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We study the effect of color superconductivity and neutrino trapping on the deconfinement transition of

hadronic matter into quark matter in a protoneutron star. To describe the strongly interacting matter a two-

phase picture is adopted. For the hadronic phase we use different parametrizations of a nonlinear Walecka

model which includes the whole baryon octet. For the quark-matter phase we use an SUð3Þf Nambu–Jona-

Lasinio effective model which includes color superconductivity. We impose color and flavor conservation

during the transition in such a way that just deconfined quark matter is transitorily out of equilibrium with

respect to weak interactions. We find that deconfinement is more difficult for small neutrino content and it

is easier for lower temperatures although these effects are not too large. In addition they will tend to cancel

each other as the protoneutron star cools and deleptonizes, resulting a transition density that is roughly

constant along the evolution of the protoneutron star. According to these results the deconfinement

transition is favored after substantial cooling and contraction of the protoneutron star.
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I. INTRODUCTION

It is currently a matter of speculation the actual occur-
rence of quark matter during protoneutron star (PNS)
evolution. The standard scenario for the birth of neutron
stars indicates that these objects are formed as conse-
quence of the gravitational collapse and supernova explo-
sion of a massive star [1–3]. Initially, PNSs are very hot and
lepton-rich objects, where neutrinos are temporarily
trapped. During the first tens of seconds of evolution the
PNS evolves to form a cold (T < 1010 K) catalyzed neu-
tron star [1–3]. As neutrinos are radiated, the lepton-per-
baryon content of matter goes down and the neutrino
chemical potential tends to essentially zero in�50 seconds
[3]. Deleptonization is fundamental for quark-matter for-
mation inside neutron stars, since it has been shown that
the presence of trapped neutrinos in hadronic matter
strongly disfavors the deconfinement transition [4,5]. In
fact, neutrino trapping makes the density for the deconfine-
ment transition to be higher than in the case of neutrino-
free hadronic matter. As a consequence, the transition
could be delayed several seconds after the bounce of the
stellar core. However, the calculations presented in [4,5]
were performed employing the MIT bag model for the
description of quark matter and did not include the effect
of color superconductivity. As we shall see in the present
work, the use of the Nambu–Jona-Lasinio (NJL) model and
the inclusion of color superconductivity may change quali-
tatively the effect of neutrino trapping in the deconfine-
ment conditions.

As emphasized in earlier works [4–11], an important
characteristic of the deconfinement transition in neutron
stars, is that just deconfined quark matter is transitorily out

of equilibrium with respect to weak interactions. In fact,
depending on the temperature, the transition should begin
with the quantum or thermal nucleation of a small quark-
matter drop near the center of the star. On the other hand,
the flavor composition of hadronic matter in � equilibrium
is different from that of a �-stable quark-matter drop.
Roughly speaking, the direct formation of a �-stable quark
drop with N quarks will need the almost simultaneous
conversion of �N=3 up and down quarks into strange
quarks, a process which is strongly suppressed with respect
to the formation of a non �-stable drop by a factor

�G2N=3
Fermi. For typical values of the critical-size �-stable

drop (N � 100–1000 [6]) the suppression factor is actually
tiny. Thus, quark flavor must be conserved during the
deconfinement transition [4–10]. When color superconduc-
tivity is included together with flavor conservation, the
most likely configuration of the just deconfined phase is
two-flavor color superconducting (2SC) provided the pair-
ing gap is large enough [9]. The relevance of this 2SC
intermediate phase (a kind of activation barrier) has been
analyzed for deleptonized neutron stars [10,12] but not for
hot and lepton-rich objects like PNSs.
In the present paper we shall analyze the deconfinement

transition in protoneutron star conditions employing the
Nambu–Jona-Lasinio model in the description of quark
matter. For the hadronic phase we shall use a model based
on a relativistic Lagrangian of hadrons interacting via the
exchange of �, �, and ! mesons [13]. For simplicity, the
analysis will be made in bulk, i.e. without taking into
account the energy cost due to finite size effects in creating
a drop of deconfined quark matter in the hadronic
environment.
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The present article is organized as follows. In Sec. II we
present the main aspects of the nonlinear Walecka model
describing the hadronic phase. In Sec. III we present the
generalities of the model we use for the quark phase. In
Sec. IV we show our numerical results and finally in Sec. V
we discuss our results and present the conclusions.

