx; yÞ�ij �

Z
D4zGAðRÞikðx; zÞ

��AðRÞkjðz; yÞ: (B25)

Following the usual procedure, we introduce the center
and relative coordinates X and s [73]. The Wigner trans-
form of the statistical propagator is defined by

Gij
F ðX; pÞ ¼

ffiffiffiffiffiffiffi�g
p

X

Z
d4seipsGij

F ðX; sÞ: (B26)

The definition of the Wigner transform of Gij
� ðX; sÞ differs

from (B26) by an overall factor of �i. From (B15) it then
follows that

Ĝ �
FðX; pÞ ¼ ĜT

FðX; pÞ; Ĝ�
�ðX; pÞ ¼ ĜT

�ðX; pÞ;
(B27)

where the hats denote the corresponding matrices and the
superscript T denotes transposition. As we see, the Wigner
transforms are Hermitian matrices. The Wigner transforms
of the retarded and advanced propagators are defined anal-
ogously to (B26). Using (B23) one can then show that

Ĝ RðX; pÞ ¼ Ĝy
AðX; pÞ: (B28)

Just as in the case of a single real scalar field [19], from the
definitions of theWigner transforms, relation (B23) and the
equality 	ðs0Þ þ 	ð�s0Þ ¼ 1 it follows that

Ĝ RðX; pÞ � ĜAðX; pÞ ¼ iĜ�ðX; pÞ: (B29)

We could have derived Eqs. (B28) and (B29) using the
spectral representation of the retarded and advanced propa-
gators

Ĝ RðAÞðX; pÞ ¼ �
Z d!

2�

Ĝ�ðX;!;pÞ
p0 �!
 i�

: (B30)

The spectral representation also implies that ĜR and ĜA

can be represented as a linear combination of two
Hermitian matrices:

Ĝ RðAÞðX; pÞ ¼ ĜhðX; pÞ 
 i

2
Ĝ�ðX; pÞ: (B31)

Let us now subtract (B24) from (B21) and Wigner-
transform the left- and the right-hand sides of the resulting
equation. On the right-hand side we neglect the memory
effects, that is, we discard the 	-function and replace Xxz,
Xzy by Xxy. Furthermore, we keep only terms at most linear

in theWigner transform of the covariant derivativeD�; see
[19] for more details. Introducing the Poisson brackets,

fAðX; pÞ; BðX; pÞgPB � @

@p�

AðX; pÞD�BðX; pÞ

�D�AðX; pÞ @

@p�

BðX; pÞ;
(B32)

the generalized Poisson brackets6

6If the matrices ÂðX; pÞ and B̂ðX; pÞ are Hermitian and com-
mute, then ½AðX; pÞ; BðX; pÞ�PB ¼ fAðX; pÞ; BðX; pÞgPB.
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½ÂðX; pÞ; B̂ðX; pÞ�PB � �i½ÂðX; pÞ; B̂ðX; pÞ��
þ 1

2
fÂðX; pÞ; B̂ðX; pÞgPB

þ 1

2
fÂðX; pÞ; B̂ðX; pÞgyPB; (B33)

and

�̂ RðAÞðX; pÞ � p̂2 � M̂2 � �̂RðAÞðX; pÞ; (B34)

we can rewrite the result in a compact form:

½�̂RðX; pÞ; ĜFð�ÞðX; pÞ�PB ¼ ĜFð�ÞðX; pÞ�̂�ðX; pÞ
� �̂Fð�ÞðX; pÞĜ�ðX; pÞ
� ½ĜRðX; pÞ; �̂Fð�ÞðX; pÞ�PB:

(B35)

In the case of a single scalar field the commutator in (B33)
vanishes and, using (B31), we can then show that the
quantum kinetic equation (B35) for the spectral function
and statistical propagator revert to those derived in [19].
After some algebra we rewrite the quantum kinetic equa-
tion for the spectral function in the form

½�̂ðX; pÞ; Ĝ�ðX; pÞ�PB ¼ �½ĜhðX; pÞ; �̂�ðX; pÞ�PB;
(B36)

where

�̂ � p̂2 � M̂2 � �̂h: (B37)

The quantum kinetic equations must be supplemented by
the corresponding constraint equations. To derive these, we
add up theWigner transforms of (B24) and (B21). To linear
order in the gradients the resulting constraint equations
read

½�̂RðX;pÞ; ĜFð�ÞðX;pÞ�� ¼ ½�̂Fð�ÞðX;pÞ; ĜAðX;pÞ��þ i

2

�f�̂Fð�ÞðX;pÞ; ĜAðX;pÞgPB�
þ i

2
f�̂RðX;pÞ; ĜFð�ÞðX;pÞgPB�;

(B38)

where we have introduced ½Â; B̂�� � Â B̂þB̂yÂy and

fÂ; B̂gPB� � fÂ; B̂gPB þ fB̂y; ÂygPB to shorten the notation.
In the case of a single scalar field (B38) revert to those
derived in [19]. After some algebra we can again simplify
the constraint equation for the spectral function:

½�̂ðX; pÞ; Ĝ�ðX; pÞ�� ¼ ½�̂�ðX; pÞ; ĜAðX; pÞ�� þ i

2

�f�̂�ðX; pÞ; ĜhðX; pÞgPB� þ i

2

�f�̂hðX; pÞ; Ĝ�ðX; pÞgPB�:
(B39)

