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A charged parallel plate capacitor will create particle-antiparticle pairs by the Schwinger process and

discharge over time. We consider the full quantum discharge process in 1þ 1 dimensions including

backreaction, when the electric field interacts with massless charged fermions. We recover oscillatory

features in the electric field observed in a semiclassical analysis and find that the amplitude of the

oscillations falls off as t�1=2 and that stronger coupling implies slower decay. Remarkably, Ohm’s law

applies to the vacuum and we evaluate the quantum electrical conductivity of the vacuum to be 2e=
ffiffiffiffi
�

p
,

where e is the fermionic charge. Similarities and differences with black hole evaporation are mentioned.
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I. INTRODUCTION

Following Schwinger’s 1951 paper [1], it is well known
that quantum effects cause electric fields to produce
electron-positron pairs. The effect can be interpreted as
the tunneling of virtual electron-positron pairs into real
particles. One imagines a virtual eþe� pair produced in the
vacuum which is then torn apart by the background electric
field, say, within a capacitor, with the positron accelerated
in the direction of the electric field, and the electron in the
opposite direction. A similar effect has been proposed in
de Sitter space where the rapid expansion of spacetime
‘‘pulls’’ particles out of the vacuum. Hawking radiation
from black holes has also been interpreted as a Schwinger
process, though the universally attractive nature of gravity
suggests that there are differences. For example, in the
electromagnetic case, it is clear that once the charges are
created, the positive charge accelerates away from the
positively charged capacitor plate due to electromagnetic
repulsion. In the black hole case, however, there is radia-
tion even though the black hole attracts all outgoing
particles.

The energy for pair creation in an electric field must
eventually come from the energy in the electric field itself.
Hence the electric field has to decay due to the Schwinger
process, just as Hawking radiation is assumed to cause
black holes to evaporate. The problem of electric field
decay clearly involves calculation of the backreaction of
the Schwinger process and this is a hard problem. There
have been several attempts to analyze the decay of the
electric field by semiclassical methods, replacing quantum
operators by their expectation values [2]. The results are
interesting. For example, a uniform electric field will not
discharge monotonically but will undergo oscillations. If
the conclusion can be directly transported to the black hole
case, it would imply oscillations of the black hole mass and
not monotonic evaporation. A key difference though is that
electric charges can be positive or negative, whereas the
particles in Hawking radiation can only have positive mass.

(See also the recent work [3], where backreaction in the
context of scalar QED in 3þ 1 dimensions was taken into
account by solving the equations of motion derived from
the one loop Euler-Heisenberg effective action.)
In this paper we revisit the problem of capacitor dis-

charge due to the Schwinger process, without restricting
ourselves to the semiclassical approximation. We can solve
the full quantum problem but the price we pay is that we
are then only able to treat massless fermions and the
exponential suppression of the classic Schwinger process
is absent.
We treat the case of massless QED in 1þ 1 dimensions,

S 0 ¼
Z

d2x

�
�c��ði@� þ eA�Þc � 1

4
F��F

��

�
: (1)

The fermions interact with the gauge field by the standard
minimal coupling, and an electric field leads to fermion
pair production. The advantage of 1þ 1D QED is that it
can be bosonized to yield [4–6]

S 0
0 ¼

Z
d2x

�
1

2
ð@�Þ2 þ g

2
����F�� � 1

4
F��F

��

�
; (2)

where ��� is the Levi-Civita tensor in 1þ 1Dwith �01 ¼ 1

and

g � 2effiffiffiffi
�

p ; (3)

where, without any loss of generality, we can assume g �
0. The correspondence between the fermionic and bosonic
models is given by identifying the currents at the quantum
operator level [7]

: �c��c : $ ���@��: (4)

The bosonized model is particularly easy to solve be-
cause it is quadratic in fields and hence there are no
interactions. It is sufficient to solve it classically. This
simplification only occurs if the fermions are massless in
the original model. If we had included a mass for the
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fermions, we would have obtained a sine-Gordon potential
for the scalar field, which is an interacting scalar field
theory, and a quantum treatment of the bosonized model
would become necessary.

