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A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated

in detail for a wide range of potentials. Further, its properties are compared with those of the

corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical

(nucleus/shell shape) features of baby Skyrmions are captured already by the soliton solutions of the

restricted model. Further, we find a coincidence between the compact or noncompact nature of solitons in

the restricted model, on the one hand, and the existence or nonexistence of multi-Skyrmions in the full

baby Skyrme model, on the other hand.
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I. INTRODUCTION

The baby Skyrme model was introduced originally as a
planar analogue of the three-dimensional Skyrme model
[1]. Also its target space is simplified accordingly (S2

instead of the SU(2) target space of the Skyrme model)
such that static field configurations can be classified ac-
cording to their winding number in both cases. Like the
Skyrme model, also the baby Skyrme model consists of a
quadratic kinetic term (the O(3) nonlinear sigma model
term), a quartic kinetic term (the analogue of the Skyrme
term), and a potential. For the baby Skyrme model, the
inclusion of a potential term is obligatory for the existence
of static finite energy solutions. The specific form of this
potential term is, however, quite arbitrary, and different
potentials have been studied [2–5] (for some recent studies
see e.g. [6,7]). In addition to its role as a toy model for the
Skyrme model, the baby Skyrme model has also found
some independent applications in condensed matter phys-
ics in the description of the quantum Hall effect [8].

The energy functional of the baby Skyrme model for
static configurations is

E ¼ 1

2

Z
d2x

�
@i ~� � @i ~�þ 1

4
ð�ij@i ~�� @j ~�Þ2

þ�2Vð ~�Þ
�
; (1)

where ~� is a three-component vector field with unit modu-

lus j ~�j ¼ 1, and V is the potential. Further, � is a positive
constant.

Although the baby Skyrme model, due to its simpler
structure, may offer a way for a better understanding of the

solutions in the (3þ 1) Skyrme model, it is still a non-
integrable, highly complicated, topologically nontrivial,
nonlinear field theory. Many properties of baby
Skyrmions are established mainly by numerical simula-
tions, whereas it is much more difficult to gain analytical
understanding. Therefore, it is important to know whether
there exists the possibility for any further simplification
which would keep us in the class of Skyrme-like models
and, nevertheless, allows for some exact analytical calcu-
lations. For example, one may try to identify which fea-
tures of the solutions of the baby Skyrme model are
governed by which part of the model. Then, neglecting a
particular part of the Lagrangian, one could investigate a
simplified model. In case of static solutions only two
simplifications are possible. One may either suppress
both the potential and the quartic, pure Skyrme term, which
leads to the scale invariant O(3) sigma model with its well-
known meromorphic solutions. Or one may opt for an
energy functional which is not scale invariant. In this
case, both the quartic kinetic term and the potential are
mandatory for the evasion of Derrick’s theorem, whereas
the quadratic term is optional from this point of view. The
latter fact led Gisiger and Paranjape to consider the model
with the quadratic term omitted [9], and with the so-called
‘‘old’’ potential

Vð ~�Þ ¼ ðn̂� ~�Þ2 ¼ 2ð1� n̂ � ~�Þ (2)

where n̂ is a constant unit vector which selects the vacuum.
The resulting model has a huge amount of symmetry.
Indeed, both the area-preserving diffeomorphisms on
base space [9] and an Abelian subgroup of the area-
preserving diffeomorphisms on target space [10] are sym-
metries of the static GP ( ¼ Gisiger and Paranjape) model
(as the model consists of a potential term and the pure
Skyrme term only, we will also call it the ‘‘pure baby
Skyrme model’’). Further, already for a spherically sym-
metric ansatz, GP found an infinite number of exact soliton
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solutions, which, together with the huge symmetry, points
towards the integrability of this model in (2þ 0) dimen-
sions [11]. These solitons are, in fact, compact, that is, they
differ from the vacuum only in a finite compact region of
the (two-dimensional) base space [12]. A further explana-
tion of their compact nature can be found in [7], where it is
demonstrated that the GP model can, in fact, be mapped to
the signum-Gordon model (the latter model is known to
support compact solutions, see [13]). In addition, GP de-
rived a Bogomolny bound in their model, but the solutions
they found do not saturate this bound.

The main aim of the present work is to understand
correlations between properties of soliton solutions in the
pure and the full baby Skyrme models. It occurs that some
important topological as well as geometrical features of
baby Skyrmions can be captured already by solutions of
the simplified model.

First, we show that the previously proven integrability of
the static version of the pure baby Skyrme models [11] can
be extended to the (2þ 1) space-time case. However, now
the models are integrable in the sense of generalized
integrability [14]. In particular, we construct an infinite
set of conserved quantities.

In a next step, we generalize the results of GP by study-
ing pure baby Skyrme models with different potentials. We
find that, depending on the type of potential we choose,
there exist soliton solutions with qualitatively different
behavior. In some cases, there exist compact solitons,
whereas in other cases the solitons have an exponential
tail or are even only localized by some inverse powers of
the radius. Further, we find an interesting coincidence
between the behavior of the solitons in the GP like model
(with only a quartic kinetic term), on the one hand, and the
existence of multisoliton solutions of the full baby Skyrme
model, on the other hand. Multisolitons in the full model
seem to exist only for potentials such that the GPmodel has
compacton solutions, whereas they do not exist if the
solitons of the corresponding GP model have an exponen-
tial or power-like tail. Moreover, also the nucleus, respec-
tively, shell-like structure is preserved when we go from
the pure to the full baby Skyrme model.