II. THE HADRONIC PHASE

For the hadronic phase we shall use a nonlinear Walecka
model (NLWM) [13–16] which includes the whole baryon
octet, electrons, and electron neutrinos in equilibrium
under weak interactions. The Lagrangian of the model is
given by

L ¼ LB þLM þLL; (1)

where the indices B, M, and L refer to baryons, mesons,
and leptons, respectively. For the baryons we have

LB ¼ X
B

�c B½��ði@� � g!B!� � g�B ~� � ~��Þ

� ðmB � g�B�Þ�c B; (2)

with B ¼ n, p, �, �þ, �0, ��, ��, and �0. The contri-
bution of the mesons �, !, and � is given by

LM ¼ 1

2
ð@��@���m2

��
2Þ � b

3
mNðg��Þ3 � c

4
ðg��Þ4

� 1

4
!��!

�� þ 1

2
m2

!!�!
� � 1

4
~��� � ~���

þ 1

2
m2

� ~�� � ~��; (3)

where the coupling constants are g�B ¼ x�Bg�, g!B ¼
x!Bg!, and g�B ¼ x�Bg�. The ratios x�B, x!B, and x�B
are equal to 1 for the nucleons and acquire different values
for the other baryons depending on the parametrization
(see Table I). The leptonic sector is included as a free
Fermi gas of electrons and electron neutrinos in chemical
equilibrium with the other particles.

There are five constants in the model that are determined
by the properties of nuclear matter, three that determine the
nucleon couplings to the scalar, vector, and vector-
isovector mesons g�=m�, g!=m!, g�=m�, and two that

determine the scalar self-interactions b and c. It is assumed
that all hyperons in the octet have the same coupling than
the �. These couplings are expressed as a ratio to the
nucleon couplings mentioned above, that we thus simply
denote x�, x!, and x�. In the present work we use two

parametrizations for the constants. One of them is the
standard parametrization GM1 given by Glendenning-
Moszkowski [13], as shown in Table I. This parametriza-
tion employs ‘‘low’’ values for x�, x!, and x�. The pa-

rametrization GM4 employs larger values of these
couplings. This makes the EOS stiffer and increases the
maximum mass of hadronic stars to 2:2M�; see Table I.
The derivation of the equations describing the model is

given in detail in [17]. The total pressure P and mass-
energy density � are given by

P ¼ X
i¼B;L

Pi þ 1

2

�
g!
m!

�
2
�02
B � 1

2

�
g�
m�

��2ðg��Þ2

� 1

3
bmnðg��Þ3 � 1

4
cðg��Þ4 þ 1

2

�
g�
m�

�
2
�02
I3
; (4)

� ¼ X
i¼B;L

�i þ 1

2

�
g!
m!

�
2
�02
B þ 1

2

�
g�
m�

��2ðg��Þ2

þ 1

3
bmnðg��Þ3 þ 1

4
cðg��Þ4 þ 1

2

�
g�
m�

�
2
�02
I3
: (5)

Here Pi and �i are the expressions for a Fermi gas of
relativistic, noninteracting particles:

Pi ¼ 1

3

gi
ð2�Þ3

Z
d3p

p2

ðp2 þm�2
i Þ1=2 ðfiðTÞ þ

�fiðTÞÞ; (6)

�i ¼ gi
ð2�Þ3

Z
d3pðp2 þm�2

i Þ1=2ðfiðTÞ þ �fiðTÞÞ; (7)

where fiðTÞ and �fiðTÞ are the Fermi-Dirac distribution
functions for particles and antiparticles, respectively:

fiðTÞ ¼ ðexpð½ðp2 þm�2
i Þ1=2 ���

i �=TÞ þ 1Þ�1; (8)

�f iðTÞ ¼ ðexpð½ðp2 þm�2
i Þ1=2 þ��

i �=TÞ þ 1Þ�1: (9)

Note that for baryons we use, instead of masses mi and
chemical potentials �i, ‘‘effective’’ masses m�

i and chemi-
cal potentials ��

i given by

m�
i ¼ mi þ x�iðg��Þ; (10)

��
i ¼ �i � x!i

�
g!
m!

�
2
�0
B � x�iI3i

�
g�
m�

�
2
�0
I3
; (11)

where I3i is the third component of the isospin of each
baryon.

TABLE I. Parameters of the hadronic equation of state. For each parametrization we give the maximum mass Mmax of a hadronic
star.

