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We study fluctuation modes in ten-dimensional Yang-Mills theory with a higher derivative term for the

gauge field. We consider the ten-dimensional space-time to be a product of a four-dimensional space-time

and six-dimensional sphere which exhibits dynamical compactification. Because of the isometry on S6,

there are flat directions corresponding to the Nambu-Goldstone zero modes in the effective theory on the

solution. The zero modes are absorbed into gauge fields and form massive vector fields as a consequence

of the Higgs-Kibble mechanism. The mass of the vector fields is proportional to the inverse of the radius of

the sphere and larger than the mass scale set by the radius because of the higher derivative term.
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I. INTRODUCTION

Extra dimensions and their compactification have been
attracting attention [1] for several decades. Among many
scenarios of compactification of extra dimensions,
Cremmer and Scherk suggested an interesting idea that
compactification may occur if a topologically nontrivial
gauge configuration exists in compactified space [2]. An
example is given by the ’t Hooft-Polyakov monopole [3]
on S2. Recently, in [4], some of us have studied a scenario
of dynamical compactification and inflation in ten-
dimensional Einstein-Yang-Mills theory with the SO(6)
gauge group, using the Cremmer-Scherk gauge configura-
tion on S6 [5,6]. We have added a higher derivative cou-
pling term,1 originally introduced by Tchrakian [8], in
order to ensure the nonexistence of tachyonic modes on
the Cremmer-Scherk configuration because of the
Bogomol’nyi equation.

In this paper we study the issue of the stability and
fluctuations of the Cremmer-Scherk configuration in this
scenario. We will work on the space-time given by the
product of a four-dimensional space-time and a six-
dimensional sphere, where the radius of the sphere shrinks
to a constant value in the limit t ! þ1. We assume that
the four-dimensional space-time can be treated as
fðt;N tÞgt2R, where N t is diffeomorphic to a three-
dimensional manifold N .2

We first show the absence of tachyonic modes in general
background gauge fields which satisfy the Bogomol’nyi
equation discussed in [4]. In general, the Cremmer-Scherk
configuration is obtained by the identification of a compact
direction and an internal (gauge) direction as an extension
of the ’t Hooft-Polyakov monopole. By rotating this iden-
tification, with the rotation depending on R1;3, we obtain
massless fluctuation modes which can be regarded as
Nambu-Goldstone bosons [9]. Then we show that these
massless modes are actually absorbed into gauge fields to
form massive vector (Proca) fields by the Higgs-Kibble
mechanism [10]. Since the number of Nambu-Goldstone
modes, 15, coincides with the dimension of SO(6), we find
that the gauge symmetry SO(6) is completely broken. By
scaling fields for normalization of the coefficient of their
kinetic terms, we obtain the mass proportional to the
inverse of the radius of the compact space. We thus con-
clude that there are neither tachyonic nor massless modes
in the physical spectrum around the background and that
the configuration is stable. Similar mechanisms for gener-
ating masses in compactifications have been discussed in
the literature. Scherk and Schwarz introduced mass by
using a generalized dimensional reduction or a twisted
boundary condition of fields [11]. Horvath et al. considered
a system coupled with Higgs fields to obtain the mass of
gauge fields [12]. Manton showed that the components of
gauge fields along extra dimensions provide Higgs fields in
the four-dimensional effective theory without additional
scalar fields [13,14]. Hosotani found a mechanism for
obtaining Higgs fields belonging to representations differ-
ent from the adjoint representation and endowing mass to
fermions on orbifolds [15].
This paper is organized as follows: in Sec. II we will

study the general treatment of the fluctuation of gauge
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1Such a quartic term is known to appear in the low-energy

effective theory of quantum electrodynamics, too [7].
2For instance, four-dimensional Friedmann-Lemaitre-

Robertson-Walker space-time satisfies the condition.
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fields about some classical solution. In the effective theory
on the classical background, the fluctuation of the ten-
dimensional vector field splits into two parts, a four-
dimensional vector field and six scalar fields. We will see
that the lowest Kaluza-Klein mode of the four-dimensional
vector field gets mass because of the gauge configuration.
In Sec. III we review the Cremmer-Scherk gauge configu-
ration and Tchrakian’s self-duality equation. In Sec. IV we
show the Higgs mechanism during the dynamical compac-
tification. By considering rotated identification between
the internal (gauge) space and the compact space (S6),
we explicitly show that the Nambu-Goldstone bosons
form the Proca fields with vector fields. In Sec. V we
summarize this article. In the Appendix we prove the
nonexistence of covariantly constant functions belonging
to the adjoint representation on the Cremmer-Scherk
configuration.