We also comment on the issue of Bogomolny bounds.
Specifically, we point out that there exists a second
Bogomolny bound in the GP model, and all exact soliton
solutions saturate this bound. Further, this bound continues
to hold for GP like models with arbitrary potential. This
bound was originally found in [15], as a contribution to an
improved Bogomolny bound for the full baby Skyrme
model. We just add the information that in GP like models
this bound is, in fact, saturated, and solutions are, there-
fore, solutions of the corresponding Bogomolny equations.
Further, this second Bogomolny bound of the GP model
immediately leads to a second, improved Bogomolny
bound for the full baby Skyrme model [15]. Solutions of
the full baby Skyrme model do not saturate this bound for

general potentials. This second bound is, however, much
tighter than the more widely known Bogomolny bound
which stems from the quadratic O(3) sigma model term
alone. In addition, the new bound becomes very tight in the
limits of very weak or very strong potential. We explore the
quality (i.e. tightness) of the bound for several parameter
choices. We remark that an equivalent Bogomolny bound
may be derived for generalized Skyrme models in three
dimensions [16]. There the pertinent topological charge is
the baryon number, and the limiting model which saturates
the Bogomolny bound gives an accurate description of
basic properties of nuclei, like e.g. masses and sizes.
Finally, we comment on time-dependent, nontopological

solutions in the pure baby Skyrme model.

II. GENERALIZED INTEGRABILITY IN (2þ 1)
DIMENSIONS

The model we are going to investigate in this work is
defined by the following Lagrange density

L ¼ 1

2

�
1

2
ð@� ~�� @� ~�Þ2 þ�2Vð�3Þ;

�
(3)

where the potential V is any potential depending only on
the third component of the unit vector field. In applications
to the quantum Hall effect, this restricted model corre-
sponds to the limit of infinitely strong magnetic field.
After using the standard stereographic projection

~� ¼ 1

1þ juj2 ðuþ �u;�iðu� �uÞ; 1� juj2Þ

we derive equation of motion

@�K� ��2

4
�uð1þ juj2Þ2V 0 ¼ 0;

where (u� � @�u, etc.)

K � ¼ K�

ð1þ juj2Þ2 ; K� ¼ ðu� �u�Þ �u� � �u2�u
�

and the prime denotes differentiation with respect to u �u.
The construction of conserved quantities is performed by a
well understood procedure originally described in [14].
The conserved currents are chosen as

J� ¼ �G

� �u
K� � �G

�u
�K�; G ¼ Gðu �uÞ; (4)

where G is an arbitrary function which depends on the
modulus of the complex field. Obviously, we have infi-
nitely many such currents as these functions are not re-
stricted to any particular form. Then, one may easily
calculate the divergence of the currents and get
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@�J
� ¼ �2G

� �u2
K� �u� þ �2G

� �u�u
K�u

� þ �G

� �u
@�K�

� �2G

�u2
�K�u

� � �G

�u� �u
�K� �u� � �G

�u
@� �K�:

Using the properties of K�

K � �u� ¼ �K�u
�; K�u

� ¼ �K� �u�

we find

@�J
� ¼ G0ðu@�K� � �u@� �K�Þ ¼ 0;

where the last step follows from the equation of motion. In
contrast to the pure baby Skyrme model, its full version is
not integrable, resulting in a rather complicated dynamics
of the baby Skyrmions. It has been shown, however, that
the full baby Skyrme model possesses an integrable sub-
model defined by an additional constraint which must be
imposed in addition to the equations of motion, namely, the
eikonal equation ð@�uÞ2 ¼ 0. This constraint is quite re-

strictive and it is not known whether this integrable sub-
model can lead to interesting solutions. On the contrary, the
pure baby Skyrme model is integrable (in the specific
meaning of the generalized integrability) without any addi-
tional constraint.

One may notice that the pure baby Skyrme model ex-
plores an integrable limit of the full baby model as was
originally considered by Aratyn et al. in the case of the
Skyrme-Faddeev-Niemi model [17]. Indeed, their limit
m2 ! 0 leads to a model without the quadratic part of
the action. However, as they omitted the potential term,
as well, the limit gave a theory without static soliton
solutions, which probably was the reason why they did
not investigate that model in detail.

III. SOLITONS IN THE PURE BABY SKYRME
MODEL

A. One-vacuum potentials

Let us consider the energy functional for the pure baby
Skyrme model

E ¼ 1

2

Z
d2x

�
1

4
ð�ij@i ~�� @j ~�Þ2 þ�2Vð�3Þ

�
; (5)

where we specify the potential as

V ¼ 4

�
1��3

2

�
s
; (6)

which for s ¼ 1 gives the old baby Skyrme potential. Here
s > 0. Such a family of generalized old baby potentials has
been analyzed by Karliner and Hen in the context of the
rotational symmetry breaking in the full baby Skyrme
model [6].

