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Recently we observed a crossover transition (in the Fayet-Iliopoulos parameter) from weak to strong

coupling in N ¼ 2 supersymmetric QCD with the UðNÞ gauge group and Nf > N quark flavors. At

strong coupling this theory can be described by a dual non-Abelian weakly coupled supersymmetric QCD

with the dual gauge group UðNf � NÞ and Nf light dyon flavors. Both theories support non-Abelian

strings. We continue the study of confinement dynamics in these theories, in particular, metamorphoses of

excitation spectra, from a different side. A number of results obtained previously are explained, enhanced

and supplemented by analyzing the world-sheet dynamics on the non-Abelian confining strings. The

world-sheet theory is the two-dimensional N ¼ ð2; 2Þ supersymmetric weighted CPðNf � 1Þ model. We

explore the vacuum structure and kinks on the world sheet, corresponding to confined monopoles in the

bulk theory. We show that (in the equal quark mass limit) these kinks fall into the fundamental

representation of the unbroken global SUðNÞ � SUðNf � NÞ � Uð1Þ group. This result confirms the

presence of extra stringy meson states in the adjoint representation of the global group in the bulk theory.

The non-Abelian bulk duality is in one-to-one correspondence with a duality taking place in the N ¼
ð2; 2Þ supersymmetric weighted CPðNf � 1Þ model.
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I. INTRODUCTION

The standard scenario for color confinement suggested
in the 1970s by Nambu, Mandelstam and ’t Hooft [1] is
based on the dual Meissner effect. In this scenario, upon
condensation of monopoles, chromoelectric flux tubes
(strings) of the Abrikosov-Nielsen-Olesen (ANO) type
[2] are formed. This must lead to confinement of quarks
attached to the endpoints of confining strings.

Much later it was shown by Seiberg andWitten [3,4] that
this scenario is indeed realized inN ¼ 2 supersymmetric
QCD in the monopole vacua. A more careful examination
shows, however, that this confinement is Abelian1 [6–10].
The reason is that the non-Abelian gauge group of under-
lying N ¼ 2 SQCD (say, SUðNÞ) is broken down to an
Abelian Uð1ÞN�1 subgroup by condensation of adjoint
scalars in the strongly coupled monopole vacua. Further
condensation of monopoles occurs essentially in the U(1)
theory.

A non-Abelian mechanism for confinement in four di-
mensions was recently proposed in [11]. In this paper we
consideredN ¼ 2 SQCD with the UðNÞ gauge group and
Nf flavors of fundamental quark hypermultiplets, N <

Nf < 2N. This theory is endowed with the Fayet-

Iliopoulos (FI) [12] term � which singles out a vacuum
in which r ¼ N scalar quarks condense. At large � this
theory is at weak coupling. In the limit of equal quark
masses it supports non-Abelian strings [13–16] (see also
the review papers [17–20]). Formation of these strings
leads to confinement of monopoles. In fact, in the
Higgsed UðNÞ gauge theories the monopoles become junc-
tions of two distinct elementary non-Abelian strings.
In [11] (see also [21,22]) we demonstrated that upon

reducing the FI parameter � the theory goes through a
crossover transition into a strongly coupled phase which
can be described in the infrared in terms of weakly coupled
dual N ¼ 2 SQCD with the Uð ~NÞ gauge group and Nf

flavors of light dyons,2 where

~N ¼ Nf � N: (1.1)

This non-Abelian N ¼ 2 duality is conceptually similar
to Seiberg’s duality in N ¼ 1 SQCD [24,25] where the
emergence of the dual SUð ~NÞ group was first observed.
The dual theory also supports non-Abelian strings

formed due to condensation of light dyons. Moreover,
these latter strings still confine monopoles, rather than
quarks [11]. Thus, the N ¼ 2 non-Abelian duality is not
the electromagnetic duality. It is the monopoles that are
confined both in the original and dual theories. The reason

1By non-Abelian confinement we mean such a dynamical
regime in which at distances of the flux tube formation all gauge
bosons are equally important, while Abelian confinement occurs
when the relevant gauge dynamics at such distances is Abelian.
Note that Abelian confinement can take place in non-Abelian
theories. The Seiberg-Witten solution is just one example.
Another example is the Polyakov three-dimensional confinement
[5] in the Georgi-Glashow model.

2This is in a perfect agreement with the results obtained in [23]
where the SUð ~NÞ dual gauge group was identified at the root of a
baryonic Higgs branch in the SUðNÞ gauge theory with massless
(s)quarks.
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for this is as follows. Light dyons which condense in the
dual theory (in addition to magnetic charges) carry weight-
like electric charges, (i.e. the quark charges). Therefore,
the strings formed through the condensation of these dyons
can confine only the states with the rootlike magnetic
charges, i.e. the monopoles, see [11] for more details.

Our mechanism of non-Abelian confinement works as
follows. There is no confinement of color-electric charges,
to begin with. The color-electric charges of quarks (or
gauge bosons) are Higgs-screened. In the domain of small
� (where the dual description is applicable) the quarks and
gauge bosons of the original theory decay into the
monopole-antimonopole pairs at the curves of marginal
stability (CMS). At small but nonvanishing � the (anti)
monopoles forming the pair cannot abandon each other
because they are confined. In other words, the original
quarks and gauge bosons evolve in the strong-coupling
domain of small � into ‘‘stringy mesons’’ with two con-
stituents being connected by two strings as shown in Fig. 1,
see [19] for a detailed discussion of these stringy mesons.
The color-magnetic charges are confined in the theory
under consideration; the mesons they form are expected
to lie on Regge trajectories.

One might think that this pattern of confinement has
little to do with what we have in real life because the real-
world mesons can be in the adjoint representation of the
global flavor group, while the monopoles we discuss at first
glance seem to be neutral under the flavor group. If so, the
monopole-antimonopole pairs could produce only flavor-
singlet mesons. In this paper we address this problem and
show that this naive guess is incorrect. We demonstrate that
deep in the non-Abelian quantum regime the confined
monopoles are in the fundamental representation of the
global group. Therefore, the monopole-antimonopole me-
sons can be both in the adjoint and singlet representation of
the flavor group.

If in Ref. [11] we explored the non-Abelian duality and
the evolution of spectra in the � transition from the stand-
point of the four-dimensional bulk theories, in this work we
will invoke a totally different and seemingly quite powerful
tool. Our strategy is to expand and supplement the bulk
theory analysis [11] by studies in the world-sheet theories
on the non-Abelian strings supported by the bulk theory.
As we know from our previous work, in the BPS sector
there should exist a one-to-one correspondence between
the bulk and world-sheet results. Therefore, metamorpho-

ses of spectra can be studied in the world-sheet theory,
providing us with additional information. In particular, the
latter should undergo its own crossover transition into a
dual world-sheet theory. The obvious strategical advantage
is a relative simplicity of two-dimensional theories com-
pared to their four-dimensional progenitor.
The main feature of the non-Abelian strings is the pres-

ence of orientational zero modes. Dynamics of these ori-
entational zero modes (uplifted to two-dimensional fields)
can be described, at low energies, by an effective two-
dimensional sigma model on the string world sheet.
Particular details of this model depend on the bulk parame-
ters. For instance, in the simplest case of N ¼ 2 SQCD
with the UðNÞ gauge group and Nf ¼ N (s)quarks, one

obtains theN ¼ ð2; 2Þ supersymmetric CPðN � 1Þmodel
on the world sheet [13–16]. If Nf > N it is the weighted

CPðNf � 1Þ model that we get.

In our previous works we revealed a number of ‘‘pro-
tected’’ quantities, such as the mass of the (confined)
monopoles. These parameters are calculable both in the
bulk theory and on the world sheet, with one and the same
result. The first example of this remarkable correspondence
was the explanation of the coincidence of the BPS spec-
trum of monopoles in four-dimensional theory in the r ¼
N vacuum on the Coulomb branch at � ¼ 0 (given by the
exact Seiberg-Witten solution [4]) with the BPS spectum
of kinks in the N ¼ ð2; 2Þ supersymmetric CPðN � 1Þ
model. This coincidence was noted in [26,27]. The expla-
nation [15,16] is: (i) the confined monopoles of the bulk
theory (represented by two-string junctions) are seen as
kinks interpolating between two different vacua in the
sigma model on the string world sheet; (ii) the masses of
the BPS monopoles cannot depend on the nonholomorphic
parameter �.
Later on various deformations of the bulk theory were

considered and their responses in the sigma model on the
string world sheet were found, for reviews see [19,20]. In
all cases the bulk physics is ‘‘projected’’ onto the world-
sheet physics. The protected quantities come out the same.

However, technical/calculational aspects are much simpler
in the two-dimensional world-sheet theory than in the four-
dimensional bulk theory. Therefore, it is beneficial to use
the above correspondence not only in the direction from
four to two dimensions (the preferred direction in the past),
but in the opposite direction too. In the present paper we
exploit this idea and study confined monopoles of the bulk
theory in terms of kinks of the effective theory on the string
world sheet. Two-dimensional CP models are well under-
stood even at strong coupling. We use this knowledge to
extract information on confined monopoles of the bulk
theory.
If Nf > N the non-Abelian strings are semilocal (see

[28] for a review), and the effective sigma model on
their world sheet is the N ¼ ð2; 2Þ weighted CPðNf �
1Þ model on a toric manifold [13,29,30]. The bulk

FIG. 1 (color online). Meson formed by monopole-
antimonopole pair connected by two strings. Open and closed
circles denote the monopole and antimonopole, respectively.
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duality observed in [11] must be in one-to-one correspon-
dence with a two-dimensional duality in the weighted CP
model.

At large �, internal dynamics of the semilocal non-
Abelian strings is described by the sigma model of N
orientational and ~N size moduli, while at small � the roles
of orientational and size moduli interchange. Two dual
weighted CP models transform into each other upon
changing the sign of the coupling constant [11]. The BPS
kink spectra in these two dual sigma models (describing
the confined monopoles of the bulk theory) coincide.

In this paper we study the kinks in the weighted CP
model in detail, calculate their spectra and show that, in the
equal-mass limit of strong coupling (inside CMS), the
kinks fall in fundamental representation of the global
symmetry group (aka flavor group). This confirms our
picture of confinement in the bulk theory. In particular,
the mesons shown in Fig. 1 belong either to the adjoint or
to singlet representation of the flavor group, as was
expected.

The fact that the kinks in the quantum limit form a
fundamental representation of the global group is not that
surprising. Say, in the N ¼ ð2; 2Þ supersymmetric
CPðN � 1Þ models it was known for a long time [31,32].
Here we generalize this result to the case of theN ¼ ð2; 2Þ
weighted CP models and translate it in terms of the con-
fined monopoles of the bulk theory.

The paper is organized as follows. In Sec. II we briefly
review duality in the bulk four-dimensional theory and
discuss evolution of excitation spectra in passing from
one side of duality to another, through the crossover do-
main. Section III is devoted to the world-sheet theory on
the non-Abelian strings—the weighted CPmodel. We out-
line its two versions related to each other by the world-
sheet duality. In Sec. IV we treat the (semi)classical limit
of the world-sheet theory, examining both components of
the dual pair. In Sec. V we consider the exact superpoten-
tial and the semiclassical BPS spectrum at large and inter-
mediate values of j�mA;Bj, i.e. outside CMS. In Sec. VI we

formulate and explore a mirror representation for both dual
theories. In Sec. VII we study kinks using the mirror
representation. We calculate their spectra and count the
number of kinks at strong coupling, inside CMS. In
Sec. VIII we translate our two-dimensional results in
four-dimensional bulk theory, i.e. interpret them in terms
of strings and confined monopoles of the bulk theory.
Section IX summarizes our conclusions.

