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We develop the Schwinger-DeWitt technique for the covariant curvature expansion of the quantum

effective action for brane induced gravity models in curved spacetime. This expansion has a part

nonanalytic in Dvali-Gabadadze-Porrati type scale parameter m, leading to the cutoff scale which is

given by the geometric average of the mass of the quantum field in the bulk M and m. This cutoff

Mcutoff ¼
ffiffiffiffiffiffiffiffiffi
Mm

p
is much higher than the analogous strong coupling scale of the Dvali-Gabadadze-Porrati

model treated by weak field expansion in the tree-level approximation. The lowest orders of this curvature

expansion are calculated for the case of the scalar field in the (dþ 1)-dimensional bulk with the brane

carrying the d-dimensional kinetic term of this field. The ultraviolet divergences in this model are

obtained for a particular case of d ¼ 4.
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I. INTRODUCTION

Modified theories of gravity in the form of braneworld
models can in principle account for the phenomenon of
dark energy [1,2] as well as for nontrivial compactifica-
tions of multidimensional string models. It becomes in-
creasingly more obvious that one should include in such
models the analysis of quantum effects beyond the tree-
level approximation [3]. This is the only way to reach an
ultimate conclusion on the resolution of such problems as
the presence of ghosts [4] and low strong-coupling scale
[5–7]. Quantum effects in brane models are also important
for the stabilization of extra dimensions [8], fixing the
crossover scale in the Brans-Dicke modification of the
Dvali-Gabadadze-Porrati (DGP) model [9] and in the re-
cently suggested mechanism of the cosmological accelera-
tion generated by the four-dimensional conformal anomaly
[10].

A general framework for treating quantum effective
actions in brane models (or, more generally, models with
timelike and spacelike boundaries) was recently suggested
in [11–14]. The main peculiarity of these models is that due
to quantum field fluctuations on the branes the field propa-
gator is subject to generalized Neumann boundary condi-
tions involving normal and tangential derivatives on the
brane/boundary surfaces. This presents both technical and
conceptual difficulties, because such boundary conditions
are much harder to handle than the simple Dirichlet ones.
The method of [13] provides a systematic reduction of the
generalized Neumann boundary conditions to Dirichlet
conditions. As a by-product it disentangles from the quan-
tum effective action the contribution of the surface modes
mediating the brane-to-brane propagation, which play a

very important role in the zero-mode localization mecha-
nism of the Randall-Sundrum type [15]. The purpose of
this work is to make the next step—to extend a well-known
Schwinger-DeWitt technique [16–19] to the calculation of
this contribution in the DGP model in a weakly curved
spacetime in the form of the covariant curvature
expansion.
Briefly the method of [13] looks as follows. The action

of a (free field) brane model generally contains the bulk
and the brane parts,

S½�� ¼ 1

2

Z
B
ddþ1X

ffiffiffiffi
G

p
�ðXÞFðrXÞ�ðXÞ

þ 1

2

Z
b
ddx

ffiffiffi
g

p
’ðxÞßðrxÞ’ðxÞ; (1)

where the (dþ 1)-dimensional bulk and the d-dimensional
brane coordinates are labeled, respectively, by X ¼ XA and
x ¼ x�, and the boundary values of bulk fields�ðXÞ on the
brane/boundary b ¼ @B are denoted by ’ðxÞ,

� ðXÞjb ¼ ’ðxÞ; (2)

G and g are the determinants of the bulk and brane metrics,
respectively. Brane metric g�� is considered as induced

from the bulk metric GAB via embedding.
The kernel of the bulk Lagrangian is given by the

second-order differential operator FðrXÞ, whose covariant
derivatives rX in (1) are integrated by parts in such a way
that they form bilinear combinations of first-order deriva-
tives acting on two different fields. Integration by parts in
the bulk gives nontrivial surface terms on the brane/bound-
ary. In particular, this operation results in the Wronskian
relation for generic test functions �1;2ðXÞ,

Z
B
ddþ1X

ffiffiffiffi
G

p ð�1
~FðrXÞ�2 ��1FQ ðrXÞ�2Þ

¼ �
Z
b
ddx

ffiffiffi
g

p ð�1
~W�2 ��1WQ �2Þ: (3)
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Arrows everywhere here indicate the direction of action of
derivatives either on �1 or �2.

The brane part of the action contains as a kernel some
local operator ß̂ðrÞ, r � rx. Its order in derivatives de-
pends on the model in question. In the Randall-Sundrum
model [15], for example, it is for certain gauges just an
ultralocal multiplication operator generated by the tension
term on the brane. In the Dvali-Gabadadze-Porrati (DGP)
model [1] this is a second-order operator induced by the
brane Einstein term on the brane, ß̂ðrÞ � rr=m, where m
is the DGP scale which is of the order of magnitude of the
horizon scale, being responsible for the cosmological ac-
celeration [2]. In the context of the Born-Infeld action in D-
brane string theory with vector gauge fields, ßðrÞ is a first-
order operator [20].

In all these cases the variational procedure for the action
(1) with dynamical (not fixed) fields on the boundary ’ðxÞ
naturally leads to generalized Neumann boundary condi-
tions of the form

ð ~WðrXÞ þ ßðrÞÞ�jb ¼ 0; (4)

which uniquely specify the propagator of quantum fields
and, therefore, a complete Feynman diagrammatic tech-
nique for the system in question. The method of [13]
allows one to systematically reduce this diagrammatic
technique to the one subject to the Dirichlet boundary
conditions �jb ¼ 0. The main additional ingredient of
this reduction procedure is the brane operator Fbraneðx; x0Þ
which is constructed from the Dirichlet Green’s function
GDðX; X0Þ of the operator FðrÞ in the bulk,

Fbraneðx; x0Þ ¼ � ~WðrXÞGDðX; X0ÞWQ ðrX0 ÞjX¼eðxÞ;X0¼eðx0Þ
þ ßðrÞ�ðx; x0Þ: (5)

This expression expresses the fact that the kernel of the
Dirichlet Green’s function is being acted upon both argu-
ments by the Wronskian operators with a subsequent re-
striction to the brane, with X ¼ eðxÞ denoting the brane
embedding function.

As shown in [13], this operator determines the brane-to-
brane propagation of the physical modes in the system with
the classical action (1) (its inverse is the brane-to-brane
propagator) and additively contributes to its full one-loop
effective action according to

� 1-loop � 1
2 Tr

ðdþ1Þ
N lnF ¼ 1

2 Tr
ðdþ1Þ
D lnFþ 1

2 Tr
ðdÞ lnFbrane;

(6)

where Trðdþ1Þ
D;N denotes functional traces of the bulk theory

subject to Dirichlet and Neumann boundary conditions,

respectively, while TrðdÞ is a functional trace in the bound-
ary d-dimensional theory. The full quantum effective ac-
tion of this model is obviously given by the functional
determinant of the operator FðrXÞ subject to the general-
ized Neumann boundary conditions (4), and the above
equation reduces its calculation to that of the Dirichlet

boundary conditions plus the contribution of the brane-
to-brane propagation.
Here we apply (6) to a simple model of a scalar field

which mimics, in particular, the properties of the brane
induced gravity models and the DGP model [1]. This is the
(dþ 1)-dimensional massive scalar field �ðXÞ ¼ �ðx; yÞ
with massM living in the curved half-space y � 0with the
additional d-dimensional kinetic term for ’ðxÞ � �ðx; 0Þ
localized at the brane (boundary) at y ¼ 0,

S½�� ¼ 1

2

Z
y�0

ddþ1X
ffiffiffiffi
G

p ððrX�ðXÞÞ2 þM2�2ðXÞ

þ PðXÞ�2ðXÞÞ þ 1

4m

Z
ddx

ffiffiffi
g

p ððrx’ðxÞÞ2

þ�2’2ðxÞ þ pðxÞ’2ðxÞÞ: (7)

Here and in what follows we work in a Euclidean (positive-
signature) spacetime. Therefore, this action corresponds to
the following choice of FðrXÞ in terms of (dþ 1)-
dimensional covariant d’Alembertian (Laplacians)

FðrXÞ ¼ �hðdþ1Þ þM2 þ P ¼ �GABrArB þM2 þ P:

(8)

In the normal Gaussian coordinates its Wronskian operator
is given by W ¼ �@y—the normal derivative with respect

to outward-pointing normal to the brane, and the boundary
operator ßðrÞ equals in terms of the d-dimensional
d’Alembertian

ßðrÞ ¼ 1

2m
ð�hþ�2 þ pÞ;

h ¼ hðdÞ � g��r�r�;

(9)

where the dimensional parameter m mimics the role of the
DGP scale [1]. Thus, the generalized Neumann boundary
conditions in this model involve second-order derivatives
tangential to the brane,

�
@y ��hþ�2 þ p

2m

�
�ðXÞ

��������b
¼ 0; (10)

cf. (4) with W ¼ �@y and ß given by (9).