II. FLUCTUATIONS AROUND SOLUTIONS OF
THE BOGOMOL’NYI EQUATION

Let us consider the SO(6) Yang-Mills theory on the ten-
dimensional curved space-time, which is a direct product
of a four-dimensional space-time M and a six-
dimensional sphere S6, whose radius varies. We assume
that the four-dimensional space-time M is the form of
M ¼ fðt;N tÞgt2R, whereN t is diffeomorphic to a three-
dimensional space N , and that any tangent vectors on the
time slice N t are spacelike. The metric on the ten-
dimensional space is given as

ds2 ¼ g��ðxÞdx�dx� þ gijðx; yÞdyidyj;

gijðx; yÞ ¼ R2ðxÞ2
�ij

ð1þ jyj2=4Þ2 :
(1)

The indices are �, � ¼ 0, 7, 8, 9 and i, j ¼ 1; � � � ; 6. x�
represent four-dimensional coordinates along the four-
dimensional space-time M, and yi represent six-
dimensional coordinates along the sphere. We denote
XM � ðx�; yiÞ for the coordinates of total space-time, and
their indices are represented by capital letters. R2ðxÞ is the
radius of the six-dimensional sphere and depends on the
four-dimensional coordinates x. We consider only the case
where R2ðxÞ converges to a nonzero constant value in the
limit t ! þ1. We start from the following action,

S :¼ 1

16

Z
Trf�F ^ �Fþ �2ðF ^ FÞ ^ �ðF ^ FÞg; (2)

where F is the field strength two-form and � is the quartic
coupling constant. The second term quartic in F is the term
introduced by Tchrakian [8], which we call the Tchrakian
term. This action is quadratic in the time derivative acting
on the gauge field, @A=@t. We consider the gauge potential
one-form A taking a value in so(6). In our notation the
generators of so(6) are represented with spinor indices, but
one should not confuse them with spinor fields. In order to

define the product of the field strength two-form, we have
to indicate the representation matrix of gauge fields. Let us
use the Clifford algebra f�a; �bg ¼ 2�ab (a, b ¼
1; 2; . . . ; 6) with respect to SO(6). Here �a are Hermitian
8� 8 matrices. The internal indices are represented by
a; b; c; � � � . This is independent of the space indices along
the six-dimensional sphere. Commutators �ab :¼ ð1=2Þ�
½�a; �b� of � matrices satisfy the commutation relation of
so(6), and their normalization is shown as follows,

½�ab; �cd� ¼ 2ð�bc�ad � �bd�ac � �ac�bd þ �ad�bcÞ;
Tr�ab�cd ¼ 8ð�bc�ad � �ac�bdÞ: (3)

The anticommutation relation of these generators �ab is
given by

f�ab; �cdg ¼ 2�abcd þ 2ð�bc�ad � �ac�bdÞ; (4)

where we have used the following notation,

�að1Þ���aðpÞ :¼ 1

p!

X
�2Sp

sgnð�Þ�að�ð1ÞÞ�að�ð2ÞÞ � � ��að�ðpÞÞ;

(5)

where Sp is the symmetric group of p characters. Further,

we use the matrix �7 :¼ �i�123456. The gauge potential
can then be written as

A :¼ 1
2A

ab
M �abdX

M: (6)

The field strength is defined as F :¼ dAþ gA ^ A, with
gauge coupling constant g. The equation of motion of the
Lagrangian (2) reads

Df�F� �2ðF ^ �ðF ^ FÞ þ ðF ^ FÞ ^ FÞg ¼ 0: (7)

Let us suppose that Að0Þ is some solution of Eq. (7), which
we fix to be our background solution. We make the as-

sumption that Að0Þ has components only along the compact
directions and depends only on yi. Then it follows that the

corresponding field strength, Fð0Þ :¼ dAð0Þ þ gAð0Þ ^ Að0Þ,
has components only along the compact directions.

Let us consider fluctuations �A around the solution Að0Þ,
as

A ¼ Að0Þ þ �A; �A ¼ vþ�;

v ¼ v�dx
�; � ¼ �idy

i:
(8)

The fluctuation �A is divided into two parts, v and�. v is a
one-form whose components are nonzero only along the
four-dimensional space-time, while � has components
only along the six-dimensional sphere. The coefficients
depend on x and y, v� :¼ v�ðx; yÞ, �i :¼ �iðx; yÞ. Our
objective is then to obtain the four-dimensional effective
theory for these fluctuations. The fluctuation v is a vector
field, and the fluctuations �iði ¼ 1; 2; . . . ; 6Þ are six scalar
fields under the general coordinate transformation of the
four-dimensional space-time. Each v� or�i belongs to the
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adjoint representation of the gauge group SO(6), and
ð�ab

1 ;�ab
2 ; . . . ;�ab

6 Þ transform as vectors under the rota-

tion of the six-dimensional space. Let us decompose the
field strengths in terms of v and �,

