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We show that Polchinski equations in the D-dimensional matrix scalar field theory can be reduced at

large N to the Hamiltonian equations in a (Dþ 1)-dimensional theory. In the subsector of the Tr�l (for all

l) operators we find the exact form of the corresponding Hamiltonian. The relation to the holographic

renormalization group is discussed.
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I. INTRODUCTION

TheWilsonian renormalization group [1] appears to be a
useful tool in the study of various phenomena in quantum
field theory and statistical physics. A convenient form of
the Wilsonian renormalization group is given by the
Polchinski equations [2]. Usually these equations are for-
mulated in the scalar field theory.

Some time ago, after the discovery of the AdS/CFT
correspondence [3], it was recognized [4] that renormal-
ization group equations on the conformal field theories side
are represented by classical equations of motion on the
anti–de Sitter side. The idea was further developed in [5–
12]. And it became clear that the holography is the general
phenomenon for the proper formulation of the Wilsonian
renormalization group at large N [11,12].

In this picture an exact, simple, and easily testable state-
ment was missing. The goal of this paper is to provide such
a statement. We show that Polchinski equations in the
D-dimensional matrix scalar field theory can be reduced
at large N to the Hamiltonian equations in a (Dþ 1)-
dimensional theory. In the subsector of the Tr�l (for all
l) operators we find the exact form of the corresponding
Hamiltonian. In the concluding section the relation to the
holographic renormalization group is discussed.

II. FROM RENORMALIZATION GROUP TO THE
HAMILTONIAN FLOW

In this section we consider the EuclideanD-dimensional
matrix scalar field theory,

S½�� ¼ �N

2

Z
p
Tr½�ðpÞðp2 þm2ÞK�1

� ðp2Þ�ð�pÞ�

þ NSI½��; (1)

whose action is written here in the Fourier transformed
form. Here � ¼ jj�ijjj, i; j ¼ 1; . . . ; N, is the Hermitian
matrix; the function K� is

K�ðxÞ ¼
�
1; when x <�2;
0; when x >�2;

(2)

and is quickly changing near the point x ¼ �2; i.e. � is an
UV cutoff in our theory; SI is the interaction part of the
action, which includes sources as well. In this paper we
take

SI½�� ¼ X1
l¼0

Z
k1...kl

Tr½�ðk1Þ; . . . ; �ðklÞ�

� Jlð�k1 � � � � � klÞ; (3)

which is just the Fourier transform of
P1

l¼0

R
JlðxÞTr�lðxÞ

representing the subspace of the complete operator product
expansion (OPE) basis of the theory. The crucial observa-
tion for our further considerations is that in the Fourier
transformed form Jl depends only on the sum of k’s—
arguments of �’s under the traces. If we were considering
operators containing derivatives (e.g.
Tr½ð@��Þ�lð@��Þ�n�l�), then the corresponding Fourier

transformed sources (e.g. Jn��ð�P
kÞk�1 k�lþ2) in general

would depend on all k’s separately.
The Polchinski equation for the theory in question is

given in the Appendix [see Eq. (A4)]. Taking the quantum
average of it, we arrive at

�
�
dSI½��
d�

�
¼ � 1

2

Z
p

1

p2 þm2
�
dK�ðp2Þ

d�

�
�
½N�1 �2SI½��

��ijð�pÞ��jiðpÞ
þ �SI½��

��ijðpÞ
�SI½��

��jið�pÞ
��

: (4)

The average is taken over the high-momentummodes only.
It means that one should represent �ðpÞ as the sum of the
high-momentum and low-momentum modes �ðpÞ ¼
�0ðpÞ þ ’ðpÞ and integrate out the field ’ðpÞ [1]. Here
�0ðpÞ is the solution of the equations of motion following
from the action (1). As we will see below, taking the
expectation value in (4) is necessary to close the system
of equations for the sources [12].
It is easy to verify the following relations:
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Tr