Label Composition x� ¼ x� x! ðg�=m�Þ2 [fm2] ðg!=m!Þ2 [fm2] ðg�=m�Þ2 [fm2] b c Mmax

GM 1 baryon octetþ e� 0.6 0.653 11.79 7.149 4.411 0.002 947 �0:001 070 1:78M�
GM 4 baryon octetþ e� 0.9 0.9 11.79 7.149 4.411 0.002 947 �0:001 070 2:2M�
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The weighted isospin density �0
I3

and the weighted

baryon density �0
B are given by

�0
I3
¼ X

i¼B

x�iI3ini; (12)

�0
B ¼ X

i¼B

x!ini; (13)

where ni is the particle number density of each baryon:

ni ¼ gi
ð2�Þ3

Z
d3pðfiðTÞ � �fiðTÞÞ: (14)

The mean field g�� satisfies the equation�
g�
m�

��2ðg��Þ þ bmnðg��Þ2 þ cðg��Þ3 ¼
X
i¼B

x�in
s
i ;

(15)

where nsi is the scalar density:

nsi ¼
gi

ð2�Þ3
Z

d3p
m�

i

ðp2 þm�2
i Þ1=2 ðfiðTÞ þ

�fiðTÞÞ: (16)

The hadron phase is assumed to be charge neutral and in
chemical equilibrium under weak interactions. Electric
charge neutrality states

np þ n�þ � n�� � n�� � ne ¼ 0: (17)

Chemical weak equilibrium in the presence of trapped
electron neutrinos implies that the chemical potential �i

of each baryon in the hadron phase is given by

�i ¼ qB�n � qeð�e ���eÞ; (18)

where qB is its baryon charge and qe is its electric charge.
For simplicity we are assuming that muon and tau neutri-
nos are not present in the system, and their chemical
potentials are set to zero.

All the above equations can be solved numerically by
specifying three thermodynamic quantities, e.g. the tem-
perature T, the mass-energy density �, and the chemical
potential of electron neutrinos in the hadronic phase �H

�e
.

III. THE QUARK-MATTER PHASE

In order to study the just deconfined quark-matter phase
we use an SUð3Þf NJL effective model which also includes

color superconducting quark-quark interactions. The cor-
responding Lagrangian is given by

L ¼ �c ði6@� m̂Þc þG
X8
a¼0

½ð �c �ac Þ2 þ ð �c i�5�ac Þ2�

þ 2H
X

A;A0¼2;5;7

½ð �c i�5�A	A0c CÞð �c Ci�5�A	A0c Þ�;

(19)

where m̂ ¼ diagðmu;md;msÞ is the current mass matrix in
flavor space. In what follows we will work in the isospin
symmetric limit mu ¼ md ¼ m. Moreover, �i and 	i with

i ¼ 1; . . . ; 8 are the Gell-Mann matrices corresponding to

the flavor and color groups, respectively, and �0 ¼ffiffiffiffiffiffiffiffi
2=3

p
1f. Finally, the charge conjugate spinors are defined

as follows: c C ¼ C �c T and �c C ¼ c TC, where �c ¼
c y�0 is the Dirac conjugate spinor and C ¼ i�2�0.
To be able to determine the relevant thermodynamical

quantities we have to obtain the grand canonical thermo-
dynamical potential at finite temperature T and chemical
potentials �fc. Here, f ¼ ðu; d; sÞ and c ¼ ðr; g; bÞ de-

notes flavor and color indices, respectively. For this pur-
pose, starting from Eq. (19), we perform the usual
bosonization of the theory. This can be done by introducing
scalar and pseudoscalar meson fields �a and �a, respec-
tively, together with the bosonic diquark field �A. In this
work we consider the quantities obtained within the mean
field approximation (MFA). Thus, we only keep the non-
vanishing vacuum expectation values of these fields and
drop the corresponding fluctuations. For the meson fields
this implies �̂ ¼ �a�a ¼ diagð�u;�d; �sÞ and �a ¼ 0.
Concerning the diquark mean field, we will assume that
in the density region of interest only the 2SC phase might
be relevant. Thus, we adopt the ansatz�5 ¼ �7 ¼ 0,�2 ¼
�. Integrating out the quark fields and working in the
framework of the Matsubara and Nambu-Gorkov formal-
ism we obtain the following MFA quark thermodynamical
potential (a detailed procedure of calculation can be found
in Refs. [18–21]):