To close the system of the constraint equations (B39) we

have to derive the constraint equation for the function Ĝh

or, alternatively, for the retarded propagator:

½�̂RðX; pÞ; ĜRðX; pÞ�þ ¼ �2Î þ 1

2

�f�̂RðX; pÞ; ĜRðX; pÞgPBþ;
(B40)

where the þ operation is defined as the � operation but
does not involve Hermitian conjugation. Unlike in the case
of a single scalar field, the constraint equations (B39) and
(B40) are not algebraic and cannot be solved easily. The
solution of the algebraic part of (B39) and (B40) is not a
solution of the complete differential equations. Therefore,
we conclude that even to linear order in the gradients the
spectrum of the mixing scalar fields depends on the de-
rivative terms described by the Poisson brackets.

4. Solution in the equilibrium limit

Since in vacuum and in thermal equilibrium the system
is homogeneous, isotropic, and static the two-point func-
tions are translationally invariant, i.e. do not depend on the
center coordinate X. Therefore, in thermal equilibrium and
in vacuum, the Poisson brackets (B32) vanish. In the
following, we discuss the solutions of the constraint equa-
tions obtained by neglecting the Poisson brackets.
However, we do not make use of any relations relying on
periodic equilibrium boundary conditions. Therefore, the
formal solutions should also be a reasonable approxima-
tion sufficiently close to equilibrium, when gradient con-
tributions are small. In this case, (B40) reduces to an
algebraic matrix equation. Its solution reads

Ĝ RðX; pÞ ¼ ��̂�1
R ðX; pÞ: (B41)

From the definition (B34), relation (B28) and the analo-
gous relations for the retarded and advanced self-energies

�̂AðRÞ it then follows that

Ĝ AðX; pÞ ¼ ��̂�1
A ðX; pÞ: (B42)

From relation (B31) it follows that

Ĝ �ðX; pÞ ¼ i½�ĜRðX; pÞ þ ĜAðX; pÞ�: (B43)

Using (B41) and (B42) we then find that in equilibrium and
in vacuum

Ĝ �ðX; pÞ ¼ i½�̂�1
R ðX; pÞ � �̂�1

A ðX; pÞ�
¼ ��̂�1

RðAÞðX; pÞ�̂�ðX; pÞ�̂�1
AðRÞðX; pÞ: (B44)

Similarly to (B44), the equilibrium (or vacuum) solution of
the constraint equation for the statistical propagator is
given by

Ĝ FðX; pÞ ¼ ��̂�1
R ðX; pÞ�̂FðX; pÞ�̂�1

A ðX; pÞ: (B45)
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Note that unlike in (B44) the order of the retarded and
advanced components is no longer arbitrary. Let us now

split �̂RðAÞ into off-diagonal and diagonal matrices, the

latter being denoted by �̂RðAÞ. Next we define diagonal

matrices

Ĝ RðAÞðX; pÞ � ��̂�1
RðAÞðX; pÞ (B46)

and

Ĝ Fð�ÞðX; pÞ � ��̂�1
R ðX; pÞ�̂Fð�ÞðX; pÞ�̂�1

A ðX; pÞ;
(B47)

where �̂Fð�Þ denotes the diagonal components of the self-

energy matrices �̂Fð�Þ. Explicitly

G ii
Fð�ÞðX; pÞ ¼ � �ii

Fð�ÞðX; pÞ
½�iiðX; pÞ�2 þ 1

4 ½�ii
�ðX; pÞ�2

: (B48)

In the quasiparticle approximation, i.e. in the limit of
vanishing self-energy, the diagonal spectral function
(B48) reverts to (9). From (B46) we also obtain

Ĝ ii
h ðX; pÞ ¼ � �iiðX; pÞ

½�iiðX; pÞ�2 þ 1
4 ½�ii

�ðX; pÞ�2
: (B49)

In the quasiparticle approximation it reduces to (37).
Combining (B44) and (B45) with (B46) and (B47) we
can express the full propagators in terms of the diagonal
ones:

ĜFð�ÞðX; pÞ ¼ ½Î þ ĜRðX; pÞ�̂0
RðX; pÞ��1½ĜFð�ÞðX; pÞ

� ĜRðX; pÞ�̂0
Fð�ÞðX; pÞĜAðX; pÞ�

� ½Î þ �̂0
AðX; pÞĜAðX; pÞ��1; (B50)

where �̂0 is the off-diagonal part of �̂. From (18) and the
definitions of the Wigner transforms of the statistical
propagator and spectral function it follows that the corre-
sponding Wightman propagators are given by

Ĝ_ðX; pÞ ¼ ĜFðX; pÞ 
 1

2
Ĝ�ðX; pÞ: (B51)

Inverting the resulting (two-by-two) matrices and taking
into account that the products of �0

RðAÞ and GRðAÞ are off-

diagonal we arrive at (22).