�
�SI

��ðpÞ
�SI

��ð�pÞ
�
¼ X1

n;l¼0

Z
p1...pnk1...kl

ðn � lÞTr½�ðp1Þ; . . . ; �ðpnÞ�ðk1Þ; . . . ; �ðklÞ�

� J�ð�p� p1 � � � � � pnÞJ�ðp� k1 � � � � � klÞ;

Tr

�
�2SI

��ðpÞ��ð�pÞ
�
¼ X1

n¼0

Z
p1...pn

n
Xn
m¼0

Tr½�ðp1Þ; . . . ; �ðpmÞ�Tr½�ðpmþ1Þ; . . . ; �ðpnÞ�J�ð�p1 � � � � � pnÞ: (5)

Now one should calculate the quantum average of these
traces. As usual this is a complicated problem, but there is a
way to simplify the final expressions.

First, let us introduce the following notations:

Z
pðnÞ

:¼
Z
p1...pn

;

Tnðp1; . . . ; pnÞ :¼ Tr½�0ðp1Þ; . . . ; �0ðpnÞ�;
Jlð�kðlÞÞ :¼ Jlð�k1 � � � � � klÞ: (6)

In these notations the action (3) takes a short form
SI½�0� ¼

P1
l¼0

R
kðlÞ Tlðk1; . . . ; klÞJlð�kðlÞÞ. The quantum

average of the trace Tr½ð�01 þ ’1Þ . . . ð�0n þ ’nÞ� over
the high-momentum modes can be reduced to the action
of some operator on Tlðk1; . . . ; klÞ:�Z

pðnÞ
Tr½ð�0ðp1Þþ’ðp1ÞÞ;...;ð�0ðpnÞþ’ðpnÞÞ�

�

�
Z
pðnÞ

Z
D’eS0 Tr½ð�0ðp1Þþ’ðp1ÞÞ;...;ð�0ðpnÞþ’ðpnÞÞ�

¼
Z
pðnÞ

Z
D’eS0 exp

�Z
p
’p

�

��0ðpÞ
�
Tr½�0ðp1Þ;...;�0ðpnÞ�

¼Ŵ

�Z
pðnÞ

Tr½�01;...;�0n�
�

¼Ŵ

�Z
pðnÞ

Tnðp1;...;pnÞ
�
;

where S0 ¼�N
2

R
pTr½�ðpÞðp2þm2ÞK�1

� ðp2Þ�ð�pÞ� and

Ŵ ¼ exp

�
1

2N

Z
p
Tr

�
�

��0p

�

��0�p

�
G�ðpÞ

�
(7)

with G�ðpÞ ¼ K�ðp2Þ=ðp2 þm2Þ being the free
propagator.1

We work in the large N limit, where the following
factorization property is in effect:

�Y
n

TrOn

�
¼ Y

n

hTrOni: (8)

Using this property and the notation ~T ¼ ŴT, we can write

Ŵ½Tlðk1; . . . ; klÞTnðp1; . . . ; pnÞ�
¼ Ŵ½Tlðk1; . . . ; klÞ�Ŵ½Tnðp1; . . . ; pnÞ�
¼ ~Tlðk1; . . . ; klÞ ~Tnðp1; . . . ; pnÞ; (9)

and the Polchinski equation for the theory (1) acquires the
form

X1
l¼1

Z
kðlÞ

~TlðfklgÞ _Jlð�kðlÞÞ ¼ � 1

2

Z
p

1

p2 þm2
_K�ðp2Þ

�
N�1

X1
a¼1

Xa�1

s¼0

Z
kða�1Þ

ðaþ 1Þ ~Ta�s�1ðfksþ1gÞ ~TsðfksgÞJaþ1ð�kðaþ1ÞÞ

þ X1
l;j¼1

Z
qðj�1Þkðl�1Þ

ðl � jÞ ~Tlþj�2ðfkl�1g; fqj�1gÞJlð�kðl�1Þ � pÞJjð�qðj�1Þ þ pÞ
�
; (10)

where the overdot means the differentiation with respect to d=d log�. Note that ~T depends on �, because the Ŵ operator
does depend on the cutoff.