As was shown [14], the flat space brane-to-brane opera-
tor for such a model without potential terms has the form of
the pseudodifferential operator with the flat-space h,

F braneðrÞ ¼ 1

2m
ð�hþ�2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þ: (11)

In the massless case of the DGP model [1], M ¼ 0, this
operator is known to mediate the gravitational interaction
on the brane, interpolating between the four-dimensional
Newtonian law at intermediate distances and the five-
dimensional law at the horizon scale �1=m [6].
Here we generalize this construction to a curved space-

time and expand the brane-to-brane operator and its effec-
tive action in covariant curvature series. This is the
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expansion in powers of the bulk curvature BR, extrinsic
curvature of the brane k��, the potential terms of the bulkP

and brane p operators and their covariant derivatives—all
taken at the location of the brane. The expansion starts with
the approximation (11) based on the full covariant
d’Alembertian on the brane. We present a systematic tech-
nique of calculating curvature corrections in (6) and re-
write their nonlocal operator coefficients—functions of the
covariant h-in the form of the generalized (weighted)
proper time representation.

The success of the conventional Schwinger-DeWitt
method is based on the fact that the one-loop effective
action of the operator, say �hþM2, has a proper time
representation

1

2
Tr lnðM2 �hÞ ¼ � 1

2

Z 1

0

ds

s
e�sM2

Tresh: (12)

In view of the well-known small time expansion for the
heat kernel [16,17],

esh�ðx; x0Þ ¼ 1

ð4	sÞd=2 D
1=2ðx; x0Þe�
ðx;x0Þ=2s X1

n¼0

snanðx; x0Þ;

(13)

(
ðx; x0Þ is the geodesic world function, Dðx; x0Þ is the
associated Van Vleck determinant and anðx; x0Þ are the
Schwinger-DeWitt or Gilkey-Seely coefficients) the curva-
ture expansion eventually reduces to the calculation of the
coincidence limits of anðx; x0Þ and a trivial proper time
integration resulting in the inverse mass expansion

1

2
Tr lnðM2 �hÞ ¼ � 1

2

Md

ð4	Þd=2
X1
n¼0

�ðn� d=2Þ
M2n

�
Z

dx
ffiffiffi
g

p
anðx; xÞ: (14)

As we will show below, the calculation of the brane
effective action differs from the conventional Schwinger-
DeWitt case in that the proper time integral (12) contains in
the integrand a certain extra weight function wðsÞ, and
instead of just Tresh one has to calculate the trace of the
heat kernel acted upon by a certain local differential op-
erator TrðWðrÞeshÞ. This again reduces to the calculation
of the coincidence limits—this time of the multiple cova-
riant derivatives of anðx; x0Þ,
ðx; x0Þ andDðx; x0Þ—the task
easily doable within a conventional DeWitt recurrence
procedure.

The result of this calculation is peculiar. Unlike the usual
Schwinger-DeWitt expansion (14) the brane effective ac-
tion takes the form

1

2
Tr lnFbrane ¼

�
Mm

4	

�
d=2 X1

N¼0

1

MN

X
i�N

OðM2N�iÞ
mN�i

þ Md

ð4	Þd=2
X1
N¼0

1

MN

X
i�N

miOðMN�iÞ;

(15)

whereOðMkÞ represent the integrals over the brane/bound-
ary space of local invariants of dimensionality k in units of
mass or inverse length. With this notation, in particular,
anðx; xÞ ¼ OðM2nÞ. More generally, these invariants (or
spacetime covariant higher-dimensional operators) are
composed of the powers of the bulk and brane curvature,
extrinsic curvature of the brane/boundary, the potential
terms of the bulk and brane operators and their covariant
derivatives.
The main difference of (15) from (14) is that in addition

to a usual part analytic in m with a typical M-dependence
[second series in (15)] we also have the part singular in
m ! 0 with a qualitatively different analytic dependence

on the bulk mass (Md=2�N instead ofMd�N). This property
was recently discovered for the effective potential in the
toy model of the DGP type [14]. Physically this leads to an
essential modification of the perturbation theory cutoff—
the domain of validity of the local expansionM � Mcutoff .
It reduces this cutoff from Mcutoff ¼ M to

Mcutoff ¼
ffiffiffiffiffiffiffiffiffi
Mm

p
: (16)

In physically interesting brane models with m � M this
implies essential reduction of Mcutoff and signifies the
problem of a low strong coupling scale [6]. While in [6]
this phenomenon was observed in the tree-level theory,
here we extend it to the quantum one-loop approximation.
As an application of this generalized Schwinger-DeWitt

expansion we calculate the one-loop brane effective action
of the quantum scalar field with the accuracy OðM2Þ. In
this approximation the basis of local curvature invariants
includes one structure as a cosmological term, two struc-
tures linear in the extrinsic curvature and the potential term
of the brane operator (9) and seven structures of dimen-
sionality (M2),

OðM0Þ ¼
Z
b
ddx

ffiffiffi
g

p
; (17)

OðM1Þ ¼
Z
b
ddx

ffiffiffi
g

p
k;

Z
b
ddx

ffiffiffi
g

p p

2m
; (18)

OðM2Þ ¼
Z
b
ddx

ffiffiffi
g

p BR;
Z
b
ddx

ffiffiffi
g

p BRnn;

Z
b
ddx

ffiffiffi
g

p
k2��;

Z
b
ddx

ffiffiffi
g

p
k2;

Z
b
ddx

ffiffiffi
g

p
P;

Z
b
ddx

ffiffiffi
g

p �
p

2m

�
2
;

Z
b
ddx

ffiffiffi
g

p
k
p

2m
:

(19)
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Here BR is a bulk scalar curvature, BRnn ¼ BRABn
AnB is

the projection of the bulk Ricci tensor on the normal vector
nA to the brane, k�� is the extrinsic curvature of the brane

and k ¼ g��k�� is its trace. In this article we use the

following sign convention for extrinsic curvature: k�� ¼
eAð�e

B
�ÞðrXÞAnB, where feA�g is a holonomic basis tangent to

brane, nA-unit inward normal vector to the brane. P and p
represent the bulk and brane potential terms of relevant
operators FðrXÞ and ßðrxÞ introduced above. Below we
find explicit coefficients of these structures in (15) as
nontrivial functions of mass parameters M, m, and � and
find UV divergences in this model.

II. PERTURBATION THEORY FOR THE BULK
GREEN’S FUNCTION AND BRANE-TO-BRANE

INVERSE PROPAGATOR

In normal Gaussian coordinates the covariant bulk

d’Alembertian decomposes as h
ðdþ1Þ
X ¼ @2y þhxðyÞ þ

. . . , where ellipses denote (depending on spin) terms at
most linear in derivatives and hxðyÞ is a covariant
d’Alembertian on the slice of constant coordinate y.
Therefore, the full bulk operator takes the form

FðrÞ ¼ �h
ðdþ1Þ
X þM2 þ PðXÞ

¼ �@2y �hþM2 � VðXj@y;rÞ � F0 � V;

h � hxð0Þ; (20)

in which all nontrivial y-dependence is isolated as a per-
turbation term VðXj@y;rÞ � Vðy; @yÞ—a first-order differ-

ential operator in y, proportional to the extrinsic and bulk
curvatures, and of second order in brane derivatives r
which we do not explicitly indicate here by assuming
that they are encoded in the operator structure of
Vðy; @yÞ. In particular, it includes the difference hxð0Þ �
hðyÞ � h�hðyÞ expandable in Taylor series in y.

The kernel of the bulk Green’s function can formally be
written as a y-dependent nonlocal operator acting on the
d-dimensional brane—some nonpolynomial function of
the brane covariant derivative

GDðX; X0Þ ¼ GDðy; y0jrÞ�ðx; x0Þ: (21)

The perturbation expansion for GDðy; y0jrÞ is usual

GD ¼ G0
D þG0

DVG
0
D þ . . . ¼ G0

D

X1
n¼0

ðVG0
DÞn; (22)

where G0
D is the propagator for operator F0 obeying

Dirichlet boundary conditions and the composition law
includes the integration over the bulk coordinates, like,
for example, in the first subleading term

G0
DVG

0
Dðy; y0Þ ¼

Z 1

0
dy00G0

Dðy; y00ÞVðy00; @y00 ÞG0
Dðy00; y0Þ:

(23)

The lowest order Green’s function in the half-space of
the DGP model setting—the Green’s function of F0 ¼
�@2y �hþM2 subject to Dirichlet conditions on the

brane y ¼ 0 and at infinity—reads as follows

G0
Dðy; y0Þ ¼

e�jy�y0j
ffiffiffiffiffiffiffiffiffiffiffi
M2�h

p
� e�ðyþy0Þ

ffiffiffiffiffiffiffiffiffiffiffi
M2�h

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p : (24)

We want to stress that here we assume the exact (curved)
d-dimensional d’Alembertianh depending on the induced
metric of the brane g��ðxÞ. This means that in the lowest

order approximation the underlying spacetime is not flat,
but rather has a nontrivial but constant in y metric of
constant y slices. Correspondingly in the zeroth order we
have

