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Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical

model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates

are proportional to the spin angular momentum. The quantization of the model leads to the non-

commutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing

a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the

spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for

spin half, �x�y � �2=2, etc. In the relativistic case the noncommutative Dirac equation was derived. For

that we introduce a new star product. The advantage of our model is that in spite of the presence of

noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it

gives noncommutativity with a nilpotent parameter.
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I. INTRODUCTION

The idea of using noncommutative (NC) coordinates in
quantum mechanics appeared a long time ago. In [1] non-
commutative coordinates were used to describe the
charged particle in the strong magnetic field and in the
presence of the weak electric potential. In the last decade,
remotivated by string theory arguments [2], the subject
gained a lot of interest and has been studied extensively
(see e.g. [3,4] for reviews on noncommutativity in quantum
field theory and quantum mechanics (QM), respectively).
The canonical noncommutative space can be realized by
the coordinate operators x̂i, satisfying commutation rela-
tions ½x̂i; x̂j� ¼ i�ij, where �ij is an antisymmetric constant
matrix.

Recently, other types of noncommutativity, different
from the canonical, have also been considered. Thus, in
[5] a model of position dependent noncommutativity in
quantum mechanics was proposed. In [6] a model of
dynamical noncommutativity was discussed. The authors
of [7] have proposed a three-dimensional noncommutative
quantum mechanical system with mixing spatial and spin
degrees of freedom. The noncommutative spatial coordi-
nates x̂i, the conjugate momenta p̂i, and the spin variables
ŝi were supposed to satisfy the nonstandard Heisenberg
algebra:

½x̂i; x̂j� ¼ i�2"ijkŝk; ½x̂i; p̂j� ¼ i�i
j; ½p̂i; p̂j� ¼ 0;

½x̂i; ŝj� ¼ i�"ijkŝk; ½ŝi; ŝj� ¼ i"ijkŝk; (1)

where � is the parameter of noncommutativity (a real
number). We will call it spin noncommutativity. Later, in

[8] an approach to the Bose-Einstein condensation theory
was elaborated, based on the spin noncommutativity. Note
that in 2þ 1 dimensions the relation between anyon spin
and noncommutativity was discussed in [9].
In the present work we will discuss some questions

regarding the physical meaning and mathematical formu-
lation of the spin noncommutativity (1).
It is known that canonical noncommutative QM

(NCQM) [4] can be obtained as a result of quantization
of classical models, see e.g., [10–12]. The corresponding
action functional appears as an effective action in path
integral representation of NCQM [13–15] and can be
used for study of global and local symmetries of the system
[16], etc. The first question is if there exists a classical
model, which after quantization leads to the spin
noncommutativity.
Another question is connected with nonlocality. Usually,

noncommutativity means the presence of nonlocality, i.e.,
nontrivial uncertainty relations between the coordinates,

�xi�xj � something � 0:

The question is what is the form of nonlocality caused by
spin noncommutativity? Also, it is important to understand
how the presence of the spin noncommutativity can affect
the relations between spin and statistics; however, we will
not discuss it in the present paper.
The last point, we would like to discuss here, is how to

formulate a consistent relativistic version of spin noncom-
mutativity. In particular, we will obtain the modification of
the Dirac equation in the case of spin noncommutativity.
The paper is organized as follows. In Sec. II we discuss

the classical model. The quantization of this model, con-
structed in Sec. III, leads to the modified Pauli equation
and not to the Schrödinger one. We also discuss the pos-
sibility of relativistic generalization of our model.
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II. PARTICLE SPIN DYNAMICS AND ITS
NONCOMMUTATIVE DEFORMATION

In [17] Berezin and Marinov have proposed1 a classical
model of the spin 1=2 particle, involving Grassmann de-
grees of freedom. In the nonrelativistic case, the classical
mechanics of a particle with spin is constructed in the
phase superspace, consisting of the six-dimensional orbital
subspace ðxi; piÞ, i ¼ 1, 2, 3, and three-dimensional spin
Grassmann subspace �i, �i�j þ �j�i ¼ 0.