To analyze the discharge of a capacitor, we would like to
set up an initial electric field that is localized within a finite
region of space and then examine its evolution due to the
spontaneous production of fermion pairs. This leads to a
physical difficulty because the capacitor plates are neces-
sarily external to the system. This physical difficulty arises
even in classical electromagnetism, where Maxwell’s
equations are solved but the boundary conditions are pro-
vided externally. The difficulty can be avoided in gravita-
tional systems, for example, during gravitational collapse,
because the system naturally tends to evolve toward a black
hole. On the other hand, if the gravitational problem is set
up to include an eternal black hole as an ‘‘external’’ agent,
a similar issue arises. There is no analog of gravitational
collapse in the electromagnetic situation since similar
electric charges repel. If we were to set up a configuration
of � field corresponding to separated localized positive
and negative charges, the charge distributions would sim-
ply spread out due to mutual repulsion and then annihilate.
Hence an external capacitor plate is necessary to set up the
problem.

Here we will set up the capacitor problem in two ways.
In the first scheme, we fix the boundary condition that there
is a charge þQ at x ¼ �L=2 and another charge �Q at
x ¼ þL=2. These external charges are taken to be fixed
and are nondynamical. The Schwinger process then creates
pairs and dissipates the electric field within the capacitor
but cannot ‘‘evaporate’’ the charge on the plates. In this
case, we find that the capacitor charges are screened due to
the Schwinger process and the electric field decays expo-
nentially with distance from a capacitor plate. Our second
strategy to set up the capacitor plates is to introduce an
external potential (two ‘‘bags’’) into which we can insert
the charges þQ and �Q as configurations of the � field
itself. These charges are now dynamical because the field
� is dynamical. The Schwinger process causes evaporation
of the charge from the bags. In both physical realizations,
the approach to the asymptotic state is not monotonic but
oscillatory. In the first case, the final static state still con-
tains the �Q charges but the charges are screened by
opposite charges. In the second case, the final state is not
static. Instead it contains bound states of positive and
negative charge densities that oscillate without dissipation
within the bags.

In the following two sections we describe the discharge
of a capacitor in the two physical setups, first with ‘‘exter-
nal charges’’ and second with ‘‘external potential’’. We can
solve the first setup analytically, allowing us to obtain
explicit expressions for the late time behavior of the cur-
rent, electric field, and energy decay law. The solution of
the second setup has only been obtained numerically. The

results of both methods are summarized in Sec. IV and
show that the capacitor discharge is oscillatory, the root-
mean-square current is proportional to the root-mean-
square electric field (Ohm’s law), and that the electrical
conductivity of the vacuum is equal to g ¼ 2e=

ffiffiffiffi
�

p
.

II. SETUP I: EXTERNAL CHARGES

In this section we treat the capacitor as made up of two
external charges �Q placed at x ¼ �L=2, respectively
(see Fig. 1). The electric field due to these charges satisfies
Maxwell’s equations and is a nonzero constant in the
region between the plates. The value of the electric field
in the region�L=2< x<þL=2 is E ¼ Q. For jxj>L=2,
the electric field vanishes. This electric field configuration,

together with � ¼ 0 and _� � @t� ¼ 0, corresponding to
no particles, are the initial conditions whose evolution we
will consider.
The equations of motion follow from (2). Including the

external charges on the capacitor plates, we get

@2� ¼ g

2
���F��; (5)

@�F
�� ¼ j�� þ j�ext � j�; (6)

with

j�� ¼ g���@��; (7)

j�ext ¼ Qu�ð�ðx� L=2Þ � �ðxþ L=2ÞÞ; (8)

and u� ¼ ð1; 0Þ.
Maxwell’s equations (6) can be integrated immediately

to get

F01 ¼ g�þ �F; (9)

where

�F ¼ Qð�ðxþ L=2Þ ��ðx� L=2ÞÞ: (10)

L 2 L 2
x

Electric Field

FIG. 1. Schematic view of setup in Sec. II. Two infinitely
heavy charges, þQ and �Q are placed at x ¼ �L=2 and x ¼
þL=2, respectively. The initial electric field is given by the thick
dark line. The expected final electric field is given by the dashed
grey line.
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Note that we have set the constant of integration to zero so
that the electric field at spatial infinity vanishes.