� ½ ~WGDðy; y0ÞWQ �0y¼y0¼0
¼ � ~@yG

0
Dðy; y0Þ@Qyjy¼y0¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
: (25)

The perturbation of the bulk operator can be expanded in
Taylor series in y, so that it reads

V ¼ kðx; yÞ@y þhðyÞ �h� Pðx; yÞ

� X1
k¼0

1

k!
uky

k@y �
X1
k¼0

1

k!
vky

k; (26)

where ukðrÞ and vkðrÞ form a set of y-independent local
d-dimensional covariant operators of maximum second
order in rx. The coefficients of these operators are given
by the powers of the bulk and brane curvature, the extrinsic
curvature of the brane, the potential term P and the cova-
riant derivatives of all these quantities—all of them taken
at the brane.
Below we present them up to the first order in the bulk

and brane curvature and to the second order in the extrinsic
curvature of the brane. Working in a Gauss normal coor-
dinate system for the case of a single quantum scalar field
they read as

u0 ¼ kðx; yÞjy¼0 � k;

u1 ¼ @ykðx; yÞjy¼0 ¼ �BRnn � k2��

(27)

and

v0 ¼ Pðx; yÞjy¼0 � P;

v1 ¼ @yð�hxðyÞ þ Pðx; yÞÞjy¼0

¼ 2k��r�r� þ 2ðr�k
��Þr� � ðr�kÞr� þOðM3Þ;

v2 ¼ @2yð�hxðyÞ þ Pðx; yÞÞjy¼0

¼ ð�2BR�
n
�
n � 6k��k�

�Þr�r� þOðM3Þ: (28)

Here we everywhere omit the argument x of all quantities
located on the brane, r� is the d-dimensional covariant
derivative on the brane, k�� denotes the extrinsic curvature

of the brane, k ¼ g��k�� is its trace. Subscript n denotes
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the projection of the relevant bulk index to the normal
vector nA, in particular BRnn ¼ BRC

ACBn
AnB.

Another source of differential operators with coeffi-
cients of growing power in the curvatures and their deriva-
tives is the commutation of h with all x-dependent
quantities involved, like

½h; u0� ¼ ½h; kðxÞ� ¼ 2ðr�kÞr� þOðM3Þ
½h; v1� ¼ 4ðr�k��Þr�r�r� þOðM3Þ: (29)

In all these equations OðMlÞ denotes the accuracy in
powers of the dimensionful quantities—curvatures, opera-
tor potential terms and their derivatives—with which the
relevant quantity is calculated within the local Schwinger-
DeWitt technique. In fact l associated with OðMlÞ indi-
cates the dimensionality (in mass units) of the coefficient
of the higher-derivative term of the relevant operator. In
[17] it was called a background dimensionality, in contrast
to a total dimensionality of the quantity. In what follows we
will denote the background dimensionality of the operator
A ¼ OðMlÞ by

DimA ¼ l: (30)

Thus for an operator of the form ðraRmPlknÞrb, where the
coefficient of the bth order derivative is given by a mono-
mial of curvatures and potential terms and their covariant
derivatives of the total order a, the background dimension-
ality is given by

Dim ðraRmPlknÞrb ¼ DimOðMaþ2mþ2lþnÞ
¼ aþ 2mþ 2lþ n; (31)

whereas its total dimensionality is, of course,
½ðraRmPlknÞrb� ¼ aþ bþ 2mþ 2lþ n.

The background dimensionality in fact counts the order
of the perturbation theory in powers of the local quantities
R ¼ OðM2Þ, P ¼ OðM2Þ, k ¼ OðM1Þ and their deriva-
tives. The orders of this perturbation theory have the
form MN=MM, where M is the bulk mass playing the
role of the cutoff,M � M, beyond which the local expan-
sion does not apply. The background dimensionalities of
relevant local operators, like (28) and (29), always contrib-
ute to N. On the contrary, free (acting to the right) deriva-
tives of these operators may effect the overall power of the
cutoff M in the denominator (by reducing it) so that they
are not indicative of the accuracy of the Schwinger-DeWitt
expansion. In other words, any quantity of the background
dimensionality l contributes to the lth order of the local
expansionMl and higher, whereas the total dimensionality
of this quantity does not determine the order of this expan-
sion. This explains a distinguished role of the background
dimensionality vs the total one.

The next calculational step consists in the substitution of
(25) and (26) into (22), and it leads to exactly calculable
integrals over y. The integration over y results in a nonlocal

series in inverse powers of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
—this is obvious

from the y-expansion of (26), because every extra power

of y brings one extra inverse power of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
. Each kth

order of this series arises in the form of the following
nonlocal chain of square root ‘‘propagators,’’

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þl1 V1

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þl2 V2 . . .Vp�1

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þlp ;

l1 þ l2 þ . . .þ lp ¼ k;

with some differential operators Vi as its vertices. With the
aid of the commutation relations like (29) all these propa-
gators can be systematically commuted to the right of the
expression by the price of extra commutator terms of the
same structure, and the perturbation expansion finally takes
the form

�½ ~WGDðy; y0ÞWQ �y¼y0¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p

� X1
k¼1

UkðrÞ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk�1

;

(32)

where UkðrÞ is a set of certain local covariant differential
operators acting on the brane. The dimensionality of each
UkðrÞ is the inverse length to the power k, which is
composed of the dimensionalities of bulk and extrinsic
curvatures and covariant derivatives all taken on the brane
at y ¼ 0.
With ßðrÞ given by (9) the brane-to-brane operator (5)

reads

F braneðrÞ ¼ F0 �
X1
k¼1

UkðrÞ 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk�1

; (33)

F 0 ¼ 1

2m
ð�hþ�2 þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þ; (34)

Here we absorbed the potential term p of the operator ßðrÞ
into the first term, k ¼ 1, of the perturbation part of
FbraneðrÞ by redefining the U1 term, U1 ! U1 � p=2m,
because p should of course be treated on equal footing with
other perturbations. We do not introduce a new notation for
U1, and this should not lead to a confusion because
Eq. (32) will not be used in what follows. The rest of the
perturbation part is induced from the bulk and does not
depend on the boundary conditions on the brane encoded in
the operator ßðrÞ. Note that the zeroth-order term here is a
nontrivial nonlocal operator because h is a curved space
d-dimensional D’Alembertian acting on the brane.
In the M2 approximation (involving the terms linear in

the bulk curvature and potential P and the terms quadratic
in the extrinsic curvature k and the brane potential p) the
operator coefficients UkðrÞ extend to k ¼ 6. Higher order
coefficients go beyond the M2-approximation. The calcu-
lations show that for a single scalar field they read as
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U1ðrÞ ¼ � 1

2
u0 � p

2m
¼ � 1

2
k� p

2m
U2ðrÞ ¼ � 1

4
u1 � 1

2
v0 � 1

8
u0u0 ¼ 1

4
BRnn þ 1

4
k2�� � 1

2
P� 1

8
k2;

U3ðrÞ ¼ � 1

8
u2 � 1

8
½u0; v0� � 1

8
½h; u0� � 1

8
u1u0 � 1

4
v1 ¼ � 1

2
k��r�r� � 1

2
k��;�r� þOðM3Þ;

U4ðrÞ ¼ � 1

8
v2 þOðM3Þ ¼

�
1

4
BR�

n
�
n þ 3

4
k��k�

�

�
r�r� þOðM3Þ;

U5ðrÞ ¼ � 1

8
½h; v1� þOðM3Þ ¼ � 1

2
ðr�k��Þr�r�r� þOðM3Þ;

U6ðrÞ ¼ 5

32
v1v1 þOðM3Þ ¼ 5

8
k��k��r�r�r�r� þOðM3Þ:

(35)

As mentioned above, each Uk has a total dimensionality k
in units of mass. Except the case of k ¼ 2, for which U2 ¼
OðM2Þ, their background dimensionality is Uk ¼
O½M½ðkþ2Þ=3��, where the square brackets denote the integer
part of a fractional number.

III. PERTURBATION THEORY FOR THE BRANE
EFFECTIVE ACTION

Perturbation theory for the effective action immediately
follows from the perturbation series (33) for the operator
Fbrane. The brane effective action can be rewritten as

1

2
Tr lnFbrane ¼ 1

2
Tr lnF0 þ 1

2
Tr ln

�
1� X

k�1

UkðrÞ

� 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk�1

1

F0

�
; (36)

and reexpanded in powers of the perturbation series term
under the logarithm sign. After commuting all the square

root propagators 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk and the propagators 1=F0

to the right this expansion takes the form

1

2
Tr lnFbrane ¼ 1

2
Tr lnF0 � 1

2

X
k�0;l�1

TrWklðrÞ

� 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk

1

F0
l
; (37)

with a new set of local covariant differential operators
WklðrÞ acting on the brane. For dimensional reasons the
total dimensionality of WklðrÞ is kþ l in units of mass,

because F0 like
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
has a unit dimensionality.