II. BULK DUALITY

This section presents a brief review of the bulk non-
Abelian duality [11] and introduces all relevant notation
(which is also summarized in [19]). The bulk theory is
N ¼ 2 SQCD with the UðNÞ gauge group and Nf flavors

of fundamental quark hypermultiplets (N <Nf < 2N).

A. Bulk theory at large �

The field content is as follows. The N ¼ 2 vector
multiplet consists of the U(1) gauge field A� and the

SUðNÞ gauge field Aa
�, where a ¼ 1; . . . ; N2 � 1, and their

Weyl fermion superpartners plus complex scalar fields a,
and aa and their Weyl superpartners. The Nf quark mul-

tiplets of the UðNÞ theory consist of the complex scalar
fields qkA and ~qAk (squarks) and their fermion superpart-
ners, all in the fundamental representation of the SUðNÞ
gauge group. Here k ¼ 1; . . . ; N is the color index while A
is the flavor index, A ¼ 1; . . . ; Nf. We will treat qkA as a

rectangular matrix with N rows and Nf columns.

This theory is endowed with the FI term � which singles
out the vacuum in which r ¼ N squarks condense.
Consider, say, the ð1; 2; . . . ; NÞ vacuum in which the first
N flavors develop vacuum expectation values (VEVs),

hqkAi ¼ ffiffiffi
�

p 1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 1 0 . . . 0

0
@

1
A;

h �~qkAi ¼ 0; k ¼ 1; . . . ; N; A ¼ 1; . . . ; Nf:

(2.1)

In this vacuum the adjoint fields also develop VEVs,
namely,

��
1

2
aþ Taaa

��
¼ � 1ffiffiffi

2
p

m1 . . . 0
. . . . . . . . .
0 . . . mN

0
@

1
A; (2.2)

where mA are quark mass parameters.
For generic values of mA’s, the VEVs (2.2) break the

SUðNÞ subgroup of the gauge group down to Uð1ÞN�1.
However, in the special limit

m1 ¼ m2 ¼ . . . ¼ mNf
; (2.3)

the SUðNÞ � Uð1Þ gauge group remains unbroken by the
adjoint field. In this limit the theory acquires a global flavor
SUðNfÞ symmetry.

While the adjoint VEVs do not break the SUðNÞ � Uð1Þ
gauge group in the limit (2.3), the quark condensate (2.1)
results in the spontaneous breaking of both gauge and
flavor symmetries. A diagonal global SUðNÞ combining
the gauge SUðNÞ and an SUðNÞ subgroup (which rotates
first N quarks) of the flavor SUðNfÞ group survives, how-

ever. Below we will refer to this diagonal global symmetry
as to SUðNÞCþF. More exactly, the pattern of breaking of
the color and flavor symmetry is as follows:

UðNÞgauge � SUðNfÞflavor ! SUðNÞCþF � SUð ~NÞF
� Uð1Þ; (2.4)

where ~N ¼ Nf � N. The phenomenon of color-flavor

locking takes place in the vacuum. The global SUðNÞCþF

group is responsible for formation of the non-Abelian
strings (see below). For unequal quark masses in (2.2) the
global symmetry (2.4) is broken down to Uð1ÞNf�1.
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Since the global (flavor) SUðNfÞ group is broken by the

quark VEVs anyway we can consider the following mass
splitting:

mP ¼ mP0 ; mK ¼ mK0 ; mP �mK ¼ �m (2.5)

where P, P0 ¼ 1; . . . ; N and K, K0 ¼ N þ 1; . . . ; Nf.
3 This

mass splitting respects the global group (2.4) in the
ð1; 2; . . . ; NÞ vacuum. This vacuum then becomes isolated.
No Higgs branch develops. We will often use this limit
below.

Now let us discuss the mass spectrum in our theory.
Since both U(1) and SUðNÞ gauge groups are broken by
squark condensation, all gauge bosons become massive. In
fact, at nonvanishing �, both the quarks and adjoint scalars
combine with the gauge bosons to form long N ¼ 2
supermultiplets [9], for a review see [19]. Note that all
states come in representations of the unbroken global
group (2.4), namely, the singlet and adjoint representations
of SUðNÞCþF

ð1; 1Þ; ðN2 � 1; 1Þ; (2.6)

and in the bifundamental representations

ð �N; ~NÞ; ðN; �~NÞ; (2.7)

where in (2.6) and (2.7) we mark representation with
respect to two non-Abelian factors in (2.4). The singlet
and adjoint fields are the gauge bosons, and the first N
flavors of the squarks qkP (P ¼ 1; . . . ; N), together with
their fermion superpartners. The bifundamental fields are
the quarks qkK with K ¼ N þ 1; . . . ; Nf. These quarks

transform in the two-index representations of the global
group (2.4) due to the color-flavor locking.

At large � this theory is at weak coupling. Namely, the
condition

� � �; (2.8)

ensures weak coupling in the SUðNÞ sector because the
SUðNÞ gauge coupling does not run below the scale of the
quark VEVs which is determined by

ffiffiffi
�

p
. Here � is the

dynamical scale of the SUðNÞ gauge theory. More explic-
itly,

8�2

g22ð�Þ
¼ ðN � ~NÞ lng2

ffiffiffi
�

p
�

� 1; (2.9)

where g22 is the coupling constant of the SUðNÞ sector.

B. Duality

As was shown in [11], at
ffiffiffi
�

p �� the theory goes
through a crossover transition to the strong-coupling re-
gime. At small � (

ffiffiffi
�

p � �) this regime can be described
in terms of weakly coupled dual N ¼ 2 SQCD, with the
gauge group

U ð ~NÞ � Uð1ÞN� ~N; (2.10)

and Nf flavors of light dyons. This non-Abelian N ¼ 2

duality is similar to Seiberg’s duality in N ¼ 1 super-
symmetric QCD [24,25]. Later a dual non-Abelian gauge
group SUð ~NÞ was identified on the Coulomb branch at the
root of a baryonic Higgs branch in the N ¼ 2 supersym-
metric SUðNÞ gauge theory with massless quarks [23].
Light dyons are in the fundamental representation of the

gauge groupUð ~NÞ and are charged under Abelian factors in
(2.10). In addition, there are light dyons Dl (l ¼
~N þ 1; . . . ; N) neutral under the Uð ~NÞ group, but charged
under the U(1) factors. A small but nonvanishing � triggers
condensation of all these dyons,

hDlAi ¼ ffiffiffi
�

p 0 . . . 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 0 . . . 1

0
@

1
A;

h �~DlAi ¼ 0; l ¼ 1; . . . ; ~N; hDli ¼ ffiffiffi
�

p
;

h �~Dli ¼ 0; l ¼ ~N þ 1; . . . ; N:

(2.11)

Now, consider either equal quark masses or the mass
choice (2.5). Both, the gauge and flavor SUðNfÞ groups, are
broken in the vacuum. However, the color-flavor locked
form of (2.11) guarantees that the diagonal global
SUð ~NÞCþF survives. More exactly, the unbroken global
group of the dual theory is

SU ðNÞF � SUð ~NÞCþF � Uð1Þ: (2.12)

Here SUð ~NÞCþF is a global unbroken color-flavor rotation,
which involves the last ~N flavors, while the SUðNÞF factor
stands for the flavor rotation of the first N dyons. Thus, a
color-flavor locking takes place in the dual theory too.
Much in the same way as in the original theory, the
presence of the global SUð ~NÞCþF group is the reason
behind formation of the non-Abelian strings. For generic
quark masses the global symmetry (2.4) is broken down to
Uð1ÞNf�1.
In the equal-mass limit or for the mass choice (2.5) the

global unbroken symmetry (2.12) of the dual theory at
small � coincides with the global group (2.4) present in
the r ¼ N vacuum of the original theory at large �. Note
however, that this global symmetry is realized in two
distinct ways in two dual theories. As was already men-
tioned, the quarks and UðNÞ gauge bosons of the original
theory at large � come in the (1, 1), (N2 � 1, 1), ( �N, ~N),

and (N, �~N) representations of the global group (2.4), while
the dyons and Uð ~NÞ gauge bosons form (1, 1), (1, ~N2 � 1),

3A generic mass difference mA �mB (for all A, B ¼
1; 2; . . . ; Nf) will be referred to as �mAB below, while �m is
reserved for mP �mK, (P ¼ 1; 2; . . . ; N, K ¼ N þ 1; . . . ; Nf).
In Ref. [22] the mass differences inside the first group (or inside
the second group) were called �Minside. The mass differences
mP �mK were referred to as �Moutside.
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(N, �~N), and ( �N, ~N) representations of (2.12). We see that
the adjoint representations of the (Cþ F) subgroup are
different in two theories. A similar phenomenon was de-
tected in [21] for the Abelian dual theory (i.e. ~N ¼ 0).

This means that the quarks and gauge bosons which
form the adjoint (N2 � 1) representation of SUðNÞ at large
� and the dyons and gauge bosons which form the adjoint
( ~N2 � 1) representation of SUð ~NÞ at small � are, in fact,
distinct states. The (N2 � 1) adjoints of SUðNÞ become
heavy and decouple as we pass from large to small � along
the line (2.5). Moreover, some composite ( ~N2 � 1) adjoints
of SUð ~NÞ, which are heavy and invisible in the low-energy
description at large � become light at small � and form the
DlK dyons (K ¼ N þ 1; . . . ; Nf) and gauge bosons of

Uð ~NÞ. The phenomenon of level crossing takes place
(Fig. 2). Although this crossover is smooth in the full
theory, from the standpoint of the low-energy description
the passage from large to small �means a dramatic change:
the low-energy theories in these domains are completely
different; in particular, the degrees of freedom in these
theories are different.

This logic leads us to the following conclusion. In
addition to light dyons and gauge bosons included in the
low-energy theory at small � we have heavy fields which
form the adjoint representation (N2 � 1, 1) of the global
symmetry (2.12). These are screened quarks and gauge
bosons from the large � domain. Let us denote them as

MP0
P (P, P0 ¼ 1; . . . ; N).
As was already explained in Sec. I, at small � they decay

into the monopole-antimonopole pairs on the curves of
marginal stability (CMS).4 This is in accordance with
results obtained for N ¼ 2 SU(2) gauge theories
[3,4,33] on the Coulomb branch at zero � (we confirm
this result for the theory at hand in Sec. VIII). The general
rule is that the only states which exist at strong coupling
inside CMS are those which can become massless on the
Coulomb branch [3,4,33]. For our theory these are light
dyons shown in Eq. (2.11), gauge bosons of the dual Uð ~NÞ
theory and monopoles.

At small nonvanishing � the monopoles and antimono-
poles produced in the decay process of adjoints (N2 � 1, 1)
cannot escape from each other and fly off to separate
because they are confined. Therefore, the quarks or gauge
bosons in the strong-coupling domain of small � evolve

into stringy mesons MP0
P (P, P0 ¼ 1; . . . ; N)—the

monopole-antimonopole pairs connected by two strings
[11] as shown in Fig. 1.

By the same token, at large �, in addition to the light

quarks and gauge bosons, we have heavy fields MK0
K (K,

K0 ¼ N þ 1; . . . ; Nf), which form the adjoint ( ~N2 � 1)

representation of SUð ~NÞ. This is schematically depicted
in Fig. 2.

The MK0
K states are (screened) light dyons and gauge

bosons of the dual theory. At large � they decay into
monopole-antimonopole pairs and form stringy mesons
[11] shown in Fig. 1.