After the stereographic projection we get

E ¼
Z

d2x

�
2
ðrur �uÞ2 � ðruÞ2ðr �uÞ2

ð1þ juj2Þ4

þ 2�2

� juj2
1þ juj2

�
s
�
;

Further, we assume the symmetric ansatz

u ¼ ein’fðrÞ; (7)

which is compatible with the equations of motion, and
introduce a new function

1� g ¼ 1

1þ f2
;

together with a new variable y ¼ r2=2. For topologically
nontrivial solution one has to impose the following bound-
ary conditions

fðr ¼ 0Þ ¼ 1; fðr ¼ RÞ ¼ 0; f0ðr ¼ RÞ ¼ 0

where R is finite for compactons or R ¼ 1 for standard
solitons (then, the third expression does not lead to a new
condition). In terms of the new function g we get

gðy ¼ 0Þ ¼ 1; gðy ¼ YÞ ¼ 0; g0ðy ¼ YÞ ¼ 0;

Now, the energy takes the simple form

E ¼ 2�
Z

dyð2n2g2y þ 2�2gsÞ (8)

with the Euler–Lagrange equation gyy ¼ �2

n2
sgs�1. Upon

multiplication with gy and integration, one arrives at the

first order equation (the integration constant must be zero
for finite energy solutions)

n2g2y ¼ �2gs:

This first order equation is, in fact, just the square of a
Bogomolny equation, as may be seen easily. Indeed, the
energy (8) may be reexpressed as

E ¼ 4�n2
Z

dy

��
gy ��

n
gs=2

�
2 � 2�

n
gyg

s=2

�
(for our boundary conditions, the upper sign has to be
chosen in order that the total derivative term gives a
positive contribution to the energy), with the resulting
Bogomolny equation

ngy ¼ ��gs=2: (9)

This simple equation supports topological solutions (i.e.,
solutions with the previously specified boundary condi-
tions), which may be divided into three classes.
(i) s 2 ð0; 2Þ-Compactons
The pertinent solutions are compactons

gðyÞ ¼
� ð1� y

y0
Þ2=ð2�sÞ 0 � y � y0

0 y � y0;
(10)
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where the boundary of the compacton is located at

y0 ¼ 2n

�ð2� sÞ :

The approach to the vacuum becomes more and more rapid
as we tend to s ¼ 2. Such compact solutions represent
rotationally symmetric multisoliton configurations which
can be understood as a collection of n Q ¼ 1 solitons
located on top of each other. However, due to the compac-
ton nature of the solutions one may easily construct a
nonrotational solution with Q ¼ n by a collection of
some solutions with lower topological charges, provided
that they are sufficiently separated and the sum of charges
is equal to n.

(ii) s ¼ 2-Exponentially localized solitons
Now, we get a soliton with the standard exponential tails

gðyÞ ¼ e�ðð�yÞ=nÞ: (11)

Again, higher charge solitons may be interpreted as several
Q ¼ 1 solitons sitting on top of each other. Further, it is no
longer obvious how to construct nonsymmetric solutions
and solutions corresponding to well-separated solitons. We
remark that this case has already been investigated in [18].

(iii) s > 2-Power-like localized solitons
The third class of solutions is formed by solitons with

power-like tails (with some negative power of y)

gðyÞ ¼
�

y0
y0 þ y

�
2=ðs�2Þ

; (12)

where

y0 ¼ 2n

�ðs� 2Þ :

Three remarks are appropriate.
First, as one could expect, in the case of solutions of a

first order Bogomolny equation, for all models the total
energy is proportional to the topological charge

E ¼ 16�

sþ 2
�jQj:

Second, from a geometrical point of view all these solu-
tions share a common feature. Namely, they are of nucleus
type with their energy density concentrated around the
origin. This resembles the baby Skyrmions in the old
baby model, where solitons also possess such a nucleus
shape.

Finally, there is a very intriguing coincidence between
the compactness of soliton solutions of the pure model and
the existence, for some values of the parameters, of multi
baby Skyrmions in the full model. In fact, for potentials
with s 2 ð0; 2Þ solitons in the pure model are of the com-
pact type. On the other hand, as is known from previous
numerical works, full baby Skyrme models with the same
potentials support multisoliton solutions. Moreover, for
baby Skyrme models with potentials with s � 2, no stable

multisoliton solutions have been found. Concretely, for the
so-called holomorphic model with s ¼ 4 it has been dem-
onstrated analytically that configurations with higher to-
pological charge are always unstable. For other values of
s � 2, there still exists numerical evidence against the
existence of stable multisolitons. For a more detailed dis-
cussion we refer to [6]. On the pure model side, this
findings correspond to the noncompact nature of topologi-
cal solutions (exponentially or power-like localized). It
seems as if the instability of multi-Skyrmion configura-
tions in the full baby models has its origin in the non-
compactness of the solitons in the pure models.
Equivalently, one may conjecture that compactons in the
pure models are seeds for stable multi-Skyrmions in the
full theory.