1Using the equation (see e.g. [13])

Tr

�
�

��0p

�

��0�p

�
¼

Z
kðnÞ

X1
l;m¼1

ðl �mÞTlþm�2ðfkl�1g; fqm�1gÞ �2

�Tlðfkl�1g; pÞ�Tmðfqm�1g;�pÞ þ
Z
kðl�2Þ

X1
l¼2

Xl�2

m¼0

TmðfkgÞTl�m�2ðfkgÞ

� �

�Tlðfkl�2g; p;�pÞ ;

the operator Ŵ can be written in terms of derivatives with respect to the natural variables Tnðk1; . . . ; knÞ, which makes it obvious that
such actions as (3) (with single-trace operators only) give rise to multitrace operators in the Polchinski equation.
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It will become clear in a moment that the structure of the
theory in question suggests the introduction of the momen-
tum conjugate to JlðkÞ as follows:

�lðkÞ ¼ N�1
Z
kðlÞ

�ðDÞ½k� kðlÞ� ~Tlðk1; . . . ; klÞ: (11)

This definition reflects the fact that our sources depend
only on the sum of the arguments of ~T ’s. And the factor of
N was included to make the sources Jl and the canonical
momenta �l to be of the same order as N ! 1. In these
variables Eq. (10) reduces to

Z
q

X1
l¼0

�lðqÞ _Jlð�qÞ

¼ � 1

2

Z
p

_K�ðp2Þ
p2 þm2

�Z
q1q2

X1
l;s¼0

ðlþ sþ 2Þ�lðq1Þ

��sðq2ÞJlþsþ2ð�q1 � q2Þ þ
Z
q1q2

X1
f;h¼1

ðf � hÞ

��fþh�2ðq1 þ q2ÞJfð�q1ÞJhð�q2Þ
�
: (12)

Then the corresponding equations for the sources and for
the momenta can be represented in the form of the
Hamiltonian equations:

dJlð�qÞ
dT

¼ �H

��lðqÞ ;
d�lðqÞ
dT

¼ � �H

�Jlð�qÞ ; (13)

where the ‘‘time’’ dT ¼ d log�
R
p

_K�ðp2Þ
p2þm2 is related to the

cutoff scale. The first equation in (13) follows from the
Polchinski equation2 (12). Recall that this equation im-
poses the condition that the functional integral of the
theory in question is independent of the cutoff. The second
equation in (13) similarly follows from the derivation of
the vacuum expectation value (VEV) hTr�lðxÞi with re-
spect to �. Or it may be obtained via the variation of the
Polchinski equation with respect to Jkð�qÞ. The easiest
way to see the latter fact is to recall that the effective
actions expressed through the sources and through the
VEV’s are related to each other via the Legendre (func-
tional Fourier) transformation [12].

The Hamiltonian can be calculated exactly and has a
remarkably simple form:

H ¼ � 1

2

Z
q1q2

X1
l;s¼0

½ðlþ sþ 2Þ�lðq1Þ

��sðq2ÞJlþsþ2ð�q1 � q2Þ þ ðlþ 1Þðsþ 1Þ
��lþsðq1 þ q2ÞJlþ1ð�q1ÞJsþ1ð�q2Þ�: (14)

We emphasize that the momentum �lðqÞ contains all
powers of the traces since it is the result of the action of

the Ŵ operator on TlðkÞ.
The trivial observation here is that the summation over s

and l in the Hamiltonian in question can be converted into
the integration over the new artificial coordinate � 2
½0; ��. Such a conversion obviously could have been
done in the original action (1)–(3).