F ¼ Fð0Þ þ d�Aþ gðAð0Þ ^ �Aþ �A ^ Að0ÞÞ þ g�A ^ �A

¼ Fð0Þ þ dð4Þvþ dð4Þ�þ dð6Þvþ dð6Þ�

þ gðAð0Þ ^ vþ v ^ Að0ÞÞ þ gðAð0Þ ^�þ� ^ Að0ÞÞ
þ gðv ^ vþ v ^�þ� ^ vþ� ^�Þ; (9)

where the exterior derivative d is decomposed into two
parts, d ¼ dð4Þ þ dð6Þ. These operators are defined as

dð4Þ :¼ dx�
@

@x�
; dð6Þ :¼ dyi

@

@yi
: (10)

Let us gather terms as

W :¼ dð4Þvþ gv ^ v;

Dð4Þ
v � :¼ dð4Þ�þ gðv ^�þ� ^ vÞ;

Dð6Þ
0 v :¼ dð6Þvþ gðAð0Þ ^ vþ v ^ Að0ÞÞ;

Dð6Þ
0 � :¼ dð6Þ�þ gðAð0Þ ^�þ� ^ Að0ÞÞ;

(11)

whereW is a field-strength-like quantity of the vector field
v in four-dimensional space-time.� becomes a scalar field
which belongs to the adjoint representation of SO(6) in

four-dimensional low-energy effective theory. Dð4Þ
v repre-

sents the covariant exterior derivative with the vector field

v on the four-dimensional space-time, while Dð6Þ
0 repre-

sents the covariant exterior derivative with classical gauge

configuration Að0Þ, with derivatives along the six-
dimensional sphere. By using these definitions the field
strength F is written as

F ¼ Fð0Þ þW þDð4Þ
v �þDð6Þ

0 vþDð6Þ
0 �þ gð� ^�Þ

¼ FðcÞ þ FðncÞ;

FðcÞ :¼ Fð0Þ þDð6Þ
0 �þ gð� ^�Þ;

FðncÞ :¼ W þDð4Þ
v �þDð6Þ

0 v: (12)

We have separated the field strength into two parts accord-
ing to its indices. FðcÞ has components only along compact

directions, while FðncÞ has components along four-

dimensional space-time. The Yang-Mills part of the action
is written as

TrF ^ �F ¼ TrðFðcÞ ^ �FðcÞ þ FðncÞ ^ �FðncÞÞ: (13)

There are no terms obtained by the contraction of FðcÞ and
FðncÞ. Similarly, the higher derivative coupling term is

decomposed as

TrðF^FÞ ^ �ðF^FÞ ¼ Tr½ðFðcÞ ^FðcÞÞ ^ �ðFðcÞ ^FðcÞÞ
þ ðFðcÞ ^FðncÞ þFðncÞ ^FðcÞÞ
^ �ðFðcÞ ^FðncÞ þFðncÞ ^FðcÞÞ
þ ðFðncÞ ^FðncÞÞ ^ �ðFðncÞ ^FðncÞÞ�:

(14)

We now decompose the action S given in Eq. (2) as

S :¼ SðcÞ þ SðncÞ;

SðcÞ :¼ 1

16

Z
Tr½�FðcÞ ^ �FðcÞ

þ �2ðFðcÞ ^ FðcÞÞ ^ �ðFðcÞ ^ FðcÞÞ�;
SðncÞ ¼ 1

16

Z
Tr½�FðncÞ ^ �FðncÞ þ �2ðFðcÞ ^ FðncÞ

þ FðncÞ ^ FðcÞÞ ^ �ðFðcÞ ^ FðncÞ þ FðncÞ ^ FðcÞÞ
þ �2ðFðncÞ ^ FðncÞÞ ^ �ðFðncÞ ^ FðncÞÞ�: (15)

It was shown in [4] that there are no tachyonic modes

obtained from � in SðcÞ if the solution Að0Þ is a solution

of the Bogomol’nyi equation given in Eqs. (27) and (28)
below. Now we focus only on the v fluctuations, and we
need to check only the remaining part SðncÞ. In order to

study the mass spectrum, we need only quadratic terms in
SðncÞ, and all such terms are included in the following,

SðncÞjquad ¼ 1

16

Z
Tr½�FðncÞ ^ �FðncÞ þ �2ðFð0Þ ^ FðncÞ

þ FðncÞ ^ Fð0ÞÞ ^ �ðFð0Þ ^ FðncÞ þ FðncÞ ^ Fð0ÞÞ�:
(16)

Let us decompose FðncÞ as

FðncÞ ¼ W þ FðmÞ; FðmÞ :¼ Dð4Þ
v �þDð6Þ

0 v; (17)

where W has two four-dimensional indices and FðmÞ has
one four-dimensional index and one six-dimensional in-
dex. Therefore, in this part, SðncÞjquad, of this action, there
are no terms obtained by the contraction of W and FðmÞ:

SðncÞjquad ¼ 1

16

Z
Tr½�W ^ �W þ �2ðFð0Þ ^W

þW ^ Fð0ÞÞ ^ �ðFð0Þ ^W þW ^ Fð0ÞÞ�
þ 1

16

Z
Tr½�FðmÞ ^ �FðmÞ þ �2ðFð0Þ ^ FðmÞ

þ FðmÞ ^ Fð0ÞÞ ^ �ðFð0Þ ^ FðmÞ þ FðmÞ ^ Fð0ÞÞ�:
(18)

From the second integral of Eq. (18) we obtain the mass
term in four-dimensional effective theory of v as
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SðncÞjmass of v ¼ 1

16

Z
Tr½�Dð6Þ

0 v ^ �Dð6Þ
0 v

þ �2fFð0Þ; Dð6Þ
0 vg ^ �fFð0Þ; Dð6Þ

0 vg�: (19)

This gives a mass matrix defined as eigenvalues of a
second-order differential operator on S6. In order to show
that the square of the mass is positive, let us do the
following: suppose that ! and � are functions or 0-forms
on S6 taking values in the Lie algebra so(6). The inner
product is defined as

h!;�i6 :¼ � 1

8

Z
S6
Tr! ^ �6� ¼ � 1

8

Z
S6
dð6ÞvTr!�:

(20)

This gives a positive-definite norm. Any arbitrary function
f globally defined on S6 has a finite norm. L2ðS6Þ � soð6Þ
with respect to this norm is a Hilbert space and is sepa-
rable. The mass matrix M is defined as

M� :¼ Dð6Þ
0 �6 Dð6Þ

0 �� �2fFð0Þ; Dð6Þ
0 �6 fFð0Þ; Dð6Þ

0 �gg:
(21)

This matrix is a self-adjoint operator in L2ðS6Þ � soð6Þ. By
using the inner product h�; �i6 and the mass matrix M, we
obtain

h!;M!i6 ¼ 1

8

Z
Tr½�Dð6Þ

0 ! ^ �Dð6Þ
0 !

þ �2fFð0Þ; Dð6Þ
0 !g ^ �fFð0Þ; Dð6Þ

0 !g�: (22)

The integrand cannot be negative. Hence the operator M
has non-negative eigenvalues. Actually, this operator can
be considered as the mass matrix of v. The mass term of v
is written as

SðncÞjmass of v ¼ 1

2

Z
dð4Þvhv�;Mv�i6: (23)

From this we obtain that the vector field v has non-negative
mass squared. This ensures that there are no tachyonic
modes in the full fluctuation of the gauge field around
the solution of the Bogomol’nyi equation in [4].

Apparently, solutions of the equation Dð6Þ
0 v ¼ 0 are mass-

less modes if they exist, although this does not mean that

only solutions of Dð6Þ
0 v ¼ 0 are massless modes. We show

the nonexistence of covariantly constant functions on the
Cremmer-Scherk configuration in the Appendix.

III. CREMMER-SCHERK GAUGE
CONFIGURATION AND TCHRAKIAN’S DUALITY

EQUATION

So far we have not identified the background configura-
tion. Let us now focus on the Cremmer-Scherk gauge
configuration on S6. To describe the background solution,
let us restrict our interest here only to the part SðcÞ,

SðcÞ ¼ � 1

16

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
d4x

Z
Trf�FðcÞ ^ �6FðcÞ

þ �2ðFðcÞ ^ FðcÞÞ ^ �6ðFðcÞ ^ FðcÞÞg; (24)

where FðcÞ has components only along the compact direc-

tion, and the Hodge duals of F0 and F0 ^ F0 are split into
the four-dimensional invariant volume form and the Hodge
dual of those on S6. This part of the action is a functional of
only � and R2. Let us define the following quantity,

MðcÞ½�; R2� :¼ 1

16

Z
Trf�FðcÞ ^ �6FðcÞ

þ �2ðFðcÞ ^ FðcÞÞ ^ �6ðFðcÞ ^ FðcÞÞg: (25)

By using this, the SðcÞ part of the action is rewritten as

SðcÞ ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffi

�gð4Þ
q

d4xMðcÞ½�; R2�: (26)

From this expression, the termMðcÞ½�; R2� seems to be part

of the effective action including coupling terms of R2 and
�.
The termMðcÞ½�; R2� can be treated as pseudoenergy on

a space with Euclidean signature. By the Bogomol’nyi
completion, it can be rewritten as

MðcÞ½�; R2� ¼ � 1

16

Z
TrfFðcÞ � �6i��7FðcÞ ^ FðcÞg

^ �6fFðcÞ � �6i��7FðcÞ ^ FðcÞg
� i

8
�
Z

Tr�7FðcÞ ^ FðcÞ ^ FðcÞ; (27)

and the Bogomol’nyi equation is obtained as [5,6]

FðcÞ � �6i��7FðcÞ ^ FðcÞ ¼ 0: (28)

The term

Q :¼ Tr�7FðcÞ ^ FðcÞ ^ FðcÞ (29)

is a total derivative and the integral over it reduces to a
surface integral. The resultant of the integral gives a topo-
logical quantity, and MðcÞ½�; R2� is bounded from below.