These operators are composed of the products of the
operators UkðrÞ introduced above and their multiple com-

mutators with the ‘‘propagators’’ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk and

1=F0. These commutators are based on the multiple use
of the formula

fðhÞB�BfðhÞ¼X1
k¼1

1

k!
adkhB 	@khfðhÞ; adhB�½h;B�;

(38)

which leads to the following structure of WklðrÞ

WklðrÞ ¼
Xmaxf0;l�2g

p¼0

1

mp Wkl;pðrÞ: (39)

Here, modulo the powers of p=2m originating fromU1ðrÞ,
the coefficientsWkl;pðrÞ are m-independent, and the nega-

tive powers of m follow from the differentiation of the
propagator 1=F0 with respect to h participating in the
commutators ½Uk; 1=F0�,

@h
1

F0

¼ 1

2

1

F0
2

�
1

m
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 �h
p

�
:

As we see, each such differentiation results in the extra
power of the propagator 1=F0 and an extra term propor-
tional to 1=m. For aWklðrÞwith a given l the highest order
of 1=m is limited by maxf0; l� 2g. This is because p
differentiations increase the power of 1=F0 from some
initial l0 to at least l ¼ l0 þ p, and the initial l0 � 2, be-
cause the commutation of 1=F0 with other quantities be-
gins only when the number of these propagators exceeds
two [one should remember that one propagator 1=F0 al-
ways stands to the right of everything else, see Eq. (36)].
This explains the upper limit of summation over p in (39)
and, as we will later see, underlies the regularity of the
Neumann limit m ! 1.
The background dimensionality of Wkl;pðrÞ is a mono-

tonically growing function of all its indices and can be
shown to satisfy the bound

DimWkl;pðrÞ �
�
kþ lþ 2pþ 2

3

�
; (40)

where square brackets denote an integer part of the frac-
tional number. This bound follows from the observation
that for any Wkl;p, composed of the chain of Uki and n

commutators with h, the total dimensionality ½Wkl;p� ¼
kþ lþ p equals ½Wkl;p� ¼

P
iki þ 2n. On the other hand,

the background dimensionality in addition to the sum of
DimUki ¼ ½ðki þ 2Þ=3� contains at least one extra unit of

mass per each commutation with h. Therefore
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DimWkl;pðrÞ � X
i

�
ki þ 2

3

�
þ n �

�P
i
ki þ 2

3

�
þ n

¼
�ðkþ lþ pÞ þ nþ 2

3

�
;

(41)

where we used the above counting of the total dimension-
ality

P
iki þ 2n ¼ kþ lþ p. The bound (40) then follows

from the fact that the overall negative power of m does not
exceed the number of commutations n, 0 � p � n.
Relevant Wkl which can contribute up to OðM2Þ order

inclusive are

W01 ¼ U1 ¼ � 1

2
k� p

2m
; W11 ¼ U2 ¼ 1

4
BRnn þ 1

4
k2�� � 1

2
P� 1

8
k2; W02 ¼ 1

2
U2

1 ¼
1

2

�
1

2
kþ p

2m

�
2
;

W21 ¼ U3 ¼ � 1

2
k��r�r� � 1

2
ðr�k

��Þr� þOðM3Þ; W31 ¼ U4 ¼
�
1

4
BR�

n
�
n þ 3

4
k��k�

�

�
r�r� þOðM3Þ;

W22 ¼ U3U1 þ 1

2
U2U2 ¼ 1

2

�
1

2
kþ p

2m

�
k��r�r� þOðM3Þ; W41 ¼ U5 ¼ � 1

2
ðr�k��Þr�r�r� þOðM3Þ;

W51 ¼ U6 ¼ 5

8
k��k��r�r�r�r� þOðM3Þ;

W42 ¼ U5U1 þU4U2 þ 1

2
U3U3 þU3½h; U1� ¼ 1

8
k��k��r�r�r�r� þOðM3Þ: (42)

IV. GENERALIZED PROPER TIME METHOD

The further calculation is based on the possibility to
express the nonlocal structures in (37) in terms of the
heat kernel of the box operator h, which admits a well-
known curvature expansion. This is the set of proper time
representations which differ from a usual Schwinger inte-
gral by nontrivial weight functions wklðsÞ

lnF0 ¼ � lnð2mÞ �
Z 1

0

ds

s
w00ðsÞe�sðM2�hÞ; (43)

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk

1

F0
l
¼

Z 1

0

ds

s
wklðsÞe�sðM2�hÞ; ðl � 1Þ:

(44)

These weight functions can be found as follows. First,
decompose the operatorF0 defined by (34) into the product

of two factors linear in
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p

F 0 ¼ 1

2m
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
�mþÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
�m�Þ; (45)

where m
 denote the roots of the quadratic equation x2 þ
2mx�M2 þ�2 ¼ 0,

mþ ¼ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2 ��2

q
;

m� ¼ �m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þM2 ��2

q
:

(46)

Therefore

lnF0 ¼ � ln2mþ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
�mþÞ

þ lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
�m�Þ;

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
ÞkF0

l
¼ Xk

a¼1

Ba
klðmþ; m�Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þa

þ Xl
b¼1

�
Db

klðmþ; m�Þ
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
�mþÞb

þ ðmþ $ m�Þ
�
: (47)

Here the second equation is the result of the decomposition
of its left-hand side into partial fractions with the coeffi-
cients Ba

kl and Db
kl

Ba
klðmþ; m�Þ ¼ ð�m=2Þl

ð4Þ2l
1

ðl� 1Þ!ðk� aÞ!

� Xl
b¼1

�ð2l� bÞ�ðk� aþ bÞ
�ðl� bþ 1Þ�ðbÞ

�
�

1

mþk�a

�
mþ �m�

mþ

�
b þ 1

m�k�a

�
�
m� �mþ

m�

�
b
�
; (48)

and

Db
klðmþ; m�Þ ¼

�
m

4
�
l 1

�ðkÞ�ðlÞ
ð�1Þl�b

mþkþl�b

� Xl�b

p¼0

�ðkþ l� b� pÞ
�ðl� bþ 1� pÞ

�ðlþ pÞ
p!

�
�

mþ
mþ �m�

�
p
: (49)
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Now, in addition to a simple proper time representation
of the square root propagators

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þa ¼ 1

�ða=2Þ
Z 1

0
dssa=2�1e�sðM2�hÞ; (50)

we need a similar representation for the new operator of the

form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
� ~m and its logarithm. It can be derived

with the aid of the integral representation of the cylindrical
function of a half-integer order

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
� ~mÞ� ¼ 1

�ð�Þ
Z 1

0
dxx��1e ~mxe�x

ffiffiffiffiffiffiffiffiffiffiffi
M2�h

p

¼ �

2
ffiffiffiffi
	

p
�ð1þ �Þ

Z 1

0
dss�3=2e�sðM2�hÞ

�
Z 1

0
dxx�e ~mxe�ðx2=ð4sÞÞ: (51)

Differentiating it with respect to � at � ¼ 0 one gets

lnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
� ~mÞ ¼ � 1

2
ffiffiffiffi
	

p
Z 1

0
dss�3=2e�sðM2�hÞ

�
Z 1

0
dxe ~mxe�ðx2=ð4sÞÞ

¼ � 1

2

Z 1

0

ds

s
wð� ~m

ffiffiffi
s

p Þe�sðM2�hÞ;

(52)

where the function wð� ~m
ffiffiffi
s

p Þ is given in terms of the
complementary error function erfcðzÞ,

wð�
Þ � 2ffiffiffiffi
	

p
Z 1

0
dxe2
xe�x2 ¼ e


2
erfcð�
Þ; (53)

erfc ðzÞ ¼ 2ffiffiffiffi
	

p
Z 1

z
dte�t2 : (54)

A multiple differentiation of (52) with respect to m then
gives

1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�h

p
� ~mÞa ¼

1

2�ðaÞ
Z 1

0
dssa=2�1d

awð�
Þ
d
a

��������
¼ ~m
ffiffi
s

p

� e�sðM2�hÞ: (55)

Using (50), (52), and (55) in (47) we finally come to the
following expressions for the weights in Eqs. (43) and (44)

w00 ¼ 1

2
ðwð�mþ

ffiffiffi
s

p Þ þ wð�m�
ffiffiffi
s

p ÞÞ; (56)

wkl ¼
Xk
a¼1

Ba
klðmþ; m�Þ
2�ða=2Þ sa=2 þ Xl

a¼1

Da
klðmþ; m�Þ
2�ðaÞ sa=2

� dawð�
Þ
d
a

��������
¼mþ
ffiffi
s

p þfmþ $ m�g: (57)

In terms of these weights the action (37) takes the form

1

2
Tr lnFbrane � � 1

2

X1
k;l¼0

Z 1

0

ds

s
wklðsÞe�sM2

� TrðWklðrÞeshÞ; (58)

where we disregarded the contribution of the local measure

�Tr lnð2mÞ � �ðdÞð0Þ and, in addition to Wkl of (37), in-
troduced

W00 ¼ 1; Wk0 ¼ 0; k � 1: (59)