�MFA
q ðT;�fc; �u; �d; �s; j�jÞ ¼ 1

�2

Z �

0
dkk2

X9
i¼1

!ðxi; yiÞ

þ 1

4G
ð�2

u þ �2
d þ �2

sÞ

þ j�j2
2H

; (20)

where� is the cutoff of the model and!ðx; yÞ is defined by
!ðx; yÞ ¼ �½xþ T ln½1þ e�ðx�yÞ=T�

þ T ln½1þ e�ðxþyÞ=T��; (21)

with

x1;2 ¼ E; x3;4;5 ¼ Es;

x6;7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ ð�ur ��dgÞ

2

�
2 þ�2

s
;

x8;9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Eþ ð�ug ��drÞ

2

�
2 þ�2

s
; y1 ¼ �ub;

y2 ¼ �db; y3 ¼ �sr; y4 ¼ �sg; y5 ¼ �sb;

y6;7 ¼
ð�ur ��dgÞ

2
; y8;9 ¼

�ug ��dr

2
: (22)

Here, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
and Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

s

p
, where Mf ¼

mf þ �f. Note that in the isospin limit we are working

�u ¼ �d ¼ � and, thus, Mu ¼ Md ¼ M.
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The total thermodynamical potential of the quark-matter
phase (QMP) is obtained by adding to �MFA the contribu-
tion of the leptons. Namely,

�QMPðT;�fc; �e;��e
; �; �s; j�jÞ

¼ �MFA
q ðT;�fc; �; �s; j�jÞ þ�eðT;�eÞ

þ��e
ðT;��eÞ ��vac; (23)

where �e and ��e
are the thermodynamical potentials of

the electrons and neutrinos, respectively. For them we use
the expression corresponding to a free gas of ultrarelativ-
istic fermions,

�lðT;�lÞ ¼ ��l

�
�4

l

24�2
þ�2

l T
2

12
þ 7�2T4

360

�
; (24)

where l ¼ e, �e and the degeneracy factor is �e ¼ 2 for
electrons and ��e

¼ 1 for neutrinos. Notice that in Eq. (23)

we have subtracted the constant �vac in order to have a
vanishing pressure at vanishing temperature and chemical
potentials.

From the grand thermodynamic potential �QMP we can

readily obtain the pressure P ¼ ��QMP, the number den-

sity of quarks of each flavor and color nfc ¼
�@�QMP=@�fc, the number density of electrons ne ¼
�@�QMP=@�e, and the number density of electron neu-

trinos n�e
¼ �@�QMP=@��e

. The corresponding number

densities of each flavor, nf, and of each color, nc, in the

quark phase are given by nf ¼
P

cnfc and nc ¼
P

fnfc,

respectively. The baryon number density reads nB ¼
1
3

P
fcnfc ¼ ðnu þ nd þ nsÞ=3. Finally, the Gibbs free en-

ergy per baryon is

gquark ¼ 1

nB

�X
fc

�fcnfc þ�ene þ��e
n�e

�
: (25)

For the NJL model we use two sets of constants shown in
Table II. The sets 1 and 2 were taken from [22,23], re-
spectively, but without the ’t Hooft flavor mixing interac-
tion. The procedure, obtained from [24] is to keep� andm
fixed, then tune the remaining parameters G and ms in
order to reproduce M ¼ 367:6 MeV and Ms ¼
549:5 MeV at zero temperature and density. The resulting
parameter sets are given in Table II. For these sets of
parameters we get �vac ¼ �4301 MeV=fm3 and �vac ¼
�5099 MeV=fm3 (for set 1 and 2, respectively). It should
be noticed that, following [24], it is possible to define a
quantity B which plays a role similar to that of the ‘‘bag
constant in the MIT bag model.’’ Namely, B corresponds to

the difference between the pressure of the interacting quark
matter and that of the free one, both taken at vanishing
temperature and chemical potential. It is important to
stress, however, that in the present model B should not
be considered as an extra parameter since its value is
calculable once the model parameters are fixed. In our
case we obtained B ¼ 353 MeV=fm3 for set 1 and
337:2 MeV=fm3 for set 2, which are within the range of
values quoted in Table 2.2 of Ref. [24].
In order to derive a quark-matter equation of state (EOS)

from the above formulas it is necessary to impose a suitable
number of conditions on the variables f�fcg, �e, ��e