B. Two-vacua potentials

1. Generalized new baby potential

Another type of potentials we are going to analyze is
given by the expression

V ¼ 4

�
1� ð�3Þ2

4

�
s
; (13)

with s > 0. In the limit s ¼ 1 one can recognize the new
baby potential, a well-known potential with two-vacua
�3 ¼ �1. The pertinent first order equation of motion
reads

n2g2y ¼ �2ðgð1� gÞÞs:
For this potential we find two classes of solutions.
(i) s 2 ð0; 2Þ-Compactons
The general solution describes a compact ring. In fact,

both vacua are of the compacton type i.e., a solution tends
to them in a power-like manner. More precisely, the solu-
tion (not in explicit form) reads

2

2� s 2F1

�
1� s

2
;
s

2
; 2� s

2
; g

�
¼ �ðyþ y0Þ

n
; (14)

where 2F1 is a hypergeometric function. An example of an
explicit solution can be found for s ¼ 1

gðyÞ ¼
� ðsin2�ðy�y0Þ

n Þ2 0 � y � y0
0 y � y0

(15)

and

y0 ¼ n�

4�
:

The corresponding energy density is not concentrated at
the origin but has its maximum at ymax ¼ n�=8�, forming
a ringlike structure. This solution can be easily extended to
a family of ringlike solutions with the maximum of the
energy density located at any y � ymax. Again, all solutions
lead to a linear energy-charge relation. Let us underline
that the fact that solutions are of the ring type again
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resembles the geometric properties of soliton solutions in
the full baby Skyrme model. Indeed, the baby Skyrmions
in the new baby Skyrme model have this property.

(ii) s � 2-No solitons
It is easy to check that there are no topological solitons

for such a value of the parameter. The reason for this is that
both vacua are approached exponentially for (s ¼ 2) or
power-like (in inverse powers of y) for s > 2. It is of course
impossible to join both vacua in such a way on the semi-
infinite segment y 2 ½0;1Þ.

2. Generalized new baby potential-non-symmetric case

The last family of potentials of this type we want to
analyze has the form

V ¼ 4

�
1þ�3

2

�
a
�
1��3

2

�
b
; (16)

with a, b > 0. The properties of the solutions are as fol-
lows.

(i) a 2 ð0; 2Þ and b 2 ð0; 2Þ-Compactons
We get compactons as the approach to both vacua is
in a power-like manner.

(ii) a ¼ 2 and b 2 ð0; 2Þ or a 2 ð0; 2Þ and
b ¼ 2-Exponentially localized solitons
We get standard soliton solutions with exponential
tails. As an example, we get

gðyÞ ¼ 2

1þ cosh�y
n

(17)

for the first case (a ¼ 2, b ¼ 1), and

gðyÞ ¼
�
tanh

�y

2n

�
2
; (18)

for second case (a ¼ 1, b ¼ 2), respectively. Notice
that the second solution possesses the reversed
boundary conditions, i.e., gð0Þ ¼ 0, gð1Þ ¼ 1.

(iii) a > 2 and b 2 ð0; 2Þ or a 2 ð0; 2Þ and b > 2-Power-
like localized solitons
We get solitons with power-like tails (in inverse
powers of y). As an example one may consider the
choice of parameters a ¼ 4, b ¼ 1. Then, the perti-
nent solution readsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

g2
� 1

g

s
þ arcosh

1ffiffiffi
g

p ¼ y: (19)

All presented solutions can be extended to shell-like
configurations. As before one gets that the energy is
proportional to the topological charge.

(iii) a � 2 and b � 2-No solitons
Again, both vacua must be approached in an exponential

or power-like fashion (in inverse powers of y), and it is
impossible to join the two vacua in this way.

C. Vortex potentials

A different family of potentials also considered for the
baby Skyrme model is given by the following expression

V ¼ 4ðð�3Þ2Þs
�
1��3

2

�
; (20)

where s > 0. Here the vacuum manifold is completely
different from the cases considered up to now. It still
consists of two disconnected components, but now only
one of the two components is a point (the north pole �3 ¼
1 of the target space S2), whereas the other component of
the vacuum is a circle S1: �3 ¼ 0, ð�1Þ2 þ ð�2Þ2 ¼ 1. In
our parametrization, this vacuum corresponds to g ¼ 1=2.
The presence of this new vacuum allows for field configu-
rations which approach it in the limit j ~xj ! 1. Such fields
may be divided into disjoint topological classes as

~n1: R2
r!1 ’ S1 ! Uð1Þ ’ S1:

The relevant topological index is the winding number Q 2
�1ðS1Þ, and the corresponding field configurations are
vortices. The important question is, of course, whether
such vortex configurations are possible solutions of the
underlying field theory. In this respect, the full and the
pure baby Skyrme model are fundamentally different. The
reason is that the quadratic O(3) sigma model term, which
is present only in the full model, produces infinite energy
for vortex configurations. Indeed, in polar coordinates the
static O(3) term essentially is the sum of a radial gradient
squared and an angular gradient squared. In the limit, the
angular gradient behaves like r�1ê’@’ expðin’Þ ¼
inr�1ê’ where n is the vortex number, so for nonzero n

the energy density goes like r�2 and produces a logarith-
mic divergency. As a consequence, there are no vortices
with finite energy in the full baby Skyrme model. In the
pure model, on the other hand, only the quartic term is
present in addition to the potential. Further, due to its
antisymmetry, both gradients have to appear in this term
(in fact, both quadratically). Therefore, the slowly decay-
ing angular gradient is always multiplied by a rapidly
decaying radial gradient, such that the resulting energy
density decays sufficiently fast to have finite energy. In
short, finite energy vortices are not excluded in the pure
model, and they turn out to exist, as we shall see in a
moment.
(i) s 2 ð0; 1Þ-Vortex compactons
We get compact vortices. As an example with explicit

solutions let us consider the model with s ¼ 1=2. Then,

gðyÞ ¼
(
1
2 ðcosh4

ffiffi
2

p ðy�y0Þ
n Þ2 y � y0

1
2 y > y0;

(21)

or
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gðyÞ ¼
(
1
2 ðsin4

ffiffi
2

p
y

n Þ2 y � ~y0
1
2 y � ~y0;

(22)

where

y0 ¼ n

4
ffiffiffi
2

p arccosh
ffiffiffi
2

p
; ~y0 ¼ �n

8
ffiffiffi
2

p :

The first solution represents a vortex ðg 2 ð1; 1=2ÞÞ
whereas the second is an antivortex ðg 2 ð0; 1=2ÞÞ. Quite
interestingly, because of the compactness of the solutions
one may construct a configuration carrying a nontrivial
value of the topological charge by gluing in a proper way
together both profile functions (i.e., both vortices).
Namely,

gðyÞ ¼

8>>>>>><
>>>>>>:

1
2 ðcosh4

ffiffi
2

p ðy�y<Þ
n Þ2 y 2 ½0; y<	

1
2 y 2 ½y<; y< þ y0	
1
2 ðsin4

ffiffi
2

p ðy�ðy>þy0ÞÞ
n Þ2 y 2 ½y< þ y0; y> þ y0	

0 y > y> þ y0;

(23)

where

y< ¼ n

4
ffiffiffi
2

p arccosh
ffiffiffi
2

p
y> ¼ �n

8
ffiffiffi
2

p
�
1þ 2

�
arccosh

ffiffiffi
2

p �
:

Thus, two vortices with the same winding numbers n form
a baby Skyrmion with the topological charge Q ¼ n.
Therefore, for such potentials a baby Skyrmion seems to
dissolve into a pair ofUð1Þ vortices, which now are the true
constituent topological objects.

(ii) s � 1-Exponential or power-like vortices
A pertinent example is given by the s ¼ 1 case. Then,

gðyÞ ¼ 1

2

�
coth

2ðyþ y0Þ
n

�
2

(24)

or

gðyÞ ¼ 1

2

�
tanh

2y

n

�
2
; (25)

where y0 obeys

coth
2y0
n

¼ ffiffiffi
2

p
:

Of course, now these vortex solutions cannot be glued
together to form a stable configuration with nonzero topo-
logical charge.

IV. BOGOMOLNY BOUNDS

In this section we prove that the solutions of the previous
section are Bogomolny solutions of the full two-
dimensional model, without performing any dimensional
reduction. Moreover, we derive the pertinent Bogomolny
bound and show that our solutions saturate it. In fact, in an

investigation of the full baby Skyrme model this bound has
been originally reported in [15]. Let us begin by reviewing
briefly the original Bogomolny bound found by GP. They
studied the energy functional

E ¼ 1

2

Z
d2x

�
1

4
ð�ij@i ~�� @j ~�Þ2 þ�2ðn̂� ~�Þ2

�
where n̂ is a constant unit vector selecting the vacuum.
Further, they derived the following Bogomolny bound

E ¼ 1

2

Z
d2x

��
1

2
�ij@i ~�� @j ~���ðn̂� ~�Þ

�
2

��ðn̂� ~�Þ � �ij@i ~�� @j ~�

�

¼ 1

2

Z
d2x

��
1

2
�ij@i ~�� @j ~���ðn̂� ~�Þ

�
2

���ij ~� � ð@i ~�� @j ~�Þ
�

where a total divergence term which gives zero upon
integration has been omitted in the last expression. The
energy, therefore, obeys a Bogomolny bound

E � EB � 4��jQj
where the integer-valued topological charge Q is

Q ¼ 1

8�

Z
d2x�ij ~� � ð@i ~�� @j ~�Þ:

The solutions of GP (see also Sec. III A), however, do not
saturate this Bogomolny bound. Instead, they satisfy

Esol ¼ 4

3
EB

so they are still proportional to the topological charge, just
the coefficient in front is slightly bigger than the coefficient
for the Bogomolny bound. Firstly, let us remark that non-
trivial solutions saturating this bound cannot exist. Indeed,
the corresponding Bogomolny equation is