V. GENERALIZED SCHWINGER-DEWITT
EXPANSION

The calculation of (58) is based on the heat kernel
expansion (13) for the covariant d’Alembertian h acting
in a curved d-dimensional space without boundaries. The
Schwinger-DeWitt coefficients anðx; x0Þ in this expansion
represent brane curvature invariants of the growing back-
ground dimensionality 2n, anðx; x0Þ ¼ OðM2nÞ. With this
expansion the functional traces in (58) take the form

TrðWklðrÞeshÞ ¼ 1

ð4	sÞd=2
X1
n¼0

sn
Z
b
ddx

ffiffiffi
g

p
Wklð~rðsÞÞ

� anðx; x0Þjx0¼x;

where the new generalized covariant derivative

~r �ðsÞ � r� � 1

2s
@x�
ðx; x0Þ þ 1

2
@x� lnDðx; x0Þ

originates from the commutation of r� with the exponen-
tial factor expð�
ðx; x0Þ=2sÞ and the Van Vleck-Morette
determinant Dðx; x0Þ in the kernel of expðshÞ. In addition
to

r�1
. . .r�p

anðx; x0Þjx0¼x

this lengthening of the covariant derivatives also generates
the coincidence limits

r�1
. . .r�p


ðx; x0Þjx0¼x; r�1
. . .r�p

Dðx; x0Þjx0¼x

easily calculable by the DeWitt recurrence procedure
[16,17]. Moreover, this leads to extra negative powers of
the proper time, so thatZ

b
ddx

ffiffiffi
g

p
Wklð~rxÞanðx; x0Þjx¼x0

¼ Xmaxf0;l�2g

p¼0

X½ð2kþ2lþpÞ=6�

c¼0

ðAnÞckl;p
scmp ; (60)

where ðAnÞckl;p represents the set of integrals of bulk and

brane curvature invariants, powers of potential terms P and
p=m and their derivatives of the growing dimensionality
kþ lþ pþ 2n� 2c (which now coincides with their
background dimensionality, because they are no longer
the differential operators),

ðAnÞckl;p ¼ OðMkþlþpþ2n�2cÞ: (61)
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The highest power of 1=s in (60) is determined by (the
integer part of) half the order of Wkl;pðrÞ in derivatives

(the latter equals the difference between the total dimen-
sionality of this operator and its background dimensional-
ity). As Wkl is a sum over the powers of the inverse DGP
mass scale (39), the quantities ðAnÞckl;p above represent the
relevant coefficients of 1=mp.

Thus

1

2
Tr lnFbrane ¼ � 1

2

1

ð4	Þd=2
X

fk;l;n;p;cg

Z 1

0

ds

s
sn�c�d=2

� wklðsÞe�sM2 ðAnÞckl;p
mp ; (62)

where the domain of summation over all indices is given by

X
fk;l;n;p;cg

¼ X1
k;l;n¼0

Xmaxf0;l�2g

p¼0

X½ð2kþ2lþpÞ=6�

c¼0

(63)

The quantities ðAnÞckl;p play the role of integrated gen-

eralized Schwinger-DeWitt coefficients. For a scalar field
in the approximation OðM2Þ only the following coeffi-
cients contribute to the brane effective action

ðA0Þ000;0 ¼
Z
b
ddx

ffiffiffi
g

p
; ðA1Þ000;0 ¼

Z
b
ddx

ffiffiffi
g

p 1

6
bRðgÞ ¼

Z
b
ddx

ffiffiffi
g

p �
1

6
BR� 1

3
BRnn þ 1

6
k2 � 1

6
k2��

�
;

ðA0Þ001;0 ¼
Z
b
ddx

ffiffiffi
g

p �
� 1

2
k� p

2m

�
; ðA0Þ011;0 ¼

Z
b
ddx

ffiffiffi
g

p �
1

4
BRnn þ 1

4
k2�� � 1

2
P� 1

8
k2
�
;

ðA0Þ002;0 ¼
Z
b
ddx

ffiffiffi
g

p �
1

8
k2 þ 1

2
k
p

2m
þ 1

2

�
p

2m

�
2
�
; ðA0Þ121;0 ¼

Z
b
ddx

ffiffiffi
g

p 1

4
k;

ðA0Þ131;0 ¼
Z
b
ddx

ffiffiffi
g

p �
� 1

8
BRnn þ 3

8
k2��

�
; ðA0Þ122;0 ¼

Z
b
ddx

ffiffiffi
g

p �
� 1

8
k2 � 1

4
k
p

2m

�
;

ðA0Þ251;0 ¼
Z
b
ddx

ffiffiffi
g

p �
5

16
k2�� þ 5

32
k2
�
:

(64)

VI. LARGE MASS EXPANSION AND ITS CUTOFF
SCALES

Integration over s in (62) gives

1

2
Tr lnFbrane ¼ � 1

2

Md

ð4	Þd=2
X

fk;l;n;p;cg
Cn�c
kl

ðAnÞckl;p
M2n�2cþkþlmp

;

(65)

where Cj
kl (with j ¼ n� c) are the following functions of

the mass parameters of the model

Cj
kl ¼ M2j�dþkþl

Z 1

0

ds

s
sj�d=2wklðsÞe�sM2

: (66)

The behavior of these functions forM ! 1 is important
for the determination of the efficiency of the expansion
(65) and of the range of its validity—the cutoff Mcutoff

below which, M � Mcutoff , this expansion makes sense.
This behavior easily follows from a simple observation that

the functions Cj
kl can be directly obtained from the non-

local form factors (44) by integration over their argument

h ¼ �� with the weight �d=2�j�1. In the domain of con-
vergence of this integral in the complex plane of d we have

Z 1

0

d�

�
�d=2�j 1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �h

p
Þk

1

F0
l

��������h¼��
¼ �ðd=2� jÞ

M2j�dþkþl
Cj
kl:

(67)

With the replacement of the integration variable x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �=M2

p � 1 the integral representation for Cj
kl takes

the form

Cj
kl ¼

1

�ð�Þ
�
2m

M

�
l Z 1

0
dxx��1ðxþ "þÞ�l’ðxÞj�¼d=2�j;

’ðxÞ ¼ ðxþ 2Þ��1

ðxþ 1Þk�1ðxþ "�Þl
; (68)

where "
 ¼ 1�m
=M. ForM ! 1 the parameter "þ !
0 ("� ! 2), and the integral here has a nonanalytic in "þ
part because of the singularity of its integrand at x ¼ 0
[14],

Z 1

0
dxx��1ðxþ "Þ�l’ðxÞ ¼ "��l �ð�Þ�ðl� �Þ

�ðlÞ ’ð0Þ
þOð1Þ: (69)

Since "þ ! m=M in this limit, we have

Cj
kl ¼ C1

�
m

M

�
d=2�j þ C2

�
m

M

�
l
; M ! 1: (70)

Thus, in view of the background dimensionality of
ðAnÞckl;p ¼ OðMkþlþpþ2n�2cÞ the local expansion (65)

for the effective action takes the form
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1

2
Tr lnFbrane ¼

�
Mm

4	

�
d=2 X

fk;l;n;p;cg

mc�n�pOðMkþlþpþ2n�2cÞ
Mn�cþkþl

þ Md

ð4	Þd=2
X

fk;l;n;p;cg

ml�pOðMkþlþpþ2n�2cÞ
M2n�2cþkþ2l

:

(71)

By introducing the summation index N ¼ n�
cþ kþ l—an overall power of 1=M—in the first sum
and correspondingly the summation index L ¼ 2n� 2cþ
kþ 2l in the second sum, one can rewrite this series in the
form (15) presented in the introduction

1

2
Tr lnFbrane ¼

�
Mm

4	

�
d=2 X1

N¼0

1

MN

X
i�N

OðM2N�iÞ
mN�i

þ Md

ð4	Þd=2
X1
L¼0

1

ML

X
i�L

miOðML�iÞ; (72)

where the coefficient of any power of M turns out to be a
finite sum of terms of a limited order in M—the back-
ground dimensionality of relevant field invariants.

The finiteness of such sums over i ¼ kþ l� p in the
first series of (72) follows from the following simple
argumentation. The range of summation over c � ½ð2kþ
2lþ pÞ=6� in (71) is not greater than [ð2kþ 3lÞ=6] be-
cause p � maxf0; l� 2g. Therefore,

kþ l ¼ N þ c� n � N þ c � N þ
�
k

3
þ l

2

�

� N þ 1

3
kþ 1

2
l;

so that 2k=3þ l=2 � N, thus only limited number of
curvature structures (from Wkl) can contribute to term
with fixed N. As can be easily seen the ranges of summa-
tion over c, p and i � kþ l� p indeed turn out to be
limited at least by N.