5. Boltzmann equation

To obtain Boltzmann equations we neglect the (conven-
tional) Poisson brackets on the right-hand side of (B35). In
the Boltzmann approximation the field’s mass disappears
in the difference of the diagonal components. However, the
difference of the masses squared, �M2

ij ¼ M2
i �M2

j , ap-

pears in the equations for the off-diagonal terms. Moving
these terms to the right-hand side we find

p�D�ĜFð�Þ ¼ i

2
ð½�̂RĜFð�Þ � ĜFð�Þ�̂A�

� ½�̂Fð�ÞĜA � ĜR�̂Fð�Þ�Þ; (B52)

where all the functions are evaluated at the same point
ðX; pÞ of the phase-space. Substituting the equilibrium
solutions (B44) and (B45) into (B52) we see that its
right-hand side vanishes indeed.
If all the matrices in (B52) were diagonal, it would revert

to two independent systems of Boltzmann equations for the
statistical propagator and spectral function:

p�D�Gii
F ¼ 1

2
½Gii

F�
ii
� ��ii

FG
ii
��; (B53a)

p�D�Gii
� ¼ 0: (B53b)

Equation (B53b) is consistent with the fact, that for a single
scalar field the solution for the spectral function (B48) is
valid up to the first order in the gradients. This allows us to
employ the Kadanoff-Baym ansatz for the statistical propa-
gator, Gii

F ¼ ðfc i
þ 1

2ÞGii
�, and rewrite the original system

of the Boltzmann equations (B53) as a Boltzmann equation
for the distribution function fc i

. In the case of two mixing

scalar fields the situation is quite different. The solution
(B44) is valid only in equilibrium. As follows from (B38),
out of equilibrium the off-diagonal components of the
spectral function receive corrections linear in the gradients.
Strictly speaking, this means that we cannot introduce a
generalized Kadanoff-Baym ansatz and reduce (B52) to a
system of two equations for the one-particle distribution
functions. In general, to analyze the generation of the
asymmetry, one has to solve the system of the Boltzmann
equations (B52) for the full spectral function and statistical
propagator. Only when the off-diagonal components are
subdominant (which is the case in the hierarchical and
resonant regime, but not in the maximal resonant limit)
one can approximate (B52) by (B53). The Boltzmann
equations for the diagonal propagators (B53) do not con-
tain the self-energy CP-violating parameter. Given that the
contributions proportional to the vertex CP-violating pa-
rameter also cancel out in the Boltzmann equations for the
real scalars [2], this is an expected property.

APPENDIX C: INTEGRATION OVER THE
CONTOUR

In this appendix we calculate two integrals over the
closed-time-path contour, shown in Fig. 14, which are
required for the derivation of the self-energy contribution
to the CP-violating parameter in the Kadanoff-Baym for-
malism. Let us first consider the integral

Iðx; yÞ ¼
Z
C
D4uAðx; uÞBðu; yÞ: (C1)

Assuming that the two-point functions possess a decom-
position into statistical and spectral components similar to
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Eq. (B16), we find

iIFð�Þðx; yÞ ¼
Z x0

0
D4uA�ðx; uÞBFð�Þðu; yÞ

�
Z y0

0
D4uAFð�Þðx; uÞB�ðu; yÞ: (C2)

These formulas are required to obtain the right-hand side of
(B20). Replacing A� and B� by AR and BA we can rewrite

the right-hand side of (C2) as an integral over the whole u
axis. From (C2) it also follows, that

iIRðx; yÞ ¼
Z

D4u	ðu0ÞARðx; uÞBRðu; yÞ: (C3)

Next we consider the integral

Jðx; yÞ ¼
Z
C

Z
C
D4uD4vAðx; uÞBðu; vÞCðv; yÞ: (C4)

Since Jðx; yÞ can be represented as an integral of a product
of Iðx; vÞ and Cðv; yÞ over the contour, its spectral and
statistical components are given by (C2) with A replaced
by I. Furthermore, using (C3) we find

JFð�Þðx; yÞ ¼ �
ZZ

D4uD4v	ðu0Þ	ðv0Þ
� ½ARðx; uÞBRðu; vÞCFð�Þðv; yÞ
þ ARðx; uÞBFð�Þðu; vÞCAðv; yÞ
þ AFð�Þðx; uÞBAðu; vÞCAðv; yÞ�: (C5)

Building the linear combinations of the spectral and sta-
tistical components we can easily derive the_ components
from (C5).

We will now calculate the Wigner transform of (C5) in
the Boltzmann approximation. That is, in each of the
functions in (C5) we neglect the deviation of the corre-
sponding center coordinate from X � Xxy. For instance,

Aðx; uÞ ! AðXxu; sxuÞ ! AðXxy; sxuÞ: (C6)

In this approximation the integration over u and v induces
a simple relation between the momenta q1 ¼ q2 ¼ q3 �
q. Integration over the relative coordinate s induces an
additional constraint q ¼ p. Therefore we obtain

JFð�ÞðX; pÞ ¼ �½ARðX; pÞBRðX; pÞCFð�ÞðX; pÞ
þ ARðX; pÞBFð�ÞðX; pÞCAðX; pÞ
þ AFð�ÞðX; pÞBAðX; pÞCAðX; pÞ�: (C7)

This completes the calculation of the Wigner transform.