The solution of Eq. (28) with a minimal topological charge
has been given in [5,6,8]. The minimal charge is

Q ¼ 96�3

g3
: (30)

The gauge configuration

Að0Þ ¼ 1

4gR2

�aby
aVb; Fð0Þ ¼ 1

4gR2
2

�abV
a ^ Vb

(31)

satisfies the ‘‘self-duality’’ equation

Fð0Þ ¼ �6i gR
2
2

3
�7F

ð0Þ ^ Fð0Þ; (32)

where R2 is the radius of S6 and Vi are vielbeins of S6,
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given as

Vi ¼ R2

dyi

ð1þ jyj2=4Þ : (33)

The configuration (31) solves the Bogomol’nyi equation
(28) if and only if R2 takes a special constant value
determined by the constant � [6], given as

� ¼ gR2
2=3: (34)

Let us call this special radius Lc :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3�=g

p
the

‘‘Bogomol’nyi radius.’’ In the case of � � gR2
2=3, the

gauge configuration (31) does not satisfy the
Bogomol’nyi equation (28) anymore.

In this article, we are considering the metric with
R2ðxÞ ! Lc in the limit t ! þ1. An example of such a
realization is given in [4], where the four-dimensional part
g�� is given by the Friedmann-Lemaitre-Robertson-

Walker metric. The gauge field configuration then ap-
proaches the solution of the Bogomol’nyi equation.
WhenR2ðxÞ is close to Lc, we can consider the perturbation
of R2ðxÞ about Lc, such that the deviation is quantified by a
scalar field, 	2ðxÞ:

R2 ¼ Lc expð	2ðxÞÞ: (35)

Lc being a stable fixed point ensures that	2ðxÞ approaches
zero at all spatial points of the (1, 3) part of space-time.
Note that in [4] we had considered only the case of spa-
tially constant 	2ðxÞ � 	2ðtÞ and had shown that it ap-
proaches zero with time.

We are now ready to study the mass spectrum around the
background. To this end, let us first expand MðcÞ as

MðcÞ½�; R2�j�2 ¼ MðcÞ½�; R2�jð1Þ�2 þMðcÞ½�; R2�jð2Þ�2 (36)

with

MðcÞ½�;R2�jð1Þ�2 ¼� 1

16

Z
TrfDð6Þ

0 �� i�6��7

�fFð0Þ;Dð6Þ
0 �gg^�6fDð6Þ

0 �� i�6��7

�fFð0Þ;Dð6Þ
0 �gg;

MðcÞ½�;R2�jð2Þ�2 ¼� i

16

gR2
2

3
ð1þe�4	2ðxÞÞ

Z
Tr�7F

ð0Þ ^Fð0Þ

^Fð0Þ � ig

8

gR2
2

3

Z
Trð1�e�2	2ðxÞÞ2�7

�Fð0Þ ^Fð0Þ ^ ð�^�Þ
þ total derivative: (37)

The first termMðcÞ½�; R2�jð1Þ�2 has only positive eigenvalues

in the mass matrix, and so it gives a positive contribution to
the eigenvalues of the total mass matrix. On the other hand,

the second termMðcÞ½�; R2�jð2Þ�2 includes terms which lower

the eigenvalues of the mass matrix. This term vanishes for
	2 ¼ 0, which is realized in dynamical compactification

[4]. As we show later, there are massless modes satisfying

Dð6Þ
0 �� i �6 ��7fFð0Þ; Dð6Þ

0 �g ¼ 0: (39)

This equation is satisfied for the deformation of the gauge
configuration, after which the compact part FðcÞ of the

deformed configuration still satisfies the Bogomol’nyi
equation. Because these zero modes are not included in

MðcÞ½�; R2�jð2Þ�2 , as shown in Eqs. (52) and (53) below, we

do not care about the tachyonic modes coming from these
zero modes. Hence the eigenvalue of the lowest modes

which give a nonzero contribution to MðcÞ½�; R2�jð1Þ�2 gives

a gap. This implies that there is a range of 	2 in which the
mass matrix does not have tachyonic eigenvalues.
Around this background the vector field v�ðxÞ becomes

massive, and the mass term is

Smass ¼ � 16�3

15
L4
c

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
d4x

�
1þ 10

9
e�4	2

�
vab
� v�;ab:

(40)

Since Smass is quadratic in v and our interest is in getting
the mass terms, we replace R2 by Lc. This implies that the
gauge symmetry is broken completely. Hence, we expect
that the Higgs-Kibble mechanism occurs on this back-
ground. We show it explicitly in the next section.