1

2
�ij@i ~�� @j ~���ðn̂� ~�Þ ¼ 0

and multiplying this by � ~� one easily concludes

n̂� ~� ¼ 0

and any solution ~� must be proportional to the trivial
constant vacuum vector n̂. Secondly, the fact that the
explicit solutions still are linear in the topological charge,
just with a slightly bigger prefactor, already indicates that
there might exist another, tighter Bogomolny bound which
is saturated by the energies of the solutions. We will
demonstrate now that this is indeed the case (the bound
itself has already been found in [15], as a contribution to an
improved bound for the full baby Skyrme model). For this
purpose, we observe first that the vectorial expression
whose square gives the quartic kinetic term necessarily is

C. ADAM et al. PHYSICAL REVIEW D 81, 085007 (2010)

085007-6



proportional to the vector ~� itself and may therefore be
written like

�ij@i ~�� @j ~� ¼ ~�ð ~� � �ij@i ~�� @j ~�Þ:
Further, we choose the vacuum vector n̂ ¼ ð0; 0; 1Þ such
that the potential V ¼ 2ð1��3Þ depends only on �3. We
will, in fact, allow for general potentials V ¼ Vð�3Þ at the
moment, because the Bogomolny bound can be easily
found for them. Using this, we rewrite the energy func-
tional like follows,

E ¼ 1

2

Z
d2x

�
1

4
ð�ij ~� � ð@i ~�� @j ~�ÞÞ2 þ�2Vð�3Þ

�

¼ 1

2

Z
d2x

��
1

2
�ij ~� � ð@i ~�� @j ~�Þ ��

ffiffiffiffi
V

p �
2

��
ffiffiffiffi
V

p
�ij ~� � ð@i ~�� @j ~�Þ

�
: (26)

It remains to demonstrate that the last term above is, in-
deed, a Bogomolny energy which is bounded by the topo-
logical charge. For this purpose we use the complex field u

together with its modulus and phase u ¼ fei� � ffiffiffiffi
F

p
ei�

instead of the unit vector field ~�. In these terms the
topological charge reads

Q½u	 ¼ �1

2�i

Z
d2x

�ijui �uj

ð1þ u �uÞ2 ¼
1

2�

Z
d2x�ij

Fi�j

ð1þ FÞ2 :
(27)

For the energy we find from (26)

E � �4��
Z

d2x

�
1

2�

ffiffiffiffiffiffiffiffiffiffiffi
VðFÞp

�ij
Fi�j

ð1þ FÞ2
�
� 4��C1jQj

where the sign has to be chosen accordingly (upper sign for
Q> 0). Further, C1 is a constant which depends on V, and
the last equality still has to be proven. If we replace V by
one, then the result is obvious, because the integrand is just
the integrand of the topological charge (27). Equivalently,
this expression is just the pullback of the area form on the
target space S2, normalized to one. The base space integral
gives the resultQ because the base space sphere is covered
Q times while the target space sphere is covered once. But

this last result continues to hold with the factor
ffiffiffiffiffiffiffiffiffiffiffi
VðFÞp

present, up to a constant C1. Indeed, we just have to find a
new target space coordinate ~F instead of F such thatffiffiffiffiffiffiffiffiffiffiffi

VðFÞp
dF

ð1þ FÞ2 ¼ C1

d ~F

ð1þ ~FÞ2 : (28)

The constant C1, and a second coordinate C2 which is
provided by the integration of Eq. (28), are needed to
impose the two conditions

~FðF ¼ 0Þ ¼ 0; ~FðF ¼ 1Þ ¼ 1 (29)

which must hold if ~F is a good coordinate on the target
space S2. Obviously, C1 depends on the potential.

Specifically, for the old potential

V ¼ 2ð1��3Þ ¼ 4
F

1þ F

we find

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F

1þ F

s
dF

ð1þ FÞ2 ¼ C1

d ~F

ð1þ ~FÞ2

4

3

�
F

1þ F

�
3=2 ¼ � C1

1þ ~F
þ C2

and, finally, from the boundary conditions (29), C1 ¼
C2 ¼ ð4=3Þ.
The corresponding Bogomolny equations are

1

2
�ij ~� � ð@i ~�� @j ~�Þ ��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð�3Þ

q
¼ 0

or, in terms of u ¼ fei�, F ¼ f2,

2�ij½@ið1þ FÞ�1	@j���
ffiffiffiffiffiffiffiffiffiffiffi
VðFÞ

p
¼ 0:

For F ¼ FðrÞ, � ¼ n’ this just gives the Bogomolny
equations of Sec. III. For the one-vacuum potentials (6)
of Sec. III A, e.g., we get the Bogomolny Eq. (9), as may be
checked easily (remember 1� g ¼ ð1=ð1þ FÞÞ).