APPENDIX D: RENORMALIZATION

In this appendix, we derive the renormalization prescrip-
tion (43) employed in Sec. III for the derivation of the
CP-violating parameter in the resonant case. For the level
of approximation considered there, it is sufficient to in-

clude perturbative one-loop mass and field counterterms
(see Appendix A)7 for the real scalar field c i,

�L ¼ 1

2
�Zij@

�c i@�c j � 1

2
�M2

ijc ic j: (D1)

Including the counterterms in the Lagrangian (1) results in
a modification of the Schwinger-Dyson equation (12),

Ĝ�1ðx; yÞ ¼ Ĝ�1ðx; yÞ � �̂renðx; yÞ; (D2)

(using matrix notation; see Appendix B 1), where

�̂ renðx; yÞ ¼ �̂ðx; yÞ � ið�Ẑhx þ �M̂2Þ�gðx; yÞ:
Proceeding analogously as in Sec. III, we decompose the
renormalized self-energy into diagonal and off-diagonal
parts,

�̂ renðx; yÞ ¼ �̂renðx; yÞ þ ð�̂renÞ0ðx; yÞ;
and define a renormalized ‘‘diagonal’’ propagator by

½Ĝren��1ðx; yÞ ¼ Ĝ�1ðx; yÞ � �̂renðx; yÞ: (D3)

In analogy to the steps leading to Eq. (20), we find for the
full Wightman functions

Ĝ_ðx; yÞ ¼ Ĝren
_ ðx; yÞ �

ZZ
D4uD4v	ðu0Þ	ðv0Þ½ĜRðx; uÞ

� �̂0
_ðu; vÞĜren

A ðv; yÞ þ Ĝ_ðx; uÞ�̂0
Aðu; vÞ

� Ĝren
A ðv; yÞ þ ĜRðx; uÞ�̂0

Rðu; vÞĜren
_ ðv; yÞ�

�
Z

D4u	ðu0Þ½Ĝ_ðx; uÞð�Ẑ0hu

þ ð�M̂2Þ0ÞĜren
A ðu; yÞ þ ĜRðx; uÞð�Ẑ0hu

þ ð�M̂2Þ0ÞĜren
_ ðu; yÞ�; (D4)

where �Ẑ0 and ð�M̂2Þ0 denote the off-diagonal parts of �Ẑ
and �M̂2, respectively. Using this, we find that the renor-
malized version of Eq. (22) can be obtained by replacing

Ĝ ! Ĝren
, as well as �̂0

RðAÞðX; pÞ ! �̂0
RðAÞðX; pÞ �

�Ẑ0p2 þ ð�M̂2Þ0. The latter prescription coincides with
Eq. (43) for i � j.
The diagonal part of the self-energy enters in the renor-

malized diagonal propagator Ĝren
; see Eq. (B3). Since this

equation can be split into independent equations for each
entry on the diagonal, it is analogous to the case of a single
real scalar field; see e.g. [19]. The solution of the corre-
sponding Wigner-transformed kinetic equations for the
retarded and advanced propagator reads [up to second-
order gradients; see also Eq. (B46)],

G ren;ii
RðAÞ ðX; pÞ ¼ �½p2 �M2

i ��ren;ii
RðAÞ ðX; pÞ��1; (D5)

7The renormalization of the full Kadanoff-Baym equations
(B20) has been discussed in Refs. [74,75]; see also [76–80].
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where the renormalized self-energies are determined in
accordance with Eq. (43) for i ¼ j. Since Gren

� ðX; pÞ ¼
2 ImGren

RðAÞðX; pÞ, the spectral function also contains renor-

malized self-energies. Furthermore, using the Kadanoff-

Baym ansatz Gren;ii
F ¼ ðfc i

þ 1
2ÞGren;ii

� implies that also the

statistical propagator, and therefore also the Wightman
functions, are finite.

Thus, altogether, we find that the prescription (43) re-
normalizes the diagonal as well as off-diagonal compo-
nents of the relevant propagators.

APPENDIX E: ANALYSIS IN THE FULL
KADANOFF-BAYM FORMALISM

In this appendix, we derive a time-evolution equation for
the ‘‘baryon’’-asymmetry within nonequilibrium field the-
ory. It is based on the approximate Uð1ÞB-symmetry b !
ei�b of the toy-model Lagrangian (1), and does not require
any further approximations beyond the 2PI truncation. As
we will see, in the Boltzmann limit, the resulting equation
for the asymmetry coincides with those obtained from the
quantum-corrected Boltzmann equations discussed above.

The Lagrangian (1) can be split into B-conserving and
B-violating parts,

L ¼ LB þL�B;

where

L B ¼ Lkin � 1

2
M2

i c ic i �m2 �bb� �

2!2!
ð �bbÞ2; (E1)

L �B ¼ � gi
2!

c ibb� g�i
2!

c i
�b �b : (E2)

The corresponding Noether current is given by

J�ðxÞ ¼ �2iðbðxÞ@� �bðxÞ � @�bðxÞ �bðxÞÞ:
Its expectation value can be written as (note that we are
working in the Heisenberg picture)

j�ðxÞ ¼ hJ�ðxÞi ¼ 2ið@x� � @y�ÞDFðx; yÞjx¼y;

where DFðx; yÞ ¼ 1
2 hbðxÞ �bðyÞ þ �bðyÞbðxÞi is the statistical

propagator of the complex b-field.
Because of the presence of L�B, the Noether current is

in general not conserved. Its divergence reads

@�j�ðxÞ ¼ 1

2
ð@x� þ @y�Þ½2ið@x� � @y�ÞDFðx; yÞ�jx¼y

¼ i½hx �hy�DFðx; yÞjx¼y: (E3)