IV. ROTATION OF THE CREMMER-SCHERK
CONFIGURATIONAND THEHIGGSMECHANISM

The gauge configuration is obtained by the identification
of compact directions and internal directions. Here we
consider the rotated identification. Let us use the following
quantities,

za ¼ Uaiyi; Wa ¼ UaiVi;

UaiUbi ¼ �ab; UciUcj ¼ �ij;
(41)

where the rotation matrix Uai 2 SOð6Þ has different types
of indices. Note that this is different from gauge trans-
formations in general.
When Uai is a constant matrix the rotation can be

absorbed into gauge transformations. As a first step, let
us see what happens to the Cremmer-Scherk gauge con-
figuration under such a constant rotation. Wa as well as Vi

form vielbeins as follows,

ds2 ¼ �ijV
iVj ¼ �ijW

iWj: (42)

Therefore, the Hodge dual of the four-product of W is
given as

�6 Wijkl ¼ 1
2


ijklmnWmn: (43)

Then the gauge configuration
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AðUÞ :¼ 1

4gR2

�abz
aWb;

FðUÞ ¼ dAðUÞ þ gAðUÞ ^ AðUÞ ¼ 1

4gR2
2

�abW
a ^Wb

(44)

satisfies the self-duality equation

FðUÞ ¼ �6 gR
2
2

3
i�7F

ðUÞ ^ FðUÞ: (45)

Among the deviations from the Cremmer-Scherk con-
figuration, the six-dimensional part of the full field
strength, including fluctuations, with the least mass should
preserve the self-duality equation in six dimensions, be-
cause such fluctuations saturate the Bogomol’nyi energy
bound. Here we show that such fluctuations can be ob-
tained by simply promoting a constant rotation U consid-
ered above to a local rotation UðxÞai which depends on the
four-dimensional coordinates x. In this case, UðxÞai is not
constant and the rotation cannot be absorbed into a gauge
transformation. By using the quantities

zaðxÞ ¼ UaiðxÞyi; WaðxÞ ¼ UaiðxÞVi;

UaiðxÞUbiðxÞ ¼ �ab; UciðxÞUcjðxÞ ¼ �ij;
(46)

we consider a gauge configuration

AðUðxÞÞ :¼ 1

4gR2

�abz
aðxÞWbðxÞ (47)

as the Cremmer-Scherk configuration plus the fluctuations.
Although it can be split into background and fluctuation
parts as in Eq. (8), we keep it in the present form for our
purpose. Because the derivatives @=@x� along the four-

dimensional space-time act on UðxÞ, the quantity FðUðxÞÞ
has components along the four-dimensional space-time,

FðUðxÞÞ
ðncÞ :

FðUðxÞÞ ¼ 1

4g
dx�

�
@

@x�
UacðxÞUbdðxÞ

�
�aby

c dyd

ð1þ jyj2=4Þ
þ 1

4gR2
2

�abW
aðxÞ ^WbðxÞ: (48)

FðUðxÞÞ
ðncÞ is part of the field strength, which has four-

dimensional components,

FðUðxÞÞ
ðncÞ :¼ 1

4g
dx�

�
@

@x�
UacðxÞUbdðxÞ

�
�aby

c dyd

ð1þ jyj2=4Þ
¼ 1

4gR2

dx���ðxÞae�abz
eðxÞWbðxÞ

þ 1

4gR2

dx���ðxÞbf�abz
aðxÞWfðxÞ; (49)

where we have used the pullback of the Maurer-Cartan
form,

��ðxÞab :¼
�

@

@x�
UacðxÞ

�
ðU�1ÞcbðxÞ: (50)

The six-dimensional part FðUðxÞÞ
ðcÞ defined in Eq. (12) sat-

isfies the self-duality equation

FðUðxÞÞ
ðcÞ :¼ 1

4gR2
2

�abW
aðxÞ ^WbðxÞ;

FðUðxÞÞ
ðcÞ ¼ �6 gR

2
2

3
i�7F

ðUðxÞÞ
ðcÞ ^ FðUðxÞÞ

ðcÞ :

(51)

At each fixed point x, this configuration is the same as that
in the previous section. Let us substitute this into SðcÞ,