In [11] we also conjectured that the fields MP0
P and MK0

K

are Seiberg’s meson fields [24,25], which occur in the dual
theory upon breaking of N ¼ 2 supersymmetry by the
mass-term superpotential �½A2 þ ðAaÞ2� for the adjoint
fields in the limit � ! 1. In this limit our theory becomes
N ¼ 1 SQCD.
We see that the picture of the non-Abelian confinement

obtained in [11] is based on the presence of extra stringy
meson states—the monopole-antimonopole pairs—bound
by confining strings both in the weak and strong coupling
domains of the bulk theory. These meson states fill repre-
sentations (N2 � 1, 1) and (1, ~N2 � 1) of the global un-
broken group at small and large �, respectively. Below we
confirm the presence of these stringy mesons by studying
the global quantum numbers of confined monopoles in
both domains. To this end we explore kinks in the N ¼
ð2; 2Þ supersymmetric weighted CP model on the string
world sheet.
We remind that the confined monopoles of the bulk

theory are presented by the junctions of two elementary
non-Abelian strings [15,16,34]. These elementary strings
corresponds to different vacua of the effective sigma model
on the world sheet. See also the review paper [19] for
details.

III. WORLD-SHEET THEORY

In this section we briefly describe the world-sheet low-
energy sigma models on the non-Abelian strings at large
and small �. Non-Abelian strings in N ¼ 2 SQCD with
Nf ¼ N were first found and studied in [13–16]. Then we

elementary

ξΛ2

composite

elementary

composite

FIG. 2. Evolution of the SUðNÞ and SUð ~NÞ gauge bosons and
light quarks (dyons) vs �. On both sides of the level crossing at
� ¼ �2 the global groups are SUðNÞ � SUð ~NÞ, however, above
�2 it is SUðNÞCþF � SUð ~NÞF while below �2 it is SUðNÞF �
SUð ~NÞCþF.

4Strictly speaking, such pairs can be formed by monopole-
antidyons and dyon-antidyons as well, the dyons carrying root-
like electric charges. In this paper we will call all these states
‘‘monopoles.’’ This is to avoid confusion with dyons which
appear in Eq. (2.11). The latter dyons carry weightlike electric
charges and, roughly speaking, behave as quarks, see [11] for
further details.
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discuss how the bulk duality translates into the world-sheet
duality [11].

A. World-sheet theory at large �

To warm up, we start from Nf ¼ N. The Abelian

ZN-string solutions break the SUðNÞCþF global group. As
a result, the non-Abelian strings have orientational zero
modes associated with rotations of their color flux inside
the non-Abelian SUðNÞ group. The global group is broken
on the ZN string solution down to SUðN � 1Þ � Uð1Þ.
Hence, the moduli space of the non-Abelian string is
described by the coset space

SUðNÞ
SUðN � 1Þ � Uð1Þ � CPðN � 1Þ; (3.1)

in addition to C spanned by the translational modes. The
translational moduli totally decouple. They are sterile free
fields, and we can forget about them. Therefore, the low-
energy effective theory on the non-Abelian string is the
two-dimensional N ¼ 2 CPðN � 1Þ model [13–16].

Now we add extra quark flavors with degenerate masses,
increasing Nf from N up to a certain value Nf > N. The

strings emerging in such theory are semilocal. In particular,
the string solutions on the Higgs branches (typical for
multiflavor theories) usually are not fixed-radius strings,
but, rather, possess radial moduli, aka size moduli, see [28]
for a comprehensive review of the Abelian semilocal
strings. The transverse size of such a string is not fixed.

Non-Abelian semilocal strings in N ¼ 2 SQCD with
Nf > N were studied in [13,16,29,30]. The orientational

zero modes of the semilocal non-Abelian string are pa-
rametrized by a complex vector nP (P ¼ 1; . . . ; N), while
its ~N ¼ ðNf � NÞ size moduli are parametrized by a com-

plex vector �K (K ¼ N þ 1; . . . ; Nf). The effective two-

dimensional theory which describes the internal dynamics
of the non-Abelian semilocal string is the N ¼ ð2; 2Þ
weighted CPmodel on a ‘‘toric’’ manifold, which includes
both types of fields. The bosonic part of the action in the
gauged formulation (which assumes taking the limit e2 !
1) has the form5

S ¼
Z

d2x

�
jr�n

Pj2 þ j~r��
Kj2 þ 1

4e2
F2
�� þ 1

e2
j@��j2

þ 2

���������þmPffiffiffi
2

p
��������

2jnPj2 þ 2

���������þmKffiffiffi
2

p
��������

2j�Kj2

þ e2

2
ðjnPj2 � j�Kj2 � 2�Þ2

�
;

P ¼ 1; . . . ; N; K ¼ N þ 1; . . . ; Nf: (3.2)

The fields nP and �K have chargesþ1 and�1with respect
to the auxiliary U(1) gauge field; hence, the corresponding

covariant derivatives in (3.2) are defined as

r� ¼ @� � iA�;
~r� ¼ @� þ iA�; (3.3)

respectively.
If only charge þ1 fields were present, in the limit e2 !

1we would get a conventional twisted-mass deformed CP
(N � 1) model. The presence of charge �1 fields �K

converts the CPðN � 1Þ target space into that of the a
weighted CPðNf � 1Þ model. As in the CPðN � 1Þ model,

small mass differences jmA �mBj lift orientational and
size zero modes generating a shallow potential on the
modular space. The D-term condition

jnPj2 � j�Kj2 ¼ 2� (3.4)

is implemented in the limit e2 ! 1. Moreover, in this limit
the gauge field A� and its N ¼ 2 bosonic superpartner �
become auxiliary and can be eliminated.
The two-dimensional coupling constant � is related to

the four-dimensional one as

� ¼ 2�

g22
: (3.5)

This relation is obtained at the classical level [14,15]. In
quantum theory both couplings run. In particular, the
model (3.2) is asymptotically free [35] and develops its
own scale��. The ultraviolet cutoff in the sigma model on
the string world sheet is determined by g2

ffiffiffi
�

p
. Equation

(3.5) relating the two- and four-dimensional couplings is
valid at this scale. At this scale the four-dimensional
coupling is given by (2.9) while the two-dimensional one

4��ð�Þ ¼ ðN � ~NÞ lng2
ffiffiffi
�

p
��

� 1: (3.6)

Then Eq. (3.5) implies

�� ¼ �; (3.7)

and from now on we will omit the subscript �. In the bulk,
the running of the coupling constant is frozen at g2

ffiffiffi
�

p
,

because of the VEVs of the squark fields. The logarithmic
evolution of the coupling constant in the string world-sheet
theory continues uninterrupted below this point, with the
same running law. As a result, the dynamical scales of the
bulk and world-sheet theories turn out to be the same,
much in the same way as in the Nf ¼ N theory [15].

We remind that the scale g2
ffiffiffi
�

p
determines the ultravio-

let cutoff in the sigma model on the string world sheet.
Therefore we can consider the theory (3.2) as an effective
theory on the string only at energies below g2

ffiffiffi
�

p
. This is

fulfilled if

ffiffiffi
�

p � maxðjmA �mBj;�Þ: (3.8)

Summarizing, if the quark mass differences are small,
the ð1; . . . ; NÞ vacuum of the original UðNÞ gauge theory
supports non-Abelian semilocal strings. Their internal dy-

5Equation (3.2) and similar expressions below are given in
Euclidean notation.
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namics is described by the effective two-dimensional low-
energy N ¼ ð2; 2Þ sigma model (3.2). The model has N
orientational moduli nP with the U(1) charge þ1 and
masses mP ¼ fm1; . . . ; mNg, plus ~N size moduli �K, with
the U(1) charge �1 and masses ð�mKÞ ¼
�fmNþ1; . . . ; mNf

g.
A final remark is in order here. The strict semilocalality

achieved at�mAB ¼ 0 destroys confinement of monopoles
[29,36]. The reason is that the string transverse size (de-
termined by �K’s ) can grow indefinitely. When it becomes
of the order of the distance L between sources of the
magnetic flux (the monopoles), the linearly rising confin-
ing potential between these sources is replaced by a
Coulomb-like potential. To have confinement of mono-
poles we should lift the size zero modes keeping �m
nonvanishing. That’s exactly what we will do, eventually
sticking to (2.5), preserving both confinement and the
global symmetry.

B. Dual world-sheet theory

The dual bulk Uð ~NÞ theory at small � also supports non-
Abelian semilocal strings. The ð1; . . . ; NÞ vacuum of the
original theory (2.1) transforms into the vacuum (2.11) of
the dual theory. Therefore, the internal string dynamics on
the string world sheet is described by a similarN ¼ ð2; 2Þ
sigma model. Now it has ~N orientational moduli with the
U(1) charge þ1 and masses mK ¼ fmNþ1; . . . ; mNf

g. To
make contact with (3.2) we call them ~�K. In addition, it has
N size moduli with the U(1) charge �1 and masses
ð�mPÞ ¼ �fm1; . . . ; mNg. We refer to these size moduli
as ~nP.

The bosonic part of the action of the world-sheet model
in the gauged formulation (which assumes taking the limit
~e2 ! 1) has the form

Sdual ¼
Z

d2x

�
jr� ~�

Kj2 þ j~r�~n
Pj2 þ 1

4e2
F2
��

þ 1

e2
j@��j2 þ 2

���������þmPffiffiffi
2

p
��������

2j~nPj2 þ 2

���������
þmKffiffiffi

2
p

��������
2j~�Kj2 þ e2

2
ðj~�Kj2 � j~nPj2 � 2 ~�Þ2

�
;

P ¼ 1; . . . ; N; K ¼ N þ 1; . . . ; Nf; (3.9)

where the covariant derivatives are defined in (3.3).
We see that the roles of the orientational and size moduli

interchange in Eq. (3.9) compared with (3.2). As in the
model (3.2), small mass differences�mAB lift orientational
and size zero modes of the non-Abelian semilocal string
generating a shallow potential on the moduli space. Much
in the same way as in the model (3.2), the dual coupling

constant ~� is determined by the bulk dual coupling ~g22,

4� ~�ð�Þ ¼ 8�2

~g22
ð�Þ ¼ ðN � ~NÞ ln �

~g2
ffiffiffi
�

p ; (3.10)

see Eqs. (3.5) and (3.6). The dual theory makes sense at

~g2
ffiffiffi
�

p � � where ~� is positive and

4� ~�ð�Þ � 1

(weak coupling).
The bulk and world-sheet dual theories have identical �

functions, with the first coefficient ð ~N � NÞ< 0. They are
both infrared (IR) free. As in the model (3.2), the coinci-
dence of the � functions in the bulk and world-sheet
theories implies that the scale of the dual model (3.9) is
equal to that of the bulk theory,

~� � ¼ �;

cf. Eq. (3.7). Comparing (3.10) with (3.6) we see that

~� ¼ ��: (3.11)

At � � �2 the original theory is at weak coupling, and �
is positive. Analytically continuing to the domain � � �2,
we formally make � negative, which signals, of course,
that the low-energy description in terms of the original

model is inappropriate. At the same time, ~� satisfying
(3.11) becomes positive, and the dual model assumes the
role of the legitimate low-energy description (at weak
coupling). A direct inspection of the dual theory action
(3.9) shows that the dual theory can be interpreted as a
continuation of the sigma model (3.2) to negative values of
the coupling constant �.
Both world-sheet theories (3.2) and (3.9) give the effec-

tive low-energy descriptions of string dynamics valid at the
energy scale below g2

ffiffiffi
�

p
.

Let us note that the world-sheet duality between two-
dimensional sigma models (3.2) and (3.9) was previously
noted in Ref. [30]. In this paper two bulk theories, with the
UðNÞ and Uð ~NÞ gauge groups, were considered (these
theories were referred to as a dual pair in [30]). Two-
dimensional sigma models (3.2) and (3.9) were presented
as effective low-energy descriptions of the non-Abelian
strings for these two bulk theories.