The charge within some interval ða; bÞ is given by
Gauss’ law,

q ¼ F01ðt; x ¼ bÞ � F01ðt; x ¼ aÞ
¼ g½�ðt; x ¼ bÞ ��ðt; x ¼ aÞ�: (11)

Inserting (9) into the scalar field equation (5), gives

ð@2 þm2Þ� ¼ �m �F

¼ �mQð�ðxþ L=2Þ ��ðx� L=2ÞÞ; (12)

where the effective mass of the scalar field is given by the
coupling constant,

m ¼ g: (13)

Hence our problem reduces to solving the Klein-Gordon
equation for a scalar field of mass m, sourced by the
‘‘electric field,’’ E1 ¼ F01 ¼ Q, within the capacitor. The
initial condition at t ¼ 0 is given by the requirement that
no fermions be present, or in terms of the bosonic varia-
bles,

�ðt ¼ 0; xÞ ¼ 0 ¼ _�ðt ¼ 0; xÞ: (14)

Before we evolve the equations, however, it is interest-
ing to find static solutions into which the system can evolve
asymptotically.

A. Static solution

In the asymptotic future, t ! 1, we expect the � solu-
tion to be simply the static solution to (12). Since the
Klein-Gordon equation (12) is linear, we may first solve
it with �F ¼ ðQ=2Þð�ðxÞ ��ð�xÞÞ ¼ ðQ=2ÞsgnðxÞ i.e. due
to a single point charge at the origin. The static solution to
the present problem would then follow using appropriate
linear superposition. For now,

ð@2 þm2Þ� ¼ �m
Q

2
sgnðxÞ: (15)

Using the integral representation of the step function and
that of the retarded Green function, Grðx� yÞ,

�ðxÞ ¼
Z dk

2�i

eikx

k� i0þ
; (16)

Grðx� yÞ ¼
Z d2k

ð2�Þ2
eik�ðx�yÞ

�ðk0 � i0þÞ2 þ ðk1Þ2 þm2
(17)

provides us with the integral representation

�ðxÞ ¼ �m
Q

2

Z
d2yGrðx� yÞð�ðyÞ ��ð�yÞÞ

¼ �mQ
Z dk

2�

sinðkxÞ
kðk2 þm2Þ : (18)

The integral in (18) may be evaluated by performing a
partial fraction decomposition of the denominator kðk2 þ
m2Þ and converting the resulting three subintegrals into
appropriate contour integrals, which may then be com-
puted straightforwardly. The answer is

�0ðxÞ ¼ � Q

2m
sgnðxÞð1� e�mjxjÞ: (19)

The static solution to (12) is therefore

�sðxÞ ¼ ��0ðx� L=2Þ þ�0ðxþ L=2Þ

¼ �Q

m
�

�
e�mjxj sinhðmL=2Þ; jxj>L=2
1� e�mL=2 coshðmxÞ; jxj<L=2

:

(20)

B. Dynamical solution

The solution to (12) we are seeking must satisfy the
initial conditions in (14). To obtain this dynamical solu-
tion, we add a homogeneous solution, �h, obeying ð@2 þ
m2Þ�h ¼ 0, to the static solution �s such that the initial
conditions are satisfied. Again, it helps to first solve the
problem with a single charge. Then we have to solve (15)
with the initial conditions corresponding to (14). From the
conditions in (14), we observe that the integral representa-
tion of the solution is

��ðt; xÞ ¼ �sðxÞ þ�hðt; xÞ

¼ �mQ
Z dk

2�

sinðkxÞ
kðk2 þm2Þ ð1� cosðt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
ÞÞ:

(21)

The solution to (12) with the same initial conditions is
thus

�ðt; xÞ ¼ � ��ðt; x� L=2Þ þ ��ðt; xþ L=2Þ

¼ �2mQ
Z dk

2�

cosðkxÞ sinðkL=2Þ
kðk2 þm2Þ

� ð1� cosðt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
ÞÞ: (22)

From this, we can extract the flux of energy passing
through a given spatial point x and integrate over all time
to get the total energy radiated. It is

F ðxÞ ¼
Z 1

0
dtT01 ¼ �

Z 1

0
dt@0�@1�

¼ �ð2mQÞ2
Z dk

2�

Z dp

2�

sinðkL=2Þ cosðkxÞ
kðk2 þm2Þ

� sinðpL=2Þ sinðpxÞ
k2 � p2

: (23)

We first use

Z þ1

�1
dk

2�

expðikxÞ
k2 � a2

¼ � 1

2

sinðajxjÞ
a

; (24)
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followed by

Z dk

2�

expðikxÞ
k2ðk2 þ a2Þ ¼ � 1

2a2

�
jxj þ e�ajxj

a

�
; (25)

for a > 0, to obtain for jxj>L=2,

F ðxÞ ¼ sgnðxÞQ
2

2m

�
mL

2
� sinh

�
mL

2

�

�
�
e�mL=2 � e�2mjxj sinh

�
mL

2

���
; (26)

and, for jxj< L=2,

F ðxÞ ¼ Q2

4m
ð2mx� e�mL sinhð2mxÞÞ: (27)