SðcÞ½FðUðxÞÞ
ðcÞ � ¼� 1

16

Z
dvð4ÞZ Tr½�FðUðxÞÞ

ðcÞ ^ �6FðUðxÞÞ
ðcÞ

þ�2ðFðUðxÞÞ
ðcÞ ^FðUðxÞÞ

ðcÞ Þ ^ �6ðFðUðxÞÞ
ðcÞ ^FðUðxÞÞ

ðcÞ Þ�

¼ i
1

16

Z
dvð4Þ gR

2
2

3
ð1þ e�4	2Þ

Z
Tr½�7F

ðUðxÞÞ
ðcÞ

^FðUðxÞÞ
ðcÞ ^FðUðxÞÞ

ðcÞ �: (52)

Because of the self-duality property, the action becomes a
total derivative as the integral over the six-dimensional

sphere with the same value as that of Fð0Þ,
Z

Tr½�7F
ðUðxÞÞ
ðcÞ ^ FðUðxÞÞ

ðcÞ ^ FðUðxÞÞ
ðcÞ �

¼
Z

Tr½�7F
ð0Þ
1 ^ Fð0Þ

1 ^ Fð0Þ
1 � ¼ 96�3

g3
; (53)

where we have used the fact thatUabðxÞ is a rotation matrix
with unit determinant, the relation Tr�7�ab�cd�ef 	

abcdef which is an invariant tensor under rotations, and
finally Eq. (30). Of course, as an integral over four-
dimensional space-time, Eq. (52) is not a total derivative.

Let us define scalar fields �ðxÞ by UðxÞ � e�ðxÞ. A mass
term of �ðxÞ in the low-energy effective theory on four-
dimensional space-time could be found in SðcÞ if it exists.
Since SðcÞ does not depend on UðxÞ, we find that �ðxÞ are
massless fields which are candidates for the Nambu-
Goldstone bosons.
Let us expand ��ðxÞ with respect to small fields �ðxÞ.

The leading term is just the derivative of �,

��ðxÞ ¼
�

@

@x�
UðxÞ

�
UTðxÞ ¼

�
@

@x�
e�ðxÞ

�
e��ðxÞ

¼ @��ðxÞ þ � � � : (54)

Keeping in mind the facts that the action can be divided
into two parts (SðcÞ and SðncÞ) and that SðcÞ is independent of
UðxÞ or �ðxÞ as shown in Eqs. (52) and (53), we obtain
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S½�ðxÞ�¼ 1

16

Z
Trf�FðUðxÞÞ ^�FðUðxÞÞ

þ�2ðFðUðxÞÞ ^FðUðxÞÞÞ^�ðFðUðxÞÞ ^FðUðxÞÞÞg
¼ 1

16

Z
Trf�FðUðxÞÞ

ðncÞ ^�FðUðxÞÞ
ðncÞ þ�2ðFðUðxÞÞ

ðncÞ ^FðUðxÞÞ
ðcÞ

þFðUðxÞÞ
ðcÞ ^FðUðxÞÞ

ðncÞ Þ^�ðFðUðxÞÞ
ðncÞ ^FðUðxÞÞ

ðcÞ

þFðUðxÞÞ
ðcÞ ^FðUðxÞÞ

ðncÞ Þþ�2ðFðUðxÞÞ
ðncÞ ^FðUðxÞÞ

ðncÞ Þ
^�ðFðUðxÞÞ

ðncÞ ^FðUðxÞÞ
ðncÞ Þg

þðterms independent of�ðxÞÞ: (55)

Since in our notation gauge fields and field strengths are
written in terms of the gamma matrices, let us rewrite �ab

�

in terms of the gamma matrices: �ab
� �ab. By using this

quantity, FðUðxÞÞ
ðncÞ can be rewritten as

FðUðxÞÞ
ðncÞ ¼ 1

2½Að0Þ; 12�
cd
� �cd� ^ dx�: (56)

So far we have considered only gauge fields in the

compact space Að0Þ þ� ¼ 1
4gR2

�abz
aðxÞWbðxÞ but not

the one v�ðxÞ in the four-dimensional space-time, the (1,

3) part. Here we consider the total gauge field

AH :¼ v�ðxÞdx� þ 1

4gR2

�abz
aðxÞWbðxÞ: (57)

By a gauge transformation, the Nambu-Goldstone modes
are absorbed into the vector fields v� as

v� ! u� :¼ v� þ 1

2g

�
1

2
�cd
� �cd

�
(58)

with

uab� ¼
�
U

�
U�1v�Uþ 1

2g
U�1 @

@x�
U

�
U�1

�
ab
: (59)

By taking unitary gauge, we obtain

TrW ^ �W ¼ TrWu ^ �Wu; Wu :¼ duþ gu ^ u:

(60)

uab� are massive Proca fields with the mass given by

Smass ¼ � 19

9

16�3

15
L4
c

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
d4xuab� u�;ab: (61)

This is nothing but the Higgs mechanism. Here we note
that there are no cross terms between u and 	2 up to
quadratic order, and the whole mass matrix is block diago-
nal between u and 	2. The number of Nambu-Goldstone
fields �, 15, is the same as the dimension of Lie algebra so
(6). Therefore, the gauge symmetry SO(6) is completely
broken by the gauge configuration.