, �,

�s, and �. Three of these conditions are consequences
from the fact that the thermodynamically consistent solu-
tions correspond to the stationary points of � with respect
to �, �s, and �. Thus, we have

@�QMP=@�¼0; @�QMP=@�s¼0; @�QMP=@j�j¼0:

(26)

To obtain the remaining conditions one must specify the
physical situation in which one is interested in. As in
previous works [4–10], we are dealing here with just
deconfined quark matter that is temporarily out of chemical
equilibrium under weak interactions. The appropriate con-
dition in this case is flavor conservation between hadronic
and deconfined quark matter. This can be written as

YH
f ¼ YQ

f ; f ¼ u; d; s; e; �e; (27)

with YH
f � nHf =n

H
B and YQ

i � nQf =n
Q
B being the abundances

of each particle in the hadron and quark phase, respec-
tively. In other words, the just deconfined quark phase must
have the same ‘‘flavor’’ composition than the �-stable
hadronic phase from which it has been originated. Notice
that, since the hadronic phase is assumed to be electrically
neutral, flavor conservation ensures automatically the
charge neutrality of the just deconfined quark phase. The
conditions given in Eq. (27) can be combined to obtain

nd ¼ 
nu; ns ¼ �nu; n�e
¼ �nu;

3ne ¼ 2nu � nd � ns;
(28)

where ni is the particle number density of the i species in
the quark phase. The quantities 
 � YH

d =Y
H
u , � � YH

s =Y
H
u ,

and � � YH
�e
=YH

u are functions of the pressure and tem-

perature, and they characterize the composition of the
hadronic phase. These expressions are valid for any had-
ronic EOS. For hadronic matter containing n, p, �, �þ,
�0, ��, ��, and �0, we have


 ¼ np þ 2nn þ n� þ n�0 þ 2n�� þ n��

2np þ nn þ n� þ 2n�þ þ n�0 þ n�0

; (29)

� ¼ n� þ n�þ þ n�0 þ n�� þ 2n�0 þ 2n��

2np þ nn þ n� þ 2n�þ þ n�0 þ n�0

; (30)

TABLE II. The two sets of NJL parameters.

mu;d [MeV] ms [MeV] � [MeV] G�2 H=G

Set 1 5.5 112.0 602.3 4.638 3=4
Set 2 5.5 110.05 631.4 4.370 3=4
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� ¼ nH�e

2np þ nn þ n� þ 2n�þ þ n�0 þ n�0

: (31)

Additionally, the deconfined phase must be locally color-
less; thus it must be composed by an equal number of red,
green, and blue quarks:

nr ¼ ng ¼ nb: (32)

Also, ur, ug, dr, and dg pairing will happen provided that
j�j is nonzero, leading to

nur ¼ ndg; nug ¼ ndr: (33)

In order to have all Fermi levels at the same value, we
consider [9]

nug ¼ nur; nsb ¼ nsr: (34)

These two equations, together with Eqs. (32) and (33)
imply that nur ¼ nug ¼ ndr ¼ ndg and nsr ¼ nsg ¼ nsb
[9].

Finally, including the conditions Eqs. (26) we have 13
equations involving the 14 unknowns (�, �s, j�j, �e, ��e

,

and f�fcg). For given value of one of the chemical poten-

tials (e.g. �ur), the set of equations can be solved once the
values of the parameters 
, �, �, and the temperature T are
given. Instead of �ur, we can provide a value of the Gibbs
free energy per baryon gquark or the pressure P and solve

simultaneously Eqs. (28)–(34) together with Eq. (26) in
order to obtain �, �s, j�j, �e, ��e

, and f�fcg.

IV. DECONFINEMENT TRANSITION IN
PROTONEUTRON STAR MATTER

In order to determine the transition conditions, we apply
the Gibbs criteria, i.e. we assume that deconfinement will
occur when the pressure and Gibbs energy per baryon are
the same for both hadronic matter and quark matter at a
given common temperature. Thus, we have

gH ¼ gQ; PH ¼ PQ; TH ¼ TQ; (35)

where the index H refers to hadron matter and the index Q
to quark matter. According to these conditions (together
with the equations of Secs. II and III), for a given tempera-
ture TH and neutrino chemical potential of the trapped
neutrinos in the hadronic phase �H

�e
, there is an unique

pressure P at which the deconfinement is possible. Instead
of P, we may characterize the transition point by giving the
Gibbs free energy per baryon g, or alternatively, the mass-
energy density of the hadronic phase �H (see Figs. 1–3).
We emphasize that, according to the present description, P
and g are the same in both the hadronic phase and the just
deconfined phase. However, the mass-energy density �H

and �Q at the transition point are different in general.