Similarly, the finiteness of sums over i ¼ l� p in the
second series of (72) is based on the following chain of
inequalities

kþ 2l ¼ Lþ 2c� 2n � Lþ 2c � Lþ
�
2k

3
þ l

�

� Lþ 2k

3
þ l;

so that k=3þ l � L, and the ranges of summation over c, p
and i � l� p are again restricted from above for any given
L.
This property is very important for the efficiency of the

perturbation theory with the cutoff scaleM, because other-
wise any given order in 1=M would require an infinite
series in M=m—the price one could have paid for the
presence of the second scale m. Fortunately, for any N
only a finite order OðM2NÞ of perturbation theory is re-
quired. This follows from a special asymptotic behavior of
the coefficient (70) which brings extra powers of 1=M to
(65). The form of the asymptotics (70) is responsible for
the two series in the expansion (72), having qualitatively
different analytic behavior in M and m,—the property
recently discovered for the effective potential of the toy
DGP model [14]. Whereas the second part is analytic in a
small DGP scale m ! 0, the first ‘‘nonanalytic’’ part is
formally singular in this limit, and this leads to the rede-
finition of the cutoff Mcutoff of the theory, below which
M � Mcutoff the local expansion remains valid.
Indeed, despite the efficiency of the obtained expansion,

in the first series of (72) it contains negative powers of the
DGP scale m and blows up for small m ! 0. This is a
typical situation of the presence of a strong-coupling scale
[6]. In fact, for m<M the actual cutoff is lower than M

and is given by the expression (16), Mcutoff ¼
ffiffiffiffiffiffiffiffiffi
Mm

p
, pre-

sented in Introduction (the condition of smallness of the
strongest i ¼ 0 term in the first series of (72), M2=Mm �
1).
The actual calculation of the functions (66) can be done

by using the proper time weights (56) and (57). Since these
weights imply explicit symmetrization with respect to m
,
they take the form

Cj
kl ¼ ~Cj

klðM;mþ; m�Þ þ ðmþ $ m�Þ: (73)

In theOðM2Þ-approximation the relevant ~Cj
kl turn out to be

~C
j
00 ¼ �ð0Þð2j; 1Þ; ~Cj

01 ¼
�
m

4
�
�ð0Þð2jþ 1; 2Þ; ~Cj

11 ¼
�
m

4
�
�ð0Þð2jþ 2; 1Þ;

~Cj
02 ¼

�
m

4
�
2
�
� 2M

4 �ð0Þð2jþ 1; 2Þ þ�ð0Þð2jþ 2; 3Þ
�
; ~Cj

21 ¼ 2

�
m

4
�
�ð1Þð2jþ 2; 1Þ;

~Cj
31 ¼ 2

�
m

4
�
�ð2Þð2jþ 2; 1Þ; ~Cj

22 ¼ 2

�
m

4
�
2
�
� 2M

4 �ð1Þð2jþ 2; 1Þ ��ð2Þð2jþ 2; 1Þ þ�ð1Þð2jþ 3; 2Þ
�
;

~Cj
51 ¼ 2

�
m

4
�
�ð4Þð2jþ 2; 1Þ; ~Cj

42 ¼ 2

�
m

4
�
2
�
� 2M

4 �ð3Þð2jþ 2; 1Þ � 3�ð4Þð2jþ 2; 1Þ þ�ð3Þð2jþ 3; 2Þ
�
:

(74)

Here

4 � mþ �m�
2

; (75)
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the basic function �ð0Þða; bÞ is given by the regularized Gauss hypergeometric function

�ð0Þða; bÞ ¼ �ð0Þða; bj
Þj
¼mþ=2M � �ða� dÞ�ðbÞ
�ðaþbþ1�d

2 Þ 2F1

�
a� d; b;

aþ bþ 1� d

2
;
þ 1

2

���������
¼mþ=2M
(76)

and

�ðnÞða; bÞ ¼ 1


n

�
�ð0Þða; bj
Þ �

Xn�1

k¼0

1

k!
½dk�ð0Þða; bj
Þ=d
k�
¼0


k

���������
¼mþ=2M
(77)

is the function �ð0Þða; bj
Þ=
n with the singular at 
 ¼ 0 part subtracted, also taken at 
 ¼ mþ=2M.
The transformation property of the hypergeometric function from the argument z to 1� z allows one to rewrite (76) in

the form which reveals the structure of the expansion (72)

�ð0Þða; bÞ ¼
�
"þ
2

�ðdþ1�a�bÞ=2
�

�
aþ b� 1� d

2

�
2F1

�
dþ b� aþ 1

2
;
a� bþ 1� d

2
;
dþ 3� a� b

2
;
"þ
2

�

þ �ða� dÞ�ðbÞ�ðd�a�bþ1
2 Þ

�ðdþb�aþ1
2 Þ�ða�bþ1�d

2 Þ 2F1

�
a� d; b;

aþ b� 1� d

2
;
"þ
2

�
; (78)

where "þ ¼ 1�mþ=M as in (70). In view of "þ �m=M the first term here generates the first nonanalytic in m series of
(72) and the second term is responsible for the analytic part because the hypergeometric function is expandable in Taylor
series in "þ=2 ! 0. The 
 ¼ m�=2M part of the action originating from the second term of (73) contributes only to the
analytic part, because m�=2M ! �1=2 and the relevant large M expansion originates directly from the representation
(76) which does not give rise to nonanalytic terms.

The brane effective action in the OðM2Þ approximation and UV divergences

Substituting the curvature invariants of (64) into (65) we get the lowest orders of the brane effective action in terms of the
curvature invariants (17)–(19) listed in Introduction,

1

2
Tr lnFbrane ¼ � 1

2

Md

ð4	Þd=2
Z
b
dx

ffiffiffi
g

p
C0
00 �

1

2

Md�1

ð4	Þd=2
Z
b
dx

ffiffiffi
g

p ��
� 1

2
C0
01 þ

1

4
C�1
21

�
k� C0

01

p

2m

�

� 1

2

Md�2

ð4	Þd=2
Z
b
dx

ffiffiffi
g

p �
1

6
C1
00

BR� 1

2
C0
11Pþ

�
� 1

3
C1
00 þ

1

4
C0
11 �

1

8
C�1
31

�
BRnn

þ
�
� 1

6
C1
00 þ

1

4
C0
11 þ

3

8
C�1
31 þ 5

16
C�2
51 þ 1

16
C�2
42

�
k2��

þ
�
1

6
C1
00 �

1

8
C0
11 þ

1

8
C0
02 �

1

8
C�1
22 þ 5

32
C�2
51 þ 1

32
C�2
42

�
k2 þ

�
1

2
C0
02 �

1

4
C�1
22

�
kp

2m
þ 1

2
C0
02

�
p

2m

�
2
�

þOðM3Þ: (79)

Here the coefficient functions Cj
kl are given by Eqs. (73) and (74) and represent a set of very complicated functions ofM,m

and �. One can check that for � ¼ 0 the C0
00 term given by C0

00 ¼ �ð0Þð0; 1Þ þ ðmþ $ m�Þ coincides with the effective
potential calculated for a toy DGP model in [14].

More instructive are the ultraviolet divergences of the brane action which we present here for the four-dimensional case
in the dimensional regularization d ! 4. They read
1

2
Tr lnFbranejdiv ¼ 1

32	2ð4� dÞ
Z
b
dx

ffiffiffi
g

p ð�4m2ðM2 þ 2m2 � 2�2Þ ��4Þ

þ 1

32	2ð4� dÞ
Z
b
dx

ffiffiffi
g

p �
1

2
mðM2 þ 12m2 � 3�2Þkþ 2ð�2 � 4m2Þp

�

þ 1

32	2ð4� dÞ
Z
b
dx

ffiffiffi
g

p �
1

3
ð�2m2 þ�2ÞBRþ

�
17

6
m2 � 2

3
�2

�
BRnn þ

�
9

2
m2 � 1

3
�2

�
k2��

þ
�
�2m2 þ 1

3
�2

�
k2 � 4m2P� 3

2
mkp� p2

�
þOðM3Þ: (80)
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This result confirms the general properties of ultraviolet
divergences in any dimension d. These divergences are
contained in both series of the expansion (72). For an
even d they are analytic and polynomial in both M and

m, for an odd d they have a structure
ffiffiffiffiffiffiffiffiffi
Mm

p
times a finite

polynomial in M and m. Finally, their background dimen-
sionality is always bounded by OðMdÞ. These general
properties follow from the property of the integral (68)
which is UV divergent at the upper limit only for d �
2jþ 2lþ k. Therefore, the background dimensionality of
the relevant terms in (71) (with j ¼ n� c) satisfies the
bound kþ lþ pþ 2n� 2c � dþ p� l � d, because
p � maxfl� 2; 0g. The relevant overall powers of m and
M in the nonanalytic part of (71) are also positive, because
for the same reasons pþ n� c < d=2 and n� cþ kþ
l < d=2. Finally, in the analytic part of (71) the overall
power of M in the divergent terms is again nonnegative,
because 2n� 2cþ kþ 2l � d.