V. CONCLUSION

In this paper we have considered ten-dimensional
Einstein-Yang-Mills theory, where the gauge field is given
by the Cremmer-Scherk configuration with a higher de-
rivative coupling on S6. We have studied the consequences
of ten-dimensional fluctuations of the gauge field on the
stability of the background metric and gauge field solutions
and on the gauge symmetry in the theory. The Cremmer-
Scherk configuration is obtained by the identification of the
compact direction and the internal (gauge) direction as an
extension of the ’t Hooft-Polyakov monopole [3]. By
rotating the identification, we have obtained massless fluc-
tuation modes identified as Nambu-Goldstone bosons [9].
These massless modes are absorbed into vector fields and
form massive vector fields. Because there are 15 Nambu-
Goldstone modes, the gauge symmetry SO(6) is com-
pletely broken and all the massless modes are absorbed
into vector fields. By scaling the vector fields so that the
coefficients of their kinetic terms are canonically normal-
ized, we found that the mass is proportional to the inverse
of the radius of the compact space. We conclude that there
are neither tachyonic nor massless modes in the physical
spectrum around the background and that the configuration
is stable.
We must point out that in this paper we have not con-

sidered perturbations of gravity, and this remains as an
important future problem. One possible extension of the
present work is to consider other internal manifolds, such
as the projective spaceCP3 instead of S6, using a nontrivial
gauge configuration given in [16].
In Ref. [14] Forgacs and Manton used an S2 reduction

with a nontrivial background gauge field to SUð2Þ Yang-
Mills instantons on R2 � S2, resulting in the Abrikosov-
Nielsen-Olesen vortex solution in the Abelian-Higgs
model on R2. Our case of the S6 compactification may
relate higher dimensional solitons in pure Yang-Mills the-
ory to topological solitons in the Yang-Mills-Higgs system
in four or five dimensions [17] such as wall-vortex-
monopole composites [18] or instanton-vortex composites
[19].
As for higher derivative corrections to non-Abelian

gauge theory, much more attention has been given, so
far, to the Dirac-Born-Infeld (DBI) action. The fourth
derivative term proposed for the non-Abelian DBI action,
which is unknown in full order yet, is different from the
Tchrakian-type term considered in this paper. However,
our work relies on the existence of a Bogomol’nyi-Prasad-
Sommerfield soliton on the compactified space, and the
DBI action is also known to admit several solitons [20].
Therefore, a similar scenario should be applicable to the
DBI action, too. Further, in [21] the possibility of embed-
ding the self-duality equation into larger groups was con-
sidered. As an extension of this work, it would be
interesting to consider similar symmetry breaking for this
configuration embedded into a larger group.
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APPENDIX: NONEXISTENCE OF COVARIANTLY
CONSTANT FUNCTIONS BELONGING TO THE

ADJOINT REPRESENTATION ON THE
CREMMER-SCHERK CONFIGURATION

In this appendix, we study covariantly constant func-
tions on the Cremmer-Scherk gauge configuration on S6.

Let us consider the equation Dð6Þ
0 ’ ¼ 0, where ’ ¼

’ab�ab and the gauge field A
ð0Þ is 1

4gR2
yaVb�ab. The equa-

tion Dð6Þ
0 ’ ¼ 0 is written as

@

@yb
’þ 1

4ð1þ jyj2=4Þ y
a½�ab; ’� ¼ 0: (A1)

Let us take the contraction of yb and Eq. (A1). Because �ab

is antisymmetric in indices a, b, the equation simply
becomes

yb
@

@yb
’ ¼ 0;

@

@r
’ ¼ 0; (A2)

where the radial coordinate is defined as r ¼ jyj. This
shows that ’ does not depend on r and depends only on
angular coordinates �i (i ¼ 1; 2; . . . ; 5). The partial differ-
ential operator @=@ya is rewritten in terms of these coor-
dinates,

@

@ya
¼ ŷa

@

@r
þ 1

r
La; (A3)

where La are a linear combination of @=@�i and do not
depend on r. The unit vector ŷa ¼ ya=r only depends on
those angles. Then Eq. (A1) becomes

Lb’þ r2

ð1þ r2=4Þ ŷ
a½�ab; ’� ¼ 0: (A4)

The first term in Eq. (A4) and ŷa½�ab; ’� do not depend on
r. Therefore, it turns out that ’ is constant and commutes
with all �ab. This means that ’ � 0.
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