The expression in the last line can be evaluated by using the
Kadanoff-Baym equations for the complex scalar field.
These can be derived analogously to the system (B20) of
Kadanoff-Baym equations for the real scalar fields. They
read

½hxþm2ðxÞ�DFðx;yÞ¼
Z y0

0
D4z�Fðx;zÞD�ðz;yÞ

�
Z x0

0
D4z��ðx;zÞDFðz;yÞ (E4a)

½hxþm2ðxÞ�D�ðx;yÞ¼
Z y0

x0
D4z��ðx;zÞD�ðz;yÞ: (E4b)

We use the notations of Ref. [2] here. In particular, the
statistical propagator DF and the spectral function D� of

the complex field are defined analogously to Eq. (B14).
The upper equations possess an equivalent representation
in terms of the antiparticle propagators

�DFðx; yÞ � DFðy; xÞ; �D�ðx; yÞ � �D�ðy; xÞ; (E5)

and antiparticle self-energies ��F;� (defined analogously).

The Kadanoff-Baym equations for the antiparticles then
take the same form as Eqs. (E4), except for the replacement

D ! �D and � ! ��.
The Kadanoff-Baym equations for DF and �DF can now

be used to evaluate the right-hand side of Eq. (E3),

@�j�ðxÞ ¼ i½hx þm2ðxÞ�½DFðx; yÞ � �DFðx; yÞ�jx¼y

¼ i
Z x0

0
D4zf�Fðx; zÞD�ðz; xÞ � ��ðx; zÞDFðz; xÞ

� ��Fðx; zÞ �D�ðz; xÞ þ ���ðx; zÞ �DFðz; xÞg: (E6)

By using the retarded and advanced propagators

DRðx; yÞ ¼ �ðx0 � y0ÞD�ðx; yÞ;
DAðx; yÞ ¼ ��ðy0 � x0ÞD�ðx; yÞ;

(E7)

as well as analogous definitions for the antiparticle propa-
gators, we finally find the following equation of motion for
the toy-baryon current:

@�j�ðxÞ ¼ �i
Z

D4z�ðz0Þ � f�Fðx; zÞDAðz; xÞ

þ�Rðx; zÞDFðz; xÞ � ��Fðx; zÞ �DAðz; xÞ
� ��Rðx; zÞ �DFðz; xÞg: (E8)

So far, the derivation is quite general and the upper equa-
tions are formally fulfilled even in the exact theory. To
obtain a closed system we have to express the self-energies
in terms of the two-point functions. In the Kadanoff-Baym
formalism the self-energies are obtained by functional
differentiation of the 2PI effective action.
Approximations can be obtained by truncating the 2PI
functional, for example, at a certain loop order. This leads
to so-called 	-derivable approximations, which are con-
serving, i.e. they automatically respect the conservation
laws of the full theory [33,81]. This means that, in the limit
of vanishing B-violation, the baryon current obtained in the
Kadanoff-Baym formalism is indeed conserved at any loop
order of the 2PI functional.
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The structure of the 2PI effective action in two-loop
approximation can be read off the diagram in Fig. 2(a):

i�2 ¼ � 1

4
gmg

�
n

Z
D4xD4yGmnðx; yÞD2ðx; yÞ

� 1

4
g�mgn

Z
D4xD4yGmnðx; yÞD2ðy; xÞ: (E9)

Differentiating the effective action with respect to the two-
point function of the complex scalar field we obtain

�ðx; yÞ ¼ �g�i gjGijðx; yÞDðy; xÞ: (E10)

The statistical and spectral components of the self-energy
are given by

�Fðx; yÞ ¼ �g�i gj
�
Gij

F ðx; yÞDFðy;xÞ þ 1

4
Gij

� ðx; yÞD�ðy;xÞ
�
;

(E11a)

��ðx; yÞ ¼ �g�i gj½Gij
F ðx; yÞD�ðy;xÞ �Gij

� ðx; yÞDFðy; xÞ�:
(E11b)

The upper expressions, together with the Kadanoff-Baym
equations (E4), as well as the corresponding equations for
the toy-Majorana fields (B20) and (13), form a closed
system of equations. Inserting their solutions into
Eq. (E8) yields the time-evolution of the toy-baryon asym-
metry

nBðtÞ � 1

V

Z
d3xj0ðt;xÞ: (E12)

Equation (E8) takes memory and quantum off-shell effects
into account in a very general way, and is valid even very
far from thermal equilibrium. Furthermore, due to the self-
consistency it implicitly resums a large number of multi-
particle scattering processes. However, this feature also
makes the (numerical) solution of the full equations diffi-
cult. In a typical leptogenesis scenario one is interested in a
situation where the deviations from equilibrium are com-
parably mild. In this case, it is possible to obtain simplified
evolution equations for the asymmetry from Eq. (E8). In
the following, we will show that the resulting equations are
equivalent to those obtained from the kinetic evolution
equations of the particle distribution function, provided
both are based on the identical truncation of the 2PI
effective action.