VII. THE NEUMANN AND DIRICHLET LIMITS

As we see, the curvature expansion in brane induced
gravity models is essentially more complicated than for
pure Dirichlet and Neumann (Robin) boundary conditions.
Even the conformity of our results with these two limiting
cases [corresponding, respectively, to m ! 0 and m ! 1
in (10)] requires nontrivial calculations. Here we present
these calculations and check the consistency of the
Neumann limit to the OðM2Þ order in the curvature, and
verify the Dirichlet limit to all orders in M.

First we present the known results for a local inverse
mass expansion for pure Dirichlet, �jb ¼ 0, and Robin,
ð@n � SÞ�jb ¼ 0, boundary conditions (see [19] and refer-
ences therein). In these two cases labeled, respectively, by
D and N this expansion for the effective action in the
(dþ 1)-dimensional bulk reads

1

2
Trðdþ1Þ

D=N lnF¼�1

2

Z 1

0

ds

s

1

ð4	sÞðdþ1Þ=2 e
�sM2

X1
n¼0

sn=2AD=N
n

¼�1

2

Md

ð4	Þðdþ1Þ=2
X1
n¼0

�ð�d�1þn
2 Þ

Mn�1
AD=N
n (81)

where AD=N
n represent the bulk and boundary integrals of

the relevant Schwinger-DeWitt coefficients. The first four
of them for the Dirichlet case read

AD
0 ¼

Z
B
ddþ1X

ffiffiffiffi
G

p
; AD

1 ¼ �
ffiffiffiffi
	

p
2

Z
b
ddx

ffiffiffi
g

p
;

AD
2 ¼

Z
B
ddþ1X

ffiffiffiffi
G

p �
�Pþ 1

6
BR

�
þ

Z
b
ddx

ffiffiffi
g

p �
� 1

3
k

�
;

AD
3 ¼ ffiffiffiffi

	
p Z

b
ddx

ffiffiffi
g

p �
þ 1

2
P� 1

12
BRþ 1

24
BRnn

� 7

192
k2 þ 5

96
k2��

�
: (82)

For the Neumann (Robin) case together with the bulk
curvature and the extrinsic curvature of the boundary they
involve the coefficient function S from the Robin boundary
condition,

AN
0 ¼

Z
B
ddþ1X

ffiffiffiffi
G

p
; AN

1 ¼
ffiffiffiffi
	

p
2

Z
b
ddx

ffiffiffi
g

p
;

AN
2 ¼

Z
B
ddþ1X

ffiffiffiffi
G

p �
�Pþ 1

6
BR

�
þ
Z
b
ddx

ffiffiffi
g

p �
�1

3
k� 2S

�
;

AN
3 ¼ ffiffiffiffi

	
p Z

b
ddx

ffiffiffi
g

p �
�1

2
Pþ 1

12
BR� 1

24
BRnnþ 13

192
k2

þ 1

96
k2��þ

1

2
kSþS2

�
: (83)

A. The Neumann (Robin) limit

The Robin limit of the boundary condition (10) corre-
sponds to m ! þ1 with M=m ¼ 0, �=m ¼ 0 and the
finite limiting value of p=2m ! S. This implies the fol-
lowing limits for the auxiliary mass parameters

mþ ! 0; m� ! �1; 4 ! þ1;
m

4 ! 1:

(84)

Therefore the contribution of 
 ¼ m�=2M ! �1 terms

in the coefficients Cj
klðM;m
Þ given by (73)–(77) vanishes

in virtue of the asymptotic behavior of the hypergeometric
function 2F1ða; b; c; zÞ at z ! �1. Moreover, only the
functions �ðnÞða; bÞ with a special combination of the

hypergeometric function’s indices (76) arise, and due to
the relation

2F1

�
a; b;

a

2
þ b

2
þ 1

2
;
1

2

�
¼ �ð12Þ�ða2 þ b

2 þ 1
2Þ

�ða2 þ 1
2Þ�ðb2 þ 1

2Þ
they equal

�ðnÞða; bÞ ¼
�ð12Þ
n!

�ðaþ nÞ�ðbþ nÞ
�ða2 þ n

2 þ 1
2Þ�ðb2 þ n

2 þ 1
2Þ

¼ 2aþbþ2n�2

n!�ð12Þ
�

�
a

2
þ n

2

�
�

�
b

2
þ n

2

�
;

where we used the gamma function identity
�ð2zÞ�ð1=2Þ ¼ 22z�1�ðzÞ�ðzþ 1=2Þ. As a result the coef-
ficient functions Cj

kl reduce to

Cj
00 ¼

1

2
�ðj�d=2Þ; Cj

kl ¼
�ðjþ kþl�d

2 Þ
�ðkþl

2 Þ ; kþ l> 0;

(85)

and the expansion (79) for the case of the Neumann
boundary conditions takes the form

1

2
Tr lnFbrane ¼ � 1

2

Md

ð4	Þd=2
X1
n¼0

�ð� d
2 þ n

2Þ
Mn An; (86)
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where the first three coefficients equal

A0 ¼ 1

2

Z
b
ddx

ffiffiffi
g

p
; A1 ¼ � 1ffiffiffiffi

	
p

Z
b
ddx

ffiffiffi
g

p p

2m
;

A2 ¼
Z
b
ddx

ffiffiffi
g

p �
1

12
BR� 1

24
BRnn � 1

48
k2�� þ 5

96
k2

� 1

2
Pþ 1

4
k

�
p

2m

�
þ 1

2

�
p

2m

�
2
�
: (87)

The consistency of this result with the Robin case is
based on the duality relation (6) which implies the follow-
ing identities for the coefficients of the Schwinger-DeWitt
expansion (81)

A n ¼ 1ffiffiffiffiffiffiffi
4	

p ðAN
nþ1 � AD

nþ1Þ: (88)

These identities can be directly checked for (82) and (83)
with S ¼ p=2m for n ¼ 0, 1, 2.

B. The Dirichlet case

The Dirichlet case can be extracted from the generalized
Neumann effective action (6) by taking the opposite limit
m ! 0. Indeed, the Dirichlet effective action is determined
by the path integral

exp

�
� 1

2
Trðdþ1Þ

D lnF

�
¼

Z
D� expð�SB½��Þ�ð’ðxÞÞ;

(89)

where SB½�� is the bulk part of the action (1) and the
expression for the delta function of ’ðxÞ ¼ �ðXÞjB can be
viewed as the factor

�ð’ðxÞÞ ¼ lim
m!0

ðDetßÞ1=2 exp
�
� 1

2

Z
b
ddx

ffiffiffi
g

p
’ßðrÞ’

�

(90)

regularized by m ! 0 in ßðrÞ ¼ ð�hþ�2 þ pÞ=2m.
Comparing with the definition of the generalized
Neumann case,

exp

�
� 1

2
Trðdþ1Þ

N lnF

�

¼
Z

D� exp

�
�SB½�� � 1

2

Z
b
ddx

ffiffiffi
g

p
’ßðrÞ’

�
; (91)

one finds that under the m ! 0 limit the Neumann-to-
Dirichlet reduction (6) leads to

lim
m!0

1
2 Tr

ðdþ1Þ
N lnF ¼ 1

2 Tr
ðdþ1Þ
D lnFþ 1

2 Tr lnß; (92)

where the last term originates from the preexponential

factor of the regularized delta function, ðDetßÞ1=2 ¼
expðTr lnß=2Þ. Thus, the brane contribution is nonzero in
this limit and coincides with the d-dimensional effective
action for the massive operator (9)

lim
m!0

1
2 Tr

ðdÞ lnFbrane ¼ 1
2 Tr lnßðrÞ: (93)

Within the inverse mass expansion (14) it reads

1

2
Tr lnßðrÞ ¼ 1

2
Tr lnð�hþ�2 þ pÞ

¼ � 1

2

�d

ð4	Þd=2
X1
j¼0

�ðj� d=2Þ
�2j

A2j (94)

(we of course disregard the volume divergent Tr ln2m part
canceled by the local measure).
To verify (93) one cannot however take the limit m ! 0

directly in the expansion (72) because of its obvious non-
analyticity at m ¼ 0. The reason is that for small m the

behavior (70) of Cj
kl used in the original curvature expan-

sion series (65) no longer applies. Indeed, when mM<�2

the parameter "þ in the integral (68) has another asymp-

totics�2=2M2 independent ofm, and Cj
kl �ml form ! 0.

Therefore, in this range of m the DGP scale arises in (65)
only in positive powers l� p > 0, because p � l� 2, and
the curvature expansion takes the form qualitatively differ-
ent from (72). The only nonvanishing term in the sum over
k and l is the one with k ¼ l ¼ 0 [cf. Eq. (59)]. The
relevant coefficients (74) are

Cj
00ðM;m
Þ ¼ 1

2

Z 1

0

ds

s
s�ðwð�mþ

ffiffiffi
s

p Þ

þ wð�m�
ffiffiffi
s

p ÞÞe�sM2

¼ �ðj� d=2Þ
�2j�d

; (95)

because in the Dirichlet limitmþ2 ¼ m�2 ¼ M2 ��2 and
the error functions in the definition of the proper time

weight wð�mþ
ffiffiffi
s

p Þ satisfy erfcð�m

ffiffiffi
s

p Þ ¼ 1

erfð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 ��2
p ffiffiffi

s
p Þ. These are exactly the weights of the

integrated Schwinger-DeWitt coefficients A2j ¼R
ddxajðx; xÞ in (94), which confirms (93). This relation

can be seen already at the level ofW-expansion (36). In the
limit m ! 0 all perturbation terms in (36) with 1=F0 ¼
2m=ð�2 �hÞ vanish except the contribution of U1=F0 ¼
�p=ð�2 �hÞ, which complements this expansion to the
one-loop action of the full brane operator with a potential
(94).