Similarly, while the abundance Y�e of neutrinos is the

same in both the hadronic and just deconfined quark

phases, the chemical potentials �Q
�e

and �H
�e

are different.

According to numerical simulations [1–3], during the
first tens of seconds of evolution the protoneutron star

FIG. 1 (color online). Left panel: the Gibbs free energy density per baryon g at which deconfinement occurs versus the temperature
T for three different values of the neutrino chemical potential in the hadronic phase (�H

�e
¼ 0 MeV in dashed line, �H

�e
¼ 100 MeV in

dotted line, and �H
�e

¼ 200 MeV in solid line). Right panel: the mass-energy density of the hadronic phase at which deconfinement

occurs versus the temperature T, for the same values of �H
�e

given in the left panel (density is given in units of the nuclear saturation

density �0). The hadronic phase is described by the GM1 parametrization of the EOS. For the quark phase we adopt the two
parametrizations of the NJL model given in Table II. In both panels, if the thermodynamic state of hadronic matter (characterized by
fTH; gH;�H

�e
g or by fTH; �H;�

H
�e
g) lies to the left of the curve corresponding to the same �H

�e
, then the deconfinement transition is not

possible. In the right side region of a given curve the preferred phase is deconfined quark matter.
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cools from T � 40 MeV to temperatures below 2–4 MeV.
In the same period, the chemical potential �H

�e
of the

trapped neutrinos evolves from �200 MeV to essentially
zero. Thus, in order to consider typical PNS conditions we
have solved Eqs. (35) together with the equations of
Secs. II and III for temperatures in the range 0–60 MeV
and �H

�e
in the range 0–200 MeV. The results are displayed

in Figs. 1–3 for all the parametrizations of the equations of
state given in previous sections.

In Fig. 1 we display the results for the GM1 parametri-
zation of the hadronic EOS. In the left panel of Fig. 1 we
show the Gibbs free energy density per baryon g at which

deconfinement occurs versus the temperature T for three
different values of the neutrino chemical potential in the
hadronic phase (�H

�e
¼ 0, 100, 200 MeV). In the right

panel the same results are shown but as a function of the
mass-energy density of the hadronic phase (in units of the
nuclear saturation density �0 ¼ 2:7	 1014 g cm3). In both
figures, if the thermodynamic state of hadronic matter
(characterized, e.g., by TH, �H, and �H

�e
) lies to the left

of the curve corresponding to the same �H
�e
, then the

deconfinement transition is not possible. In the right side
region of a given curve the preferred phase is deconfined
quark matter. Notice that the transition’s Gibbs free energy

FIG. 3. The mass-energy density of the hadronic phase at which deconfinement occurs as a function of the chemical potential of
trapped neutrinos �H

�e
. Results are given for two temperatures: T ¼ 2 MeV in solid line and T ¼ 30 MeV in dashed line. We

employed the GM1 (left panel) and the GM4 (right panel) parametrization of the hadronic EOS. Notice that there is a small decrease of
the transition density �h for large �H

�e .

FIG. 2 (color online). Same as Fig. 1 but employing the GM4 parametrization of the hadronic equation of state.
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is an increasing function of �H
�e
. However, the transition

density of the hadronic phase slightly decreases as �H
�e

increases. In Fig. 2 we display the results for the GM4
parametrization of the hadronic EOS. The results are
qualitatively the same but the transition densities are
smaller than those for GM1 by �30%.

Notice that in Figs. 1 and 2 we have employed the Gibbs
free energy per baryon g defined in Eq. (25). The baryon
number chemical potential �B and the quark number
chemical potential � are usually employed in the QCD
phase diagram. The baryon number chemical potential �B

is defined in a similar way than g but it does not include the
contribution of leptons. The quark number chemical po-
tential � is defined as �B=3. Since the contribution of
leptons is not dominant in our case we have g 
 �B ¼
3�. In fact, we have verified numerically that for the
physical conditions found in Figs. 1 and 2 the difference
between g and �B never exceeds a 5%.