The Poisson bracket between two arbitrary functions f
and g of the Grassmann variables is determined as follows,

ffð�Þ; gð�Þg ¼ �iðf@ kÞð@
!
kgÞ: (2)

This Poisson bracket is antisymmetric if both functions are
even elements of the Grassmann algebra, and if one of
them is an even element while the other one is an odd
element. If both functions are odd elements, the Poisson
bracket is symmetric. For the canonical variables, the
Poisson brackets are

f�k; �lg ¼ �i�kl; fxk; plg ¼ �k
l : (3)

The rotation group in the Grassmann subspace is gen-
erated by the spin angular momentum

Si ¼ � i

2
"ijk�j�k; fSi; �jg ¼ "ijk�k;

fSi; Sjg ¼ "ijkSk:

(4)

The orbital angular momentumLi ¼ "iklxkpl generates the
rotation group in the orbital subspace,

fLi; xjg ¼ "ijkxk; fLi; Ljg ¼ "ijkLk:

The complete angular momentum is determined as being

J ¼ Lþ S; fJi; Jjg ¼ "ijkJk:

The classical Hamiltonian action of the model reads

S0 ¼
Z

dt

�
p _x� i

2
� _��Hðx; p; �Þ

�
; (5)

where

Hðx; p; �Þ ¼ p2

2
þ V0ðxÞ þ ðLSÞV1ðxÞ þ SBðxÞ; (6)

V0ðxÞ and V1ðxÞ are potential functions, and BðxÞ is a
vector field. The term with V1 in (5) is the spin-orbit
interaction. The quantization of the theory (5) leads to
the Pauli equation describing the quantum nonrelativistic
spin 1=2 particle.

Now, let us deform the above model to obtain nonzero
Poisson brackets between the coordinates, which may lead
to noncommutativity after quantization. The simplest way
to do it is to mix coordinates and momenta [12], xiNC ¼

xi � 1=2�ijpj. However, this breaks symmetries of the

system, e.g., rotational symmetry, as xiNC is not a vector

anymore (it does not transform as a vector, since �ij is a
constant matrix). To preserve rotational symmetry, one can
mix coordinates and spin angular momentum:

~x i ¼ xi þ �Si: (7)

These new coordinates, ~xi, like the old ones are even and
transform like a vector,

fJi; ~xjg ¼ "ijk~xk: (8)

The nonvanishing Poisson brackets, involving new coor-
dinates, are

f~xi; ~xjg ¼ �2"ijkSk; f~xi; pjg ¼ �i
j;

f~xi; �jg ¼ �"ijk�k; f�k; �lg ¼ �i�kl:
(9)

Let us suppose that ~xi are ‘‘physical’’, i.e., observable
coordinates. We note that the center of mass coordinates
in the Schrödinger Zitterbewegung problem satisfy similar
commutation relations as ~xi, see [19]. One can then treat
Poisson brackets (9) as fundamental Poisson brackets of a
new theory in a phase superspace ð~x; p; �Þ. The graded
version of the Jacobi identity in the deformed theory can
be easily verified. The Hamiltonian of the deformed theory
is Hð~x; p; �Þ, where Hðx; p; �Þ was determined in (6).
In fact, this deformation is equivalent to the addition of

new terms in the action (5), which disappear in the limit
�! 0. However, since we already have a consistent
Hamiltonian formulation, which is necessary for the quan-
tization, the exact form of these additional terms is
immaterial.2

III. QUANTIZATION

In the course of quantization we replace the Poisson
brackets (9) between the canonical variables by the com-
mutator (anticommutator) of the corresponding operators

½x̂i; x̂j� ¼ i�2"ijkŝk; ½x̂i; p̂j� ¼ i�i
j;

½x̂i; �̂j� ¼ i�"ijk�̂k; ½�̂i; �̂j�þ ¼ �ij:
(10)

Renormalizing the operators �̂i ¼ �̂i=
ffiffiffi
2
p

, one gets the
Clifford algebra with three generators

½�̂i; �̂j�þ ¼ 2�ij: (11)

The only irreducible representation of this algebra is two-
dimensional, it can be realized by the Pauli matrices �i.
Consequently,

ŝ i ¼ � i

2
"ijk�̂j�̂k ¼ 1

2
�i: (12)

1The similar model was considered independently in [18].