VIII. CONCLUSIONS

Thus we have constructed the covariant curvature ex-
pansion in massive brane induced gravity models, found its
peculiar structure (15) nonanalytic in the DGP scale and
derived a nontrivial cutoff (16) of this general expansion.
Finally, we calculated several lowest orders of this expan-
sion for a quantum scalar field in a curved bulk spacetime
with a kinetic term on the brane to a quadratic order in
background dimensionality and found its ultraviolet diver-
gences for the case of a 4-dimensional brane.
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These results might find important applications.
Although a comparison of our massive model with the
massless DGP model of [1] is not straightforward, we
can observe a common feature in their cutoff properties.
In both theories their cutoff (16) is different from the bulk
one M and is modified by the DGP scale m. For the tree-
level DGP model with the Planck mass M ¼ MP, playing

the role of the bulk cutoff, this cutoff equals Mcutoff ¼
ðm2MÞ1=3 [6]. With m identified with the cosmological
horizon scale, this is about ð1000 kmÞ�1 which is much
below the submillimeter scale capable of featuring the
infrared modifications of the Einstein theory [21]. As we
see, the situation with the local expansion for the quantum
action is much better—the cutoff (16) is a geometric
average of M and m, which is much higher,

ðmMÞ1=2 � ðm2MÞ1=3; (96)

and comprises ð0:1 mmÞ�1. This supports the conjecture
[22] that the replacement of the weak field perturbation
theory by a derivative expansion, as is the case of the local
Schwinger-DeWitt series (probably with the nonperturba-
tive resummation of powers of a local potential term of the
operator (8) [23]), might improve the range of validity of
the calculational scheme.

Obviously, the Schwinger-DeWitt technique in brane
induced gravity models turns out to be much more com-
plicated than in models without spacetime boundaries or in
case of boundaries with local Dirichlet and Neumann
boundary conditions. It does not reduce to a simple book-
keeping of local surface terms like the one reviewed in
[19]. Nevertheless it looks complete and self-contained,
because it provides in a systematic way a manifestly co-
variant calculational procedure for a wide class of bound-
ary conditions including tangential derivatives (in fact of
any order). On the other hand, the calculational strategy of
the above type requires a further extension, because there is
still a large set of issues and possible generalizations to be
resolved in concrete problems.

One important generalization is a physically most inter-
esting limit of a vanishing bulk mass M2, whose rigorous
treatment should justify a qualitative comparison of the

above type for the cutoff scales in our expansion (72) and
the weak field expansion of the DGP model. The local
curvature expansion is perfect and nonsingular for non-
vanishingM2 and is applicable within its cutoff scale (16).
However, for M2 ! 0 it obviously breaks down, because
the proper time integrals start diverging at the upper limit
and all UV finite terms of (15) blow up. These infrared
divergences can be avoided by a nonlocal curvature expan-
sion of the heat kernel of [24]. Up to the cubic order in
curvatures this expansion explicitly exists for Tresh [25],
but for the structure involving a local differential operator
TrWðrÞesh it still has to be developed.
Another important generalization is the extension of

these calculations to the cases when already the lowest
order approximation involves a curved spacetime back-
ground (i.e. dS or AdS bulk geometry, de Sitter rather
than flat brane, etc.). The success of the above technique
is obviously based on the exact knowledge of the
y-dependence in the lowest order Green’s function in the
bulk and the possibility to perform exactly (or asymptoti-
cally for large M2) the integration over y. All of these
generalizations and open issues are currently under study.
To summarize, we developed a new scheme of calculat-

ing quantum effective action for the braneworld DGP-type
system in curved spacetime. This scheme gives a system-
atic curvature expansion by means of a manifestly cova-
riant technique. Combined with the method of fixing the
background covariant gauge for diffeomorphism invari-
ance developed in [12,26] this gives the universal back-
ground field method of the Schwinger-DeWitt type in
gravitational brane systems.

ACKNOWLEDGMENTS

A.B. and D.N. are grateful for the hospitality of the
Laboratory MPT CNRS-UMR 6083 of the University of
Tours, where a part of this work has been done. The work
of A. B. was supported by the Russian Foundation for
Basic Research under the Grant No 08-01-00737. The
work of D.N. was supported by the RFBR Grant No 08-
02-00725 and a research grant from the Russian Science
Support Foundation. This work was also supported by the
LSS Grant No 1615.2008.2.

[1] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485,
208 (2000).

[2] C. Deffayet, Phys. Lett. B 502, 199 (2001); C. Deffayet, G.
Dvali, and G. Gabadadze, Phys. Rev. D 65, 044023
(2002).

[3] A. Nicolis and R. Rattazzi, J. High Energy Phys. 06 (2004)
059.

[4] L. Pilo, R. Rattazzi, and A. Zaffaroni, J. High Energy

Phys. 07 (2000) 056; S. L. Dubovsky and V.A. Rubakov,
Phys. Rev. D 67, 104014 (2003).

[5] C. Deffayet, G. R. Dvali, G. Gabadadze, and A. I.
Vainshtein, Phys. Rev. D 65, 044026 (2002).

[6] M.A. Luty, M. Porrati, and R. Rattazzi, J. High Energy
Phys. 09 (2003) 029.

[7] G. R. Dvali, New J. Phys. 8, 326 (2006).
[8] J. Garriga, O. Pujolas, and T. Tanaka, Nucl. Phys. B605,

A. O. BARVINSKYAND D.V. NESTEROV PHYSICAL REVIEW D 81, 085018 (2010)

085018-14



192 (2001).
[9] O. Pujolas, J. Cosmol. Astropart. Phys. 10 (2006) 004.
[10] A. O. Barvinsky and A.Yu. Kamenshchik, J. Cosmol.

Astropart. Phys. 09 (2006) 014.
[11] A. O. Barvinsky, A.Yu. Kamenshchik, A. Rathke, and C.

Kiefer, Phys. Rev. D 67, 023513 (2003).
[12] A. O. Barvinsky, report.
[13] A. O. Barvinsky and D.V. Nesterov, Phys. Rev. D 73,

066012 (2006).
[14] A. O. Barvinsky, A.Yu. Kamenshchik, C. Kiefer, and D.V.

Nesterov, Phys. Rev. D 75, 044010 (2007).
[15] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690

(1999).
[16] B. S. DeWitt, Dynamical Theory of Groups and Fields

(Gordon and Breach, New York, 1965); Phys. Rev. 162,
1195 (1967); 162, 1239 (1967).

[17] A. O. Barvinsky and G.A. Vilkovisky, Phys. Rep. 119, 1
(1985).

[18] H. P. McKean and I.M. Singer, J. Diff. Geom. 1, 43
(1967).

[19] D. V. Vassilevich, Phys. Rep. 388, 279 (2003).
[20] E. S. Fradkin and A.A. Tseytlin, Phys. Lett. 163B, 123

(1985); C. G. Callan, C. Lovelace, C. R. Nappi, and S. A.
Yost, Nucl. Phys. B288, 525 (1987); W. Kummer and D.V.
Vassilevich, J. High Energy Phys. 07 (2000) 012.

[21] C. D. Hoyle, U. Schmidt, B. R. Heckel, E. G. Adelberger,
J. H. Gundlach, D. J. Kapner, and H. E. Swanson, Phys.
Rev. Lett. 86, 1418 (2001).

[22] G. Dvali (private communication).
[23] L. L. Salcedo, Eur. Phys. J. C 37, 511 (2004); Phys. Rev. D

76, 044009 (2007).
[24] A. O. Barvinsky and G.A. Vilkovisky, Nucl. Phys. B282,

163 (1987); B333, 471 (1990); A.O. Barvinsky, Yu. V.
Gusev, G.A. Vilkovisky, and V.V. Zhytnikov, J. Math.
Phys. (N.Y.) 35, 3525 (1994); 35, 3543 (1994).

[25] A. O. Barvinsky, Yu. V. Gusev, G.A. Vilkovisky, and V.V.
Zhytnikov, Covariant Perturbation Theory (IV). Third
Order in the Curvature, Report of the University of
Manitoba (University of Manitoba, Winnipeg, 1993).

[26] A. O. Barvinsky, Phys. Rev. D 74, 084033 (2006).

SCHWINGER-DeWitt TECHNIQUE FOR QUANTUM . . . PHYSICAL REVIEW D 81, 085018 (2010)

085018-15