By considering the limit jxj ! 1, we obtain the total
energy that is radiated

F rad � 2F ð1Þ ¼ Q2L

2

�
1� 1

mL
ð1� e�mLÞ

�
: (28)

We can check that the expressions for F ðxÞ are consistent
with energy-momentum conservation, @xT

01 ¼ �@tT
00, if

the final field configuration is the static �s. A direct
calculation verifies

@xF ðxÞ ¼ T00ðt ¼ 0; xÞ � T00ðt ¼ 1; xÞ (29)

with

T00 ¼ 1

2
ð@t�Þ2 þ 1

2
ð@x�Þ2 þ 1

2
ðm�þ �FÞ2; (30)

where the ‘‘mass term’’ in T00 arises from the electric field
energy density ð1=2ÞF2

01, since F01 ¼ m�þ �F.
One may also use formula 3.876.1 in Gradshteyn and

Ryzhik [8],

Z 1

0
dk

sinðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ a2
p cosðbkÞ

¼
�
�
2 J0ða

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � b2

p Þ; 0< b< p
0; b > p > 0

; (31)

and apply it to the integral representation (22), to obtain the
rate of charge creation, @tj

0 / @t@x�:

@t@x�ðt; xÞ ¼ mQ

2
½J0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2�

q
Þ�ðt� x�Þ

� J0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2þ

q
Þ�ðt� xþÞ�; (32)

where x� � x� L=2. The first term can be attributed to
the�Q charge at x ¼ þL=2whereas the second to theþQ
charge at x ¼ �L=2. Charge creation at any location x
goes to zero at late times because the Bessel functions tend
to J0ðmjtjÞ and hence @tj0 ! 0. This is consistent with the
expectation that the asymptotic field configuration is �sðxÞ
in (20).

The electric current at any spacetime location is

jx ¼ g _� ¼ �2m2Q
Z dk

2�

cosðkxÞ sinðkL=2Þ
k!k

sinð!ktÞ;
(33)

where we have introduced !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and also used

g ¼ m. We use a trick to evaluate this integral. Let us first
differentiate with respect to l � L=2. Then after applying
appropriate trigonometric identities and Eq. (31), this gives

@lj
x ¼ � 2m2Q

�

Z 1

0
dk

cosðkxÞ cosðklÞ
!k

sinð!ktÞ

¼ �m2Q

2
½J0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2�

q
Þ�ðt� x�Þ

þ J0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2þ

q
Þ�ðt� xþÞ�; (34)

where we have defined x� ¼ x� l. Noting that the current
vanishes when the plate separation vanishes (l ¼ 0), we get

jxðt; xÞ ¼ �m2Q

2

Z L=2

0
dl½J0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2�

q
Þ�ðt� x�Þ

þ J0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2þ

q
Þ�ðt� xþÞ�: (35)

At late times, t 	 jx�j, we can Taylor expand the Bessel
functions at mt and then perform the integration over l to
get

jxðt; xÞ ¼ �Qm2L

2
J0ðmtÞ þO

�
Qm3L3

t
J00ðmtÞ

�

¼ � Qm2Lffiffiffiffiffiffiffiffiffiffiffiffi
2�mt

p cos

�
mt� �

4

�
þO

�
Qm3L3

t
ffiffiffiffiffiffi
mt

p
�
; (36)

where we have used the asymptotic form of the Bessel
function [8] in the second line. The first term is a good
approximation for t 	 mL2, jx�j, m�1.
The expression in Eq. (36) shows that the current within

the capacitor (say, at x ¼ 0) oscillates at the ‘‘micro-
scopic’’ frequency given by m. If we average out these

fast oscillations, the cosine gets replaced by 1=
ffiffiffi
2

p
and we

find that the root-mean-squared current decays as t�1=2:

jxrms ¼ m2QL

2
ffiffiffiffiffiffiffiffiffiffi
�mt

p : (37)

The electric field within the capacitor decays to a static
value that can be obtained from the static solution Eq. (20)
inserted into (9). The time-dependent electric field within
the capacitor at late times can be obtained from the ex-
pression for the current in Eq. (36) together with the
asymptotic static solution

Eðt; xÞ ¼ Estatic � mQLffiffiffiffiffiffiffiffiffiffiffiffi
2�mt

p sin

�
mt� �

4

�
: (38)

To check this expression simply differentiate with respect
to time and keep the leading order term in 1=ðmtÞ. This
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agrees with _E ¼ g _� ¼ jx. Note that the static part of the
electric field plays no role. In fact, well away from the
capacitor plates, the static electric field dies off exponen-
tially fast and can be ignored. So we will define the decay-
ing part of the electric field as Ed � E� Estatic and refer to
this as the electric field.