IV. SEMICLASSICAL DESCRIPTION OF THE
WORLD-SHEET THEORIES

At N <Nf < 2N the original model (3.2) is asymptoti-

cally free, see (3.6). Its coupling � continues running
below g2

ffiffiffi
�

p
until it stops at the scale of the mass differ-

ences �mAB. If all mass differences are large, j�mABj �
�, the model is at weak coupling. From (3.2) we see that
the model has N vacua (i.e. N strings from the standpoint
of the bulk theory),ffiffiffi

2
p

� ¼ �mP0
; jnP0 j2 ¼ 2�; nP�P0 ¼ �K ¼ 0;

(4.1)

where P0 ¼ 1; . . . ; N.
In each vacuum there are 2ðNf � 1Þ elementary excita-

tions, counting real degrees of freedom. The action (3.2)
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contains N complex fields nP and ~N complex fields �K.
The phase of nP0 is eaten by the Higgs mechanism. The
condition jnP0 j2 ¼ 2� eliminates one extra field. The
physical masses of the elementary excitations

MA ¼ jmA �mP0
j; A � P0: (4.2)

In addition to the elementary excitations, there are kinks
(domain ‘‘walls’’ which are particles in two dimensions)
interpolating between different vacua. Their masses scale
as

Mkink � �MA: (4.3)

The kinks are much heavier than elementary excitations at
weak coupling.6

Now we pass to the dual world-sheet theory (3.9). It is
not asymptotically free (rather, IR-free) and, therefore, is at
weak coupling at small mass differences, jmABj � �.
From (3.9) we see that this model has ~N vacuaffiffiffi

2
p

� ¼ �mK0
; j�K0 j2 ¼ 2 ~�; nP ¼ �K�K0 ¼ 0;

(4.4)

where K0 ¼ N þ 1; . . . ; Nf. In each vacuum there are

2ðNf � 1Þ elementary excitations with the physical masses

MA ¼ jmA �mK0
j; A � K0: (4.5)

The dual model has kinks too; their masses scale as (4.3).
It is important to understand that the dual theory (3.9) is

not asymptotically free at energies much larger than the
mass differences. At energies smaller than some mass
differences certain fields decouple, and the theory may or
may not become asymptotically free. Keeping in mind the
desired limit (2.5) we will consider the following mass
choice in the dual theory

mP �mP0 ; mK �mK0 ; mP �mK � �m (4.6)

where P, P0 ¼ 1; . . . ; N and K, K0 ¼ N þ 1; . . . ; Nf.

Moreover, we will often consider the mass hierarchy

j�mPP0 j � j�mKK0 j � j�mj � �; (4.7)

where �mPP0 ¼ mP �mP0 and �mKK0 ¼ mK �mK0 .
Clearly, the dual model is not asymptotically free only if

the mass differences �mKK0 are not too small. If we take

j�mKK0 j � j�mj � � (4.8)

the model becomes asymptotically free below j�mj. In
fact, the model then reduces to the CPð ~N � 1Þ model
with an effective scale

~�
~N
LE � ð�mÞN

�N� ~N
; ~�LE � j�mj: (4.9)

In particular, if j�mKK0 j & ~�LE, descending down to ~�LE

we enter (more exactly, the dual CPð ~N � 1Þ enters) the
strong-coupling regime.
Thus, there are two strong-coupling regimes in the dual

model. One is at large mass differences jmABj � � where
the original model (3.2) is at weak coupling and provides
an adequate description, while the other is at very small

mass differences �mKK0 & ~�LE where the dual model
effectively reduces to the strongly coupled CPð ~N � 1Þ
model.

V. EXACT SUPERPOTENTIAL

The CPðN � 1Þmodels are known to be described by an
exact superpotential [26,35,37,38] of the Veneziano-
Yankielowicz type [39]. This superpotential was general-
ized to the case of the weighted CP models in [27,40]. In
this section we will briefly outline this method. Integrating
out the fields nP and �K we can describe the original model
(3.2) by the following exact twisted superpotential:

W eff ¼ 1

4�

XN
P¼1

ð ffiffiffi
2

p
�þmPÞ ln

ffiffiffi
2

p
�þmP

�

� 1

4�

XNF

K¼Nþ1

ð ffiffiffi
2

p
�þmKÞ ln

ffiffiffi
2

p
�þmK

�

� N � ~N

4�

ffiffiffi
2

p
�; (5.1)

where � is a twisted superfield [35] (with � being its
lowest scalar component). Minimizing this superpotential
with respect to � we get the vacuum field formula,

YN
P¼1

ð ffiffiffi
2

p
�þmPÞ ¼ �ðN� ~NÞ YNf

K¼Nþ1

ð ffiffiffi
2

p
�þmKÞ: (5.2)

Note that the roots of this equation coincide with the
double roots of the Seiberg-Witten curve of the bulk theory
[26,27]. This is, of course, a manifestation of coincidence
of the Seiberg-Witten solution of the bulk theory with the
exact solution of (3.2) given by the superpotential (5.1). As
was mentioned in Sec. I, this coincidence was observed in
[26,27] and explained later in [15,16].
Now, let us consider the effective superpotential of the

dual world-sheet theory (3.9). It has the form

~W eff ¼ 1

4�

XNf

K¼Nþ1

ð ffiffiffi
2

p
�þmKÞ ln

ffiffiffi
2

p
�þmK

�

� 1

4�

XN
P¼1

ð ffiffiffi
2

p
�þmPÞ ln

ffiffiffi
2

p
�þmP

�

� ~N � N

4�

ffiffiffi
2

p
�: (5.3)

We see that it coincides with the superpotential (5.1) up to a
sign. Clearly, both, the root equations and the BPS spectra,

6Note that they have nothing to do with Witten’s n solitons
[31] identified as the nP fields at strong coupling. In the next
section we present a general formula for the kink spectrum
outside CMS (at weak coupling).
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are the same for the two sigma models, as was expected
[11].

Although classically the dual pair of the weighted CP
models at hand are given by different actions (3.2) and (3.9)
, in the quantum regime they reduce to one and the same
theory. This is, of course, expected. Classically the cou-
plings of both theories are determined by the ultraviolet
(UV) cutoff scale

ffiffiffi
�

p
, see (3.6) and (3.10). However, in

quantum theory these couplings run and, in fact, are de-
termined by the mass differences. Therefore, if j�mABj *
�, the coupling� is positive and we use the original theory
(3.2). On the other hand, if j�mABj & �, the coupling �
becomes negative, we use the dual theory (3.9) which has

positive ~�, see Sec. IV. The bulk FI parameter � no longer
plays a role. Only the values of the mass differences matter.

It is instructive to summarize the situation. The theory
has three distinct regimes, namely,

(i) The weak-coupling domain in the original descrip-
tion at large mass differences,

j�mABj � �: (5.4)

(ii) The mixed regime in the dual description at inter-
mediate masses,

~� LE � j�mABj � �; (5.5)

where all mass differences above are assumed to be
of the same order. Certain vacua (namely, ~N vacua)
are at weak coupling and can be seen classically, see
(4.4), while N � ~N other vacua are at strong cou-
pling. If, instead, we assume the mass hierarchy (4.7)
then in order to keep ~N vacua at weak coupling we
have to impose the condition

j�mKK0 j � ~�LE; (5.6)

see (4.9). This is the reason why we call this region
the ‘‘intermediate mass’’ domain.

(iii) The strong-coupling regime in the dual description at
hierarchically small masses,

j�mPP0 j � j�mKK0 j & ~�LEj � j�mj � �: (5.7)

The masses of the BPS kinks interpolating between the
vacua�I and�J are given by the appropriate differences of
the superpotential (5.1) calculated at distinct roots
[26,27,40],

MBPS
IJ ¼ 2jW effð�JÞ �W effð�IÞj

¼
��������
N � ~N

2�

ffiffiffi
2

p ð�J � �IÞ

� 1

2�

XN
P¼1

mP ln

ffiffiffi
2

p
�J þmPffiffiffi
2

p
�I þmP

þ 1

2�

XNf

K¼Nþ1

mK ln

ffiffiffi
2

p
�J þmKffiffiffi
2

p
�I þmK

��������: (5.8)

The masses obtained from (5.8) were shown [15,16] to
coincide with those of monopoles and dyons in the bulk
theory. The latter are given by the period integrals of the
Seiberg-Witten curve [26,27].
Now we will consider the vacuum structure and the kink

spectrum in more detail in two quasiclassical regions—at
large mass differences (the original theory) and at inter-
mediate mass differences (the dual theory).

A. Large j�mABj
Consider the vacuum structure of the theory (5.2) in the

weak-coupling regime j�mABj � �. In this domain the
model has N vacua which in the leading (classical) ap-
proximation are determined by Eq. (4.1). Equation (5.2)
reproduces this vacuum structure. Namely, VEVs of � in
each of the N vacua (say, at P ¼ P0) are given by the
corresponding mass mP0

, plus a small correction,

ffiffiffi
2

p
�P0

� �mP0
þ�N� ~N

QNf

K¼Nþ1ðmK �mP0
ÞQ

P�P0

ðmP �mP0
Þ : (5.9)

The spectrum of kinks is given by Eq. (5.8). To be more
specific, let us consider the kinks interpolating between the
neighboring vacua7 P0 and (P0 þ 1). Then we have

mkink ¼ jmP0þ1
D �mP0

D j

�
��������ðmP0

�mP0þ1ÞN � ~N

2�
ln
��mAB

�

��������; (5.10)

where ��mAB is a certain average value of the mass differ-
ences (it depends holomorphically on all mass differences
in the problem). Here we use (5.9). If all mass differences

are of the same order so is ��mAB, although
��mAB does not

coincide with any of the individual mass differences. For a

generic choice of the mass differences ��mAB has a non-
vanishing phase.
We see that in the logarithmic approximation the kink

mass is proportional to the mass difference (mP0
�mP0þ1)

7If the mass parameters mP are randomly scattered in the
complex plane, how should one define the ‘‘neighboring vacua’’?
In the regime under consideration, for all P the vacuum values
�P are close to �mP=

ffiffiffi
2

p
. Assume �P0

is chosen. Then the
neighboring vacuum �P0þ1 is defined in such a way that the
difference jmP0

�mP0þ1j is the smallest in the set j�mP0Pj.
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times the coupling constant �, as one would expect at
weak-coupling, cf. Equation (4.3).

This is not the end of the story, however. The logarithmic
functions in (5.8) are multivalued, and we have to carefully
choose their branches. Each logarithm in (5.1) can be
written in the integral form as

mA

2�
ln

ffiffiffi
2

p
�P0þ1 þmAffiffiffi
2

p
�P0

þmA

¼ mA

2�

Z �P0þ1

�P0

ffiffiffi
2

p
d�ffiffiffi

2
p

�þmA

; (5.11)

with the integration contour to be appropriately chosen.
Distinct choices differ by pole contributions

integer � imA (5.12)

for different A. These different mass predictions for the
BPS states correspond to dyonic kinks. In addition to the
topological charge, the kinks can carry Noether charges
with respect to the global group (2.4) broken down to
Uð1ÞNf by the mass differences. This produces a whole
family of dyonic kinks.8 We stress that all these kinks with
the imaginary part (5.12) in the mass formula interpolate
between the same pair of vacua: P0 and (P0 þ 1). Our aim
is to count their number and calculate their masses.

Generically there are way too many choices of the
integration contours in (5.8). Not all of them are realized.
Moreover, the kinks present in the quasiclassical domain
decay on CMS or form new bound states, cf. e.g. [41,42].
Therefore the quasiclassical spectrum outside CMS and
quantum spectrum inside CMS are different. We have to
use an additional input on the structure of kink solutions to
find out the correct form of the BPS spectrum. In this
section we will summarize information on the classical
spectrum while in the remainder of the present paper we
will use the mirror representation [32] of the model at hand
to obtain the quantum spectrum.