1. Consistency with the kinetic approach

Usually, within the kinetic approach, the baryon asym-
metry is calculated by evaluating the difference of particle
and antiparticle distribution functions,

nbðtÞ � n �bðtÞ ¼
Z d3k

ð2�Þ3 ½fbðt;kÞ � f �bðt;kÞ�; (E13)

where fbðt;kÞ and f �bðt;kÞ are obtained from Boltzmann-
like kinetic equations. Equations (E12) and (E8) for the

toy-baryon asymmetry discussed above provide a comple-
mentary possibility to calculate the asymmetry. In this
context, the question arises, under which conditions both
approaches are equivalent. In the following, we will show
that equivalence holds provided (i) one uses the top-down
or quantum-corrected kinetic equations, which are ob-
tained from the gradient expansion of the full Kadanoff-
Baym equations, (ii) the evolution equation (E8) of the
baryon current is expanded to the same order in the gra-
dient expansion, and (iii) both sets of equations are based
on the same truncation of the 2PI effective action. This can
be seen as follows: By performing aWigner transformation
and a first-order gradient expansion of Eq. (E8), and using
relations (E5), we obtain on the one hand

@�j�ðXÞ ¼ �
Z d4p

ð2�Þ4 ½�FðX; pÞD�ðX; pÞ

� ��ðX; pÞDFðX; pÞ � f�F;DhgPB
� f�h; DFgPB�; (E14)

where the curly brackets denote the usual Poisson brackets,
and we have used the decomposition DRðAÞðX; pÞ ¼
DhðX; pÞ 
 i

2D�ðX; pÞ.
On the other hand, the quantum kinetic equation for DF

obtained from a first-order gradient expansion of the
Kadanoff-Baym equation (E4a) reads (see e.g. Ref. [2])

f!ðX; pÞ; DFðX; pÞgPB ¼ ��ðX; pÞDFðX; pÞ
� �FðX; pÞD�ðX; pÞ
þ f�F;DhgPB; (E15)

where !ðX; pÞ ¼ p2 �m2 ��hðX; pÞ. Inserting this
equation into Eq. (E14) yields

@�j�ðXÞ ¼
Z d4p

ð2�Þ4 2p
�D�DFðX; pÞ: (E16)

Using �DFðX; pÞ ¼ DFðX;�pÞ, we can write this as

@�j�ðXÞ ¼
Z d3p

ð2�Þ3
Z 1

0

dp0

2�
2p�D�½DFðX; pÞ

� �DFðX; pÞ�: (E17)

Inserting the Kadanoff-Baym ansatz DFðX; pÞ ¼
½fbðX; pÞ þ 1

2�D�ðX; pÞ yields

@�j�ðXÞ ¼
Z d3p

ð2�Þ3
Z 1

0

dp0

2�
2p�D�½fb � f �b�D�ðX; pÞ;

(E18)

where we have assumed a symmetric spectrum, D� ¼ �D�.

For a spatially homogeneous system, the frequency inte-
gration yields the particle distribution function of the mo-
mentum mode p at time t ¼ X0,
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fbðX0;pÞ �
Z 1

0

dp0

2�
2p0fbðX; pÞD�ðX; pÞ:

Thus, using Eq. (E12), we find

d

dt
nBðtÞ ¼ 1

V

Z
d3x@tj0ðt;xÞ

¼
Z d3p

ð2�Þ3 @tðfbðt;pÞ � f �bðt;pÞÞ

¼ d

dt
ðnbðtÞ � n �bðtÞÞ: (E19)

Thus, we find that the baryon asymmetry nBðtÞ inferred
from the equation of motion of the baryon current coin-
cides with the asymmetry nbðtÞ � n �bðtÞ obtained from the
corresponding kinetic approach, under the conditions dis-
cussed above (this is in accordance with the general analy-
sis of Ref. [33]).

2. Self-energy contribution

Here, we briefly want to discuss the time-evolution of
the baryon asymmetry within the 2PI two-loop truncation
based on the full evolution equation (E8). As discussed in
Sec. II, the 2PI two-loop approximation captures the self-
energy contribution to the CP-violating decays and inverse
decays, whereas the vertex contribution requires one to
take also three-loop diagrams in the 2PI functional into
account [2]. Thus, the 2PI two-loop case provides a possi-
bility to investigate whether an asymmetry can be induced
by the self-energy-type contributions. The latter question
has, after some controversial discussions, been answered
e.g. in Ref. [82] within the Boltzmann framework. In the
following, we address the same question, from a slightly
different point of view, within nonequilibrium quantum
field theory.

Assuming spatial homogeneity, we can write the total
baryon asymmetry as

nBðtÞ ¼ 1

V

Z
d3xj0ðt;xÞ �

Z d3k

ð2�Þ3 nBðt;kÞ: (E20)

From Eq. (E8), we obtain the following evolution equation
for the baryon asymmetry in momentum mode k:

d

dt
nBðt;kÞ ¼ i

Z t

0
dt0f�Fðt; t0;kÞD�ðt0; t;kÞ

���ðt; t0;kÞDFðt0; t;kÞ
� ��Fðt; t0;kÞ �D�ðt0; t;kÞ
þ ���ðt; t0;kÞ �DFðt0; t;kÞg; (E21)

where Dðx0; y0;kÞ � R
d3xeikðx�yÞDðx; yÞ.