In Fig. 3 we show the behavior of the transition’s density
as a function of the chemical potential of trapped neutrinos
�H

�e for two specific temperatures (T ¼ 2 and 30 MeV). It

is clearly seen that for a fixed temperature the effect of
deleptonization is to inhibit the transition. This effect is not
very large; at fixed temperature there is a slight increase by
less than a 10% when �H

�e
falls from 200 MeV to 0 MeV.

On the other hand, the effect of cooling works in the
opposite direction because pairing tends to help the tran-
sition and the gap increases as the temperature goes down.
The effect of cooling is also small; at fixed �H

�e
there is a

slight decrease of the transition density �H by less than a
10% when the temperature falls from 30 MeV to 2 MeV.
Both effects tend to cancel each other as the PNS cools and
deleptonizes, resulting a transition density that is roughly
constant along the evolution of the protoneutron star.

V. CONCLUSIONS

In this paper we have investigated the role of color
superconductivity in the deconfinement transition from
hadronic matter to quark matter at finite temperature and
in the presence of a trapped neutrino gas. The study pre-
sented here is relevant for the first tens of seconds of
evolution of newly born protoneutron stars.

In our analysis we used a two-phase description where
we employed the Nambu–Jona-Lasinio model in the de-
scription of quark matter (Sec. III) and a nonlinear
Walecka model which includes the whole baryon octet,
electrons, and electron neutrinos in equilibrium under
weak interactions in the description of hadronic matter
(Sec. II). Deconfinement is assumed to be a first order
phase transition and the just deconfined quark phase is
assumed to have the same ‘‘flavor composition’’ than the
�-stable hadronic phase from which it has been originated
(see [12] and references therein). When color supercon-
ductivity is included together with flavor conservation [9],

the most likely configuration of the just deconfined phase is
2SC provided the pairing gap is large enough (we are not
considering here the possible role of inhomogeneous
superconductive phases [25]). This just deconfined phase
is out of chemical equilibrium under weak interactions and
thus it is very short lived but it is a kind of ‘‘activation
barrier’’ that determines the onset of the deconfinement
transition.
The main result of the present paper is that, within the

NJL model, deconfinement is more difficult for small
neutrino content and it is easier for lower temperatures.
This effect is not very large, at least for the here-used
parametrizations of the NJL model. At fixed temperature
there is a slight increase by less than a 10% when �H

�e
falls

from 200 MeV to 0 MeV (see Fig. 3). The effect of cooling
is also small; at fixed �H

�e there is a slight decrease of the

transition density �H by less than a 10% when the tem-
perature falls from 30 MeV to 2 MeV (see Fig. 3). This is
due to the fact that the pairing gap becomes larger as the
temperature decreases and therefore the increase of the
condensation term favors the transition at low tempera-
tures. Both effects tend to cancel each other as the PNS
cools and deleptonizes, resulting a transition density that is
roughly constant along the evolution of the protoneutron
star.
The here-found behavior is qualitatively opposite to

what it was found within the MIT bag model. In fact,
previous analysis without including the effect of color
superconductivity [4,5] show that the presence trapped
neutrinos pushes up the transition density to values much
larger than for neutrino-free matter. It was also found in
[4,5] that the transition is easier for larger temperatures.
More recent results including the effect of color super-
conductivity within the MIT bag model [26] show that the
transition density increases with neutrino trapping but (in
coincidence with the here-found results) the pairing gap
favors the transition as the temperature decreases.
In spite of some differences between the results within

the NJL and the MIT bag model description of quark
matter some general conclusions may be obtained about
the effect of color superconductivity in the deconfinement
transition. First, when color superconductivity is present
the deconfinement density is not so strongly affected by
neutrino trapping as it is in the unpaired case. Second,
color superconductivity makes the transition easier at
lower temperatures and the dependence of the deconfine-
ment density with T is much smaller than in the unpaired
case.
During cooling and deleptonization of the protoneutron

star the temperature and the chemical potential of trapped
neutrinos fall abruptly in a few seconds and there is also
some contraction of the whole neutron star. It is interesting
to note that although the density increase is not too large, it
may be comparatively important for the deconfinement
transition because the effects of temperature and neutrino
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trapping are smoothed by color superconductivity.
According to our results the deconfinement transition is
favored after substantial cooling and contraction of the
protoneutron star but full numerical simulations of proto-
neutron star evolution are needed in order to determine
whether and when the deconfinement conditions are
attained.
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