2The corresponding action functional can be constructed along
the lines described in [20], taking into account the presence of
the Grassmann variables.
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One can see that the commutation relations involving the
spatial coordinates x̂i, the conjugate momenta p̂i, and the
spin variables ŝi are exactly those in (1), as postulated in
[7]. However, we have obtained these commutation rela-
tions as result of a consistent quantization of a correspond-
ing classical theory.

The representation of the quantum algebra (1) is

x̂ i ¼ xiIþ �ŝi; p̂i ¼ �i@iI; (13)

where I is the 2� 2 unit matrix, and ŝi are determined in
(12). The modified Pauli equation, describing a nonrelativ-
istic spinning particle in an external electromagnetic field,
is

i@t’ ¼ Ĥðx̂; p̂; �̂Þ’; (14)

where ’ is a Pauli spinor and the Hamiltonian is given in
(6).

According to (1) one has the uncertainty relations

�xi�xj � �2"ijkjh�jŝkj�ij; (15)

where j�i is a given state. Note, that since the operators ŝk
do not commute, one cannot measure simultaneously ei-
genvalues for all operators ŝk; one has to choose one of
them, e.g., ŝz. If the particle has spin zero, then ŝ

kj�i ¼ 0,
there is no nonlocality in this case. For the spin s different
from zero, one has

ŝ zj�i ¼ szj�i; sz ¼ �s;�sþ 1; . . . ; s:

Substituting this in (15) one has

�x�y � �2jszj:
For the particle with the spin s ¼ 1=2,

�x�y � �2

2
:

So, for the spin noncommutativity, nonlocality is propor-
tional to the quantum number sz, i.e., depends on the spin
of the particle. Physically one can interpret this result as
follows: the maximal precision to localize the particle
depends on its spin.

IV. RELATIVISTIC GENERALIZATION

In the relativistic case, the Hamiltonian form of the
Berezin-Marinov action is

S ¼
Z �f

�i

�
p� _x� � i

2
��

_�� þ i

2
�5 _�5 � i

2
�T1 � �T2

�
d�;

T1 ¼ ��ðp� þ eA�Þ þm�5;

T2 ¼ ðp� þ eA�Þ2 �m2 þ ieF�	�
��	; (16)

here ��, �5 are Grassmann variables, describing spin de-
grees of freedom, � and � are Lagrange multipliers,
�-commuting and �-anticommuting. Nonvanishing
Poisson brackets between the canonical variables are

fx�; p	g ¼ g�	; f��; �	g ¼ �ig�	; f�5; �5g ¼ i;

(17)

where g�	 ¼ diagð1;�1;�1;�1Þ. Also, one has two first-
class constraints:

T1 ¼ 0; T2 ¼ 0: (18)

Observe that T1 is an odd element of the Grassmann
algebra, therefore the Poisson bracket of T1 with T1 is not
zero, but

fT1; T1g ¼ �iT2: (19)

By its definition, T2 is even, so that fT2; T2g ¼ 0, and

fT2; T1g ¼ iffT1; T1g; T1g � 0; (20)

due to the Jacobi identity. Thus, we have proved that (18)
are indeed first-class constraints.
Generators of the Lorentz group J�	 are defined as

J�	 ¼ L�	 þ S�	; L�	 ¼ x�p	 � x	p�;

S�	 ¼ �i���	:
(21)

In the classical theory

fL�	; x�g ¼ g��x	 � g	�x�;

fS�	; ��g ¼ g���	 � g	���:
(22)

To construct relativistic generalization of the spin type
noncommutativity we introduce new coordinates

~x � ¼ x� þ �W�; (23)

where

W� ¼ 1

2
"�	
�p	J
� ¼ 1

2
"�	
�p	S
�

is the Pauli-Lubanski vector. By the definition, ~x� is an
even element of the Grassmann algebra, and it transforms
like a vector,

fJ�	; ~x�g ¼ g��~x	 � g	�~x�: (24)