By inserting the 2PI two-loop expressions (E11) into the
upper equation, and using Eq. (B15), we obtain

d

dt
nBðt;kÞ ¼ �2i

Z t

0
dt0

�
Reðgig�j Þ

�
2Gij

F ðDFD� � �DF
�D�Þ

þGij
�

�
D2

F � �D2
F � 1

4
ðD2

� � �D2
�Þ
��

þ i Imðgig�j Þ
�
2Gij

F ðDFD� þ �DF
�D�Þ

þGij
�

�
D2

F þ �D2
F � 1

4
ðD2

� þ �D2
�Þ
���

; (E22)

where all propagators are evaluated at ðt0; t;kÞ. In the limit
of vanishing CP-violation, i.e. for Imðgig�j Þ ¼ 0, the

Eq. (E22) possesses a baryon-symmetric solution for
which DF ¼ �DF, D� ¼ �D� (see Appendix F), and nB ¼
0 at all times. For an initial state which is asymmetric, the
terms proportional to Reðgig�j Þ tend to wash out the asym-

metry and would, in flat space-time, asymptotically drive
nB ! 0.
Here, we are interested in the opposite situation. This

means we want to answer the question whether nBðtÞ can
deviate from zero at some instant of time although it
vanishes initially, nBðt ¼ 0Þ ¼ 0. Any change of nB with
time requires, of course, nonzero B-violation (i.e. gi � 0),
since nB would correspond to a conserved charge other-
wise. Additionally, from Eq. (E22), we see that the gen-
eration of an asymmetry also requires Imðgig�j Þ � 0, i.e.

nonvanishing CP-violation. Finally, a deviation from ther-
mal equilibrium is required, since otherwise time-
translation invariance would require nBðtÞ to be equal to
its initial value at all times. Thus, the quantum evolution
equation (E22) obtained from the 2PI two-loop approxi-
mation is in accordance with the Sakharov conditions. In
general, we therefore expect that nBðtÞ can deviate from
nBð0Þ ¼ 0 for some t > 0, if Imðgig�j Þ � 0 and if the

system deviates from equilibrium.8 In order to make this
statement more quantitative, we consider a Taylor expan-
sion of Eq. (E22) around the initial time t ¼ 0. The first
nonvanishing contribution turns out to be of order four,

d4

dt4
nBðt;kÞjt¼0 ¼ �4 Imðg1g�2ÞDF@tðG12 �G21Þjt¼t0¼0

� 2nBð0;kÞðReðgig�j ÞGij
F

þ jgij2DFÞjt¼t0¼0: (E23)

8There are two potential sources for deviations from thermal
equilibrium, namely, the space-time expansion as well as the
initial conditions. In order to check whether Eq. (E22) can
indeed describe the generation of an asymmetry, we concentrate
on the latter source for simplicity. We note that, in order to
describe equilibrium initial conditions of the full quantum evo-
lution equations, it would be necessary to include non-Gaussian
correlations of the initial state (see e.g. [75]). However, since the
latter play no role in the kinetic approach (the initial time is
formally sent to the infinite past when performing a Wigner
transformation), we do not consider them here.
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Thus, for a symmetric initial state with nBð0;kÞ ¼ 0, an
asymmetry can arise if Imðg1g�2Þ � 0, as expected, and if
@tðG12 �G21Þjt¼t0¼0 � 0. The latter condition is, however,
not necessary. If @tðG12 �G21Þjt¼t0¼0 ¼ 0 and nBð0;kÞ ¼
0, the leading term reads

d5

dt5
nBðt;kÞjt¼0 ¼ 4 Imðg1g�2ÞðM2

2 �M2
1ÞDFG

12
F jt¼t0¼0:

Consequently, the full quantum evolution equations sup-
port the observation that an asymmetry can be generated
from self-energy-type contributions to the CP-violating
decays.

APPENDIX F: BARYONICALLY SYMMETRIC
CONFIGURATION

The Wightman propagators of the complex scalar field
are defined by [2]

D>ðx; yÞ � hbðxÞ �bðyÞi ¼ Tr½PbðxÞ �bðyÞ�; (F1a)

D<ðx; yÞ � h �bðyÞbðxÞi ¼ Tr½P �bðyÞbðxÞ�: (F1b)

Applying the operator of charge conjugation C to (F1) we
obtain

CD>ðx; yÞC�1 ¼ Tr½P c �bðxÞbðyÞ� ¼ Dc
<ðy; xÞ; (F2a)

CD<ðx; yÞC�1 ¼ Tr½P cbðyÞ �bðxÞ� ¼ Dc
>ðy; xÞ; (F2b)

where the superscript c denotes the charge-conjugated
quantities. In a baryonically symmetric configuration
P c ¼ P . Therefore in this case D_ðx; yÞ ¼ D+ðy; xÞ. In
turn, for the statistical propagator and spectral function this
implies

DFðx; yÞ ¼ DFðy; xÞ; D�ðx; yÞ ¼ �D�ðy; xÞ: (F3)

Since the full propagator is related to DF and D� by

Dðx; yÞ ¼ DFðx; yÞ � i

2
sgnCðx0 � y0ÞD�ðx; yÞ; (F4)

we conclude that in a baryonically symmetric configura-
tion �Dðx; yÞ � Dðy; xÞ ¼ Dðx; yÞ.