The expression for the electric field shows that it is 90

out of phase with the current but the amplitude has the
same 1=

ffiffi
t

p
decay as the current. The rms value of the

electric field is

Ed;rms ¼ mQL

2
ffiffiffiffiffiffiffiffiffiffi
�mt

p : (39)

This leads to Ohm’s law

jxrms ¼ �EEd;rms; (40)

where �E is the electrical conductivity of the vacuum

�E ¼ g ¼ 2effiffiffiffi
�

p : (41)

This result is independent of Q and L.
Let us now consider the energy in the capacitor. At late

times, the fields approach the static solution whose energy
can be computed using (20)

Z L=2

�L=2
T00dx ¼ Q2

4m
ð1� e�2LmÞ: (42)

This shows that the final energy is smaller if the coupling
g ¼ m is stronger. Or stronger coupling implies more
complete radiation of the capacitor energy.

We can identify a typical time scale for energy loss from
the capacitor by considering the ratio of the decaying part
of the energy in the electric field within the capacitor at
time t to the initial energy (Q2L=2). The ratio is

EðtÞ
Eð0Þ � m2Q2L3=ð8�mtÞ

Q2L=2
� 	

t
; (43)

where

	 ¼ gL2

4�
: (44)

Hence larger couplings imply longer decay times i.e.
slower decay. The capacitor is more effectively discharged
when the coupling constant is large but it takes a longer
time for the discharge to happen. In the zero coupling limit,
the rate of pair production is rapid, but the original electric
field E remains relatively undissipated.

III. SETUP II: EXTERNAL PLATES

In the second setup we do not wish to introduce external
charges. Instead the capacitor is charged with the same
fermionic field, c , or its bosonized version, �. However
we still need to have some capacitor ‘‘plates’’ that we can
charge. These plates have to be external to the system. To

implement this scheme, we add a double well potential to
the action in (2),

S V � � 1

2

Z
d2x½Vðxþ LÞ þ Vðx� LÞ��2; (45)

where the form of VðxÞ is chosen so that we can find a
nondissipative solution for the scalar field in a single well.
A sketch of the setup is shown in Fig. 2.1

It is convenient to choose

VðxÞ ¼ �2M2sech2ðMxÞ; (46)

where M is some mass scale that sets the depth and width
of the well. With this choice the solution to the single well
problem,

ð@2 þm2 þ VðxÞÞ� ¼ 0; (47)

is given by the 
�4 kink,

�ðt; xÞ ¼ cosðmtÞ tanhðMxÞ; (48)

where we have chosen the initial condition _�ðt ¼ 0; xÞ ¼
0. The solution describes a positive charge in the well at
t ¼ 0, which then oscillates—due to pair creation in the
electric field—but does not dissipate. The charge in the
well at any given time can be found from Eq. (6) to be
2m cosðmtÞ.
Now consider a capacitor with two plates, one at x ¼ L

and the other at x ¼ �L. Since we do not have any external
charges, we take the constant background electric field, �F
in Eq. (9), to be zero. This means we are now solving

ð@2 þm2 þ Vðxþ LÞ þ Vðx� LÞÞ� ¼ 0 (49)

with the following choice of initial conditions

�ðt ¼ 0; xÞ ¼ tanhðMðxþ LÞÞ � tanhðMðx� LÞÞ � �0ðxÞ;
_�ðt ¼ 0; xÞ ¼ 0: (50)

In what follows, we shall set M ¼ 1 and so all quantities
will be in units of M.