The Poisson brackets involving new coordinates are

f~x�; ~x	g ¼ ��"�	
�S
� � �2

2
"�	
�W
p�;

f~x�; p	g ¼ g�	; f��; �	g ¼ �ig�	;

f�5; �5g ¼ i; f~x�; �	g ¼ ��"�	
�p
��:

(25)

Again, we treat coordinates ~x� as physical coordinates and
Poisson brackets (25) as the fundamental Poisson brackets
of a new theory in a phase superspace ð~x; p; �Þ. The con-
straints (18) should be modified. We postulate the form of
the first constraint as

~T 1 ¼ ��ðp� þ eA�ð~xÞÞ þm�5 ¼ 0: (26)

As in undeformed case, it is an odd element of the
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Grassmann algebra, since ~x� is even. Following (19) we
determine the second constraint as

~T2 ¼ if ~T1; ~T1g ¼ 0;

~T2 ¼ ðp� þ eA�Þ2 �m2 þ ie ~F�	�
��	

þ 2ief��; A	gðp� þ eA�Þ�	;

~F�	 ¼ 1

e
fp� þ eA�ð~xÞ; p	 þ eA	ð~xÞg: (27)

It is even, since the Poisson bracket of two odd elements is
always even. Therefore, f ~T2; ~T2g ¼ 0, and

f ~T2; ~T1g ¼ iff ~T1; ~T1g; ~T1g � 0; (28)

due to the Jacobi identity. Thus, the modified constraints
~T1 ¼ 0 and ~T2 ¼ 0 are again first-class constraints.

V. NONCOMMUTATIVE DIRAC EQUATION

After quantization the Poisson brackets (25) will fix the
commutation (anticommutation) relations between the cor-
responding operators

½x̂�; x̂	� ¼ �i�"�	
�Ŝ
� þ i�2

2
"�	
�Ŵ
p̂�;

½x̂�; p̂	� ¼ ig�	; ½�̂�; �̂	�þ ¼ g�	;

½�̂5; �̂5�þ ¼ �1; ½x̂�; �̂	� ¼ �i�"�	
��̂
p̂�:

(29)

The operators �̂�, �̂5 are generators of the Clifford algebra
C5. Its representation is four-dimensional and is given by
the Dirac matrices:

�̂ � ¼ i�5��=
ffiffiffi
2
p

; �̂5 ¼ i�5=
ffiffiffi
2
p

: (30)

The representation of the operators of noncommutative
coordinates x̂� and momenta p̂� is

x̂ � ¼ x�I� i�

2
"�	�Ŝ�@	; p̂� ¼ �i@�I; (31)

where I is a 4� 4 unit matrix, and

Ŝ� ¼ � i

2
ð�̂��̂ � �̂�̂�Þ ¼ � 1

4
ð��� � ���Þ

¼ i

2
��: (32)

The first equation of (31) is the analog of the Bopp shift; it
can be also represented as

x̂ � ¼ x�I� i�

2
�5��	@	: (33)

Following [21] we define the star product through the
Weyl symmetrically ordered operator product as

W ðf ? gÞ ¼W ðfÞ �W ðgÞ; (34)

where

W ðfÞ ¼ f̂ðx̂Þ ¼
Z d4k

ð2�Þ4
~fðkÞe�ik�x̂� ; (35)

and ~fðpÞ is the Fourier transform of f. This product is
associative due to the associativity of the operator prod-
ucts. Since,

½�ik�x�; k���5��	@	=2� ¼ 0;

the exponential in the integral (35) can be represented as

e�ik�x̂� ¼ e�ik�x�ek���5��	@	=2: (36)

So,

W ðfÞ � 1 ¼ fðxÞ; (37)

the result of the action of the polydifferential operator on a
constant is a function. Equations (34) and (37) yield the
following formula:

ðf ? gÞðxÞ ¼W ðfÞgðxÞ ¼ f̂ðx̂ÞgðxÞ; (38)

where the right-hand side means an action of a polydiffer-
ential operator on a function. Equation (38) can be written
as

Z d4k

ð2�Þ4
~fðkÞe�ik�x�ek���5��	@	=2gðxÞ

¼ fgþX1
n¼1

�n

2nn!