The general formula for the BPS spectrum can be writ-
ten as follows [26]:

MBPS ¼
��������
X
I

mI
DTI þ i

X
A

mASA

��������; (5.13)

where the first term is a nonperturbative contribution and
TI is the topological charge N-vector, while the second
term represents the dyonic (the Noether charge) ambiguity
discussed above, with SA describing a global U(1) charge
of the given BPS state with respect to the Uð1ÞNf group.

The topological charge is given by

TP ¼ �PP0þ1 � �PP0
(5.14)

for kinks interpolating between the vacua P0 and (P0 þ 1),
while mD’s are approximately given by the logarithmic
terms in (5.10),

m
P0

D � mP0

N � ~N

2�
ln
��mAB

�
: (5.15)

Equation (5.10) corresponds to the kink with SA ¼ 0.
At weak coupling the BPS kinks can be studied using the

classical solutions of the first-order equations. Each given
kink solution breaks the global Uð1ÞNf group. Therefore,
the kinks acquire zero modes associated with rotations in
this internal group. Quantization of the corresponding
dynamics gives rise to dyonic kinks which carry global
charges SA. This program was carried out for the CPðN �
1Þ model in [26] and for the weighted CP model (3.2) in
[27]. The result is

SP ¼ sTP; SK ¼ 0 (5.16)

for P ¼ 1; . . . ; N and K ¼ N þ 1; . . .Nf, where s is an

integer. Thus, at large j�mABj we have an infinite tower
of the dyonic kinks with masses

Mkink � jðmP0
�mP0þ1Þj

��������
N � ~N

2�
ln
��mAB

�
� is

��������:
(5.17)

The expression in the second line under the sign of the
absolute value has both real and imaginary parts. The real

part is obtained from the logarithm by replacing ��mAB

under the logarithm by j ��mABj. The imaginary part in-

cludes the phase of ��mAB, which, in principle, could be
obtained for any given set of the mass differences, but in
practice this is hard to do for generic mass choices. In
addition, the imaginary part includes is, where s is an
integer (positive, negative or zero). When we change s,
we scan all possible values of the U(1) charge (i.e. go
through the entire set of dyons).
In addition to the above monopoles/dyons, in this do-

main of �mAB there are elementary excitations, see Eq.
(4.2). These excitations are BPS-saturated too and can be
described by the general formula (5.13) with T ¼ 0 and
SA ¼ �AB � �AP0

for any B ¼ 1; . . . ; Nf in the

P0-vacuum.9

The above spectrum changes upon passing through
CMS. In particular, we will see that elementary excitations
do not exist inside CMS. All excitations that survive inside
CMS are the kinks with nonvanishing topological charges.
This is a two-dimensional counterpart of the bulk picture:
the quarks and gauge bosons decay inside the strong-
coupling domain giving rise to the monopole-
antimonopole pairs, see Sec. II.

8They represent confined monopoles and dyons with the root-
like electric charges in the bulk theory.

9The actual kink spectrum at weak coupling is more compli-
cated than the one in (5.17). The kink states from the tower (5.17)
can form bound states with different elementary states in certain
special domains of the mass parameters [27,43].
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B. Intermediate masses

Now let is consider the domain of intermediate mass
differences, see Eq. (5.5). Then Eq. (5.2) has (N � ~N)
solutions with

ffiffiffi
2

p
� ¼ �exp

�
2�i

N � ~N
l

�
; l ¼ 0; . . . ; ðN � ~N � 1Þ:

(5.18)

We will refer to these vacua as the �-vacua. They are at
strong coupling, and will be studied later. In this section we
consider other ~N vacua, which are at weak coupling and
seen classically in the dual theory, see Eq. (4.4). For these
vacua Eq. (5.2) gives

ffiffiffi
2

p
�K0

� �mK0
þ 1

�N� ~N

QN
P¼1ðmP �mK0

ÞQ
K�K0

ðmK �mK0
Þ ; (5.19)

where K0 ¼ N þ 1; . . . ; Nf. These ~N vacua will be re-

ferred to as the zero-vacua since in these vacua, with small
masses, the � vacuum expectation values are much smaller
than in the �-vacua.

Substituting this in Eq. (5.8) we get the spectrum of the
kinks interpolating between the neighboring vacua K0 and
K0 þ 1,

Mkink �
��������ðmK0

�mK0þ1ÞN � ~N

2�
ln

�
��mAB

þ isðmK0
�mK0þ1Þ

��������; (5.20)

where we take into account the U(1) charges parallelizing
the derivation of Eq. (5.17) and applying the quantization
procedure of [26,27] to the dual theory (3.9). As previously,
all mass differences are assumed to be of the same order.

If, instead, we consider a stricter mass hierarchy (4.7)

(still requiring that we are at weak coupling j�mKK0 j �
~�LE) then Eq. (5.20) must be modified. With this stricter
hierarchy the product in the numerator of the second term

in (5.19) reduces to ð�mÞN to form ~�LE, and the kink
spectrum takes the form

Mkink �
��������ðmK0

�mK0þ1Þ
~N

2�
ln
��mKK0

~�LE

þ isðmK0
�mK0þ1Þ

��������; (5.21)

where ~�LE is given by (4.9). This is just the kink spectrum
in the CPð ~N � 1Þ model at weak coupling.

In addition to the T � 0 kinks, there are elementary
excitations with masses given in Eq. (4.5). They corre-
spond to T ¼ 0 and SA ¼ �AB � �AK0

for any B ¼
1; . . . ; Nf in the K0-vacuum in (5.13).

Confronting Eqs. (5.17) and (5.20) we see that the kinks
have different Noether charges in the domains of large and
intermediate mass differences. At large masses they have

charges with respect to the first N factors of the global
Uð1ÞNf group, while the kinks at the intermediate masses
are charged with respect to the last ~N factors (this would
correspond to SUðNÞ and SUð ~NÞ factors of the global
group (2.4) in the limit (2.5)). Therefore, they are, in fact,
absolutely distinct states. The BPS states decay/form new
bound states upon passing from one domain to another. The
restructuring happens on CMS which are surfaces located
at j�mABj �� in the mass parameter space.10 As we will
see shortly, in the weighted CP model at hand we have
another set of CMS at much smaller mass differences

j�mKK0 j � ~�LE. This additional CMS separates the do-
main of intermediate masses from that at strong coupling,
see (5.7).

VI. MIRROR DESCRIPTION

Now we turn to the study of the quantum BPS spectrum
inside CMS. We will determine the BPS spectrum in the
�-vacua (5.18) at intermediate and small masses, as well as
the spectrum in the zero-vacua in the strong-coupling
domain at hierarchically small masses (5.7).

A. Mirror superpotential

To this end wewill rely on the mirror formulation [32] of
the weighted CP model (3.2). In this formulation one
describes the CP model as a Coulomb gas of instantons
(see [44] where it was first done in the nonsupersymmetric
CPð1Þ model). In supersymmetric setting this description
leads to an affine Toda theory with an exact superpotential.
The exact mirror superpotentials were found for the N ¼
ð2; 2Þ CPðN � 1Þ model and its various generalizations
with toric target spaces in [32]. For the model (3.2) the
mirror superpotential has the form

Wmirror ¼ � �

4�

�XN
P¼1

XP � XNf

K¼Nþ1

YK � XN
P¼1

mP

�
lnXP

þ XNf

K¼Nþ1

mK

�
lnYK

�
(6.1)

supplemented by the constraint

YN
P¼1

XP ¼ YNf

K¼Nþ1

YK: (6.2)

This representation can be checked by a straightforward
calculation. Indeed, add the term

�

4�

ffiffiffi
2

p
�

�XN
P¼1

lnXP � XNf

K¼Nþ1

lnYK

�
(6.3)

to the superpotential (6.1), which takes into account the

10Of course, this restructuring is a reflection of the same
phenomenon in the bulk theory, see Sec. II.
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constraint (6.2). Here � plays a role of the Lagrange multi-
plier. Then integrate over XP and YK ignoring their kinetic
terms. In this way one arrives at

XP ¼ 1

�
ð ffiffiffi

2
p

�þmPÞ; YK ¼ 1

�
ð ffiffiffi

2
p

�þmKÞ: (6.4)

Substituting (6.4) back into (6.1) one gets the superpoten-
tial (5.1).

Clearly for the dual model (3.9) the mirror superpoten-
tial coincides with that in (6.1) up to an (irrelevant) sign.

Below we will find the critical points of the superpoten-
tial (6.1) and discuss the vacuum structure of the model in
the mirror representation. Since our goal is to study the
domain of intermediate or hierarchically small masses, see
(5.5) and (5.7), respectively, we will assume that

j�mABj � � (6.5)

and keep only terms linear in j�mABj=�. As a warm-up
exercise we will start with the CPðN � 1Þ model.

B. CPðN� 1Þ model

For CPðN � 1Þ model ~N ¼ 0 and the superpotential
(6.1) reduces to

WCPðN�1Þ
mirror ¼ � �

4�

�XN
P¼1

XP � XN
P¼1

mP

�
lnXP

�
; (6.6)

while the constraint (6.2) reads

YN
P¼1

XP ¼ 1: (6.7)

Expressing, say X1 in terms of XP with P ¼ 2; 3; . . . ; N by
virtue of this constraint and substituting the result in (6.6),
we get the vacuum equations,

XP ¼ X1 þmP �m1

�
¼ X1 þ �mP1

�
; P ¼ 2; . . . ; N:

(6.8)

Substituting this in (6.7) we obtain X1. This procedure
leads us to the following VEVs of the XP fields:

XP � exp

�
2�i

N
l

�
þ 1

�
ðmP �mÞ; 8 P; (6.9)

where we ignore quadratic in mass differences terms,

m � 1

N

XN
P¼1

mP; (6.10)

and each of the N vacua of the model is labeled by a value
of l, namely l ¼ 0 in the first vacuum, l ¼ 1 in the second,
and so on until we arrive at l ¼ ðN � 1Þ.

C. �-vacua

Now we turn to the strong-coupling vacua in the
weighted CP model at intermediate or small masses (see

Eq. (5.7)), using the mirror representation (6.1). These
vacua were defined as �-vacua in Sec. VB, Eq. (5.18).
Again expressing, say, X1 in terms of other fields by

virtue of the constraint (6.2) we get the vacuum equations

XP ¼ X1 þ �mP1

�
; YK ¼ X1 þ �mK1

�
: (6.11)

Substituting this in the constraint (6.2) and resolving for X1

we get the following VEVs:

XP � exp

�
2�i

N � ~N
l

�
þ 1

�
ðmP � m̂Þ; P ¼ 1; . . . ; N;

YK � exp

�
2�i

N � ~N
l

�
þ 1

�
ðmK � m̂Þ;

K ¼ N þ 1; . . . ; Nf; l ¼ 0; . . . ; ðN � ~N � 1Þ
(6.12)

for (N � ~N) vacua of the theory. Here

m̂ � 1

N � ~N

�XN
P¼1

mP � XNf

K¼Nþ1

mK

�
: (6.13)

As in (6.9), in Eq. (6.12) we neglect the quadratic in mass
difference terms, cubic, and so on.