A. Asymptotic state

Before solving for the time evolution, we consider the
asymptotic state, which will be a stationary solution of
Eq. (49). That is, we think of the double well equation (49)
as a Schrodinger equation

Hc n ¼ !2
nc n (51)

with Hamiltonian

H � �@2x þm2 þ Vðxþ LÞ þ Vðx� LÞ: (52)

The corresponding Hamiltonian for a single potential
well centered at x ¼ 0 is

1See [9] for a setup in a similar spirit, but in the context of
QCD2.
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H1 ¼ �@2x þm2 þ VðxÞ: (53)

This has exactly one bound state

c / sechðxÞ (54)

with eigenvalue !2
0 ¼ m2 � 1 [10]. (Recall that we are

working in units with M ¼ 1.) So for the double well
potential, at least when the two wells are well separated,
there must be exactly two bound states, which can be
approximated as

c � sechðx� LÞ � sechðxþ LÞ: (55)

The energies of these two bound states are nearly identical,
!2� ¼ m2 � 1� e��, �ðm;LÞ 	 1, split by exponentially
small corrections due to tunneling between the double
wells. These bound states are the stationary states that
the system can evolve into.

We also observe that there is an apparent instability in
the current model when m2 < 1, since then!2

0 < 0 and the
bound state solution can grow exponentially. To understand
this instability, we examine the double well action in (45).
If the potential VðxÞ is deep enough, there will be a region
where m2 þ VðxÞ is sufficiently negative, that it becomes
favorable for � to grow without bound in this region. In
terms of the fermionic model, the well is so deep that it is
favorable to pull fermion pairs out of the vacuum and put
them at the bottom of the potential.

The evolution of the initial data, �0, in this setup can be
evolved formally by writing

�ðt; xÞ ¼ X
n

cosð!ntÞc nðxÞhc nj�0i; (56)

where the summation is over both bound and continuum
states of H. We can check that the initial conditions are
satisfied by setting t ¼ 0 in the factor cosð!ntÞ and in its
time derivative. We expect that, as time progresses, the
continuum states will disperse to infinity, leaving behind
only the initial overlap with the bound state. While for-

mally correct, the expansion in Eq. (56) is only useful if we
know the full eigenspectrum of the double well potential.
In the absence of the eigenspectrum, it is easier to numeri-
cally evolve the equation of motion.

B. Time evolution

We have evolved Eq. (49) using the explicit Crank-
Nicholson algorithm with two iterations with first-order
absorbing boundary conditions. The runs were done on
very large lattices so that boundary effects are minimal.
In Fig. 3 we plot the current envelopes at x ¼ 0 versus

time for several different parameters, disregarding the
rapid oscillations between the envelopes. Similarly, in
Fig. 4 we show the behavior of the electric field at x ¼ 0.
On the log-log plot in Fig. 5, it is clear that the envelopes
decay as a power law. A fit gives
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FIG. 3. Envelopes of the plots of the current at the center of the
capacitor, jxðt; x ¼ 0Þ, versus time. From black to light grey, the
curves represent, respectively, the evolution for m ¼ 1:5, 2, and
2.5. The rapid oscillations between the envelopes are not shown.
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FIG. 4. Envelopes of the plots of the electric field at the center
of the capacitor, Eðt; x ¼ 0Þ versus time. From black to light
grey, the curves represent, respectively, the evolution for m ¼
1:5, 2, and 2.5. The rapid oscillations between the envelopes are
not shown.

L L

FIG. 2. Schematic view of setup II. The dashed line is the
double well potential Vðxþ LÞ þ Vðx� LÞ. The thick black line
is the initial � configuration, tanhðxþ LÞ � tanhðx� LÞ, and
the thick grey line is a bound state solution in the double well.
Note that the figure is meant to be schematic and the horizontal
axis is not the zero of the potential.
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Erms ¼ N

ffiffiffi
g

t

r
; jxrms ¼ gN

ffiffiffi
g

t

r
; (57)

where N � 14 is a factor which could depend on the
dimensionless product ML, where M�1 is the width of
the wells [see Eq. (46)]. In Fig. 6, we display the ratio of
the envelopes of the current to the electric field. Its constant
value of unity provides evidence that Ohm’s law applies.
The electrical conductivity is therefore again given by
Eq. (41), as for setup I.

IV. CONCLUSIONS AND DISCUSSION

We have studied the quantum discharge of a capacitor in
massless QED in 1þ 1 dimensions by bosonizing the
model. The bosonized model is noninteracting and can
be solved classically. The solution includes all backreac-
tion effects. We now summarize the key results.