Z d4k

ð2�Þ4
~fðkÞe�ik�x�ð�ik�1

Þ . . .

� ð�ik�n
Þ�5��1	1@	1

. . .�5��n	n@	n
gðxÞ:

Finally we obtain the expression for the star product as

f ? g ¼ f exp

�
i�

2
@
 
��

5��	@
!
	

�
g: (39)

The first-class constraints (26) and (27) are converted
into conditions on the physical states

T̂ 1c ¼ 0; T̂2c ¼ 0; (40)

where some ordering should be specified. We choose the
Weyl ordering. Using the representation (30)–(33) of the
algebra (29) one writes the first equation of (40) as�

i��

�
@� þ ieA�

�
x�I� i�

2
�5��	@	

��
�m

�
c ¼ 0:

(41)

Taking into account the definition of the star product (39),
the above equation can be represented in the form

½i��ð@� þ ieA�ðxÞÞ �m� ? c ¼ 0: (42)

We call this equation as noncommutative Dirac equation.
In contrast to the case of canonical noncommutativity, it is
a relativistic equation (in the sense of special relativity),
covariant under the Lorentz transformation
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x� ! x0� ¼ �
�
	 x	; c ! c 0ðx0Þ ¼ Sð�Þc ðxÞ;

A� ! A0�ðx0Þ ¼ ��
	 A	ðxÞ; (43)

where Sð�Þ belongs to the usual spinor representation of
the Lorentz group. This assertion follows by a direct use of
the identities

S�1��S ¼ �
�
���; S�1��	S ¼ �

�
��	

�
�: (44)

The second equation of (40) is a consequence of the first

one, since T̂2 ¼ ðT̂1Þ2.
Note, that a quasiclassical approximation in the spin

degrees of freedom (e.g., a partial quantization of bosonic
coordinates only) leads to the noncommutativity with bi-
fermionic NC parameter [22]:

x� ? x	 � x	 ? x� ¼ i��	; ��	 ¼ i�"�	
��
��=2:

(45)

Similar constructions also appeared in the context of non-
anticommutative superspace [23]. Nilpotent noncommuta-
tivity can improve the renormalizability properties of
noncommutative theories, [24].

VI. CONCLUSIONS

In the present paper we have derived a model of non-
commutativity with mixed spatial and spin degrees of
freedom. For that we have constructed a consistent defor-
mation of the Berezin-Marinov pseudoclassical formula-
tion of the spin particle. In the nonrelativistic case the

deformed coordinates are the sum of the initially commu-
tative coordinates and the spin angular momentum, ~xi ¼
xi þ �Si. The Poisson brackets between the deformed
coordinates are proportional to the spin angular momen-
tum, which leads to the spin noncommutativity after quan-
tization. In the relativistic case the deformed coordinates
are the sum of the commutative coordinates and the Pauli-
Lubanski vector, ~x� ¼ x� þ �W�.
Also we have obtained the modified Pauli equation (in

the nonrelativistic case) and the noncommutative Dirac
equation (in the relativistic case), describing the spin half
particle in an external electromagnetic field in the presence
of the spin noncommutativity. Nonlocality in our model
depends on the spin of the particle.
We stress that the noncommutative Dirac equation (42)

is covariant under Lorentz transformations. Therefore, it
can be used as a basis for the construction of a consistent
relativistic noncommutative field theory. The next step in
this way is to introduce the trace functional on the algebra
of the star product (40) and to construct a corresponding
action functional for the noncommutative Dirac field. Also,
still in the context of quantum mechanics, it would be
interesting to study phenomenological effects caused by
the spin noncommutativity on the examples of exact solv-
able QM models like the hydrogen atom, Landau problem,
Aharonov-Bohm effect, etc.
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