D. Zero-vacua

Now consider other ~N vacua of the model (3.9) (which
were termed zero-vacua in Sec. VB) using the mirror
description (6.1). At intermediate masses, VEVs of � are
given, in the classical approximation, by the mass parame-
ters mK in the dual theory, see (4.4). The corrections are
given by (5.19). Since the mirror representation is particu-
larly useful at strong coupling, in this section we will focus
on a very small hierarchical region of the mass parameters
(5.7).
It is convenient to express one of YK ’s, say, YNf

in terms

of other fields using (6.2). Then vacuum equations the take
the form

XP ¼ YNf
þ �mPNf

�
; YK ¼ YNf

þ �mKNf

�
: (6.14)

From the first equation we see that, given the hierarchical
masses (5.7), all XP fields are equal to each other to the
leading order,

Xð0Þ
P � �m

�
; P ¼ 1; . . . ; N: (6.15)

With these XP’s the constraint (6.2) takes the form

YNf

K¼Nþ1

YK ¼
�~�LE

�

� ~N
; (6.16)

where ~�LE is the scale of the effective low-energy CPð ~N �
1Þ model (4.9). Substituting the fields YK from the second
equation in (6.14) we get
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YK �
~�LE

�

�
exp

�
2�i
~N

l

�
þ 1

~�LE

ðmK � ~mÞ
�
; (6.17)

where l ¼ 0; . . . ; ~N � 1,

~m � 1
~N

XNf

K¼Nþ1

mK: (6.18)

As usual, we neglect quadratic, cubic, etc. mass-difference
terms.

Finally, we are ready to solve the vacuum equations.
Substituting (6.17) in the first expression in (6.14) we get

Oð~�LE=�Þ corrections to (6.15),

XP � 1

�
ðmP � ~mÞ þ

~�LE

�
exp

�
2�i
~N

l

�
;

l ¼ 0; . . . ; ~N � 1:

(6.19)

We see that there are exactly ~N vacua with very small
values of YK ’s. The VEV structure of YK ’s reduces to that

of the CPð ~N � 1Þmodel with the scale parameter ~�LE, see
(6.9).

VII. KINKS INSIDE CMS

In this section we use the mirror representation to find
the kink spectrum inside CMS in the weighted CP model
on the string world sheet. First, we briefly review the kink
solutions and their spectrum [32] in the CPðN � 1Þ model
and only then turn to the weighted CP model (3.2).

A. Kinks in the CPðN� 1Þ model

As was shown in [32], in the strong-coupling regime
(inside CMS) the number of kinks interpolating between
the vacua P and Pþ k of N ¼ ð2; 2Þ supersymmetric
CPðN � 1Þ model is

	ðN; kÞ ¼ Ck
N � N!

k!ðN � kÞ! : (7.1)

In particular, the number of kinks interpolating between
the neighboring vacua (k ¼ 1) is N, and they form a
fundamental representation of the SUðNÞ group. They
carry the minimal charge with respect to the gauge U(1)
and, therefore, were identified [31] as nP fields in terms of
the original description, see (3.2) for ~N ¼ 0.

Consider a kink interpolating between the neighboring
l ¼ 0 and l ¼ 1 vacua, see (6.9). The kink solution has the
following structure [32]. All XP’s start in the vacuum with
l ¼ 0 and end in the vacuum with l ¼ 1. Moreover, all XP

with P � P0 (where P0 is fixed for a given kink solution)
are equal to each other and have phases which wind by the
angle 2�=N in the anticlockwise direction. Then the con-
straint (6.7) ensures that XP0

winds in the opposite (clock-

wise) direction by the angle [� 2�ðN � 1Þ=N], see Fig. 3.
(If one considers nonelementary kinks interpolating be-
tween non-neighboring vacua, say l ¼ 0 and l ¼ 2, then

two fields XP0
and XP0

0
would have opposite windings with

respect to all others, and so on [32].)
The kink mass is given by

MBPS ¼ 2jW CPðN�1Þ
mirror ðl ¼ 1Þ �W CPðN�1Þ

mirror ðl ¼ 0Þj

�
��������
N

2�
�ðeð2�=NÞi � 1Þ þ iðmP0

�mÞ
��������; (7.2)

where we use (6.6) and neglect quadratic in mass differ-
ences terms. The parameter m is defined in Eq. (6.10).
If we look at the absolute values of the fields XP rather

than at their phases, we will see that, generically, their
absolute values differ from unity. This is discussed in
Appendix A, cf. also [45]. The explicit profile functions
of the kink solutions are irrelevant for determination of the
kink spectrum, since the latter is given by central
charges—the differences of the superpotential on the initial
and final vacua. The phases of XP are important, however,
because logarithms in (6.6) are multivalued functions. In
particular, the term imP0

appeared in (7.2) because XP0
has

the relative winding angle (� 2�) with respect to other
XP’s.
We see that we have exactly N dyonic kinks associated

for the given choice of P0 and its neighbor. (In addition, P0

can be chosen arbitrarily from the set P0 ¼ 1; . . . ; N). The
above dyonic kinks have different charges with respect to
the global Uð1ÞN and are split at generic masses, but
become degenerate in the equal-mass limit. Clearly, they
form a fundamental representation of the global SUðNÞ in
this limit. We stress again that all N kinks here interpolate
between two fixed vacua, l ¼ 0 and l ¼ 1.
The BPS spectrum inside CMS, see (7.2), is very differ-

ent from that outside CMS, see (5.17) with ~N ¼ 0. The
weak-coupling spectrum has an infinite tower of dyonic
kinks, all associated with the same mass difference (mP0

�
mP0þ1). Also, the weak-coupling spectrum has elementary

X

X

X

P

P=P

P
0

0

l=1

l=0

FIG. 3. Windings of the fields XP for the kink interpolating
between the l ¼ 0 and l ¼ 1 vacua.
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states with TP ¼ 0. The quantum spectrum has only a finite
number of states (N), with masses which depend on all
mass differences present in the theory. Moreover, all these
states are topological (they are kinks), no elementary states
are present. The majority of the BPS states present at weak
coupling (in particular, all elementary excitations) decay
on CMS and are absent at strong coupling.

In conclusion we note that Eq. (5.8) is exact and, in
principle, can be used to calculate the BPS spectrum in any
domain of the parameter space of the theory. We can put
~N ¼ 0 in this formula (descending down to the CPðN � 1Þ
model) and apply (5.8) to the kinks which interpolate
between two vacua l ¼ 0 and l ¼ 1 with VEVs of � given
by

ffiffiffi
2

p
� � �exp

�
2�i

N
l

�
; l ¼ 0; . . . ; N (7.3)

at small masses, cf. (5.18) with ~N ¼ 0.
Say, the main contribution in (7.2) proportional to �

comes from the first nonlogarithmic term in the second line
in (5.8). Moreover, now the result in (7.2) shows how
ambiguities related to the choice of the logarithm branches
in (5.8) should be resolved at strong coupling. Namely, we
get exactly the same BPS spectrum as in (7.2) from (5.8)
(with ~N ¼ 0) if we choose the integration contours in
(5.11) as shown in Fig. 4. For the P0-th dyonic kink, the
integration contour should pick up exactly one pole con-

tribution located at
ffiffiffi
2

p
� ¼ �mP0

in the clockwise direc-

tion. This shows, in fact, how the kink solutions look in
terms of the field �.

The above recipe was obtained in the CPðN � 1Þ model
in [40] using a brane construction, see also [27]. Here we
confirm it directly in field theory using the mirror descrip-
tion of the model. See also [45].

B. Kinks in the �-vacua

In this section we work out a similar procedure to obtain
the BPS spectrum in the weighted CPmodel (3.9). We will
focus on the �-vacua at intermediate or small masses, see
(5.5) and (5.7).

Consider kinks interpolating between the neighboring
l ¼ 0 and l ¼ 1 vacua (6.12). Much in the same way as in
the CPðN � 1Þ model (Sec. VII A), all XP’s and YK’s are
equal to each other and wind by the angle 2�=ðN � ~NÞ,
except one field whose winding angle is determined by the
constraint (6.2). There are two different types of kinks
depending on the choice of the latter variable: XP0

or

YK0
, (P0 ¼ 1; . . . ; N and K0 ¼ ðN þ 1Þ; . . . ; Nf). We refer

to these two types of solutions as to the P- and K-kinks,
respectively.

1. P-kinks

Solutions for P-kinks are very similar to those for kinks
in theCPðN � 1Þmodel. In a givenP-kink the variableXP0

winds in the clockwise direction by the angle [� 2�ðN �
~N � 1Þ=ðN � ~NÞ], see Fig. 3. All other fields, i.e. XP�P0

and YK, are equal to each other and wind counterclockwise
by the angle 2�=ðN � ~NÞ.
The superpotential (6.1) implies that the mass of this

kink is

MBPS
P0

�
��������
N � ~N

2�
�ðeðð2�Þ=ðN� ~NÞÞi � 1Þ þ iðmP0

� m̂Þ
��������;
(7.4)

where m̂ is given in Eq. (6.13).
We see that in the transition l ¼ 0 ! l ¼ 1 we have

exactly N kinks associated with the arbitrary choice of
the contour (with the loop around the pole P0 ¼
1; . . . ; N). They are split for generic masses, but become
degenerate in the limit (2.5) we are interested in. They form
the fundamental representation of the global SUðNÞ in this
limit.

P0 P0
m m

l=0

l=1

l=0

σ σ

=

l=1

FIG. 4 (color online). Integration contour in the � plane. Dots
denote two vacua l ¼ 0 and l ¼ 1, while filled squares denote
poles located at

ffiffiffi
2

p
� ¼ �mP for P ¼ 1; . . . ; N.

X

0

l=1

l=0

KY

X
P

Y=
K=K

0

YP K

FIG. 5. Windings of fields XP and YK for the K-kink interpo-
lating between the l ¼ 0 and l ¼ 1 �-vacua.
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2. K-kinks

In theK-kink solutions all fields XP and YK�K0
are equal

to each other and have the winding angle 2�=ðN � ~NÞ,
while the field YK0

winds in the anticlockwise direction by

the angle [2�ðN � ~N þ 1Þ=ðN � ~NÞ], see Fig. 5, as dic-
tated11 by the constraint (6.2). Thus, the YK0

field has the

relative winding þ2� with respect to all other fields.
Substituting this information in the superpotential (6.1)

we obtain the K-kink mass,

MBPS
K0

�
��������
N � ~N

2�
�ðeðð2�Þ=ðN� ~NÞÞi � 1Þ þ iðmK0

� m̂Þ
��������:

(7.5)

Clearly, we have ~N kinks of this type due to the possibility
of choosing the contour encompassing any of the ~N poles,
K0 ¼ ðN þ 1Þ; . . . ; Nf. They are split at generic masses,

but become degenerate in the limit (2.5). They form the
fundamental representation of the global SUð ~NÞ group in
this limit.

Altogether we haveNf kinks interpolating between each

pair of neighboring �-vacua. They form the fundamental
representation of the global group (2.12) in the limit (2.5).
More exactly, they form the ðN; 1Þ þ ð1; ~NÞ representation
of this group.

Much in the same way as in the CPðN � 1Þ model, we
can verify that Eq. (5.8) reproduces this spectrum with the
appropriate choice of the integration contours. Namely, for
the P0-kink the contour in the � plane encircles the pole atffiffiffi
2

p
� ¼ �mP0

in the clockwise direction, see Fig. 4. For

theK0-kink the contour encircles the pole at
ffiffiffi
2

p
� ¼ �mK0

in the anticlockwise direction.

C. Kinks in the zero-vacua

Now we consider kinks in the zero-vacua in the domain
of small hierarchical masses (5.7). These vacua of the
weighted CP model are most interesting since they corre-
spond to ~N non-Abelian strings of the dual bulk theory.
Clearly, the number of kinks does not depend on which pair
of neighboring vacua we pick up. Thus, we expect to have
altogether Nf kinks, as was the case in the �-vacua. We

check this explicitly below.
Much in the same way as in the �-vacua, the kinks

interpolating between the neighboring l ¼ 0 and l ¼ 1
zero-vacua (see (6.17)) fall into two categories: the P-
and K-kinks, respectively, depending on the choice of the

particular XP0
or YK0

field with an opposite winding with

respect to other fields.