Bogomolny bounds in the full baby Skyrme model

Here we want to discuss the fact that the above
Bogomolny bound may be used immediately to derive a
tighter bound also for the full baby Skyrme model [15].
The important point here is that the quadratic, O(3) sigma
model part of the full baby Skyrme model, which is absent
in the GP model, has its own, independent Bogomolny
bound

EOð3Þ � 4�jQj
in terms of the same winding number. For the full baby
Skyrme model (1) we get, therefore, in the case of the old
potential, the improved Bogomolny bound

EbS ¼ EOð3Þ þ EGP � 4�jQj
�
1þ 4

3
�

�
:

In the full baby Skyrme model, however, solutions no
longer saturate this bound, because they would have to
obey the field equations both of the O(3) model and of the
GP model in order to do so. Nevertheless, we expect that
the bound should be very tight for very small and very large
�. The reason for this is as follows. A simple scaling
argument shows that the potential and the quartic pure
Skyrme term always contribute the same amount of energy
to a solution. This implies that in the limit of very small�,
the energy approaches the pure quadratic O(3) sigma
model energy, whereas in the opposite limit of large �,
the energy approaches the energy of the GP model. But
both the pure O(3) model energy and the pure GP model
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energy saturate their respective Bogomolny bounds. A
simple numerical calculation of the energies confirms
this expectation. We make the rotationally symmetric an-
satz u ¼ fðrÞein’ and determine fðrÞ and the correspond-
ing energy by a simple shooting algorithm. The deviation
between energy and bound reaches its maximum of about
10% for values of �
 1, and diminishes both for small

and large �, as expected, see Fig. 1. The case � ¼ ffiffiffiffiffiffiffi
0:1

p
and Q ¼ 1 corresponds to the numerical solution origi-
nally reported in the first reference of [2], E ¼ 1:564�
4�, in which case the new bound gives 1:422� 4� which
is definitely better than the old pure O(3) sigma model
bound 4� (10% off instead of more than 50% off).

In Fig. 2 we show the corresponding results for higher
topological charges Q ¼ 2; . . . ; 12. Observe that although
the symmetric ansatz does not necessarily lead to the

energy minima of the full baby Skyrme model, the bound
is again very tight in the large and small � limits.
The generalization to other potentials is obvious. The

bound is always of the type

EbS ¼ EOð3Þ þ EGP � 4�jQjð1þ C1�Þ;
where the numerical factor C1 depends on the specific
potential but can be calculated exactly. We remark that
the limit of large � has already been studied in [18],
although for a different potential (the square of the old
potential).

V. NONEXISTENCE OF NONTOPOLOGICAL
Q-BALLS

Here we show that there are no topologically trivial
Q-balls in the pure baby model with the old potential.
We assume the symmetric ansatz for time-dependent solu-
tions

u ¼ eið!tþn’ÞfðrÞ: (30)

Then, the equation of motion takes the form

f

�
� 1

r
@r

�
rf0f

ð1þ f2Þ2
�
n2

r2
�!2

��
þ 1

2

�
¼ 0:

Thus, as always, a solution is given by the vacuum value
f ¼ 0 or by a solution of

� 1

r
@r

�
rf0f

ð1þ f2Þ2
�
n2

r2
�!2

��
þ 1

2
¼ 0:

Now we introduce the g function

1� g ¼ 1

1þ f2

and get the equation

� 1

r
@r

�
rg0

�
n2

r2
�!2

��
þ 1 ¼ 0: (31)

We are looking for nontopological solutions of the Q-ball
type. Hence, the relevant boundary conditions are: for a
compacton starting at r ¼ 0

gðr ¼ 0Þ ¼ 0; gðr ¼ RÞ ¼ 0; g0ðr ¼ RÞ ¼ 0

or, for a shell-like compacton

gðr ¼ RiÞ ¼ 0; g0ðr ¼ RiÞ ¼ 0;

i ¼ 1; 2; R1 < R2:

The general solution of the e.o.m. is

g0ðrÞ ¼ 1
n2

r2
�!2

�
r

2
þ A

�

and

FIG. 1. Comparison of the energy and Bogomolny bound for
the Q ¼ 1 baby Skyrmion.

FIG. 2. Comparison of the energies and Bogomolny bounds for
the Q ¼ 2; . . . ; 12 baby Skyrmions. The curves are in ascending
order of Q, i.e., the lowest curve corresponds to Q ¼ 2, etc.
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gðrÞ ¼ � r2

4!2
� n2

4!4
lnjn2 �!2r2j

� A

2!2
lnjn2 �!2r2j þ B:

First of all we may exclude shell-like compactons, as from
the equation for g0 we get that

g0ðr ¼ RÞ ¼ 0 ) R2 ¼ �2A:

Hence, there is only one positive R. Notice, A must be
negative. Further gð0Þ ¼ 0 gives

B ¼ n2

4!4
lnjn2j þ A

2!2
lnjn2j

and

gðrÞ ¼ � r2

4!2
� n2

4!4
ln

��������1�!2r2

n2

��������
� A

2!2
ln

��������1�!2r2

n2

��������:
The last constant A can be found from gðRÞ ¼ 0

0¼� R2

4!2
� n2

4!4
ln

��������1�!2R2

n2

��������� A

2!2
ln

��������1�!2R2

n2

��������:

But R2 ¼ �2A, thus (after multiplication by 4!2=n2)

0 ¼ 2A!2

n2
� ln

��������1þ 2A!2

n2

��������� 2A!2

n2
ln

��������1þ 2A!2

n2

��������
or

0 ¼ p� ð1þ pÞ lnj1þ pj;
where p ¼ 2A!2=n2. This equation has two solutions p ¼
0 and p ¼ p0 <�1. But in order to have a nonsingular
solution g, the radial coordinate cannot be larger than r <
n=w. So, the size of the compacton must be also smaller

than this critical value R< n=w. As we know R ¼ ffiffiffiffiffiffiffiffiffiffi�2A
p

,
where 2A ¼ pn2=w2 if we use the definition of p. Then,
R ¼ ffiffiffiffiffiffiffiffi�p

p
n=w < n=w. Thus finally, 0<

ffiffiffiffiffiffiffiffi�p
p

< 1 i.e.,

p 2 ð�1; 0Þ, which is in contradiction with our previous
observation that p0 <�1.