The final state depends on the setup used to describe the
capacitor plates. We have chosen two different ways to
describe the capacitor plates. In both cases, the final state is
nontrivial. In setup I, the plates keep their original charge
but the charges are screened due to the Schwinger process.
In setup II, there are no external charges, but there are
external potentials that play the role of capacitor plates.
Then the final state consists of fermion-antifermion pairs
that are bound to the plates.

The energy in the final state depends on the coupling
constant, g, and equivalently the mass of the scalar field,m.
The final state energy decreases with increasing g, while
the time for the capacitor to discharge increases with
increasing g, as seen in Eq. (44). So stronger coupling
leads to more complete discharge but the discharge process
itself is slower. We suggest that the longer discharge time
for larger coupling constant is due to the tighter binding of

fermion-antifermion pairs that need to be split apart by the
electric field.
The discharge process is highly oscillatory, as also seen

in the semiclassical analysis [2] and the amplitude of

oscillations falls off rather slowly, as t�1=2. This suggests
that the massless QED system is underdamped.
Our results show that the root-mean-square current in

the capacitor is directly proportional to the root-mean-
square electric field, indicating that Ohm’s law holds on
a macroscopic scale. Thus it makes sense to define the
electrical conductivity for the massless QED vacuum to be
�E ¼ jxrms=Erms and our results indicate the simple relation
�E ¼ gwhich can also be written in terms of the fermionic
charge as �E ¼ 2e=

ffiffiffiffi
�

p
.

A correspondence is often made between Schwinger
pair creation and Hawking radiation, though we have in-
dicated differences between the two processes that prompt
us to use caution in drawing a correspondence. If the
oscillatory features of the discharge process carry over to
black hole evaporation, we may expect black hole mass
oscillations during evaporation. Though, in contrast to the
capacitor, the black hole system is unstable in that smaller
mass black holes are hotter and evaporate faster, while
weaker electric fields in the capacitor do not discharge
faster. So it would appear that a fluctuation that excessively
decreases the mass of the black hole, would make it
evaporate yet faster in what may be a runaway process.
The issues of black hole formation and the final state of

black hole evaporation cannot be resolved by this corre-
spondence since the capacitor plates have to be introduced
externally, whereas there are no such externally set con-
ditions in the case of gravitational collapse. Yet it would be
extremely interesting if the electromagnetic Ohm’s law has
a gravitational analog that relates energy flow (current)
from a black hole, or during gravitational collapse, to the
‘‘gravitational electric’’ field (see Sec. 4.4 of [11]). Perhaps
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FIG. 5. Envelopes for the currents (solid curves) and the elec-
tric fields (dashed curves) at x ¼ 0 on a log-log plot. Comparison
with the light straight line with slope �1=2 clearly shows the
1=

ffiffi
t

p
fall off. From black to light grey, the curves represent,

respectively, the evolution for m ¼ 1:5, 2, and 2.5.
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FIG. 6. Ratio of the envelopes of current (divided by m) to
electric field at x ¼ 0 for m ¼ 1:5, 2, and 2.5. The constant flat
ratio implies Ohm’s law and the value of 1 implies that the
conductivity is g.
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the instability of the black hole can be summarized in a
negative ‘‘gravitational conductivity.’’

A potential application of our findings is to supercon-
ducting cosmic strings, where massless QED in 1þ 1
dimensions is expected to apply for fermion zero modes
on the string [12]. Our analysis shows that if superconduct-
ing strings really behave as 1þ 1 dimensional systems,
they will carry oscillatory currents because of the back-
reaction of the induced currents on the external electric
fields. (Oscillatory currents were also discussed in [13],
though these occurred due to the periodic dynamics of the
strings.)

While our analysis has enabled us to fully treat back-
reaction of the Schwinger process, our results cannot be
transported to 3þ 1 QED for two reasons. First, the elec-
tron has a nonzero mass. For electric fields smaller than the
electron mass squared, the Schwinger process is exponen-
tially suppressed and the vacuum is essentially an insulator.
In situations where the electric field is larger than the
electron mass squared, the exponential suppression is ab-
sent and the dynamics may be closer to what we have
found. The second reason is that the larger number of
dimensions can change the picture dramatically. In 1þ 1

dimensions, the intercharge potential is linear and electric
charge is confined. In 3þ 1 dimensions, electric charges
interact by the Coulomb potential and are not confined.
This suggests that our system may be closer to the case of
chromo-electric fields in 3þ 1 dimensions with massless
quarks. While this has some features that resemble the
model we have considered, there are essential differences
due to the non-Abelian nature of the interactions.
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