1. K-kinks

Let us start from the K-kinks. The kink solution looks
very similar to that in the CPð ~N � 1Þ model. All YK�K0

fields are approximately equal to each other and have the
winding angles 2�= ~N, while the YK0

field has the winding

angle �2�ð ~N � 1Þ= ~N, see (6.17). Correction terms in XP,

proportional to ~�LE=� also all have the same windings by
the angle 2�= ~N, see (6.19). This gives the following ex-
pression for the mass of the K0-kink:

MBPS
K0

�
��������
N � ~N

2�
~�LEðeð2�= ~NÞi � 1Þ � iðmK0

� ~mÞ
��������:
(7.6)

The factor (N � ~N) in the first term appears from two first
terms in (6.1) due to winding of both XP and YK fields. The
imK0

term is due to the relative winding �2� of the YK0

field.
We have ~N kinks of this type associated with the arbi-

trary choice of K0 ¼ ðN þ 1Þ; . . . ; Nf. They are split with

generic masses, but become degenerate in the limit (2.5). In
this limit they form the fundamental representation of the
global SUð ~NÞ group.

2. P-kinks

In this case all YK fields are approximately equal to each
other and have the winding angles 2�= ~N. The fields XP�P0

are all equal to �m=�, to the leading order, and do not
wind; however, they have windings 2�= ~N in the correction
terms, see (6.19). The field XP0

does wind. Its absolute

value is �m=�. The winding angle is 2�, as enforced by
the constraint (6.2), see Fig. 6. A more detailed description
of the kink solutions is presented in Appendix B. The

l=1

l=0

YK

YKXP

XP
0

m∆Λ LE Λ
Λ

FIG. 6. Windings of fields XP0
and YK for the P0-kink inter-

polating between l ¼ 0 and l ¼ 1 zero-vacua.

11In fact, for these solutions to exist (N � ~N) is required to be
large enough. If (N � ~N) is not large enough, the functions of
jXPj and jYKj develop singularities; the singular solutions must
be discarded, cf. Appendix A. The reason behind this phenome-
non is that for (N � ~N) not large enough the vacuum which is the
closest neighbor to l ¼ 0 is, in fact, one of the zero-vacua
(Sec. VID) rather than the l ¼ 1 �-vacuum.
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windings above imply the following mass of the P0-kink:

MBPS
P0

�
��������
N � ~N

2�
~�LEðeð2�= ~NÞi � 1Þ � iðmP0

� ~mÞ
��������

¼
���������i�mþ N � ~N

2�
~�LEðeð2�= ~NÞi � 1Þ

� iðmP0
�mÞ

��������; (7.7)

wherem and ~m are given by (6.10) and (6.18), while�m ¼
m� ~m, see (4.6). In the last expression the first term is the
leading contribution, the second one is a correction, while
the third term accounts for still smaller splittings.

There are N kinks of this type associated with the
arbitrary choice of P0 ¼ 1; . . . ; N. They are split at generic
masses, but become degenerate in the limit (2.5). They
form the fundamental representation of the global SUðNÞ
group in this limit.

Much in the same way as in the �-vacua, the total
number of the kinks interpolating between each pair of
the neighboring zero-vacua is Nf. They form the ðN; 1Þ þ
ð1; ~NÞ representation of the global group (2.12) in the limit
(2.5). Note, that the P-kinks in the zero-vacua are heavier
than the K-kinks. Their masses are given by �m (to the
leading order) while the K-kink masses are of the order of
~�LE. Still, given small hierarchical masses (5.7), all kinks
in the zero-vacua are lighter than those in the �-vacua
which have masses of the order of �, see Eqs. (7.4) and
(7.5).

In parallel with the�-vacua, we can verify that Eq. (5.8)
reproduces the above BPS spectrum with the appropriate
choice of the integration contours. Namely, for the P0-kink

the contour in the � plane encircles the pole at
ffiffiffi
2

p
� ¼

�mP0
in the anticlockwise direction, cf. Fig. 4. For the

K0-kink the contour encircles the pole at
ffiffiffi
2

p
� ¼ �mK0

in

the clockwise direction.

VIII. LESSONS FOR THE BULK THEORY

This section carries a special weight and is, in a sense,
central for the present investigation, since here we translate
our results for the kink spectrum in the weighted two-
dimensional CP model (3.2) in the language of strings
and confined monopoles of the bulk four-dimensional
theory.

We start from the most interesting strong-coupling do-
main

� � � (8.1)

which can be described in terms of weakly coupled dual
bulk theory [11], see Sec. II B. At this point we take the
limit (2.5) to ensure the presence of the unbroken global
group (2.12).

As was mentioned previously, the elementary non-
Abelian strings of the bulk theory correspond to various

vacua of the world-sheet two-dimensional theory, see, e.g.
the review paper [19] for a detailed discussion. The
weighted CP model (3.9) has two types of vacua, namely:
(N � ~N) �-vacua and ~N zero-vacua. The former are not-
so-interesting from the standpoint of the bulk theory.
Indeed, they yield just Abelian ZN� ~N strings associated
with the winding of the (N � ~N) singlet dyons Dl charged
with respect to U(1) factors of the gauge group of the dual
theory (2.10) [11], see (2.11). Moreover, the weighted CP
model (3.9) is, in fact, inapplicable in the description of
these strings. This model is an effective low-energy theory
which can be used below the scale

ffiffiffi
�

p
. However, the

energy scale in the �-vacua is of order of �, i.e. much
larger than

ffiffiffi
�

p
in the domain (8.1).

Below we focus on ~N zero-vacua which correspond to ~N
elementary non-Abelian strings associated with the wind-
ing of the light dyonsDlA of the dual bulk theory. The latter
are charged with respect to both Abelian and non-Abelian
factors [11] of the dual gauge group (2.10). The energy
scale in these vacua of the world-sheet theory is of the
order of

maxð�mKK0 ; ~�LEÞ;
which we assume to be much less than

ffiffiffi
�

p
. Thus, in these

vacua the weighted CP model (3.9) can be applied to
describe the internal dynamics of the non-Abelian strings
of the bulk theory.
The confined monopoles of the bulk theory are seen as

kinks in the world-sheet theory. The results presented in
Sec. VII demonstrate that in the weighted CP model there
are Nf elementary kinks interpolating between the neigh-

boring zero-vacua. More exactly, we foundN P-kinks with
masses (7.7) and ~N K-kinks with masses (7.6). In the limit
(2.5) they form the ðN; 1Þ þ ð1; ~NÞ representations of the
global group (2.12).
This means that the total number of stringy mesons MB

A

formed by the monopole-antimonopole pairs connected by
two different elementary non-Abelian strings (Fig. 1) is

N2
f. The mesons MP0

P form the singlet and (N2 � 1, 1)

adjoint representations of the global group (2.12), the
mesons MK

P and MP
K form bifundamental representations

(N, �~N) and ( �N, ~N), while the mesons MK0
K form the singlet

and (1, ~N2 � 1) adjoint representations. (Here as usual,
P ¼ 1; . . . ; N and K ¼ ðN þ 1Þ; . . . ; Nf.) All these mesons

have masses of the order of
ffiffiffi
�

p
, determined by the string

tension

T ¼ 2��: (8.2)

They are heavier than the elementary states, namely, dyons

and dual gauge bosons which form the (1,1), (N, �~N), ( �N,
~N), and (1, ~N2 � 1) representations and have masses
�~g2

ffiffiffi
�

p
.

Therefore, the (1, 1), (N, �~N), ( �N, ~N), and (1, ~N2 � 1)
stringy mesons decay into elementary states, and we are

left withMP0
P stringy mesons in the representation (N2 � 1,
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1). This is exactly what was predicted in [11] from the bulk
perspective, see Sec. II B. Thus, our world-sheet picture
nicely matches the bulk analysis.

Note also that the MP0
P stringy mesons with strings

corresponding to the �-vacua of the weighted CP model

(the ‘‘�-strings’’) are heavy and decay into MP0
P stringy

mesons with strings corresponding to the zero-vacua (the
‘‘zero-strings’’). To see that this is indeed the case, observe
that the confined monopoles (i.e. kinks of the weighted CP
model) on the �-string have masses of the order of �, see
(7.4). Therefore, the�-stringy mesons also have masses of
the order of �. The MP0

P mesons with the zero-strings are
much lighter in the domain (8.1). Their masses are of the
order of maxð�m;

ffiffiffi
�

p Þ.
Now, let us discuss yet another match of the world-sheet

and bulk pictures. In Sec. VA we saw that there are
elementary excitations (T ¼ 0 and SA ¼ �AP1

� �AP2
) on

the string at weak coupling (this is attainable with large
j�mABj). These excitations would form the adjoint repre-
sentation (N2 � 1, 1) of the global group if the limit (2.5)
could be taken. However, in the strong-coupling domain of
hierarchically small masses (5.7) the kink spectrum is very
different, see Sec. VII. In particular, no elementary exci-
tations are left: these states decay on CMS into a P1-kink
plus a P2-antikink, see Eqs. (7.4) and (7.7).

Since the BPS spectra of the N ¼ ð2; 2Þ two-
dimensional theory on the string and the N ¼ 2 four-
dimensional bulk theory on the Coulomb branch (at zero
�) coincide [15,16,26,27], the decay process above is in
one-to-one correspondence with the decay of the bulk
states identified in [11]. Namely, the quarks qkP1 (with k ¼
P2 due to the color-flavor locking) and the gauge bosons
present in the bulk theory at weak coupling decay into
monopole-antimonopole pairs. If � is small but nonvanish-
ing, the monopoles and antimonopoles cannot move apart:
they are bound together by pairs of confining strings and

form [11] the MP1

P2
mesons shown in Fig. 1. Thus, our

results from two dimensions confirm the decay of the
quarks and gauge bosons in the strong-coupling domain
of the bulk theory. This decay process is a crucial element
of our mechanism of non-Abelian confinement.

To explain this in more detail we present a ‘‘phase
diagram’’ of the bulk theory, see Fig. 7. The vertical and
horizontal solid lines in this figure schematically represent
the bulk theory CMS. The horizontal axis gives the masses
�mPP0 ��mKK0 which we force to be of the same order,
while �m is fixed, �m � �. The vertical axis gives the FI
parameter �. The vertical dashed lines depict CMS of the
world-sheet theory. On these lines the spectrum of the
stringy mesons of the bulk theory rearranges itself. On
the solid lines the ‘‘perturbative’’ spectrum of the bulk
theory rearranges itself. Different domains inside CMS
(where the spectra change continuously) are denoted by
capital letters A; B; . . . ; F.