III. DISCUSSION

Thus, we have managed to rewrite the Polchinski equa-
tions for the matrix scalar field theory at large N as the
Hamiltonian equations. The configuration space of the
obtained (Dþ 1)-dimensional theory consists of the single
trace operators of the original D-dimensional theory. Our
result does not depend on whether the theory in question is
renormalizable, or even whether it is UV divergent.
Why is such a relation important? First of all, it clearly

shows that if one keeps all sources for a subsector of the
full OPE basis, then the renormalization group becomes
holographic. Indeed, knowing the values of J’s and �’s at
some energy scale, one can find them, through the
Hamiltonian equations, at any other scale.
Furthermore, despite the fact that we average over the

Gaussian quadratic part of the action in the transformation
from (4) to (13) and (14) we still have the complete knowl-
edge of the renormalization group flow in the subsector of
the theory in question. In particular, if one would like to
know e.g. where the UV theory

S ½��¼�N

2

Z
p
Tr½�ðpÞðp2þm2ÞK�1

� ðp2Þ�ð�pÞ�

�gN
Z
k1;...;k4

�

�X4
i¼1

ki

�
Tr½�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þ�

(15)

(g ¼ const) flows under the renormalization group, one
just has to solve the Hamiltonian equations (13) with the
initial conditions J4 ¼ g and Jn ¼ 0 for all n � 4 as � !
1.
Fortunately enough the subsector of the OPE basis,

which we are considering in this paper, factors (at large
N) under the renormalization group flow from the rest of
the OPE basis. So far we did not find the closed form
Hamiltonian if the other parts of the OPE basis are in-
cluded in the renormalization group dynamics. This re-
mains a challenge for future work. As well, it would have
been interesting to reconcile our observations with the

2Note that to make the transformation from (12) to the first
equation in (13) legal, one has to extend the collection of
couplings Jl Tr�

l to the full OPE basis in the theory and then
perform the same transformations as we did to arrive at (13) [12].
At the end one has to put all the additional sources to zero to
obtain (13) in its present form.

EXACT STATEMENT FOR WILSONIAN AND HOLOGRAPHIC . . . PHYSICAL REVIEW D 81, 085010 (2010)

085010-3



information theory interpretation of the renormalization
group flow [14].
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APPENDIX

Here we derive the Polchinski equation [2] in the case of
the D-dimensional matrix scalar field theory (1). In the
Wilsonian renormalization group one integrates out the
high-momentum modes in � so that the energy scale is
reduced from the cutoff to a much lower scale �R—the
scale where we are probing our physics [1]. We assume that
m2 � �2

R.
Consider generating a functional for the theory (1):

Z ¼
Z

D�eS½�;�;fJg�: (A1)

Obviously one has to impose the condition that physics
should not depend on the cutoff:

�
dZ
d�

¼ 0: (A2)

The result of the differentiation is

�
dZ
d�

¼
Z

D�eS½�;�;fJg� Tr
�Z

p
�ð�pÞðp2 þm2Þ

��ðpÞ� dK�1
� ðp2Þ
d�

þ�
dSI

d�

�
: (A3)

It is easy to verify that the expression under the integral on
the right-hand side of (A3) becomes a full functional
derivative if

�
dSI

d�
¼ � 1

2

Z
p

1

p2 þm2
�
dK�ðp2Þ

d�

�
�2SI

��ijð�pÞ��jiðpÞ
þ �SI

��ijðpÞ
�SI

��jið�pÞ
�
: (A4)

Indeed substituting (A4) into (A3) we obtain

�
dZ
d�

¼
Z
p
�
dK�ðp2Þ

d�

Z
D�Tr

�

��

��
�ðpÞK�1

� ðp2Þ

þ 1

2
ðp2 þm2Þ�1 �

��

�
eS½�;�;fJg�

�
: (A5)

It is straightforward to see that (A5) and (A3) are equiva-
lent because

�eS½�;��

��ð�pÞ ¼
�
��ðpÞðp2 þm2ÞK�1

� ðp2Þ þ�SI

��

�

� eS½�;�;fJg�;

�2eS½�;��

��ð�pÞ��ðpÞ ¼
�
�ðp2 þm2ÞK�1

� ðp2Þ þ SI

��ð�pÞ��ðpÞ
þ

�
��ðp2 þm2ÞK�1

� ðp2Þ þ�SI

��

�
2
�

� eS½�;�;fJg�: (A6)

Equation (A4) is referred to as the Polchinski equation.
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