The generalization to other potentials is unfortunately
difficult. We are left with a quite complicated second order
nonlinear ODE for g. Fortunately, one may prove that for
any old baby potential (6) there are no nonspinning (n ¼
0), nontopological Q-balls. Instead of Eq. (31), we get

1

r
@rðrg0Þ þ gs�1 ¼ 0;

where the radial coordinate has been properly rescaled.
Assuming a series expansion in the vicinity of the origin

gðrÞ ¼ Ara þ . . .

we get

a ¼ 2

2� s
; a2 þ As�2 ¼ 0:

The second formula leads to a complex or negative value of
A, which is unacceptable as g must be positive. A similar
effect occurs if we try an expansion at any finite R. Then
we have

aða� 1Þ þ As�2 ¼ 0:

We can get an acceptable A if 0< a< 1. But this gives s <
0, which is excluded for obvious reasons. Hence, no n ¼ 0,
Q-balls are possible.
The nonexistence of nontopological Q-balls in the pure

baby Skyrme models is a rather new feature which has no
analog in the full baby Skyrme model. On the contrary, in
the full theory one expects to find nontopological time-
dependent solutions, compact or noncompact, depending
on the chosen form of the potential [7]. Moreover, this
result is also unexpected, as topological Q-balls have been
found by Gisiger and Paranjape [9], with properties similar
to Q-baby Skyrmions. Apparently, the restricted model
leads to nontrivial solutions which reflect properties of
the full model only for field configurations with a non-
trivial topological charge.

VI. CONCLUSIONS

In this paper the pure baby Skyrme model has been
analyzed. It was our main aim to investigate whether
solutions of this simplified model may tell us something
about the baby Skyrmions, i.e., solitons in the full baby
Skyrme theory. Such a correspondence between solutions
of the two models is by no means obvious. Because of the
huge amount of symmetries in the restricted model, one
could rather expect a completely different behavior of
solutions. We found, nevertheless, that many properties
of baby Skyrmions are sufficiently well described by solu-
tions of the pure model. Moreover, as the restricted model
is integrable in the (2þ 0) dimensional case (in (2þ 1)
dimensions the model has the property of generalized
integrability), we were able to perform all calculations
analytically. The main findings are as follows:
(i) Topological (charge) as well as geometrical (nu-

cleus/shell) features of baby Skyrmions are captured
already by the soliton solutions of the pure model

(ii) Energies of baby Skyrmions are reasonably approxi-
mated by the energies of the solitons of the pure
model. The approximation becomes better and better
while � ! 1

(iii) There is a coincidence between the existence of
compact solitons in the pure baby model and the
existence (for some values of the parameters) of
multi-baby-Skyrmions in the full baby Skyrme
model

(iv) There are no topologically trivial Q-ball
configurations
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The first three results show that the static properties of baby
Skyrmions may be qualitatively and quantitatively de-
scribed by solutions of the pure model. They indicate
that the topological and geometrical properties are gov-
erned by the Skyrme term and the potential, while the
quadratic part of the full baby Skyrme model only quanti-
tatively modifies them. Especially, the third result can be
potentially important as it gives a chance for an analytical
treatment of the issue of the stability of multi Skyrmions.
So the purely quartic model, despite its high symmetry and
probable integrability, shares some properties with the full
model, and may probably be used to approximate the full
model in some sense (for approximation of solitons by
compactons in the case of a scalar field theory see [19]).
A further issue we want to discuss briefly is the question of
stability of the solitons of the pure model. These solutions
are of the Bogomolny type, so there do not exist negative
modes (fluctuations which lower the energy). Because of
the high amount of symmetry there exist, however, infi-
nitely many zero modes of these solitons. These zero
modes have an especially clear geometrical interpretation
in the case of compact solitons. For compactons, any
deformation of the compacton which does not change its
total area is another solution with the same energy, which is
related to the fact that the area-preserving diffeomorphisms

on base space are symmetries of the model, see [9].
Concerning topologically trivial configurations we find
that no topologically trivial Q-balls exist in the restricted
model. These Q-balls in the full baby Skyrme model are,
therefore, not approximated by any solutions of the pure
baby model. Still they may be approximated by solutions
of the CP1 model, i.e., another simplified version of the
baby Skyrme theory, which consists of the quadratic part
and potential. Of course, such a model does not allow for
static solutions and, therefore, is useless in the context of
the static baby Skyrmions. The identification of simplified
models relevant for the study of properties of topological
solitons (the pure baby Skyrme model) and nontopological
solutions (the CP1 model with potential) is another result
of the paper.
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