The domains A, B and C are at weak coupling in the
original UðNÞ gauge theory. The elementary (perturbative)

states in these domains are the qkA quarks and gauge
bosons of the UðNÞ gauge group. The domains D and E
are at weak coupling in the dual theory, see Sec. II B. The
elementary (perturbative) states in these domains are the
light dyons DlA and Dl in Eq. (2.11) plus the gauge bosons
of the dual gauge group (2.10). Masses of all these states
smoothly evolve with the change of parameters inside
these domains. The domain F is at strong coupling in the
dual theory. With small mass differences in the domain
(5.7), N flavors of dyons in Eq. (2.11) decouple, the dual

theory becomes asymptotically free, and at � � ~�LE

passes into the strong-coupling regime. The dual gauge
group (2.10) gets broken down to Uð1ÞN by the Seiberg-
Witten mechanism.
Keeping in mind the limit (2.5), our task is to pass from

the domain A into the domain D and prove that the quarks
and gauge bosons of the former domain decay into the
monopole-antimonopole pairs connected by confining
strings in the domain D. We do it in three steps. First, we
pass from the domain A to C at large � and then move
towards small � (preserving large mass differences) inside
C. The original bulk theory is in the weak-coupling regime
in these domains and the quarks and gauge boson spectra
evolve smoothly.
Next, we pass from the domain C to the domain E at

small (or vanishing) �. Here we use correspondence be-
tween the BPS spectra of the bulk and world-sheet theories.
The qkP1 quarks (with k ¼ P2 due to the color-flavor lock-
ing) and gauge bosons of the domain C correspond to
elementary states with T ¼ 0 and SA¼�AP1

��AP2
, see

(4.2). As was already explained, these states decay on CMS
of the two-dimensional theory into a P1-kink and a
P2-antikink, interpolating between the �-vacua, see
(7.4). Since the spectra of the massive BPS states in the
bulk (at � ¼ 0) on the one hand, and in the world-sheet
theory on the other hand, are identical, both the quarks and
gauge bosons from domain C do not exist in the domain E.
They decay into a P1-monopole and a P2-antimonopole. At

ξ

Λ

Λ2

∆ m ∆ m KK’Λ LE

ΛLE
2

C

B

ED

F

A

PP’

FIG. 7. ‘‘Phase diagram’’ of the bulk theory. Various domains
are separated by CMS on which the physical spectrum is
rearranged.

NON-ABELIAN CONFINEMENT IN N ¼ 2 . . . PHYSICAL REVIEW D 81, 085009 (2010)

085009-17



small but nonvansishing � the latter states are confined by

�-strings which gives rise to MP1
P2

stringy mesons.

Furthermore, as we pass from the domain E to our final

destination—the domain D—these MP1

P2
mesons ‘‘glued’’

by�-strings, decay on the world-sheet theory CMS located

at �mPP0 � �mKK0 � ~�LE. They decay into lighter MP1

P2

mesons glued by zero-strings. The latter stringy mesons
were absent in the domain E at intermediate masses (see
(5.20)), but emerge in the domain D at small masses, see
(7.7). This completes our proof.

In conclusion it is worth noting that the stringy mesons

MP0
P in the adjoint representation (N2 � 1, 1) of the global

group are metastable, strictly speaking. An extra
monopole-antimonopole pair can be created on the string,
making the (N2 � 1, 1) meson to decay into a pair of
stringy mesons in the bifundamental representation, (N,
�~N) and ( �N, ~N). During the subsequent stage these stringy
bifundamentals decay into elementary bifundamental
dyons. One can suppress the rate of this decay, however.
If we keep �m � ffiffiffi

�
p

and take a limit of large N, while ~N
is fixed this decay rate is of the order of ~N=N � 1. To see
that this indeed the case, note that the above decay process
goes through creation of a monopole-antimonopole pair
from the fundamental representation of SUð ~NÞ on the
string which selects ~N channels out of Nf.

Similar considerations can be applied to the weak-
coupling domain of large �,ffiffiffi

�
p � �;

of the bulk theory. We still have kinks in the ðN; 1Þ þ ð1; ~NÞ
representations of the global group (2.4) in the limit (2.5).
Thus, all types of mesons MA

B are formed with masses

� ffiffiffi
�

p
. However, in this regime the (1, 1), (N, �~N), ( �N, ~N),

and (N2 � 1, 1) stringy mesons can decay into quarks and
gauge bosons with the same quantum numbers and masses
�g22

ffiffiffi
�

p
. Therefore, we are left with elementary states and

stringy adjoint mesons (1, ~N2 � 1). The latter are meta-
stable and decay in pairs of bifundamental states.

IX. CONCLUSIONS

BothN ¼ 2 four-dimensional theories belonging to the
dual pair discussed above support non-Abelian strings. The
world-sheet theory on the strings is given by the weighted
CP model which appears in two varieties depending on
which side of duality we are. These two weighted CP
models also form a dual pair. We explore the kink spectra
(which represent confined monopoles of the bulk theory)
and their evolution in passing through the crossover do-
main. Of most interest is small-� dynamics. In fact, at
small � we find two weak-coupling subdomains and a
strong-coupling one depending on the values of the differ-
ences of the mass parameters �mAB.

We have shown that in the limit (2.5) where the global
group (2.4) is unbroken confined monopoles form the

fundamental representation of the global group.
Therefore, stringy mesons (shown in Fig. 1) formed by
pairs of monopoles and antimonopoles belong to the ad-
joint or singlet representations of the global group. This
nicely matches global quantum numbers of mesons in the
‘‘real world.’’
We proved the statement proposed in [11] that quarks

and gauge bosons present in the original theory at large �
decay on CMS into monopole-antimonopole pairs confined
by non-Abelian strings as we enter the small-� domain.
This result is a crucial element of our mechanism of non-
Abelian confinement.
In summary, in this paper we used the world-sheet

theory to confirm the picture of non-Abelian confinement
obtained in [11] from the bulk perspective. Non-Abelian
confinement is not associated with formation of chromo-
electric strings connecting quarks, as a naive extrapolation
of the Abelian confinement picture suggests. Rather, it is
due to the decay on CMS of the Higgs-screened quarks and
gauge bosons into monopole-antimonopole pairs confined
by non-Abelian strings in the strong-coupling domain of
small �. We stress again that the non-Abelian strings
confine monopoles both in the original and dual theories.12

Analysis of the mass spectra presented in the bulk of the
paper raises a number of intriguing questions. One of them
refers to typical sizes of the objects considered. At the
moment, in the absence of a detailed analysis, one can
address this issue only at the qualitative level. At small �
and �m � ffiffiffi

�
p � � we expect that the smallest size

���1 is that of the elementary (perturbative) states,
namely, dyons from Eq. (2.11) and dual gauge bosons.
The sizes of the stringy mesons in the representation N2 �
1 are expected to be of the order ð~g ffiffiffi

�
p Þ�1, i.e. of order of

the thickness of the non-Abelian strings. Finally, the largest

sizes ð�mÞ�1 and �~��1
LE belong to the P- and K-kinks

(confined monopoles on a string), respectively, provided
that the mass difference �mKK0 ! 0.
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APPENDIX A: KINK SOLUTIONS IN CPðN� 1Þ
MODEL

In this appendix we discuss in more detail the kink
solutions in the CPðN � 1Þ model (see Sec. VII A). For
simplicity we set �mPP0 ¼ 0. Small mass differences will

12Similar results were recently obtained in [46] for N ¼ 2
supersymmetric QCD with Nf > 2N.
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slightly deform the kink profile functions but will not
change the very fact of its existence. The kink masses are
given by differences of the mirror superpotential evaluated
at the initial and final vacua, see (7.2).

We look for the kink solution interpolating between l ¼
0 and l ¼ 1 vacua using the ansatz

XP�P0
¼ rei
; XP0

¼ e�iðN�1Þ


rðN�1Þ ; (A1)

where rðzÞ and 
ðzÞ are kink profile functions, subject to
boundary conditions


ðz ¼ �1Þ ¼ 0; rðz ¼ �1Þ ¼ 1;


ðz ¼ 1Þ ¼ 2�

N
; rðz ¼ 1Þ ¼ 1;

(A2)

see (6.9). The last expression in (A1) is dictated by (6.7).
The explicit form of the kink profile functions depends

on the form of the kinetic term which is not known.
Therefore, both profile functions rðzÞ and 
ðzÞ cannot be
determined. Still we can obtain the kink solution up to a
single unknown profile function 
ðzÞ expressing r as a
function of 
. To this end we exploit the fact that the
kink trajectory in the complex plane of superpotential
goes along the straight line connecting the points
Wmirrorðl ¼ 0Þ with Wmirrorðl ¼ 1Þ [38]. The difference

Wmirrorðl ¼ 1Þ �Wmirrorðl ¼ 0Þ ¼ �N�

4�
ðeð2�=NÞi � 1Þ

¼ �N�

4�
eð�=NÞi2i sin

�
�

N

�
;

(A3)

where we used (6.6) and (6.9).
On the other hand,

Wmirrorð
Þ �Wmirrorð
 ¼ 0Þ
¼ � �

4�

	
ðN � 1Þrei
 þ 1

rN�1
e�iðN�1Þ
 � N




¼ � r�

4�
eð�=NÞi

�
ðN � 1Þeið
�ð�=NÞÞ

þ 1

rN
e�iðN�1Þ
�ið�=NÞ � N

r
e��=N

�
: (A4)

Comparing Eqs. (A3) and (A4) we see that for the kink
trajectory to go along the straight line, the real part of the
expression in the curly brackets in (A4) must vanish. As a
result,

ðN � 1Þ cos
�

� �

N

�
� N

r
cos

�

N

þ 1

rN
cos

	
ðN � 1Þ
þ �

N



¼ 0: (A5)

This equation determines the function rð
Þ. It has a non-
vansihing nonsingular solution at 0 	 
 	 2�=N which

satisfies the boundary conditions rð2�=NÞ ¼ rð0Þ ¼ 1.
Say, for N ¼ 2, r ¼ 1. For large N the profile function r
is approximately given by

rð
Þ � 1þ 1

N

�
1� cos

	
ðN � 1Þ
þ �

N


�
þ 
 
 
 : (A6)

APPENDIX B: KINK SOLUTIONS IN THE
ZERO-VACUA

Here we consider the kink solutions interpolating be-
tween the zero-vacua with l ¼ 0 and l ¼ 1, see (6.17), at
hierarchically small masses (5.7). The K-kink solutions in
the zero-vacua are quite similar to kinks in the CPðN � 1Þ
model. Therefore, we focus on P-kinks.
Analyzing the P-kinks we assume the limit (2.5) (for

simplicity). The ansatz for the kink solution takes the form

YK ¼ rei

~�LE

�
; XP�P0

� �m

�
; XP0

� �m

�
r
~Nei

~N
;

(B1)

where we restrict ourselves to the leading order contribu-

tions (� �m=�) ignoring next-to-leading Oð~�LE=�Þ
terms. The profile functions rðzÞ and 
ðzÞ are subject to
the boundary conditions


ðz ¼ �1Þ ¼ 0; rðz ¼ �1Þ ¼ 1;


ðz ¼ 1Þ ¼ 2�
~N
; rðz ¼ 1Þ ¼ 1;

(B2)

see (6.17) and (6.15). The last expression in (B1) is dictated
by (6.2).
The superpotential (6.1) then gives

Wmirrorð
Þ �Wmirrorð
 ¼ 0Þ � ��m

4�
fr ~Nei

~N


� ~Nði
þ lnrÞ � 1g; (B3)

while the difference of the superpotential in the initial and
final vacua is

1

1

−1

l.h.s.

r.h.s.

r

FIG. 8. The right- and left-hand sides of Eq. (B5). The closed
circle denotes the regular solution.
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Wmirrorðl ¼ 1Þ �Wmirrorðl ¼ 0Þ � �m

4�
� 2�i: (B4)

For the kink trajectory to go along the straight line in the
complex plane of superpotential, the real part of the ex-
pression in the curly brackets in (B3) must vanish. This
requirement implies

r
~N cosð ~N
Þ � ~N lnr ¼ 1: (B5)

The latter equation always has a finite nonvanishing solu-
tion in the interval 0 	 
 	 2�=N, subject to the boundary
conditions rð2�=NÞ ¼ rð0Þ ¼ 1. To check that this is in-

deed the case we rewrite it as

cosð ~N
Þ ¼ 1þ ~N lnr

r
~N

: (B6)

The right- and left-hand sides of (B6) are schematically
plotted in Fig. 8. For any�1< cosð ~N
Þ< 1 we have only
one nonsingular solution rð
Þ. In particular, at ~N � 1

rð
Þ � 1� 1
~N
½1� cosð ~N
Þ� þ 
 
 
 : (B7)
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