Differentiating the effective action with respect to the
two-point function of the real scalar fields we obtain the
two-loop contribution to the self-energy:

�ijðx; yÞ ¼ � 1

2
gig

�
jD

2ðx; yÞ � 1

2
g�i gj �D2ðx; yÞ: (F5)

In the symmetric configuration it takes the form

�ijðx; yÞ ¼ � 1

2
ðgig�j þ g�i gjÞD2ðx; yÞ; (F6)

i.e. this matrix is symmetric. This is also true for the
spectral, statistical, retarded, and advanced self-energies
that can be derived from (F6).

APPENDIX G: ONE-LOOP INTEGRAL

Here we calculate the one-loop self-energy integrals
given in Eq. (33),

Lhð�ÞðX; pÞ ¼ 16�
Z

d�kDFðX; kÞDhð�ÞðX; p� kÞ;
(G1)

evaluated for an on-shell momentum p ¼ ðEi;pÞ where

Ei ¼ ðp2 þM2
i Þ1=2. We have omitted the superscript s

here since the calculation applies also to baryonically
asymmetric states. We first consider L�. Inserting the

quasiparticle approximation for the complex field [see
Eq. (7)] and the Kadanoff-Baym ansatz DF ¼ ð12 þ
fbÞD�, one finds

L�ðX; pÞ ¼ 16�
Z

d�k

�
1

2
þ fbðk � uÞ

�
2� sgnðk0Þ

� �ðk2 �m2Þ2� sgnðp0 � k0Þ
� �ððp� kÞ2 �m2Þ; (G2)

where we have used a manifestly Lorentz-covariant nota-
tion. In the rest-frame of the medium u ¼ ð1; 0; 0; 0Þ. Note
that only the poles with k0 > 0 and p0 � k0 > 0 contribute
since p0 >Mi > 2m. The integration over k0 is trivial due
to the Dirac-� in the first line. In order to perform the
remaining integrations, we express the integrand in the
rest-frame of the decaying ‘‘heavy neutrino,’’ for which
p0 ¼ ðMi; 0Þ and u0 ¼ ðEi;�pÞ=Mi,

L�ðX; pÞ ¼ 16�
Z d3k

ð2�Þ3
�
1

2
þ fbðk � u0Þ

�

� �

2!2
k

�ðMi � 2!kÞ; (G3)

where!k ¼ ðk2 þm2Þð1=2Þ and k � u0 ¼ ð!kEi þ kpÞ=Mi.
The Dirac �-function requires !k ¼ Mi=2. Using further-
more kp ¼ jkjjpj cos�, we find

k � u0 ¼ ðEi þ rjpj cos�Þ=2 � Ep; (G4)

where r ¼ ð1� 4m2=M2
i Þ1=2. After integrating over jkj,

one obtains

L�ðX; pÞ ¼ r
Z d�

4�
½1þ 2fbðEpÞ�: (G5)

If the medium is approximately symmetric, fb ’ f �b, we
can write the result in the form presented in Eq. (34).
Let us now turn to Lh. As above, we insert the Kadanoff-

Baym ansatz for DF and use the quasiparticle approxima-
tion for D�, yielding
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LhðX; pÞ ¼ 16�
Z

d�k

�

!k

�ðk0 �!kÞ
��
1

2
þ fbðk � uÞ

�

�DhðX; p� kÞ þ
�
1

2
þ f �bðk � uÞ

�

� �DhðX; pþ kÞ
�
: (G6)

In the quasiparticle limit, one can express Dh � ReDR in
the form

DhðX; pÞ ¼ �DhðX; pÞ ¼ � P
p2 �m2

; (G7)

where P denotes the principal value. As above, we evalu-
ate the integral in the rest-frame of the decaying particle.
The result of the calculation reads

LhðX; pÞ ¼
Z d3k

ð2�Þ3
8�

!kMi

��
1

2
þ fbðk � u0Þ

�
P

Mi � 2!k

þ
�
1

2
þ f �bðk � u0Þ

�
P

Mi þ 2!k

�

� Lvac
h ðp2Þ þ Lmed

h ðX; pÞ: (G8)

The vacuum contribution, which corresponds to the limit
fb, f �b ! 0, depends only on p2 due to Lorentz invariance
of the vacuum state. It is logarithmically divergent.
However, after renormalization, only the difference
Lvac
h ðp2Þ � Lvac

h ð�2Þ appears, which is finite. For the on-

shell momentum p2 ¼ M2
i considered here, we obtain

Lvac
h ðM2

i Þ ¼ � 1

�

�
r ln

�
rMi

2m

�
� r� ln

�
r�Mi

2m

��

! � 1

2�
ln
M2

i

�2

for m ! 0;

(G9)

where r� ¼ ð1� 4m2=�2Þ1=2. For an approximately sym-

metric state, the medium contribution can be written as

Lmed
h ðX; pÞ ¼ �8�

Z d3k

ð2�Þ3
fbðEÞ þ f �bðEÞ

!k

P
M2

i � 4!2
k

;

(G10)

where E � k � u0 ! jkj
Mi

½Ei þ jpj cos�� in the limitm ! 0.

By introducing spherical coordinates and substituting jkj
for E, we obtain

Lmed
h ðX; pÞ ¼ � 4

�

Z 1

0
dEEðfbðEÞ þ f �bðEÞÞ �

Z d�

4�

� P
ðEi þ jpj cos�Þ2 � 4E2

: (G11)

After performing the angular integration (and replacing
Mi ! Mmed

i ), we obtain the result stated in Eq. (46).
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